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Abstract

In this note we give proofs of the following three algebraic facts which have

applications in the theory of holonomy groups and homogeneous spaces: Any irre-

ducibly acting connected subgroup G ⊂ Gl(n,R) is closed. Moreover, if G admits

an invariant bilinear form of Lorentzian signature, G is maximal, i.e. it is conju-

gated to SO(1, n − 1)0. We calculate the vector space of G-invariant symmetric

bilinear forms, show that it is at most 3-dimensional, and determine the maximal

stabilizers for each dimension. Finally, we give some applications and present some

open problems.

MSC: 53C29; 53C30; 22E15; 20G05.

1 Background, results and applications

This article was motivated by three algebraic questions which are related to problems in
holonomy theory of affine or semi-Riemannian manifolds and in the theory of homoge-
neous spaces.

Two of this questions are known for most experts in differential geometry but, besides
special cases, general proofs are not easy to find in the literature. Thus, one goal of
this paper is to supply such proofs. Indeed, we think that this results are not so well-
known for experts in other areas of mathematics or physics. So, we hope this paper to be
useful for non experts in differential geometry. We will give some applications in order
to illustrate the use of it. We also state some open problems in the form of conjectures.

The three motivating problems are the following: Are holonomy groups closed? What
are special holonomy groups of Lorentzian manifolds? And finally, how many G-invariant
bilinear forms exist on a homogeneous space G/H?.
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Regarding the first question, the first thing to observe is that the the answer should not
depend o the property of being a holonomy group, because due to a result of [HO65]
any linear Lie group can be realised as a holonomy group of a linear connection (usually
with non trivial torsion). Secondly one finds that the answer is ‘yes’ if one restricts it
to holonomy groups of Riemannian manifolds, because any irreducibly acting, connected
subgroup of O(n) is closed (see for example [KN63, Appendix 5]), and thus, by the de
Rham decomposition theorem [dR52] the holonomy group is a direct product of closed
ones. But for a general connection the answer is ‘no’, there are a lot of examples of
non-closed holonomy groups, see [HO65] for affine, torsion-free connections, [Wu67] for
pseudo-Riemannian manifolds and [BI93] for Lorentzian manifolds. In all of these ex-
amples the holonomy group does not act irreducibly. So it arises the question if all
irreducibly acting subgroups of Gl(n,R) are closed? There is a note in [Bes87, Note
10.50, page 290] that the following theorem is true proved in [Wak71].

Theorem 1. Any irreducibly acting connected Lie subgroup of Gl(n,R) is closed in
Gl(n,R).

In this note firstly we will prove this theorem (see Section 3) independently on the proof
in [Wak71]. Regarding holonomy groups of linear connections this has the following
consequence.

Corollary 1. If the restricted holonomy group of a linear connection acts irreducibly,
then it is closed. Furthermore, the restricted holonomy group of a semi-Riemannian
manifold is closed if it acts completely reducibly.

The second statement follows from the de Rham/Wu decomposition theorem [Wu64]
and another theorem in [Wu67] (see below, last paragraph in section 3). Our proof of
Theorem 1 uses a theorem of Yosida [Yos37] and Malcev [Mal45] and a very explicit
description of the center of G. This description gives us two corollaries, the first of which
will be useful in the proof of Theorem 2.

Corollary 2. Let G ⊂ O(p, q) a connected Lie subgroup of O(p, q) which acts irreducibly.
If G is not semisimple, then p and q are even and G is a subgroup of U(p/2, q/2) with
center U(1).

Applying this to the spin representations orthogonal groups we get:

Corollary 3. Let G ⊂ SO0(p, q) be a connected Lie subgroup which acts irreducibly
and G̃ ⊂ Spin(p, q) the pre-image of the covering Spin(p, q) → SO0(p, q). If the spin
representation of G̃ admits a trivial subrepresentation, then G is semisimple, or G =
U(1) ·G′ with G′ $ SU(p/2, q/2) and (p + q)/2 is even.

Unfortunately, one cannot show that the existence of a trivial sub-representation of the
spin representation implies semisimplicity of G as the following example shows: Let
G = U(1) · Sp(p, q) with p + q even. Then the intersection of the spaces of spinors
which are annihilated by U(1) and with the ones which are annihilated by Sp(p, q) is a
one-dimensional space (for details see [BK99]) .
Nevertheless, this corollary has applications to geometric problems. The first application
is a well known fact. If the holonomy group of a semi-Riemannian manifold acts irre-
ducibly and has a center, the manifold cannot admit parallel spinors. It was obtained
by the classification of irreducible holonomy groups of semi-Riemannian manifolds with
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parallel spinors ([Wan89] for Riemannian manifolds, and [BK99] for pseudo-Riemannian
manifolds). But furthermore it gives results in any case where the holonomy group has
a irreducibly acting component on which the existence of parallel spinors depends, as it
is the case for indecomposable, non-irreducible Lorentzian manifolds, see [Lei02b].

Regarding the second problem which special Lorentzian holonomy groups might exist,
one distinguishes between the irreducible and the indecomposable, non-irreducible case.
While in the latter case there a several possibilities (for a classification see [BI93], [Lei02a],
[Lei03a], [Lei03b], and [Gal05]), for the irreducible case the situation is very limited.
The irreducible holonomy groups of semi-Riemannian manifolds were determined by M.
Berger in [Ber55] and [Ber57]. In Riemannian and many other signatures the list depends
essentially on the property of being a holonomy group, whereas in the Lorentzian case it
turns out that irreducibility is sufficient to determine the group.

Theorem 2. SO(1, n)0 is the only connected Lie subgroup of O(1, n) which acts irre-
ducibly.

The consequence for irreducible Lorentzian holonomy groups follows immediately.

Corollary 4. If the restricted holonomy group of a Lorentzian manifold acts irreducibly,
then it is equal to SO(1, n)0.

Here is an application to isotropy irreducibly Lorentzian homogeneous spaces.

Corollary 5. Isotropy irreducibly Lorentzian homogeneous spaces have constant sectional
curvature i.e. they are flat, de-Sitter or anti de-Sitter spaces.

A direct and geometric proof of Theorem 2 was given in [DSO01]. An almost algebra-free
proof which uses dynamical methods, can be found in [BZ04]. Finally, a purely algebraic
proof was given in [BdlH04]. A nice and direct proof of Corollary 5, based on dynamical
methods, can be found in [Zeg04]. In Section 4 we will give a short proof of Theorem 2
based on a theorem of Karpelevich [Kar53] and Mostow [Mos55] (i.e. Theorems 7 and 8).
Theorem 2 also follows from Corollary 4.5.1 in [CheGre] which in turns depends upon
Karpelevich-Mostow’s theorem (cf. Lemma 4.4.3 in [CheGre] with Theorem 8).
We would like to thank the referee to call our attention about the paper by S.S. Chen
and L. Greengerg [CheGre].

The result of the last section 5 is motivated by the geometric problem of describing the
space of metrics or symplectic forms on a homogeneous space G/H which are invariant
under G. Any G-invariant metric or symplectic form corresponds to a non-degenerate
bilinear form on g/h which is invariant under the linear isotropy representation AdG(H) ⊂
Gl(g/h). In our context AdG(H) is assumed to act irreducibly. This is a special case of
the following algebraic problem: Given an irreducibly acting Lie subgroup G ⊂ Gl(n,R),
what is the dimension of the space of G-invariant bilinear forms on Rn. We prove the
following statement.

Theorem 3. Let G be an irreducibly acting subgroup of Gl(n,R). The the space of G-
invariant symmetric bilinear forms which are not of neutral signature (p, p) is at most
one-dimensional. Moreover, the space of invariant symmetric bilinear forms is at most
three-dimensional.
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We will describe all possible cases for the dimension of the space of (skew-) symmetric
bilinear forms and determine the maximal subgroup which fixes these bilinear forms.

We should point out that many results in this paper rely on the classification of G-
invariant endomorphisms for G ⊂ Gl(n,R). This classification follows from Schur’s
lemma and the classification of associative division algebras by Frobenius, but we will
give an elementary proof of it in Section 2.
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2 The algebra of invariant endomorphisms

The results of this paper are mainly based on a description of the algebra of endomor-
phisms which are invariant under an irreducibly acting subgroup G ⊂ Gl(n,R). If G

is a Lie group and V and W two (real or complex) G-modules the algebra of invariant
homomorphism is defined as

HomG(V, W ) := {X ∈ Hom(V, W ) | A ◦X = X ◦A for all A ∈ G}.

Now, Schur’s lemma says that HomG(V, W ) ⊂ Iso(V, W ) ∪ {0}, and furthermore, if
V = W is complex, then EndG(V ) = C · Id. In any case, it implies that HomG(V,W ) is
a real associative division algebra, and thus by their classification of Frobenius (1878) it
is isomorphic to the algebra of real numbers R, complex numbers C or quaternions H (see
e.g. [Pal68]). We are interested in the description of EndG(V ) where V is a real vector
space, and in this section we will recall some facts about real irreducible representations
which provide an elementary proof of this result.

Suppose that G is a real Lie group and V a real irreducible module. Then there are two
cases which can occur for the complexified G-module V C. The first case is that W := V C

is still irreducible. In this case V or W is called of real type. One should remark that, if W

is a complex irreducible G-module then its reellification WR is a reducible G-module with
invariant real subspace V if and only if W is the complexification of the real irreducible
G-module V .
In the other and more complicated case, regarding the application of Schur’s lemma, V C

is a reducible G-module. In this case V C splits into two irreducible G-modules,

V C = W ⊕W.

In fact, if W is an invariant complex subspace of V C then W , defined by the conjugation
with respect to V ⊂ V C is invariant too and the conjugate module. Furthermore, the
spaces W + W and W ∩ W are invariant and equal to their conjugation. Hence they
are complexifications of real vector spaces, i.e. W + W = V C1 and W ∩ W = V C2 . Of
course V1 and V2 are invariant subspaces of V and thus V1 = V and V2 = {0}. The same
argument ensures the irreducibility of W .
Now, since W ∩W = {0}, the mapping ψ : WR 3 v 7→ 1

2 (v + v) ∈ V is an isomorphism
of real vector spaces yielding the identification

WR
ψ' V

ψ' WR (1)

of real G-modules. In this case V , respectively W , are called of complex type, and again
we have that a complex module W has an irreducible reellification V = WR if and only
if V C = W ⊕W is reducible.
Now we are able to describe the algebra of invariant endomorphisms of a real irreducible
G-module V .

Proposition 1. Let G a Lie group and V a real irreducible G-module. Then EndG(V )
is isomorphic to one of the real algebras R, C or H.

Proof. As above we consider two cases. Firstly assume that V C is irreducible which
ensures that EndG(V C) = C · Id by Schur’s lemma. Hence, if A ∈ EndG(V ), its com-
plexification AC ∈ EndG(V C) is given by AC = λ · Id with λ ∈ C. Since AC leaves V
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invariant and V is invariant under conjugation we get for v = v ∈ V that

λ v = λ v = ACv = ACv = λv,

i.e. λ ∈ R. A = AC|V gives that EndG(V ) = R · Id.
For the second case we have to assume that V C is reducible, i.e. by the above V C =
W ⊕W , V ' WR and thus EndG(V ) = EndG(WR). Now any real endomorphism on WR
decomposes uniquely into a complex linear and complex anti-linear part:

End(WR) ' End(W ) ⊕ Hom(W,W )
A = 1

2 (A + iAi) + 1
2 (A− iAi).

This decomposition descends to EndG(WR):

EndG(WR) ' EndG(W )⊕HomG(W,W ).

Now Schur’s lemma implies that EndG(W ) = C · Id and, since both, W and W are
irreducible, that HomG(W,W ) ⊂ Iso(W,W ) ∪ {0}.
If HomG(W,W ) = {0} we get immediately

C · Id = EndG(WR) ' EndG(V ) = spanR{Id, I},
with the complex structure I := ψ ◦ (i · Id) ◦ ψ−1 where ψ is defined in (1).
Otherwise consider a non-zero j ∈ HomG(W,W ) which is an isomorphism by Schur’s
lemma. Then j2 ∈ EndG(W ), hence j2 = λ · Id with 0 6= λ ∈ C. In fact, λ ∈ R since

λ j(w) = j(λ w) = j
(
j2(w)

)
= j2 (j(w)) = λ j(w)

for all w ∈ W . Finally λ < 0 since otherwise WR would decompose into the G-invariant
±
√

λ-eigenspaces of jR. Thus, we may assume j2 = −1. For another A ∈ HomG(W,W )
we get j ◦A ∈ EndG(W ) and therefore j ◦A = c · Id for some c ∈ C. On the other hand
j ◦ (−cj) = c · Id and thus A = −cj. Hence we obtain

EndG(WR) ' EndG(W )⊕HomG(W,W ) = C · Id⊕ C · j,
which gives finally

EndG(V ) = spanR{Id, I, J, I ◦ J} ' H,

with I := ψ ◦ i ◦ ψ−1 and J := ψ ◦ j ◦ ψ−1 anti-commuting complex structures.

Corresponding to the structure of EndG(V ) the real irreducible G-module V is said to
be of real, complex or quaternionic type. This corresponds to the convention to call a
complex irreducible G-module W of real type if it is self-conjugated with respect to an
anti-linear bijection J with J2 = Id, of quaternionic type if it is self-conjugated with
J2 = −Id and of complex type if it is not self-conjugated. Here is a useful consequence
of the preceeding proposition.

Corollary 6. For a real irreducible G-module V any A ∈ EndG(V ) is of the form
A = α Id + βJ with α, β ∈ R and J a G-invariant complex structure (depending on A).

Proof. Although this follows directly from Proposition 1 we will give another proof which
will be useful later on. Applying the Schur-lemma we see that the minimal polynomial
µA(x) of A is irreducible over R (cf. [KN63, Appendix 5, Lemma 1]). If µA(x) = x−α is
of degree one 0 = µA(A) = A− α · Id. Otherwise µA(x) = (x− α)2 + β2 is a polynomial
of degree 2 with strictly positive quadratic supplement, since µA is irreducible. Thus
J := (A− α · Id)/β defines a complex structure on V .
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Finally in this section we describe the maximal representations of different types, i.e.
any other irreducible representation occurs as a sub-representation of them.

Proposition 2. Let G ⊂ Gl(n,R) be an irreducibly acting subgroup. Then up to conju-
gation G is contained in one of the following subgroups L ⊂ Gl(n,R):

EndG(Rn) L ⊂ Gl(n,R)

R Gl(n,R)

C Gl(n/2,C)

H Gl(n/4,H)

Proof. We set V := Rn and K := EndG(V ). Thus V becomes a left K-vector space in a
natural way. In order to make it a right K-vector space we choose an anti-automorphism
λ 7→ λ of K (i.e. λ + µ = λ + µ and λ · µ = µ · λ). Then v · λ := λ(v) defines a
right-multiplication on V with respect to the scalar field K (This is essential only in
case of the non-commutative field K = H). The group Gl(V,K) of K-linear invertible
maps from V into itself is by definition the centralizer of the homothety group HK :={ {v 7→ vλ}

∣∣ λ ∈ K∗
}
. By choosing a K-basis {bi}n/d

i=1, where d = dimRK, we get
Kn/d ' V . Under this identification Gl(V,K) corresponds to the group Gl(n/d,K) of
invertible (n/d × n/d)-matrices acting on Kn/d from the left. By definition HK is the
centralizer of G and thus G is contained in L := Gl(V,K). As explained this yields
an inclusion G ⊂ Gl(n/d,K). Conversely it is known that the centralizer of Gl(n/d,K)
equals HK, hence EndL(Rn) = HK. Finally, the embedding Gl(n/d,K) ⊂ Gl(n,R)
is obtained by associating to the K-basis {bi} the real basis {biλk} i=1,...,n/d

k=1,...,d
, where

{λk}k=1,...,d is a basis of K.

Remark 1. In the proof of this proposition we see that if the action of a group G ⊂
Gl(n,R) is defined by scalar multiplication from the right, the invariant endomorphism
have to act from the left. Of course, this becomes only relevant in case of EndG(Rn) = H,
and we can see this in the example of G := Gl(1,H): It is

Gl(1,H) = {Rq : H→ H | q ∈ H∗ and Rq(p) := p · q} = H∗,

whereas

EndGl(1,H)(R4) = {A ∈ Gl(4,R) | A(Rq(p)) = Rq(A(p)}
= {Lq ∈ Gl(4,R) | Lq(p) := q · p}
= H

since Lq ◦ Rp = Rp ◦ Lq but Rp ◦ Rq 6= Rq ◦ Rp. This gives the seemingly paradoxical
situation where both, the centraliser ZGl(4,R)(G) and the group G itself are equal to H∗,
but its center Z(G) which is the intersection of G with its centraliser is commutative and
thus equal to C∗.
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3 Irreducibly acting, connected subgroups of Gl(n,R)

In this section we shall give a proof of Theorem 1 by using the results of the first section
and a two general results from Lie theory. First we describe the identity component of the
center of an irreducibly acting Lie subgroup of Gl(n,R). We should remark that we mean
‘Lie subgroup’ always in the weaker sense of being a submanifold but not necessarily an
immersion in order to make the statement of Theorem 1 non-trivial.

Proposition 3. Let G ⊂ Gl(n,R) be an irreducibly acting, connected Lie subgroup, Z(G)
its center and Z(G)0 the identity component of the center. If Z(G)0 is non-trivial, then
Z(G)0 is either

(a) equal to R+Id, or

(b) isomorphic to C∗ = R+ × S1, or

(c) isomorphic to a one-parameter subgroup of C∗.

Cases (b) and (c) can only occur if n is even.

Proof. Let g ⊂ gl(n,R) be the Lie algebra of G and suppose that center z of g is non
trivial. Considering the three cases of Proposition 1 we first assume that the the repre-
sentation is of real type, i.e. that EndG(Rn) = RId. Since z ⊂ EndG(Rn) we obtain in
this case that z = RId and therefore Z(G)0 = exp(z) = R+Id.
Now suppose that Rn is a G-module of non-real type, i.e. EndG(R2n) isomorphic to C or
H. Again z is an Abelian subalgebra of EndG(R2n). In case EndG(R2n) ' H ' u(2) any
maximal Abelian subalgebra is isomorphic to C. Hence z is isomorphic to a subalgebra
of C = spanR(Id, J) where J is a complex structure on R2n. But exp tJ = (cos t)Id +
(sin t)J , i.e. exp(RJ) ' S1. But this implies that either isomorphic to C∗, i.e.

Z(G)0 = R+Id× {(cos t)Id + (sin t)J | t ∈ R} ' R+ × S1 = C∗,

or to a one-parameter subgroup of it, i.e.

Z(G)0 = exp (R · (aId + bJ))

=
{(

eat · Id
) ◦ ((cos bt)Id + (sin bt)J) | t ∈ R}

,

for some real constants a and b. Of course if a or b are zero this is either R+ or S1, if
not this is a logarithmic spiral in C∗.

Proposition 3 will be the main ingredient in our proof of Theorem 1 but it implies also
Corollaries 2 and 3 given in the introduction. But before we can prove these we have
to recall that for a completely reducibly acting Lie subgroup G ⊂ Gl(n,R) the center
decides whether the Lie algebra is semisimple or not. This is due to a standard fact
from the theory of Lie algebras, saying that a Lie algebra g which admits a completely
reducible representation is reductive. Hence g admits a Lie algebra decomposition into
its center and its derived Lie algebra,

g = z⊕ [g, g] , (2)

the derived Lie algebra being semisimple. A proof of this fact can be found in [Che47],
see also [Bou71]. This means that the irreducibly acting, connected Lie subgroup in
question is semisimple if the identity component of its center is trivial.
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Remark 2. In this context we should remark that the center of a semisimple subgroup
G ⊂ Gl(n,R) is finite (see e.g. [Got48]): if G is semisimple, due to Weyl’s theorem it
acts completely reducibly, and furthermore its elements are of determinant 1, hence by
Schur’s lemma the center of G corresponds to the nk-th roots of 1 where nk are the
dimensions of the irreducible subspaces.

For verifying Corollary 2 we assume that G ⊂ O(p, q) is connected and acts irreducibly.
If G is not semisimple, its Lie algebra g has a non trivial center z, but the orthogonality
of the representation implies that projection of the center on RId is trivial. Hence the
the representation is not of real type, i.e. n = p + q is even, and z = RJ where J is the
complex structure which commutes with g. But on the other hand J ∈ so(p, q), i.e. J is
compatible with the inner product, which gives that p and q are even as well. Thus, by
proposition 2,

g ⊂ so(p, q) ∩ gl(n/2,C) = u(p/2, q/2).

which is the statement of Corollary 2.
This also implies Corollary 3: If g is not semisimple, then g = R ·J⊕g′ where g′ = [g, g] is
semisimple. Hence, g′ = [g′, g′] ⊂ su(r, s), with su(r, s) defined by the complex structure
J , r = p/2 and s = q/2. The complex structure J is given by

J =
r+s∑

k

κ2kE2k−1 2k,

where 〈ei, ej〉 = κiδij is the corresponding orthonormal basis of . Let u(εr+s, . . . , ε1) be
the basis of the spinor module ∆(p,q) as defined in [BK99]. This is an eigen basis for the
spin representation of J :

Ju(εr+s, . . . , ε1) = i

(
r+s∑

k

κ2kτ2k−1τ2kεk

)
u(εr+s, . . . , ε1) = i

(
r+s∑

k

εk

)
u(εr+s, . . . , ε1),

where τi = i if κi = −1 and 1 otherwise. If VRJ denotes the subspace in the spinor
module which is annihilated by RJ under its spin representation, then

VRJ = span

{
u(εr+s, . . . , ε1) |

r+s∑

k

εi = 0

}
,

which implies that J has zero eigen vectors only if r + s is even. This is the statement
of Corollary 3. The example given in the introduction of a non-semisimple irreducibly
acting Lie algebra with trivial spin representation is given by g = RJ⊕sp(r, s) with r+s

even. Again in the notation of [BK99] it follows that

ϕ r+s
2

∑

εi=−1 for r+s
2 times

u(εr+s, εr+s, . . . , ε1, ε1)

is annihilated by sp(r, s). But it is also annihilated by J :

Jϕ r+s
2

= 2
∑

εi=−1 for
r+s
2 many εi’s

(ε1 + . . . + εr+s)︸ ︷︷ ︸
=0

u(εr+s, εr+s, . . . , ε1, ε1).

Hence, Vg = VRJ ∩ Vsp(r,s) = Rϕ r+s
2

is one-dimensional.
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Example. An example for an irreducible real representation of a Lie group with 2-
dimensional center is the reellification of the representation of S1×CO(n,R) on Cn. The

Lie algebra consists of the matrices
(

A aIn

−aIn A

)
∈ gl(2n,R) with a ∈ R and A ∈

co(n,R), where In denotes the n-dimensional unit matrix. The center of the identity
component of this group is S1 ×R+, the semisimple part is SO(n). In the same manner
we can built an example where the center is a spiral in C∗ by taking as Lie algebra

g :=
{(

A 0
0 A

)∣∣∣∣ A ∈ so(n)
}
⊕ R ·

(
In In

−In In

)
⊂ gl(2n,R),

and as group G the connected subgroup in Gl(2n,R) with this Lie algebra. Both groups
do not act orthogonally.

Now we can go ahead with the proof of Theorem 1. Let G be a connected, irreducibly
acting Lie subgroup of Gl(n,R), and g be its Lie algebra. Our proof now relies on the
following result of [Yos37] and [Mal45] (see also [Got48] where it is a corollary to a deeper
result).

Theorem 4. [Yos37], [Mal45],[Got48] A connected Lie subgroup of Gl(n,R) is closed
in Gl(n,R) if and only if its radical is closed. In particular, if it is semisimple, it is
closed.

Recall that the radical of G is the connected Lie subgroup of G which corresponds to
maximal solvable ideal in the Lie algebra g. Thus we have to show, that the radical of
G is closed in Gl(n,R). But by the remarks above, the Lie algebra of G is reductive,
and thus the radical of G is equal to the identity component of its center, denoted by
Z(G)0. Now the closure G of G is still connected, acts irreducibly and has a reductive Lie
algebra. By Theorem 4 the identity component of its center Z

(
G

)
0

is closed in Gl(n,R).
But Z(G) ⊂ Z(G) because for z ∈ Z(G) and g = lim gn ∈ G it is

z · g = z · lim gn = lim(z · gn) = 0.

If we now assume that G is not closed we get by Theorem 4 that Z(G)0 is not closed in
Gl(n,R), i.e.

Z(G)0 $ Z(G)0 ⊂ Z(G)0.

Now, since G is irreducible and connected, Proposition 3 leaves us only with the possibil-
ity that Z(G)0 is isomorphic to C∗ and Z(G)0 is a one-parameter subgroup of C∗. But
these are closed in C∗. This is a contradiction which completes the proof of Theorem 1.

Since holonomy groups are Lie subgroups of Gl(n,R), the first point of Corollary 1 is
a direct consequence of the Theorem 1. The second can be obtained by a theorem in
[Wu67] which contains several results with different algebraic conditions for subgroups
of the pseudo-orthogonal group, having consequences for holonomy groups.

Theorem 5. [Wu67] The following subgroups of Gl(p + q) are closed:

1. reductive, indecomposable subgroups of O(p, q),

2. indecomposable subgroups of O(p, q) if p + q < 6,

3. holonomy groups of affine symmetric spaces.

10



Here ‘indecomposable’ means ‘no proper non-degenerate invariant subspace’. One should
remark that the restriction to the dimension in the second point is sharp: In [Wu67] is
constructed a 6-dimensional Kähler manifold whose reduced holonomy group is non-
closed in SO(4, 2); also the Lorentzian examples in [BI93] are constructed in dimension
6. Also in [Wu67] is constructed an example of a symmetric space with solvable, non-
Abelian holonomy group which shows that the third point does not follow from the first.
Some of these examples are obtained by constructing subgroups containing a torus, which
has non-closed 1-parameter subgroups. Our proof shows that such a situation can be
excluded if the group acts irreducibly.
In order to obtain the second statement of Corollary 1, note that the first point of The-
orem 5 implies that semi-Riemannian holonomy groups which act completely reducibly
are closed: by the de Rham/Wu decomposition theorem [Wu64] any semi-Riemannian
holonomy group is a product of indecomposably acting holonomy groups, but if the group
is assumed to act completely reducibly it is reductive and hence closed by the first point
of Theorem 5.
Since the dense line on the Clifford torus provides an example of a completely reducibly
acting group which is not closed in Gl(2,C), such a result cannot be true for holonomy
groups of an arbitrary affine connection due to the result in [HO65], that any connected
linear Lie group can be obtained as the holonomy group of an affine connection. It is
not difficult to check that the connection of this example is not torsion free. But such a
result might be true for torsion free connections.

Conjecture. Let (M,∇) be an affine manifold where ∇ is a torsion-free connection.
Assume that the restricted holonomy group Hol∗(∇)p acts completely reducible on TpM .
Then, Hol∗(∇)p is closed inside GL(TpM).

4 Irreducibly acting, connected subgroups of O(1, n)

In this section we want to give a short proof of Theorem 2, that the only connected sub-
group G of O(1, n) which acts irreducibly on the Lorentzian space R1,n is the connected
component of the identity of O(1, n) i.e. G = SO(1, n)0. This statement was proven in
[DSO01] where the main goal was to generalize to real hyperbolic space the following
result about minimal homogeneous submanifolds i.e. orbits of isometry subgroups, in
the Euclidean space.

Theorem 6. [DS02] A (extrinsically) homogeneous minimal submanifold of the Eu-
clidean space must be totally geodesic.

It turns out that such result also holds in the real hyperbolic space (see [DSO01] for
details). It is interesting to remark that further investigations of minimal homogeneous
submanifolds were done in several directions [ADS03], [DS03]. In particular, the following
conjecture was posed in [DS03].

Conjecture. Let M be a Riemannian manifold that is either locally homogeneous or
Einstein. Then, any minimal isometric immersion f : M → Rn must be totally geodesic.

Now, in order to prove Theorem 2 we assume that G ⊂ O(1, n) acts irreducibly and is
connected. By Corollary 2 it is semisimple and closed by Theorem 1. Our proof requires
the following Karpelevich’s theorem.
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Theorem 7. (Karpelevich [Kar53], Mostow [Mos55]) Let M = Iso(M)/K be a Rieman-
nian symmetric space of non-compact type. Then any connected and semisimple subgroup
G of the full isometry group Iso(M) has a totally geodesic orbit G · p ⊂ M .

The above theorem can also be stated in a purely algebraic way as follows.

Theorem 8. Let g′ be a real semisimple Lie algebra of non compact type and let g ⊂ g′

be a semisimple Lie subalgebra. Let g = k ⊕ p be a Cartan decomposition for g. Then
there exists a Cartan decomposition g′ = k′ ⊕ p′ for g′ such that k ⊂ k′ and p ⊂ p′.

The original proof of Theorem 7 is as a corollary of Theorem 8. The proof of Theorem 8
is not trivial and very algebraic (see [Mos55, Theorem 6] or [Oni04]). So should be nice
to give a proof of Karpelevich’s theorem by using geometric methods (or at least basic
facts from Lie Theory e.g. Iwasawa theorem, etc). Indeed, should be nice to give a short
and simpler proof when g′ = SL(n,R).

Remark 3. Notice that in Theorems 7 and 8 the hypothesis on being of ”non compact
type” can not be deleted. Any irreducible representation of a compact simple Lie group
G gives an example. Indeed, the group G ⊂ SO(n + 1) acts on a sphere Sn = SO(n +
1)/SO(n) without totally geodesic orbits. Notice that if the orbit G.x is totally geodesic
then G.x = Sn

⋂
V , where V is a linear subspace of Rn+1. So V is G-invariant giving a

contradiction.

Now let us continue the proof of Theorem 2. Since G ⊂ O(1, n) is semisimple Karpele-
vich’s theorem applies to our situation. It implies that the action of G on the hyperbolic
space Hn = SO(1, n)/SO(n) ⊂ R1,n is transitive. Indeed, if the totally geodesic orbit
G · p is not the whole hyperbolic space Hn then G · p is contained in a Lorentzian sub-
space L of R1,n. This is due to the fact that totally geodesic submanifolds of Hn are
intersections Hn ∩ L where L is a Lorentzian subspaces of R1,n. Thus, G can not act
irreducibly as we had assumed.
Now, let K be a maximal connected compact subgroup of the semisimple group G. Then
by Cartan’s fixed point theorem K has a fixed point p ∈ Hn. Since (Gp)0 is compact we
get K = (Gp)0. Thus, (G,K) is a symmetric pair such that HN = G/K. Then, from
the uniqueness of such symmetric pairs (see [Hel78, pp. 243]) we get G = SO(1, n)0 and
K = SO(n). This proves Theorem 2.

Remark 4. Indeed, if HN = G/K with (G,K) a symmetric pair then the curvature
tensor of HN belong to the Lie algebra k of the isotropy group K. So, K = SO(n) and
G = SO(1, n)0. More in general, if M = G/K where M is an irreducible Riemannian
symmetric space of non-compact type and (G,K) is a symmetric pair then the curvature
tensor R of M belong to k. Since R generate k and k generate g it follows that Iso(M)0 =
G. This is simpler explanation of the ”uniqueness” quoted above (see [Hel78, pp. 243])

A different, almost algebra-free proof of Theorem 2 which uses dynamical methods, can
be found in [BZ04]. A purely algebraic proof was given in [BdlH04]. Theorem 2 also fol-
lows from Corollary 4.5.1 in [CheGre] which in turns depends upon Karpelevich-Mostow’s
theorem (cf. Lemma 4.4.3 in [CheGre] with Theorem 8).

Let M be a (locally) indecomposable Lorentzian manifold i.e. the restricted holonomy
group Φ∗p acts indecomposably on TpM . In [DSO01] was proved that either Φp acts
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transitively on hyperbolic spaces Hr := {v ∈ TpM : 〈v, v〉 = −r2} or transitively on
horospheres Qz ⊂ Hr centered at a point z ∈ Hr(∞). Observe that in the Rieman-
nian case the non-transitivity (on a sphere) of the holonomy group implies the locally
symmetry of the Riemannian manifold i.e. the Berger-Simons Theorem (see [Olm05]
for a direct and geometric proof). It is interesting to note that the holonomy group
of a non irreducible indecomposable Lorentzian symmetric space is abelian [CaWa70].
Thus, such holonomy group must act transitively on horospheres Qz ⊂ Hr centered at
a point z ∈ Hr(∞), i.e. z is associated to the (unique) light-like direction invariant by Φ∗p.

There are also non symmetric global (i.e. geodesically complete) examples of (non irre-
ducible and indecomposables) homogeneous Lorentzian spaces such that the restricted
holonomy group is abelian i.e. the so called homogeneous plane waves [BlLo]. Notice
that such spaces had a rich family of totally geodesic Lorentzian surfaces trough each
point. Namely, the exponential of the normal space to each horosphere Qz ⊂ TpM .
Anyway, it should be desirable to know if some type of Berger-Simons theorem holds in
the Lorenzian setting under suitable assumptions.
Finally, here is another application, i.e. Lemma 3.1 of [Sen06], see also [Hal91].

Proposition 4. Let (M, g) be a simple connected Lorentzian manifold. Assume that
there exist a non-zero covariantly constant symmetric tensor field hµν not proportional
to the metric. Then, (M, g) is reducible, and further it is indecomposable only if there
exists a unique (up to multiples) light-like parallel vector field.

Indeed, if (M, g) is irreducible then the holonomy group Φp is SO0(n, 1). Thus, hµν

being SO(n, 1)0-invariant should be proportional to the metric g (See the first line in
the table of Proposition 6 of the next section). The second part follows from the fact
that if Φp leaves invariant two non proportional light-like vectors then Φp must leave
invariant the two dimensional Lorentzian space generated by these vectors. Thus, (M, g)
is decomposable. Notice that the ”unicity” of a light-like parallel vector field does not
implies indecomposibility of the Lorentzian manifold, e.g. a product between a Rieman-
nian manifold and indecomposable Lorentzian manifold.

A modern exposition of Karpelevich’s theory is [Oni04]. A generalization of Theorem 2
to arbitrary signatures (p, q) seems to be very difficult or impossible i.e. the classification
of irreducible Lie subalgebras of so(p, q). Anyway, should be interesting to know such
classification for small signatures e.g. for so(2, n) or so(3, n) .

5 Invariant bilinear forms of irreducible representa-

tions

As in the second section we consider an irreducibly acting subgroup G ⊂ Gl(V ) of a real
vector space V and denote by BG(V ) the vector space of G-invariant bilinear forms. If
BG(V ) is non-trivial it is intimately connected to EndG(V ). By Schur’s lemma a non-
zero a ∈ BG(V ) is non-degenerate since its kernel is G-invariant and not equal to V . Thus
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Riesz’ theorem provides a one-to-one correspondence between BG(V ) and EndG(V ) via

EndG(V ) ∼→ BG(V )

B 7→ b = a(B(·), ·).
(3)

In particular this map endows BG(V ) with the structure of an associative algebra and by
Proposition 1 BG(V ) is isomorphic to R, C, or H. The unique decomposition of a bilinear
form into symmetric and skew-symmetric parts applies also to G-invariant bilinear forms,
since the (skew-)symmetrization of a G-invariant form inherits this property. Thus

BG(V ) = SG(V )⊕ ΛG(V ). (4)

This induces a decomposition of EndG(V ) into a-selfadjoint and a-skewadjoint operators,

EndG(V ) = Sa
G(V )⊕ Λa

G(V ). (5)

If a is symmetric, SG(V ) corresponds to Sa
G(V ) under (3) and if a is skew-symmetric,

SG(V ) corresponds to Λa
G(V ). The main question is what are the possible dimensions

of SG(V ) and what are the occurring signatures. A first answer gives the following
statement.

Proposition 5. Let a, b ∈ BG(V ) be linear independent, b = a(B(·, ·)) by (3) and
B = α Id + βJ according to Corollary 6.

(i) If a and b are both symmetric (or skew-symmetric), J ∈ Sa
G(V ) and thus J is

an anti-isometry with respect to both a and b. In particular Sig(a) = Sig(b) =
(n/2, n/2) where n = dim V .

(ii) If a is symmetric and b is skew-symmetric, B = βJ ∈ Λa
G(V ) and thus J is an

isometry with respect to both a and b.

Proof. (i) Since B and Id are a-selfadjoint, the same holds for J . Using [B, J ] = 0 we
obtain

a(J(x), J(y)) = a(J2(x), y) = −a(x, y), and

b(J(x), J(y)) = a(B ◦ J(x), J(y)) = −a(B(x), y) = −b(x, y).

(ii) Here B is a-skewadjoint. This implies for its minimal polynomial µB(x) = µ−B(x) =
µB(−x), hence µB(x) = x2 + β2 (cf. Corollary 6), i.e. B = βJ . The remaining part is
analogous to (i).

Next we determine all possible pairs
(
dim SG(V ), dimΛG(V )

)
by describing their maxi-

mal representations analogous to Proposition 2 of Section 2. Recall that a representation
is self-dual if and only if the space of non-degenerate invariant bilinear forms is non-trivial.

Proposition 6. Let κ : G → Gl(n,R) be an irreducible self-dual representation on Rn.
Then up to conjugation κ(G) is contained in one of the following subgroups L ⊂ Gl(n,R)
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with p + q = n:

Endκ(G)(Rn) dim Sκ(G)(Rn) dimΛκ(G)(Rn) L ⊂ Gl(n,R)

R 1 0 O(p, q)

0 1 Sp(n/2,R)

C 2 0 O(n/2,C), (n≥4)

0 2 Sp(n/4,C)

1 1 U(p/2, q/2)

H 1 3 Sp(p/4, q/4), (n≥8)

3 1 O∗(n/4), (n≥8)

Moreover we have the following isomorphisms1

O(n/2,C) ' O(n/2, n/2) ∩Gl(n/2,C)

Sp(n/2,C) ' Sp(n,R) ∩Gl(n/2,C)

U(p/2, q/2) ' O(p, q) ∩ Sp(n,R)

Sp(p/4, q/4) ' U(p/2, q/2) ∩ Sp(n/4,C)

O∗(n/4) ' U(n/4, n/4) ∩O(n/2,C).

(6)

Remark 5. This proposition raises the question if there are proper subrepresentations
of the different groups L ⊂ Gl(n,R). The answer depends very much on the group L in
question. To illustrate this, note that any compact simple Lie group admits irreducible
representations in arbitrary high dimensions. All these representations are contained in
O(n) due to Weyl’s trick. Considered the other way around O(n) has in general a lot of
irreducible subrepresentations. In contrast, there are no proper subgroups of SO0(1, n)
which act irreducibly, see section 4.

Proof. For general considerations set V := Rn; we will return at the end to Rn by
choosing an appropriate basis. First note that (κ, V ) is self-dual if and only if Bκ(G)(V ) 6=
{0}. In particular Endκ(G)(V ) ' Bκ(G)(V ) according to (3) and we may distinguish
between the various types of (κ, V ). We determine in each case the maximal subgroup
L ⊂ Gl(V ) fixing every element of Bκ(G)(V ) and thus κ(G) ⊂ L.

(κ, V ) of real type: This is the simplest case, since Bκ(G)(V ) is 1-dimensional and
thus spanned either by a symmetric or skew-symmetric bilinear form a (cf. (4)). In the
symmetric case we can find a (pseudo-)orthonormal basis, i.e.

(aij) = Ip,q :=
( −Ip

Iq

)
.

1 For details how the groups are embedded into Gl(n,R) resp. Gl(n,C) we refer to the proof.
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Its isometry group is the (pseudo-)orthogonal group

O(p, q) :=
{

A ∈ Gl(n,R)
∣∣ At · Ip,q ·A = Ip,q

}
.

In the skew-symmetric case we can find a symplectic basis, i.e.

(aij) = Jn/2 :=
( −In/2

In/2

)
.

Its isometry group is the real symplectic group

Sp(n/2,R) :=
{

A ∈ Gl(n,R)
∣∣ At · Jn/2 ·A = Jn/2

}
.

(κ, V ) of complex type: First we fix a (skew-)symmetric a ∈ BG(V ) and consider its
bilinear extension aC as well as its sesquilinear extension aC to the complexification VC:

aC(x + iy, u + iz) := a(x, u)− a(y, z) + i
(
a(x, z) + a(y, u)

)
,

aC(x + iy, u + iz) := a(x, u) + a(y, z) + i
(
a(x, z)− a(y, u)

)
.

aC is (skew-)symmetric, aC is (skew-)Hermitian and they are linked by the formula
aC(v, w) = aC(v, w). From this follows

aC(v, w) = aC(v, w) and aC(v, w) = aC(v, w). (7)

Exactly one of them has to vanish on the κC-irreducible subspace W . Indeed, if we
suppose both to be non-zero and set aC

∣∣
W

= aC
∣∣
W

(J(·), ·) one shows that J ∈ Endρ(W ),
hence J = 0. On the other hand aC

∣∣
W×W

= 0 together with (7) implies aC
∣∣
W×W

= 0.
Thus aC

∣∣
W×W

= aC
∣∣
W×W

has to be non-degenerate and vice versa. Lets denote by ã

the non-vanishing form on W . Since ã is ρ-invariant it induces the κ-invariant C-valued
R-bilinear form ψ∗ã on V via (1). In the following we will suppress the isomorphism ψ.
Real and imaginary part of ã are related by

Im (ã)(x, y) = −Re (ã)(x, I(y)).

In particular they are linear independent and thus Bκ(G)(V ) is spanned by these two
forms. So the isometry group of ã is isomorphic to the maximal subgroup of L ⊂ Gl(V )
which fixes any element of Bκ(G)(V ). Note that any element of L commutes with I and
thus it is complex linear.
If ã is symmetric, the same holds for its real and imaginary part and their signature has
to be (n/2, n/2) (cf. Proposition 5(i)). We can find a complex orthonormal basis, i.e.
(ãij) = In/2 and the isometry group is the complex orthogonal group

O(n/2,C) =
{

A ∈ Gl(n/2,C)
∣∣ At ·A = In/2

}
.

If ã is skew-symmetric, the same holds for its real and imaginary part. We can find
a complex symplectic basis i.e. (ãij) = Jn/4 and the isometry group is the complex
symplectic group

Sp(n/2,C) =
{

A ∈ Gl(n/2,C)
∣∣ At · Jn/4 ·A = Jn/4

}
.
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Finally ã might be Hermitian (a complex skew-Hermitian form turns into a Hermitian
one by multiplication with i). We can find a complex (pseudo-)orthonormal basis, i.e.
(ãij) = Ip/2,q/2 and the isometry group is the unitary group

U(p/2, q/2) :=
{

A ∈ Gl(n/2,C)
∣∣ A

t · Ip/2,q/2 ·A = Ip/2,q/2

}
.

In this case the real part is symmetric and has signature (p, q) and the imaginary part is
skew-symmetric.
As mentioned in Proposition 2 the complex basis {bi}n/2

i=1 of V (with respect to I) induces
the real basis {bi, I(bi)}n/2

i=1. Thus I = Jn/2 and we obtain the embedding

Gl(n/2,C) ' {
C ∈ Gl(n,R)

∣∣ C ◦ Jn/2 = Jn/2 ◦ C
}

A + iB 7→
(

A −B

B A

)
.

Now the real part of the symmetric form ã = In/2 is given in the associated real basis by

Re(ã) =
( In/2

−In/2

)
. Its isometry group is O(n/2, n/2), thus we get the first identity

of (6). Analogous, the real part of the symplectic form ã = Jn/4 is given by Re(ã) =( Jn/4
−Jn/4

)
. Its isometry group is conjugated to O(n/2, n/2) which yields the second

identity of (6). The real part of the Hermitian form ã = Ip/2,q/2 is given by Re(ã) =( Ip/2,q/2
Ip/2,q/2

)
. Its isometry group is conjugate to O(p, q). Instead of taking the

intersection with the centralizer of Jn/2 as above we take here the isometry group of the
imaginary part Im(ã) = Jn/2 which is Sp(n/2,R), hence the third identity of (6).

(κ, V ) of quaternionic type: For representations of real or complex type all possible
dimensions for the subspaces Sκ(G)(V ) and Λκ(G)(V ) occurred. This is no longer true in
the quaternionic case.

Lemma 1. If (κ, V ) is self-dual and of quaternionic type then Sκ(G)(V ) and Λκ(G)(V ) are
odd-dimensional, i.e. their dimension is 1 and 3. In particular, κ is both, orthogonal and
symplectic. If the 1-dimensional subspace is spanned by {a} then under the identification
Endκ(G)(V ) ' H the decomposition (5) is given by

Re(H) = Sa
κ(G)(V ) Im(H) = Λa

κ(G)(V ).

Proof. Clearly Re(H) = R · Id ⊂ Sa
κ(G)(V ). On the other hand Λa

κ(G)(V ) ⊂ Im(H) by
Proposition 5, hence Im(H) =

(
Sa

κ(G)(V ) ∩ Im(H)
) ⊕ Λa

κ(G)(V ). One of the subspaces
has dimension greater or equal than two and is spanned by anti-commuting complex
structures I, J . Irrespective of whether I, J are self- or skewadjoint with respect to a,
their product is skewadjoint: (I ◦ J)∗ = J∗ ◦ I∗ = J ◦ I = −I ◦ J .

As in Proposition 2 we consider V as right H-vector space via x · λ = λ(x). Then
an element a ∈ Bκ(G)(V ) as in the preceeding lemma yields the following quaternionic
sesquilinear form on V :

aH(x, y) := a(x, y) + i · a(xi, y) + j · a(xj, y) + k · a(xk, y).

Recall that one has to check aH(xλ, y) = λaH(x, y) and aH(x, yλ) = aH(x, y)λ. Since
multiplication (from the right) with imaginary quaternions is an a-skewadjoint operation
according to Lemma 1, aH is Hermitian if a is symmetric and skew-Hermitian otherwise.
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By construction, Bκ(G)(V ) is spanned by the real and imaginary parts of aH, hence
the group L which fixes all elements of Bκ(G)(V ) is the isometry group of aH (again
H-linearity is ensured already by leaving aH invariant).
Now, for any (skew-)Hermitian form one can find an orthogonal basis [Die71, Ch. I, §8].
In the Hermitian case the basis can be normed to the length ±1. Thus the isometry
group is the quaternionic unitary group

Sp(p/4, q/4) =
{

A ∈ Gl(n/4,H)
∣∣ A

t · Ip/4,q/4 ·A = Ip/4,q/4

}
.

In the skew-Hermitian case the basis can be normed to the length i. Thus the isometry
group is

O∗(n/4) =
{

A ∈ Gl(n/4,H)
∣∣ A

t · iIn/4 ·A = iIn/4

}
.

The embedding L ⊂ Gl(n,R) follows from the embedding Gl(n/4,H) ⊂ Gl(n,R) as in
Proposition 2. In order to obtain the remaining identities of (6), we fix i as complex
structure and thus represent any quaternionic matrix by two complex matrices: A +
iB + jC + kD = (A + iB) + (C + iD)j = U + V j. This yields the algebra isomorphism

Gl(n/4,H) ' {
C ∈ Gl(n/2,C)

∣∣ C ◦ Jn/4 = Jn/4 ◦ C
}

U + V j 7→
(

U −V

V U

)
.

Since under this identification the operation C 7→ C
t

is the same in Gl(n/4,H) and
Gl(n/2,C) it is easily seen, that Sp(p/4, q/4) is equal to the intersection of the isome-
try group U(p/2, q/2) of the Hermitian form

( Ip/4,q/4
Ip/4,q/4

)
with the isometry group

Sp(n/4,C) of the symplectic form
( −Ip/4,q/4
Ip/4,q/4

)
. Analogously we obtain O∗(n/4) as

intersection of the isometry group U(n/4, n/4) of the skew-Hermitian form
(

iIn/4
−iIn/4

)

with the isometry group O(n/2,C) of the symmetric form
( In/4
In/4

)
. This yields the

remaining identities of (6).
We conclude the proof by showing that the maximal groups L ⊂ Gl(n,R) are acting
irreducibly on Rn. One knows even more: For any subgroup L ⊂ Gl(n/d,K) ⊂ Gl(n,R)
occuring in the list of the proposition its centralizer coincides with the corresponding
homothety group HK:

EndL(Rn) = HK, L ⊂ Gl(K).

For the symplectic groups this can be easily verified. For the unitary groups this is
true beginning with n/d ≥ 2 and for the orthogonal groups it is true for n/d ≥ 3 (see
[Die71, Ch. II, §3]). In this context the quaternionic groups Sp(p/4, q/4) and O∗(n/4)
are comprehended as unitary groups. Since any homothety is invertible the above groups
act irreducibly, otherwise the projection onto an invariant subspace would be an element
of the centralizer which is certainly not invertible. It remains to discuss irreducibility in
the excluded small dimensions.

Remark 6. A quaternionic vector space does not admit any symmetric or skew-symmetric
bilinear form. This is reflected in the fact that the space of symmetric or skew-symmetric
bilinear forms is never 4-dimensional (cf. Lemma 1).
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Remark 7. Changing the complex basis by the matrix 1√
2

(
1 i
1 −i

)
we obtain the em-

bedding O∗(n/4) ⊂ Gl(n/2,C) as given in [Hel01, Ch.X,§2,1.]. There it is explained
how O∗(n/4) occurs as dual of the symmetric space O(n/2)

/
U(n/4) which justifies the

notation.

The considerations above can be generalized to non-irreducible representations of Lie
groups or Lie algebras. This has been done in [MR93]. Of course the structure of
the algebra EndG(V ) becomes more involved. On the other hand we may restrict our
attention to special representations as e.g. the adjoint representation Ad(G) ⊂ Gl(g)
of a Lie group G. To ask for an Ad(G)-invariant non-degenerate symmetric bilinear
form on g becomes interesting from a geometrical point of view, since any such bilinear
form induces a pseudo-Riemannian metric on G which is invariant under left- and right-
multiplication. In particular G becomes a symmetric space. Hereafter we cite some
results in this direction.
As shown above there are representations which are symplectic but not orthogonal. This
fails for adjoint representations:

Proposition 7 ([MR93], Theorem 1.4). A Lie algebra g admits an ad(g)-invariant non-
degenerate symmetric bilinear form if and only if it is self-dual.

On the other hand it has been shown:

Proposition 8 ([MR93], Corollary 1.7). A Lie algebra g admits an ad(g)-invariant
skew-symmetric bilinear form if and only if codimg[g, g] ≥ 2.

In particular, for simple Lie algebras the adjoint representation is irreducible and [g, g] =
g. Thus, they cannot be symplectic which excludes many cases of Proposition 6.

References

[ADS03] Dmitri V. Alekseevsky and Antonio J. Di Scala. Minimal homogeneous sub-
manifolds of symmetric spaces. In Lie groups and symmetric spaces, volume
210 of Amer. Math. Soc. Transl. Ser. 2, pages 11–25. Amer. Math. Soc., Prov-
idence, RI, 2003.

[BdlH04] Yves Benoist and Pierre de la Harpe. Adhérence de Zariski des groupes de
Coxeter. Compos. Math., 140(5):1357–1366, 2004.

[Ber55] Marcel M. Berger. Sur les groupes d’holonomie homogène des variétés a con-
nexion affine et des variétés riemanniennes. Bull. Soc. Math. France, 83:279–
330, 1955.

[Ber57] Marcel M. Berger. Les espace symétriques non compacts. Ann. Sci. École
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