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Summary 

 

The diagnose of neurological diseases presents a challenge, but disease 

monitoring does even more so: the evolution of the symptoms and the 

characteristics of a disease continues to evolve over the course of the patient's 

life. Here is where the development of computational methods can have a real 

impact on the quality of clinical care, as the heterogeneity of neurological 

conditions requires the integration of different types of clinical data. The aim 

of computational solutions is to solve real clinical needs and answer to 

questions that are part of the everyday life of doctors: this is why, during the 

Research here presented, there has always been a special consideration for the 

opinion of the experts, an attention to the state-of-the-art literature, and a 

scrupulousness towards solutions that are also flexible and scalable. The aim 

of the Research was therefore answer to a variety of questions, addressing 

practical and clinical needs: 

• What are the main needs when developing computational solutions for 

the monitoring of neurological diseases such as MS and Alzheimer’s 

disease? How straightforward is it to use public datasets and publicly 

available tools? 

• Is it useful to use different types of clinical data for disease monitoring? 

• Can the solutions developed for the other inquiries be applied to cover 

the needs of another field, such as the gene therapy with AAVs? 

The first step was an in-depth analysis of the state-of-the-art to gain 

knowledge in the field. Afterwards, various sources of data were used to 

identify how the raw data could be processed, modified, or combined, to 

extract information via Deep Learning. Challenges and questions related to 

different topics were addressed adapting, according to the needs, the 

processing pipeline for the images, the methods of data collection, analysis and 

storage, and the deep learning frameworks trained. 

The developed processing pipeline bridges the gap between 

heterogeneous datasets and their use for training deep learning networks. Its 
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performances are comparable to the state-of-the-art, but it does not rely on 

external plug-ins, as many of the existing tools, avoiding inconsistencies and 

versioning issues. Furthermore, it guarantees direct access to functions’ 

parameters for customizations.  

Moreover, the analysis and practical use of the ADNI database for 

exploring the feasibility of computational solutions for the monitoring of 

Alzheimer’s Disease, allowed to explore the use of different clinical data for the 

prediction of disease conversion in time through of a Deep Learning 

framework. The use of tabular and imaging data, and the choice of specific 

types of imaging modalities was evaluated in different settings. The approach 

used to tackle the aforementioned topics was then transferred to the field of 

gene therapy, on the possibility of improving the analysis of the vectors that 

carry the genome of interest. The ITR structures, characteristic of every vector, 

are the focus of the analysis, given their importance and attention in the state-

of-the-art: the use of the graphic method of the dotplots gave interesting 

results. 

The methodology followed can be, in retrospect, defined effective: the 

research questions posed at the beginning lead to a in depth-analysis of the 

state-of-the-art both from a technical and a medical point of view. The 

approach required – since the beginning – to acquire hands-on experience on 

the tools proposed by the literature, and on the sources of data essential to the 

developing of the proposed solutions. The variety of topics that were subject 

of research constituted both a resource and a limitation: on one hand, they 

directed every developing step to be scalable and flexible and, on the other 

hand, they limited the available time to focus only on one research 

question/topic. 
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Chapter 1 

Introduction 

1.1 Computational solutions for clinical needs 

Neurological diseases, such as Multiple Sclerosis (MS) and Alzheimer’s 

Disease (AD), have different characteristics and evolution, and affect different 

populations, but, when it comes to disease diagnosis and monitoring, they 

share some aspects. The symptomatology, with its visible and subtle 

symptoms, presents a high degree of variability and heterogeneity between 

patients. Clinical protocols and clinical evaluation scales are valuable tools: 

they are standardized and backgrounded by years of scientific research and 

experience. To make a diagnose, clinicians must rely on a multiple set of tools 

that include, among others, magnetic resonance imaging, neuropsychological 

evaluations, psychomotor evaluations, and an accurate review on the patient’s 

medical history. An early diagnose is fundamental to act promptly on the 

course of the disease, especially when it comes to chronic and progressive 

conditions that involve multiple physiological domains.  

 
Figure 1 Graphical representation of the clinical workflow 

As much as a diagnose of a disease presents a challenge, its monitoring 

is even more so: the evolution of the symptoms, their aggressiveness and 

manifestations vary inter and intra-patients, and the monitoring does not end 

at a well-defined moment – such as diagnosis – but continues and changes over 

the course of the patient's life, require a constant adjustment of the therapy. 

Here is where the development of computational methods can have a real 

impact on the quality of clinical care.  
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The heterogeneity of neurological conditions requires the integration of 

different types of clinical data: computational solutions can hence represent 

powerful tools when they are based on different and substantial sources of 

data, which is essential for the robustness of Artificial Intelligence solutions.  

 

Many tools can be found, together with clinical scales, that already 

address these problems. Some support clinicians in the analysis of medical 

images, others allow an accurate analysis of computational 

neuropsychological (NP) tests, other help the clinicians during the visitation 

of patients, and so on. In the case of MS, for example, the Extended Disability 

Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) 

are two traditionally accepted clinical measures (COMs) of the disease severity 

and progression. Still, they cannot be considered complete, reliable, and 

exhaustive tools. Namely, EDSS is more used than MSFC but has some 

limitations, as EDSS scores can vary a lot due to the complex scoring rules and 

the subjectivity of the examiner. EDSS lacks linearity between score difference 

and clinical severity and it relies heavily on the evaluation of motor function 

and the ability to walk. Neither EDSS nor MSFC use MRI evaluation in their 

scores, even though MRI images are an important source of information, both 

for MS and AD for detecting lesions and signs of brain atrophy, for example.  

 

The acceptance and efficacy of computational solutions that tackle 

many limitations of traditional methods are widely demonstrated, but we are 

far from saying that the technical challenges behind the implementation can 

be easily handled. In this context is thus crucial to adopt and implement tools 

that rely on multidimensional and composite prognostic biomarkers, taking 

into consideration the widest possible set of symptoms. 

In order to efficiently monitor a disease, it is necessary to integrate different 

clinical data, following an approach that aims to getting closer to performing 

what is called personalized medicine, and that is yet an unmet clinical need.  
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1.2 Aim and challenges 

The aim of computational solutions is, out of others, the need to solve 

real clinical needs and answer to questions that are part of the everyday life of 

doctors: this is why, during the research here presented, there has always been 

a special consideration for the opinion of the experts, an attention to the state-

of-the-art literature, and a scrupulousness towards solutions that are also 

flexible and scalable.  

Some of the technical challenges that are common when dealing with 

the mentioned applications include the need to use public and private datasets 

to increase the numerosity of the dataset used for algorithm training, as well 

as the need to handle different types of data that require different types of 

processing. When it comes to medical images, for example, many image 

formats are stored with different formats and different datasets are differently 

labelled and organized.  

 

The aim of the Research was therefore answer to a variety of questions, 

addressing practical and clinical needs. 

 

• What are the main needs when developing computational solutions for 

the monitoring of neurological diseases such as MS and Alzheimer’s 

disease?   

o How straightforward is it to use public datasets and public 

available tools?  

• Is it useful to use different types of clinical data for disease monitoring?  

• Can the solutions developed for the other inquiries be applied to cover 

the needs of another field, such as the gene therapy with AAVs? 

 

To answer the questions the following steps were followed:  

• The main clinical needs related to the monitoring of neurological 

conditions were analysed together with the problems encountered 

when dealing with the processing of medical data and existing tools.  

•  The creation of a dataset for the integration of clinical data to predict 

with deep learning the conversion to Alzheimer’s Disease in time.  

• A 4-months internship at ProtaGene GmbH gave the possibility to 

transfer some of the solutions to a different and bioinformatic problem: 

the analysis of the structure of vectors for gene therapy.  
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1.3 Structure of the work and methodologies  

In the following chapters, a brief overview of the neurological conditions 

that were the focus of this research will be given, and the literature will be 

reviewed as well. This has particular importance as, when approaching 

questions related to the medical field, a basic knowledge of the topic is needed 

to implement solutions that answer specific medical concerns. To better 

understand the characteristics of MS and Alzheimer’s disease, an extensive 

review of the literature was conducted. Comparing existing solutions and 

dialoguing with clinicians took on particular importance. The clinicians 

(Giovanni Giulietti, Marco Bozzali and Laura Serra) from the Fondazione St. 

Lucia in Rome, Italy, played an important role.  

 

Later, part of the research centred on a different topic, a bioinformatic 

problem, and on the possibility of applying the approach and solutions 

previously used on the forementioned issue to a different field. In this case, the 

field of analysis was related to the assessment of adeno-associated virus (AAV) 

vectors safety and vectors characteristics during the production of vectors for 

the delivery of gene therapy.  

The opportunity to face the possibility of this transition was given by a 4-

months visiting Ph.D. period as an internship student at ProtaGene GmbH, 

Heidelberg (DE). 

 

AAV vectors are platforms for gene therapy that gained a lot of attention in 

the past years. They can be engineered (rAAVs) to be internalized in cells, so 

that the genome mounted in the vector can be integrated in the host genome 

to obtain the desired therapeutic effect. State-of-the-art literature points out 

how vector heterogeneity correlates with vector safety and functionality. AAVs 

are delimited by two structures called ITRs, and ITRs lay the focus of the 

project, as they correlate with vector heterogeneity and, if analysed with the 

proper tools, can reveal themselves to be very informative. 

 

In current literature, it is possible to find many attempts to solve the urgent 

and complex need to provide a tool that can analyse vector characteristics 

during production. Most of the methods rely on NGS technologies, although 

these present many limitations such as long waiting times, for sequencing and 

data analysis, a scarce ability to quantify ITRs heterogeneity, and do not 

provide an informative data representation.  
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This is why it has been relevant to lay the foundations for a project aimed 

at the development of a tool for gene therapy vector analysis, based on a deep 

learning framework, that is independent of coverage analysis and NGS, and 

that can give an informative representation of results related to vector 

characteristics. Given the importance of ITRs, they were chosen as the focus of 

the analysis, together with a graphical representation method for the 

comparison of sequences, the dotplots. The challenges encountered in this 

project were in many ways like those faced when dealing with the 

development of deep-learning solutions for the monitoring of neurological 

conditions, where the use of medical images was one of the main points, as 

well as the need to deal with datasets not thought for these applications. Part 

of the processing pipeline developed for the MRI images was reused in this 

different scenario, as well as part of the concept for the creation of a dataset 

for the neural network.  

 

More details and insights on the research summarized in this introduction 

will be found later on in Chapter 2 Literature review, and in Chapter 3 

Theoretical framework. 
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Chapter 2 

Literature review 

2.1 Background knowledge 

Computational methods can improve disease diagnose and monitoring, 

and many other medical science aspects. Before diving in the methodologies, 

it is important to contextualize the background on which this research lays.  

2.1.1 Multiple sclerosis (MS) 

Multiple sclerosis (MS) is a complex chronic autoimmune disease 

characterized by intra-patient and inter-patient variability in terms of disease 

course, progression, and efficacy of treatments. MS, like other 

neurodegenerative conditions, is a wide spectrum disease which multi-

symptomatic characteristics require a comprehensive health evaluation at 

both diagnosis and follow-up visits. Disease monitoring is crucial and 

challenging as MS involves multiple physiological domains: there is not a 

single and widely accepted bio-marker informative enough to be used for 

efficiently planning a personalized treatment (Ostellino, 2022). 

Some of the most common MS symptoms are listed in Figure 2, and they can 

arise at different degrees of gravity. Such symptoms can result in permanent 

disability or can manifest for short periods of time when there is disease 

activation (episodes called "poussè"), to later regress. 

 MS affects the central nervous system, causing myelinated axons to be 

attacked by the immune system, resulting in lesions that cause motor and 

cognitive impairment at different degrees of gravity. Its mechanism is yet not 

fully understood, and generally, given the progressive nature of the disease, an 

early diagnose in fundamental. As showed in Figure 2, when the myelin of the 

axons is attacked, lesions can appear both in brain and in spinal cord, being 

visible in magnetic resonance images. 
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Figure 2 Most common MS symptoms and characteristics  

MS is diagnosed combining evidence from several exams:  

• MRI data: MRI imaging (of brain and medulla) helps assessing lesion 

load and brain atrophy: many MRI sequences are performed (such as 

T1-weighted images, T2-weighted etc...) 

• Visual, motor and sensory components are examined with evoked 

potentials 

• The cerebrospinal fluid (CSF) is analysed looking for signs of 

inflammation 

• A general neurological examination is useful to assess reflexes and 

balance 

 

Three MS clinical phenotypes are well-defined according to the time 

interval between relapses, the recovery capacity, and the accumulation of 

disability: Relapsing-remitting MS (RRMS) and Primary-progressive MS 

(PPMS) are the two main clinical sub-types that characterize the onset in the 

85% and 10–15% of the cases, respectively; over 2/3 of RRMS cases will 

convert to Secondary-progressive MS (SPMS) within 10/15 years (I. 

Grossman, 2010). 

Figure 3 shows an example of progression for different MS phenotypes: 

the onset is represented with the yellow symbol, and the green line traces the 

accumulation of disability in time. The lightning symbol stands for the poussès. 
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Several DMTs are available. DMTs aim at delaying the progression of 

the disease and the consequent accumulation of disability, primarily avoiding 

the formation of new lesions. It is crucial to choose the most suitable treatment 

for each patient, as well as to change it when it loses efficacy, minimizing the 

risk of administering the wrong combination of therapies, and losing precious 

time and economical resources. In current medical practice, therapies are 

often selected and modified by trial-and-error (Ostellino, 2022).  

 
 

To give a number of the impact of MS on Italian population basing on the data 

available, 2.2. million people suffer from MS in the world, and 122.000 only in 

Italy, where MS affects a person every 5001.  

2.1.2 Alzheimer's Disease 

Alzheimer's disease (AD) is the most common form of senile brain disorder 

which is caused by the beta amyloid peptide deposition  (Murphy, 2010), as 

Figure 4 shows: the deposition of amyloid beta plaques results in AD 

progressive manifestation and in brain atrophy, which effects are visible with 

MRI images (Figure 4). Alzheimer's disease is not reversible and there is no 

existing cure, but the neuropathology related to Alzheimer's disease can be 

 
1 Italian Ministry of Healthcare, last update May 2019 

Figure 3 Graphical representation of MS phenotypes progression. 

https://www.salute.gov.it/portale/news/p3_2_3_1_1.jsp?lingua=italiano&menu=dossier&p=dadossier&id=64
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detected several years before severe Alzheimer's disease clinical 

manifestations. The disease generally starts with a light deterioration of 

cognitive reserves and gradually worsens into a more severe form of dementia.  

The initial phase of the disease is identified as Mild Cognitive Impairment 

(MCI) and has a wide spectrum that varies from cognitive difficulties that are 

challenging to detect to more evident cognitive deficits. Around the 10% and 

15% of MCI patients per-year tend to convert to AD. Given the nature of its 

long, progressive, and variable prodromal phase, early discrimination of those 

patients that develop Alzheimer disease from those who manifest a stable MCI 

is fundamental. Therefore, administering a treatment prior to Alzheimer's 

disease conversion can efficiently decelerate its evolution. 

 

 
Figure 4 AD main symptom and example MRI imaging where brain atrophy is visible 

Alzheimer's disease diagnosis is carried out relying on several clinical data, 

such as MRI structural and functional data, DTI imaging, neuropsychological 

tests’ scores, genetic data, and others. Recent literature proposes various 

methods for AD detection that rely on Deep Learning principles. Some of them 

are focused on the classification of AD, MCI and control subjects using 

functional MRI or structural MRI data, others are based on multi-modality 
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imaging data. Not only AD detection is needed, but also the ability of 

algorithms to predict the probability of conversion from MCI to AD is required. 

Approaches that use complementary information and heterogeneous sources 

of data might have a decisive impact on the ability to early identify and 

consequently treat those subjects with a higher probability of developing 

Alzheimer. More than 600.000 people - only in Italy - suffer from Alzheimer 

Disease dementia, and 1 million suffer from other form of dementia2. The 

estimated number of people involved in the care - relatives, caregivers etc. - is 

more than 3 million people, only in Italy.  

2.1.3 AAVs and gene therapy 

Adeno-associated-virus (AAVs) vectors are the most used platforms for 

delivering gene therapy. They consist in a protein capsid and a single-stranded 

DNA of circa 4k bases. The genome is encapsulated by two T-shaped structures 

called ITRs (inverted repeat sequences), as exemplified in Figure 5. When 

AAVs are engineered, the genome of interest is inserted between the ITRs, 

replacing the viral genome, following a procedure which details are beyond 

from the purposes of this introduction, but that allows the vector to be 

internalized in the cell, together with the genome of therapeutic interest. 

Gene therapy is based on the introduction of the desired genome into 

patients to alter gene expression or the expression of proteins (Au, 2022), to 

correct disease mutations in three ways: replacing the defective gene with a 

functional copy, silencing the mutated version of the gene, and adding a 

therapeutic gene or synthetic construct (Au, 2022). ITRs can form two 

configurations, named Flip and Flop, depending on the position of the B-B' and 

C-C', as illustrated in Figure 6.  
 

 
2 Italian Ministry of Healthcare, last updated September 2023 

https://www.salute.gov.it/portale/demenze/dettaglioContenutiDemenze.jsp?lingua=italiano&id=2402&area=demenze&menu=vuoto
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Figure 5 Graphical representation of wild-type AAVs, engineered rAAVs, and rAAV sequences 

Of the existing wild-types AAVs, AAV2 is the most frequently used for 

these applications, alongside with AAV1, AAV8, and AAV9. There are many 

needs related to the production of AAVs, especially related to the assessment 

of vector quality and safety during vector production. As ITRs have an impact 

on genome packaging and on viral replication, they have been of particular 

interest in recent literature (later discussed in Section 2.2.2 AAVs vectors 

safety assessment: state-of-the-art.  

 

Figure 6 Description of the ITRs sequences (Flip and Flop configuration) 

 

Vector safety is associated to the heterogeneity of the prepared vectors, 

and vector heterogeneity is strongly bound to ITRs characteristics.  
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The assessment of the quality and safety during production is one of the 

main challenges of gene therapy. Up-to-date methods base on the use of next-

generation sequencing (NGS) technologies to quantify and investigate the 

characteristics of preparations, for example to identify mutations or the 

heterogeneity of the entire vector. Recent studies (S. Namkung, 2022) have 

demonstrated the feasibility of obtaining full-length resolution with NGS, 

covering ITR-to-ITR.  

The problem of using NGS, however, is the long waiting time, and the 

difficulty in characterizing ITRs heterogeneity, that is very informative for 

assessing vector safety. Current literature points out the importance of 

targeting ITRs during the analysis, and of providing an informative result 

representation. 
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2.2 Literature review 

The background context provided in Section 2.1 Background exposes the 

many needs belonging to several aspects of medical science. On one hand, 

there are challenges related to the diagnosis and the monitoring of 

neurological conditions. The two diseases hereby discussed are both common 

and heterogeneous conditions, united by the lack of a single clinical measure 

informative enough to assure easy diagnosis or monitoring and tailored 

therapeutic interventions. On the other hand, some issues related to the gene 

therapy field are discussed, regarding the necessity of assessing vector quality 

and safety. These issues are all due to real needs that physicians and 

researchers face every day.  

2.2.1 Diagnose and monitoring of MS and AD: state-of-the-art 

Personalized medicine is one of the focuses of current literature: nowadays, 

healthcare facilities and providers have to face an increasing number of 

patients that suffer from conditions such as Alzheimer's Disease or Multiple 

Sclerosis. Chronic conditions that can interests patients from a relatively 

young age, present a challenge in terms of money, time, and quality of provided 

assistance. To comprehend all the domains impaired by such diseases, it is 

common practice to put side by side different clinical examinations. When it 

comes to the diseases that are object of this dissertation, the assessment of 

cognitive impairment (CI) assessed via NP tests, for example, plays a 

fundamental role for both and can provide reliable insights on disease 

progression. Yet, personalized medicine for such conditions is an unmet 

clinical need.  

 

Any computational solution that wants to tackle these issues, integrating 

the knowledge extracted from many clinical evaluations, must be trained on a 

huge amount of data. We can therefore here introduce another important 

point of this research, that is the use of private and public collection of medical 
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data for these purposes.  Many public datasets exist, the most relevant ones 

are: MSBase3, the Italian Multiple Sclerosis Registry4, and ADNI5. 

State-of-the-art-literature was analysed targeting those works that couple 

CI assessment with NP tests with the evaluation of other clinical features and 

measures such as MRI imaging, motor and gait functions, and others.  Some of 

the neuropsychological tests usually administered to MS patients are the 

SDMT, the PASAT, the CANTAB and CAB, the MSPT, and the MS Suite Test.   

These tests can be computerized, to overcome the limitations of the paper-

and-pencil administered tests, with proved accuracy and reliability. The 

administration of computerized tests brings many advantages, allowing a 

reliable as well as systematic collection of data, and a standardization of tests 

administration. D'Amico et al. (E. D’Amico, 2020), for example, showed how 

the performances of the CAB test battery correlate with measures of brain 

volume, and suggest the possibility of investigating brain pathology via 

cognitive assessment. A faster CI exam is the SDMT, a 15-minute-long 

computerized test developed starting from the MS suite Test: Pham et al. (L. 

Pham, 2020) showed how this test correlates with the T2-w lesion load.  

 

These are just two examples of interesting studies that show how it is 

possible to correlate different clinical examinations, and more example can be 

found here (Ostellino, 2022).What is relevant to point out is that computerized 

NP assessment paired with imaging evaluation, stands as an informative and 

reliable procedure against the use of a single clinical measure. 

Another matter that emerges when diving into the literature, is that it is not 

always simple using different dataset, especially when it comes to medical 

images. This specific problem was addressed, as described in Chapter 4 

Methods. 

Many tools and software exist to bridge the gap between the creation of deep 

learning applications and the sources of data needed for model training. It is 

typically not possible to feed a neural network with raw medical images, for 

several reasons. The raw images require a variable number of pre-processing, 

and the raw images are stored in formats such as NIfTI (.NIfTI) or DICOM 

(.dcm), and not in standard formats such as PNG or JPEG.  

 
3 https://www.msbase.org  
4 https://registroitalianosm.it/en/  
5 https://adni.loni.usc.edu  

https://www.msbase.org/
https://registroitalianosm.it/en/
https://adni.loni.usc.edu/
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Here is a list of the most used tools for image processing:  

• CBS Tools  

• JIST 

• TOADS-CRUISE 

• BrainSuite 

• Volbrain 

 

The evaluation of these tools allowed to identify the following limitations: 

they lack in easy customization, and have often strict requirements in terms of 

settings, making it difficult to simply obtaining structured and uniformed data-

sets (Ostellino, 2022).  

What is in this sense needed is, firstly, a solution that allows an easier 

integration of imaging data coming from different sources. Chapter 4 Methods 

describes the pipeline that was developed, to be later used as a backbone of a 

deep learning architecture that is aimed at a second need, being providing 

clinicians with a tool for disease monitoring, able to integrate various types of 

clinical evaluations (also described in Chapter 4 Methods).  

 

2.2.2 AAVs vectors safety assessment: state-of-the-art 

Medical images, as described above, represent a crucial part of clinical 

works. As introduced in Section 2.1.3 AAVs and gene therapy, in the gene 

therapy with AAVs vectors field there are many needs, one of these being 

having a tool that can be used during vector production for vector analysis. 

Recent literature explores the possibilities of targeting ITRs to extract 

information about the properties of the manufactured vectors. ITRs are indeed 

interesting, and their functioning is yet not fully understood (K.I.Berns, 

2020).This lack of a discussion regarding the applied knowledge about ITRs in 

vector production and quality assessment (P. Wilmott, 2019), opens questions 

about how to improve the analysis of vectors to estimate their safety.  

To fill this gap, the idea of medical image was extended to comprehend 

the dotplots, as illustrated more in detail in Chapter 3 Theoretical framework. 

In this sense, dotplots are not only a graphical method to confront sequences, 

buy they are also a depiction of the structure of the vectors and, in particular 

for the sake of this analysis, of the ITRs.  
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Figure 7 Example of a dotplot where a matching between sequences is highlighted in red 

Figure 7 shows an example of a dotplot: on the axis of the dotplot there are the 

two sequences of nucleotides. The graph is seen as a matrix filled basing on 

nucleotide matching: the gaps and the adjacent lines in the graph show 

matches, missing bases and other characteristics of the two sequences. 

Moreover, the two sequences can be the same, or two different ones: this 

allows to extract information basing on the design of the plot (see Section 3.3.4 

The dotplots and the FlexiDot tool for details).  

The method proposed by Tran et al. (Tran, 2020), for example, analyses 

a population of vectors relying on coverage analysis - like most state-of-the-

art works - managing to get several information about the preparation. One of 

the main findings is that the presence and type of ITRs is informative of the 

preparation quality: a 1-to-1 ratio of ITRs in flip and flop configuration, for 

example, characterizes an ideal preparation. The results visualization, as 

showed in Figure 8, raises several questions. The problem with this type of 

representation is that is not very informative per-se.  

Another noteworthy work is the one by Zhang et al. (J. Zhang, 2022), 

where the authors explore the importance of assessing the quality of 

administered rAAVs to identify the presence of contaminants. The need of 

creating a tool that can be used in practice during vector production with a 

focus on ITRs is therefore not only urgent, but also relevant. The examples that 

were brought hereby, rely on coverage analysis: the possibility of relying on 

another paradigm is later presented in Chapter 4 Methods where the approach 

targets the analysis of AAVs, providing an informative result representation.  
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Figure 8 Result representation provided by the Tran et al. paper 
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Chapter 3 

Theoretical framework 

The concepts introduced and explained in detail in Chapter 1 

Introduction and Chapter 2 Literature review serve as base for the following 

Chapter, which aims to present the assumptions, concepts and tools related to 

the development of this Research. Given the variegate number of topics that is 

covered, it is worth highlighting once more the common thread that ran 

throughout the work. Right from the start, some assumptions regarding the 

use of Artificial Intelligence in healthcare were grounded: the application of AI 

in this field must be treated consciously, given the common concerns related 

to privacy, biased results and the trust granted by clinicians. Moreover, the 

efficacy of the use of AI in clinical settings its not only determined by its 

performances in terms of accuracy, but also by how and at what extent these 

applications are accepted by the medical field (Asan, 2020). A well-trained 

CAD system does not divest doctors of any responsibilities, as they remain the 

ultimate decision-makers.  

Medical imaging is an indispensable tool for the diagnose and monitoring 

of many diseases. However, different imaging techniques require diverse steps 

for the processing of the images, as they present different artifacts. Many 

solutions are proposed to automatise the pre-processing of images, and 

despite the high performances of many of these solutions, it is a task still - often 

- preferably performed by hand (Dhar, 2023).  

From these findings we can draw two ideas:  

• many restrains to the use of AI in clinical practice is often related to a 

lack of trust 

• many existing tools are not easy to use or exchangeable between 

applications. 
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During the Research here presented, these two points were always kept 

into consideration. Based on the recent literature that examines the challenges 

of the application of AI in healthcare, one way to improve the trust in AI is to 

favour explainable CADs, that provide a visual interpretation of the results 

(Dhar, 2023). Moreover, deep learning methods require inputs in a structured 

manner, and it is not easy to have data already organized in such a way to be 

straightforwardly used for AI (Asan, 2020). This line of thought was followed 

when identifying the dotplots as a valid tool for the analysis of AAVs vectors, 

and when developing solutions related to the use of MRI images for deep 

learning, as well as the access to well-known public datasets.  
 

Innovating the medical field with the help of AI is a common goal in the 

scientific community, keeping in mind that real necessities are those that need 

to be solved, and it is often minor inconveniences related to the 

implementation and the collection of data to represent the biggest challenges. 

Combining clinicians’ knowledge and experience with the analytical power of 

AI have a disrupting effect on the quality of provided healthcare.  

 

3.1 The dialogue with clinicians 

During this Research, especially at its earliest stages, a close dialogue with 

clinicians had a huge role in implementation choices, as much as state-of-the-

art literature. In the first place, about the use and processing of MRI images, 

the analysis of the literature helped understanding the innovations in this field 

do exist, but few of them where actually possible to use for the scope of the 

research. Such scope was clarified by discussing with the physicians about 

what they usually look for during the monitoring of a neurological disease, or 

about what they find more challenging.  

Taking the importance of medical images in a clinical work-flow as read , 

in order to work on a deep learning architecture able to deal with clinical data 

of different kind, it was important to consolidate a backbone for the use of 

medical images as input to a network, and to understand how to efficiently 

extract information from a public dataset, as described in detail in the next 

chapter. 
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3.2 The collaboration with ProtaGene GmbH 

The introduction of AI in the bioinformatic workflow, in the context of 

a company and of the needs of clients, can follow a similar approach to the 

introduction of AI in the clinical workflow. In this specific case, during the 

collaboration with ProtaGene GmbH, the task was understanding how a 

specific type of image could be use with the aim of improving the analysis of 

AAV vectors quality for gene therapy. The foundations of this project were laid 

together with Raffaele Fronza.  

The main question was targeting the problem using as few resources as 

possible: methods for vector quality assessment already exist, and their 

limitations had to be addressed. Moreover, this needed to be done without 

necessary relying on experimental data related to previous projects, not to 

incur into data confidentiality issues. Another important point was changing 

the approach towards this problem, being alignment free and providing an 

informative representation of results, to be scalable to many of the 

requirements related to the analysis of vectors for gene therapy.  

 

ITRs were, for this reason, perfect candidates for these tasks, and for 

the construction of the backbone theory for this project, opening a series of 

questions regarding the use of the NCBI public dataset, and the translation of 

the information presented in form of a sequence of bases, into an image that 

could be considered informative.   

3.3 Tools and theories: state-of-the-art 

The following section will present the tools and Python6 libraries used 

for this Research, to able the reader to dive more easily in Chapter 4 Methods. 

Python was used as a programming language for every implementation, given 

its popularity, richness of libraries, and possible applications. 

3.3.1 MRI images processing 

Being MRI images an essential part of this Research, it was fundamental 

to rely on a stable and customizable pre-processing pipeline. To do so, state-

of-the-art literature was used to identify the most necessary steps for the 

 
6 https://www.python.org/ 

https://www.python.org/
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processing of images acquired with magnetic resonance technology, therefore 

identifying the critical aspects of already existing tools. Once this phase was 

completed, the building blocks of a custom-made pipeline were clear, and 

needed to be realised with the optimal Python library.  
 

Figure 9  summarizes the main blocks that constitute the processing 
pipeline. It includes the basic steps for an optimal processing. For the 
detailed description, see Section 4.5.1 Preprocessing pipeline. 
 

 
Figure 9 Main steps of the processing pipeline 

Most of these steps refers to well-established procedures and theories. 

Therefore, the reference literature used for this part of investigation includes 

both recent and less recent papers.  

 

A scanning protocol is normally used during a standard MRI scan for 

MS monitoring, and such protocol can vary between clinical facilities. Standard 

norms are accepted as reference: according to these, T2 weighted sequences 

are the preferred one for brain scans as, also without the injection of contrast 

liquid, they generally allow an easier identification of new lesions, or the 

assessment of the status of old lesions.  

In Figure 10 Example of T1-w and T2-w two images are shown: the one on the 

left shows a T1-weighted (T1w) example of image, the one on the right shows 

a T2w image. The difference is evident, especially when considering the 

contrast of the image (Guizard, 2015). 
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Figure 10 Example of T1-w and T2-w MRI images 
 

T1w images are informative to assess the status of the so-called black-

holes lesions, areas of permanent nerve damage, and to assess the degree of 

brain atrophy, when necessary. Therefore, the pipeline is thought in such a 

way that focus lays on T2w images, and on the relevance of the assessment of 

the lesion load. 

 

Image registration and conversion to NIfTI format 

The image registration step allows matching the space of the image to a 

reference space, referring the image to a standard atlas, being a prerequisite 

for any analysis that aims at a comparison across datasets or in time (Toga, 

2019) as different MRI scans can present different slice spacing and slice 

resolution due to the scan settings and protocol (Alam, 2016). For a better 

understanding, see Figure 11 where an example of image registration is given. 

On the left there is a T2-w scan that consists in 70 different images (or 

“slices”), and on the right there is the same scan after the registration on a 

reference atlas. The reference atlas here considered and later used is the ICBM 

Average Brain (Mazziotta, 1995). Registration algorithms determine the 

transformation needed to match the source image with the target atlas (ICBM) 

to optimize the similarity index between them. The registered image is 

obtained linearly interpolating the initial image domain into the new domain, 

to match the anatomical references. 
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Figure 11 Effect of the atlas registration on an MRI scan 

 
The different number of slices between the initial and the resulting scan 

is given by the fact that the resolution of the initial image is matched with the 

atlas resolution (in the case of the ICBM atlas, 1mm3) via interpolation. In this 

way, congruous datasets can be created, where every slice corresponds to a 

known anatomical reference despite the scan having been acquired with 

different machines and with different settings.  

The different number of slices between the initial and the resulting scan 

is given by the fact that the resolution of the initial image is matched with the 

atlas resolution (in the case of the ICBM atlas, 1mm3) via interpolation. In this 

way, congruous datasets can be created, where every slice corresponds to a 

known anatomical reference despite the scan having been acquired with 

different machines and with different settings. 

 

Bias field correction and noise reduction 

MRI images are typically affected by an artifact called bias field, that 

appears in the image as an intensity inhomogeneity. It is due to spatial 

inhomogeneity in the magnetic field and is therefore unavoidable. The bias 

field correction step is crucial to adjust intensity discrepancies in intensity 

within tissues with the same physical properties. The effect of the bias field 

becomes visible in images acquire with magnetic fields stronger than 1.5T, that 

is the standard field for the monitoring of MS.  

There are several methods for performing bias field correction, such as  

minimizing the image entropy or fitting the histogram of the local 

neighbourhood to global histogram of the image (Despotović, 2015).  
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The N4 method for bias field correction was selected for the purpose of this 

Research (Tustison, 2010).  The N4 method is an improved version of the well-

known N3 nonparametric intensity normalization method, being fully 

automatic and applicable to almost every MR image.  

 

Brain extraction 

Brain extraction, also known as skull stripping, is an important step that 

allows to isolate the relevant information from the image leaving out interests 

that are not of interest for the scope of the analysis. In this context, tissues like 

the dura mater and the skull are not of interest and might only add more 

sources of noise and errors. Like the bias field correction, the brain extraction 

is a necessary step for most pre-processing pipelines, and many methods are 

proposed and adopted in the state-of-the-art algorithms: some of these rely on 

deep learning networks, others on more traditional morphological operations.  

In order to obtain good performances, the pipeline that was created for 

the image processing useful in this Research uses a combination of 

morphological operations to reach two goals: First, to keep guarantee good 

performances in terms of processing times and, secondly, to easy the access to 

the internal functioning of the skull stripping procedure, to personalise it in 

case of necessity, and to allow the method to work independently from the MRI 

modality. More details about the approach inspired by the work of (Gambino, 

2011) are given in the Chapter 4 Methods.  

 

Image processing toolkits 

Many toolkits and corresponding Python libraries for image processing do 

exist and respond to different needs. Therefore, it is essential to choose one 

among these that best adapt to the requirements. In this case, several libraries 

were considered and tested in terms of performances. In the Table 1 a 

summary of the most known toolkit is given. 
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Table 1 Toolkits used to develop the image processing pipeline 

Toolkit Main features Python library 

 
Insight toolkit 

(ITK)7 
 

 
• Cross-platform library that 

provides a suite of software 
tools for image analysis 
(Avants, 2014) 

• Provides many I/O image 
formats and several image 
processing algorithms 
 

ITK Python 
package8 

 
NiBabel9 

 

 
• Read and write access to 

common neuroimaging file 
formats  

• Supports geometrical and 
morphometry files  

• Limited support for DICOM 
 

NiBabel lib 

 
Advanced 

Normalization 
Tools (ANTs) 

 

 
• C++ library available through 

the command line 
• Available in Python as medical 

image library 
 

ANTsPy 10,11 

 
After having evaluated the tools, the ANTsPy library was selected to be 

included in the processing pipeline. More details are discussed in Chapter 4 

Methods. 

3.3.2 DL applications with fastai 

The fastai12 library was used for all the implementations in this Research 

that include DL. As (Howard, 2020) highlight, this library provides 

 
7 https://itk.org  
8 https://itkpythonpackage.readthedocs.io/en/master/Quick_start_guide.html  
9 https://nipy.org/nibabel/index.html  
10 https://antspy.readthedocs.io/en/latest/ 
11 http://stnava.github.io/ANTs/  
12 https://docs.fast.ai/ 

https://itk.org/
https://itkpythonpackage.readthedocs.io/en/master/Quick_start_guide.html
https://nipy.org/nibabel/index.html
https://antspy.readthedocs.io/en/latest/
http://stnava.github.io/ANTs/
https://docs.fast.ai/
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compromises between flexibility, ease of use and performances, distributing 

open-source material and high-quality courses.  

Many recent application use fastai as a backbone, ranging in a series of 

topics. Among these, it is also possible to find many examples in the medical 

field. In the work of Paciorek et al. (Paciorek, 2024), for example, fastai is used 

to create a deep learning model for cardiac pathologies detection in MRI T1 

mapping, obtaining results that justify the use of MRI T1 cardiac images 

without contrast for the detection of several cardiac conditions. Praveen et al. 

(Praveen, 2022) rely on fastai for the realization of a model able to detect 

malignant tissue in histological 2D breast tissue images. They also show, 

among the rest, the benefits of using fastai, that provides libraries and 

packages, offering precise outcomes in deep learning. Fastai allowed also 

Chaudhury et al. (Chaudhury, 2023) to address the problem of ICD breast 

cancer detection in histological images, combining a Gradient Color Activation 

Mapping and image colouring mechanism with a discriminative fine-tuning 

methodology employing a one-cycle strategy using fastai techniques.  

These are just some of the most recent state-of-the-art publications where 

the advantages of using fastai concretely benefits the developers.  

3.3.4 The dotplots and the FlexiDot tool 

This Paragraph introduces the theory behind the dotplots used in the 

bioinformatic field, how they were used in this Research as medical images for 

the analysis of AAV vectors. How this topic relates to the rest of the Research 

is described in Chapter 4 Methods.  

Dotplots are a visualization method used to compare two sequences of 

nucleotides, looking for similarities between the two, providing a global 

representation through the graph that is itself an output matrix.  It can be used 

to compare a sequence to itself (obtained a self-dotplot) or to compare two 

different sequences. The sequences are placed along the axis (x-axis and y-

axis), and the graph is filled based on nucleotide matching: regions of the 

sequence on the x-axis are compared to the entire query sequence (y-axis), and 

the size of the region of interest depends on the defined window size. A 

mismatch limit must also considered, and when 0 mismatches are found in the 

region, then a dot is placed at the appropriate (x,y) coordinates.  
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In Figure 12 A) a sequence is compared with itself with a standard window 

size of 10 nucleotides: this results in a straight diagonal line. In Figure 12 B) 

the window size is reduced to 5, resulting creating a higher likelihood of 

matching. 

 

Figure 12 Comparison of dotplots obtained with different window sizes 

Figure 13 suggests why dotplots can be very useful to providing an 

immediate representation of the characteristics of a sequence. Hypothesizing 

that the reference sequence lays on the x-axis, and that on the y-axis there is 

the same sequence, but with mutations (e.g. insertions, deletions), the 

localization and type of such changes in the sequence is clearly visible in the 

graph. In a) there is a mismatch, b) a deletion and c) represents an insertion.  

Hence, in the context of evaluating the characteristics of AAV vectors 

during vector production, dotplots are a valuable tool which benefit was 

explored in this Research.  
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Figure 13 Effect of mutations on the structure of a dotplot 

Many applications and Python libraries exist13, the majority of which are 

only usable online or locally14, or are standalone WEB applications15 that are 

difficult to personalize, or which parameters and inner functioning are not 

accessible to the user. Considering the necessities of this Research, the 

FlexiDot tool has been chosen. It was introduced by Seibt et al. (Seibt, 2018) as 

a cross-platform dotplot suite for the generation of high-quality self, pairwise 

and all-against-all visualizations, implemented in Python 2.7 and relying on 

Biopython16. Its performances were also compared to other tools such as 

Dotter, Gepard, and PolyDot, and the benefits of FlexiDot are presented in the 

literature (Seibt, 2018). 

FlexiDot documentation is available17 (Kathrin M. Seibt, 2018) and 

described from top to bottom, and specifically thought for routinely analyzing 

sequences. Its flexibility allows the creation of different types of dotplots in 

different configurations, and it grants access to many of the parameters that 

control the inner functioning of the algorithm, such as ambiguity handling 

mismatch toleration, and color shading as an indicator of similarity. 

 
13 https://pypi.org/project/dgenies/  
14 https://www.bioinformatics.babraham.ac.uk/projects/redotable/   
15 https://en.vectorbuilder.com/tool/sequence-dot-plot.html  
16 https://biopython.org  

17 https://github.com/molbio-dresden/flexidot  

https://pypi.org/project/dgenies/
https://www.bioinformatics.babraham.ac.uk/projects/redotable/
https://en.vectorbuilder.com/tool/sequence-dot-plot.html
https://biopython.org/
https://github.com/molbio-dresden/flexidot
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The functionalities that were most useful for the scope of the application 

in this Research were:  

• FlexiDot plotting modes 

o Self-dotplots: to compare a sequence with itself 

o Pairwise dotplots: to compare different sequences 

o Collage output option when more than one sequence is used 

• Variable k-value 

Here is an example – taken from the documentation – of the main 

commands for the execution: a fasta file (test.fas) containing more sequences is 

given as input to create a single image (-c y) as output (Figure 14 Example of 

a FlexiDot output image) and not six different graphs, containing a collage (-

p 0) of dotplots in different configurations, disposed on 3 columns (-m 3), with 

no color shading (-x n).  

>> python flexidot.py -i test.fas -p 0 -k 10 -c y -x n -m 3 

 

Figure 14 Example of a FlexiDot output image 

This example shows some of the many parameters that can be used to 

obtain a visualization that respond to the users’ necessities. However, in order 

to use this tool, it was necessary to automatize it, avoiding having to run it 

manually: details on this and on the use of FlexiDot for the analysis of AAVs are 

in Chapter 4 Methods).  
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Chapter 4 

Methods 

4.1 Aim of the Research 

As partially already discussed in Section 1.2 Aim and challenges this 

Research dealt with several topics and aimed to explore different medical 

field-related questions. Figure 15 Map of the research topics and tools 

describes, graphically, the interconnections between the topics, the tools and 

developed solutions, and with which tools the questions were addressed, to 

introduce the reader to the contents of this Chapter.  

 

Figure 15 Map of the research topics and tools 



43 

 

Firstly, there are three main topics (listed in the first column), and each 

tool (second column) that was used, addressed one or more topics. This 

allowed to tackle the different questions from different perspectives. 

Moreover, this interdisciplinary approach did not declinate in a pedantic 

fashion, hyper focusing on a single aspect or disease. It aimed to embrace 

common challenges and questions related to different subjects: it started from 

neurological diseases monitoring and landed in the gene therapy field, 

adapting according to the needs the processing pipeline for the images, the 

methods of data collection, analysis and storage, and the deep learning 

frameworks. Lastly, the third column in Figure 15 shows which solution 

connected to the corresponding research question.  

4.2 Data collection and analysis  

The Research method that was followed was quantitative: data, being 

imaging data, clinical data, or genomic sequences, was used to identify how the 

raw data could be processed, modified, or combined, to extract information.  

Data were differently extracted and handled, depending on its nature and 

purpose of analysis. In this Section the method used for data collection and 

analysis will be described, exploring more in detail this fundamental aspect, 

exposing the challenges as well met, and how they impact the work itself.  

This Section will be organized as follows: basing on the topics summarized 

in Figure 15, the methods used for data collection and analysis will be 

described in order and divided by topic: Section 4.2.1 Medical imaging and 

neurological diseases will describe the collection, analysis, and manipulation 

of imaging data related to MS and AD, while Section 4.2.2 AAV sequences will 

expose how the wild-type AAV sequences were collected and stored for later 

purposes. 

This part of the work made it possible to face the challenge of using public 

datasets, and the main difficulties will be also disclosed. Later, Section 4.4 

Materials and equipment will briefly detail the equipment used. 
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4.2.1 Medical imaging and neurological diseases 

Two different datasets were used, one for each disease targeted by the 

Research. For MS, the ISBI 201518 dataset was utilized, and for AD the ADNI 19 

dataset was made use of. The rationale behind the choice of these two datasets 

was driven by an analysis of the state-of-the-art literature, and later identified 

ISBI2015 and ADNI as most adequate to the scopes of the Research.  

In fact, there are not many datasets containing medical data (imaging data, 

or other clinically relevant information) that have all the characteristics that 

make them suitable:  

• It is relatively easy to get access to them 

• They are well organized with good documentation and description 

of how the data was collected 

• They have a good numerosity, and heterogeneously represent the 

target population. 

4.2.1.2 The ISBI 2015 dataset 

The ISBI 2015 dataset was used during the 12th International Symposium 

on Biomedical Imaging: it consists of MRI images and corresponding masks of 

5 subjects, for a total of 20 different scans, as 4 different scans – corresponding 

to different time-points (TP) – are available for each subject. T2-w, MPRAGE 

T1-w, PD, and FLAIR modalities are available for each subject. 

Accessing and navigating this database did not represent an issue, given 

the small number of subjects (unlike the ADNI dataset). In total, the dataset 

contains 1475 images, distributed like Figure 16 ISBI 2015 describes.  

 
18 https://biomedicalimaging.org/2015/program/isbi-challenges/  
19 https://adni.loni.usc.edu/  

https://biomedicalimaging.org/2015/program/isbi-challenges/
https://adni.loni.usc.edu/
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Figure 16 ISBI 2015 dataset numerosity per subject 

As the T2-w modality was the one of interest in this Research (Abderrahim, 

2020), and as 70 images are available for each scan, only the 350 images in this 

modality were later used to implement the pre-processing pipeline (see 

Section4.5.1 Preprocessing pipeline). 

The main reason that led to the selection of this dataset, it that it provides, 

for every scan of every subject, the lesion masks obtained – manually – after 

image preprocessing by two independent readers: this was useful to verify the 

functioning of the processing pipeline later developed. Moreover, the 

processed images are included as well in the dataset, and they were obtained 

with the MIPAV software: the type of pre-processing proposed for the ISBI 

images was used to define the main requirements of the processing pipeline, 

object of further discussion. 

The raw T2-w images for each subject were downloaded together with the 

processed images and the lesion masks. The software ImageJ20 was used for 

the first visual examination of the images, as it was necessary to take note of 

the resolution of the scans, of the number of images (from now on, also 

addressed as slices) per scan. Figure… shows, as an example. the T2-w second 

scan, of the Subject 01, visualized with ImageJ.  

 
20 https://imagej.net/ij/  
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Figure 17 ImageJ example of visualization of a .nii image (NIfTI) 

4.2.1.3 The ADNI dataset 

The ADNI dataset belongs to an on-going initiative and is – at present – 

the most used dataset for the development of computational solutions 

regarding the Alzheimer’s disease. ADNI began in 2004 as ADNI-1, an initial 5-

years study that later was followed by ADNI-GO, ADNI-2, and ADNI-3, 

respectively in 2009, 2011, and 2016. Table 2  describes the 4 phases of ADNI, 

with their goals and the patient cohorts. Thanks to how ADNI was built, 

patients that were initially included in ADNI-1, are still part of ADNI-3, and this 

allows to have, for such patients, data relative to many different time-point as 

they were followed and reassessed over time. ADNI results are shared through 

the USC Laboratory USC Laboratory of Neuro Imaging’s Image and Data 

Archive (IDA), and available for research purposes upon request.  

Table 2 Description of different ADNI phases 

 
ADNI-1  ADNI-GO ADNI-2 ADNI-3 

Primary goal 

Develop 
biomarkers 
as outcome 
measures for 
clinical trials 

Examine 
biomarkers 
in earlier 
stages of 
disease 

Develop 
biomarkers as 
predictors of 
cognitive 
decline 

 
Study the use 
of tau PET 
and 
functional 
imaging 
techniques 
  

Duration/start   5 yrs/2004 2 yrs/2009 5 yrs/2011 
 
5 y/2016 
  

Cohort 
200 elderly 
controls 

Existing 
ADNI-1 

Existing 
ADNI-1 and 
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400 MCI 

200 AD 

 
200 early 
MCI 

ADNI-GO 
 
150 elderly 
controls100 
early MCI 

150 late MCI 

150 AD  

Existing 
ADNI-1, 
ADNI-GO, 
ADNI-2 
 
133 
elderly 
controls 

151 MCI 

87 AD 

 

At present, 2380 patients are part of ADNI, and more than 15000 time-

points are avaiable in total. Figure 18 ADNI infographic is the infographic 

avaiable on the ADNI website that gives the first insights on the content of the 

dataset in terms of the distribution of age and gender, and of the research 

group: this information is of particular importance, as not only patients with 

diagnosed Alzheimer’s disease are included in the study, but also patients with 

diverse forms of cognitive impairment, that often happen to be prodroms of 

the disease. 

 

Figure 18 ADNI infographic 21 

Table 3 ADNI patient cohorts summarized the abbreviations used to 

classify the ADNI patients, and that will be used from now on in this 

 
21 https://ida.loni.usc.edu/login.jsp  

https://ida.loni.usc.edu/login.jsp
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dissertation and indicates from which phase of the ADNI project was the 

patient cohort included. 

Table 3 ADNI patient cohorts with the indication of the enrolment 

Research Group Abbreviation ADNI phase 

Alzeimer’s Disease AD Since ADNI-1 

Mild Cognitive Impairment MCI Since ADNI-1 

Control CN Since ADNI-1 

Early Mild Cognitive 
Impairment 

EMCI Since ANDI-GO 

Late Mild Cognitive 
Impairment 

LMCI Since ADNI-2 

Significant Memory Concern SMC Since ADNI-2 

The types of data included in ADNI are the following: 

• Clinical data 

• Imaging MRI data 

• Imaging PET data 

• Genetic data 

• Biospecimen data 

To give and idea of the level of detail and organization of ADNI, see Figure 

19 The acquisition of different data types in different ADNI phase (in time) : 

for each ADNI phase and at each time-point of screening (from the initial 

screening, to those conducted after several months), the overmentioned data 

types were collected and organised inside the dataset. Figure 3 Graphical 

representation of MS phenotypes progression. 
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Figure 19 The acquisition of different data types in different ADNI phase (in time) 22 

Despite the good documentation and organization of the various phases 

was well documented, an extensive and detailled analysis of ADNI is lacking in 

the state-of-the-art literature. This can represent a problem when it it 

necessary to search for data entries of different nature and distributed over 

time Figure 22. For the scope of this Research, it was necessary to conduct 

such analysis: many inconsistencies were found and needed to be tackled to 

retrieve and organise data avoiding errors and misinterpretations (see Section 

4.2.1.3 a) ADNI extensive analysis).  

Given that only the MRI imaging data, together with the clinical data, were 

interesting for the Research, the study info material was selected as in  Figure 

20 “Study Info” material selection, after a careful evaluation of all the avaiable 

files.  

 
22 https://adni.loni.usc.edu/data-samples/data-types/  

https://adni.loni.usc.edu/data-samples/data-types/
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Figure 20 “Study Info” material selection on the ADNI website 

The ADNI MERGE file was of particular importance, and it was used as basis 

to select patients, to keep track of the different time-points per subject, to 

identify issues related to discrepancies in the keywords and labels used 

thorought different the 3 ADNI phases, and to access the clinical data relative 

to cognitive impairment and others, as discussed later on. 

Basing on the content of ADNI MERGE, other important files were selected 

from ADNI, here listed and described. As a note for the reader, it is highlighted 

that this initial work esclusively dedicated to the analysis of ADNI was 

necessary to orientate among the moltitude of documents avaiable with no 

clear description nor clear indications: this represented a gap that, initially, 

made it difficult to use ADNI flowlessy. Figure 21 ADNI MERGE file example 

gives an example of an ADNI MERGE section with the keywords useful for the 

identification of different subjects, and different evaluations. 
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Figure 21 ADNI MERGE file example 

In total, ADNI MERGE consists (at the time of the analysis, 2022) of 15754 

lines and 115 columns: each line corresponds to a different time-point, and 

each column refers to clinical variables (as described below in Section 4.2.1.3 

b) Creation of a database based on ADNI), and some IDs such as: 

• Two different variable identify the subject: RID and PTID (often 

indicated also as Subject) 

• COLPROT indicates the ADNI phase in which the assessment was 

performed, ORIGPROT tells in which ADNI phase the subject was 

recruited 

• VISCODE stands for the type of visit conducted at a specific time-

point bl is the baseline visit, m06 is the visit performed 6 months 

after the baseline, m12 is the visit performed 12 months after the 

baseline, etc…  

• The EXAMDATE column is misleading and not well documented, 

therefore it was not considered (many inconsistencies where found 

when looking for the image files at a certain time-point). The 

EXAMDATE, for example, often does not correspond to the date of 

the MRI scan, altough the scan refers to the same time-point 

• The DX_bl column indicates the diagnosis carried out at the 

baseline visit, and the DX column indicates the diagnosis carried out 

at the time-point 

o A patient can be stable, for example being reassessed as MCI, 

or can be assessed as AD if the disease progressed. In some 

cases, the diagnose reverse: some patients assessed, for 
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example, as AD at a time-point, are diagnosed as MCI in the 

following time-point. This is clinically impossible and clearly 

represents a mistake: these cases had to be identified and 

removed from the considered time-points.  

A clear understanding of how to use these labels is fundamental to 

download the right image data from the web portal: Figure 22 ADNI - 

Advanced Sear shows the advanced search window that allows to retrieve the 

images selecting one or more subjects, referring to one or more visit/time-

points, and selecting one or more of the avaiable image modalities. The 

selection of the image scan corresponding to the correct time-point is possible, 

selecting the visit description (Figure 22 ADNI - Advanced Sear in black) that 

correspond to the time-point. Table 4 Description of the relevant ADNI 

documents describes shortly why each document was selected and how it was 

used.   



  

 

Figure 22 ADNI - Advanced Search interface



  

 

Table 4 Description of the relevant ADNI documents that were used 

Document (name and extension23) Use 

ADNIMERGE.csv  Summary of ADNI, patient info and 
tabular data 

REGISTRY.csv Useful for the download of the images 
related of a subject at a specific time-
point. The match between the ADNI 
MERGE entry (VISCODE) and visit 
description label is needed. 

Unlike ADNI-1 and ADNI-GO, the ADNI-

2 database assigns participant visit data 

a generic visit code that does not clearly 

indicate the longitudinal progression of 

the participant.  

The label VISCODE in ADNI MERGE does 

not correspond to the VISCODE label in 

REGISTRY.csv, but to VISCODE2 

(Davis). 

ADNI_VISCODE.csv Deacribes the correspondande between 

the VISCODE and the visit description 

that allows the download of the images.  

search.csv File generated from the seach interface 

including all the images avaiable. Used 

to verify if the association beween time-

point and image scan was correct.    

MRILIST.csv Allows to retrieve the IMAGEID and the 
SERIESID, as different image scans can 
correspond to the same visit. 

 
23 Avaiable here – after registration  

https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=16&subCategoryId=43
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Before introducing, in Section 4.2.1.3 b) Creation of a database based on 

ADNI, the detailled data types of interest in ADNI and the selection of the 

subjects for the creation of a dataset based on ADNI, Figure 23 Example of 

navigation between the documents for subject 023_S_4115 and Figure 24 

Example of navigation between the documents for subject 011_S_0 simulates 

the process of selecting a time-point for a sebject, identify the images of 

interest and download these. This should help the reader to understand how 

ADNI can be navigated to correctly select the data of interest.  

• Figure 23 Example of navigation between the documents for 

subject 023_S_4115 shows the process of retrieving the 

information to download the Axial T2-FLAIR images of the subject 

023_S_4115 (which is possible through the SERIESID and 

IMAGEUID numbers), for the time-point identified as m12. This 

examples shows that, as this subject was enrolled during ADNI-2, 

the VISCODE identifiers, correctly chosen in the ADNI VISCODE 

table, allow to identify the correct visit description 

• Figure 24 Example of navigation between the documents for 

subject 011_S_0shows the example of a subject enrolled in ADNI-1, 

and for which is simpler to retrieve the images corresponding to 

the correct time-point 

It is once more worth mentioning, that the literature lacks a detailled 

description of ADNI, and the analysis here performed was essential to the 

proceeding of the Research. 
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Figure 23 Example of navigation between the documents for subject 023_S_4115 

 

 

Figure 24 Example of navigation between the documents for subject 011_S_0003



  

4.2.1.3 a) ADNI extensive analysis 

As previously mentioned, ADNI consist of more than 15000 time-points, 

and for each time-point different types of data acquired during the evaluation 

are available. The number of evaluations per subject is not constant, as Figure 

25 Time-points distribution for 43 subjects shows for a sample of subjects 

(identified by their RID number, that is an alternative to the SUBJID seen 

before). Another aspect worth mentioning, is that not for every evaluation a 

diagnose is noted (i.e. a subject was diagnosed as AD, or if was stable as MCI): 

for the subject with RID 31, for example, more than 20 evaluations are 

available, but for less than 10 the diagnose carried out by the examinators is 

known.  

 

Figure 25 Time-points distribution for 43 subjects 
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Table 5 ADNI time-points numerosity gives an idea of ADNI numerosity: of 

the total TP of interest, only 10751 were used to proceed with the analysis and 

selection of data: given the interest in the clinical evidence related to the 

progression of the disease in time, the single TP with no follow-up, and those 

with no indication of the diagnose where immediately excluded 24.  

Table 5 ADNI time-points numerosity  

Total TP Single TP 
TP with no 
diagnose 

Subjects 

15754 253 4750 2379 

  TP of interest 10751 

To have an idea of the distribution of the type of diagnose, considering the 

number of subjects and not the TP after having excluded the subjects with a 

single evaluation, see in Table 6 Diagnose type that:  

• 403 subjects, presented a diagnose of CN that remained stable between 

the baseline (BL) visit, and the last visit 

• For 69 subjects, the disease progressed converting in MCI, and for 30 it 

converted to AD 

• 362 subjects, diagnosed as MCI when enrolled, converted to AD in the 

last evaluation  

• In red, the subjects that shows a reversion in the diagnose (these were 

later excluded) 

 

  

 
24  The numerosity refers to the year (2022) during which the analysis was performed  
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Table 6 Diagnose type (CN, SMC, MCI, AD) numerosity 

  
CN SMC MCI AD 

CN_BL 403 0 69 30 

SMC_BL 250 0 22 3 

MCI_BL 67 0 560 362 

AD_BL 0 0 3 357 

 

  Tot 
subjects 

2126 

Table 7 Number of time-points that remain stable or convert considers the 

number of TP that show conversion, reversion, or stability, considering the 

diagnose that was made at the first and last visit.   

Table 7 Number of time-points that remain stable or convert 

 CN  MCI  AD  
 

CN_BL 
  

2822  175 6 

 
MCI_BL 

  

121 3531 411 

 
AD_BL 

  

0 0 1567 

When assigning to the TPs with no diagnose, the diagnose of the previous 

TP, the only numerosity that increases it the one of the so-called “stable” TP, 

not of interest for the Research that focuses on the progression in time. This 

step was therefore not performed, and these TP directly excluded from the 

pool (see Table 8 Numerosity of time-points after assigning the diagnose of the 

previous time-points to the missing values). 
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Table 8 Numerosity of time-points after assigning the diagnose of the previous time-points to the 
missing values 

 CN  MCI  AD  
 

CN_BL 
  

4853 175 6 

 
MCI_BL 

  

121 5173 411 

 
AD_BL 

  

0 0 2606 

 

The next step was defining the concept of disease conversion, and to 

construct two datasets based on ADNI: one consisting of tabular data, and one 

consisting of imaging data. There are different cases that can be considered 

conversion of the disease:  

• A subject, initially classified as CN, is classified as MCI (EMCI and 

LMCI were considered as MCI) 

• A subject, initially classified as MCI, is classified as AD  

• A subject, initially classified as CN, is classified as AD  

As Table 7 Number of time-points that remain stable or convert shows in 

color, the numerosity of the classes of interest, meaning those that show a 

conversion in the diagnose, is not consistent: it was important to introduce 

permutations, expanding the size of the classes of switch considering not only 

the TP that precedes the switch of the diagnosis, but also all the previous TPs. 

Table 9 Example of conversion class expansion exemplifies how this is done: 

hypothesizing that a subject converts to MCI from CN after 12 months from the 

first assessment, instead of classifying as stable all the TP that precede the 

conversion, these can be considered as TP of conversion 12, 6 and 0 month 

before the conversion to MCI. A patient, however, can present multiple 

conversions in case of progressing disease.  

This step is relevant also from the clinical point of view, as there is no 

biomarker for predicting the conversion from a clinically stable profile to the 

diagnose of AD. 
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Table 9 Example of conversion class expansion 

Visit (months) DIAGNOSE CONVERSION 
MODIFIED 

CONVERSION 

0 CN CN-CN CN-MCI / 12m 

06 CN CN-CN CN-MCI / 6m 

12 MCI CN-MCI CN-MCI / 0m 

18 MCI MCI-MCI - 

 

Table 10 Distribution of the classes of switch for each time interval shows 

the distribution of the classes of switch in each interval of interest, expressed 

in months:  most switches are condensed within 36 months.   

Table 10 Distribution of the classes of switch for each time interval 

Interval 
(months) 

CN-MCI  CN-AD  MCI-AD  

 
3-12 

  

106 2 406 

 
12-24 

  

120 12 459 

 
24-36 

  

407 141 588 

 
36-100 

 
55 14 28 

The ADNI MERGE file was therefore modified, adding the time information 

about the conversion, and considering the permutations described above 

(Figure 26 ADNI MERGE modified, as categorical and numerical variables (see 

Delta_cont and Delta_cat).  
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Figure 26 ADNI MERGE modified after the expansion of the conversion classes 

This information was put together with the imaging data available for the 

subjects selected at this point, preliminary selecting 46 subjects, listed here:  

Table 11 List of the IDs of the selected subjects  

037_S_4071 016_S_1326 
100_S_0035 029_S_5135 
067_S_0098 073_S_0518 
100_S_0015 018_S_0057 
023_S_0388 100_S_0892 
011_S_4105 094_S_1015 
016_S_4902 020_S_0883 
037_S_1078 009_S_4741 
126_S_0680 021_S_4857 
014_S_0548 130_S_0285 
116_S_0361 037_S_0539 
033_S_0741 057_S_0779 
062_S_1299 014_S_4577 
068_S_0442 012_S_4188 
137_S_4331 126_S_4712 
029_S_5166 009_S_4530 
014_S_4668 128_S_1406 
114_S_5234 012_S_5121 
033_S_4179 052_S_0952 
021_S_0141 031_S_4947 
023_S_4035 011_S_0326 
941_S_4100 127_S_6241 
 130_S_2391 
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Figure 27 ADNI images numerosity for different time-points 

Moreover, it was necessary to analyze the numerosity of the dataset in 

terms of images: ADNI was therefore scanned to assess the modalities and the 

number of scans for each time label (see Figure 27 ADNI images numerosity 

that shows an example of the numerosity analysis). This was done to have 

more insights on ADNI content, and to identify the image modality that is most 

common among the subjects and the TPs. The T1-3D (MPRAGE and SPGR 

sequences) images were selected as images of interest, being the most 

numerous one in the interval of interest (between 0 and 36 months). These 

were later used, as described in Section Deep Learning for tabular and imaging 

data.  

Other important information contained in ADNI MERGE, is clinical scores 

and clinical data of different sort, such as NP tests scores, for a total of 86 

variables. 37 variables were selected out of these, depending on their clinical 

relevance assessed by the literature and on their numerosity, as described 

later.  

To summarize the study on the ADNI dataset, the following challenges 

were faced:  

• There is a lack of detailed documentation and description 
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• Data is differently labelled, and many inconsistencies can be found 

• Data is not entirely collected systematically 

• There is lack of a reference if the literature about relevant biomarkers 

for AD progression. 

4.2.1.3 b) Creation of a database based on ADNI 

One of the points of this Research was understanding the impact and role 

of different sources of data on a neural network for the prediction of the 

evolution of AD in time. The analysis of the ADNI dataset to quantify the 

amount and the typology of data that could be used for this purpose was 

successful and fundamental, also thanks to the active support of physicians of 

the Fondazione St. Lucia to identify the real clinical needs.  

The subjects were selected basing on agreed criterions (exclusion of the 

subjects with more than one TP of reversion, exclusion of the subjects with 

only one TP), expanding the dataset via permutations, considering only the 

subjects with more than one TP, and excluding the TP with no diagnosis label.  

A detailed description of the dataset and its use can be found in Section 

Deep Learning for tabular and imaging data.  

4.2.2 AAV sequences  

For the analysis of AAV sequences, with the aim of focusing on the ITR 

structures, it was not possible to rely on private data, but on public data. This 

was another opportunity to engage with another type of dataset, differently 

organized and labelled than strictly clinical ones.  

The NCBI dataset 25 was used to download the sequences of the following 

wild-type AAV: AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8. The 

following are the NCBI Reference Sequence IDs: 

AAV virus NCBI Reference Sequence 

AAV1 NC_002077 

AAV2 NC_001401 

AAV3 NC_001729.1 

AAV4 NC_001829 

 
25 https://www.ncbi.nlm.nih.gov/datasets/genome/  

https://www.ncbi.nlm.nih.gov/datasets/genome/
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AAV5 NC_006152 

AAV6 AF_028704 

AAV7 NC_006260 

AAV8 NC_006261 

Figure 28 Example taken from the NCBI dataset shows an example of the 

information provided by the dataset: some general information about the 

genome is given, together with an annotation about the ITR sequences, such as 

their position in terms of bases, and their nature (if flip or flop). This, however, 

is not true for every AAV.  

 

Figure 28 Example taken from the NCBI dataset for the AAV2 

4.2.2.1 Dotplot images dataset creation 

Merely retrieving the AAV sequences was not the goal: the extraction – 

manual or with the indications provided by the database – of the ITR 

sequences was the first scope. Secondly, to create a dataset to train a network 

able to infer the ITR origin via dotplots, a first dataset needed to be generated 

(see Figure 29 AAV analysis ).  
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Figure 29 AAV analysis steps 

Further details on the use of Flexidot to create dotplots will be given in 

Section 4.5.3 Flexidot tool: creating self-doplots for each ITR of the AAVs using 

different k-values (see Section 3.3.4 The dotplots and the FlexiDot tool), did 

not allow to obtain a numerous database.  

K-values of 2, 3, 5, and 7 were used, and 65 dotplot images generate. Figure 

30 Dotplots images simple processing shows the simple processing steps for 

make the images created by Flexidot later usable by a neural network, without 

including irrelevant information such as axis and labels (Figure 31 Effect of 

the processing on a Dotplot image ). 

 

Figure 30 Dotplots images simple processing 

 

Figure 31 Effect of the processing on a Dotplot image  

Therefore, a maximum of 10 small mutations (< 5 bases) where randomly 

inserted in the ITR sequences to:  

• Introduce variability 
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• Increase the robustness of the classifier 

• Simulate biological noise 

The mutations that were considered were insertions, deletions and 

substitutions of basis, and selected on a uniformly distributed mutation rate. 

The position on the sequence at which applying the mutation was randomly 

chosen as well, depending on the length of the sequence.  The details of each 

mutation (position, type of mutation, mutation lenght) were separately saved 

to keep track of the mutations applied on each sequence.  

Here is an example of how this information saved: 

MUTATIONS: 
Number of mutations on the seq:  5 
Mutations:  ['I', 'I', 'D', 'D', 'S'] 
     Insert @109 len3 
     Insert @31 len5 
     Delete @81 len1 
     Delete @30 len3 
 Substitute @24 len1 
 

Figure 32 Effect of mutations on the ITR dotplots shows the effect of 

mutations on the dotplots: by observing this, expanding the dataset 

introducing these mutations was considered informative and effective. 

 

Figure 32 Effect of mutations on the ITR dotplots 

 By doing so, running Flexidot on these sequences as well, 2113 self-

dotplot images were generated: despite not being a substantial dataset, it was 
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the first basis to test the possibility of using dotplots to classify a dotplot image, 

recognizing the type of ITR and to which AAV it correspond. 

More details are given in Section 4.5.3 Flexidot tooland in the Results 

chapter. 

4.4 Materials and equipment 

The analysis of data, and the implementation of the computational 

solutions, were all conducted running script and programs on a MacBook Pro 

with the following specifications:  

• Processor: 2,6 GHz 6-Core Intel Core i7 

• Memory: 16 GB 2667 MHz DDR4  

In addition, the Kaggle platform26 and the Google Colab27 notebooks have 

been used. The GPU (NVIDIA T4(x2)28) acceleration option available on Kaggle 

was fundamental for running the image processing steps and the training of 

the networks.  

  

 
26 https://www.kaggle.com/  
27 https://colab.research.google.com/  
28 https://www.kaggle.com/discussions/product-feedback/361104  

https://www.kaggle.com/
https://colab.research.google.com/
https://www.kaggle.com/discussions/product-feedback/361104
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4.5 Description of the main tools  

The following section contains details on the main tools and proposed 

solutions: this will allow the reader to dive into the Results chapter, 

understanding the rationale for choosing materials, methods and procedures, 

and the obtained results.  

4.5.1 Preprocessing pipeline 

The development of the image processing pipeline wanted to tackle 

practical issues that are often encountered when using this type of application. 

This led to the idea of creating a flexible image processing pipeline that:  

• Does not rely on many external plug-ins, to decrease the risk of 

encountering versioning problems 

• Can handle different image formats, to make it feasible to be 

integrated in the analysis of differently organized datasets. 

The state-of-the-art and the theory framework were previously described 

as a background of this part of the Research in Chapter 3.3.1 MRI images 

processing  

After the analysis of existing processing tools (CBS Tools, JIST, TOADS-

CRUISE, and BrainSuite), the processing pipeline was developed to be 

customizable and optimized.  

Figure 33 Detailed processing pipeline describes the main blocks that 

constitute the pipeline, and details about each block.  
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Figure 33 Detailed processing pipeline (steps and tools) 

The Python libraries chosen for this implementation where selected 

basing on their general performances, documentation, and feasibility to be 

integrated together in the process. As the images needed to be manipulated in 

the Python environment, after the conversion to the NIfTI format, they had to 

be converted to Numpy29 arrays: Table 12 Numpy conversion processing 

times shows the conversion times of three common libraries for the 

conversion from NIfTI (previously converted from DICOM, if necessary) to 

Numpy.  

Table 12 Numpy conversion processing times 

ITK TIME 4.4 sec 

NIBABEL TIME 2.9 sec 

ANTsPy TIME 1.7 sec 

The image conversion step is fundamental to generalize and work with 

different types of images or datasets: as previously mentioned, this pipeline 

supports two different (and standard) raw images format, the DICOM and the 

NIfTI.  

The image registration developed for this pipeline took inspiration from 

the suggested steps for processing of the ISBI 2015 dataset. The images are 

rigidly registered to the corresponding reference standard atlas in the MNI 

 
29 https://numpy.org  

https://numpy.org/
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space 30. The pipeline allows the selection of different atlases, as it is sufficient 

to download the desired model and import it. To register the image, the 

similarity index between the reference image and the image of interest is 

computed, and the algorithm optimizes it: after this, the images is linearly 

interpolated into the reference domain. As different scans can have been 

acquired with different scan setting and can therefore present differences in 

resolution (i.e. the number of slices – images – per scan), the registration step 

uniforms the number of slices to the reference atlas, making sure to have an 

anatomical reference.  

The brain extraction phase consists of many steps, summarized in Figure 

34 Brain extraction steps.  

 

Figure 34 Brain extraction steps 

These steps were inspired by the work of (Gambino, 2011). The following 

operations are performed: 

• N (default: N=3) erosions with a cross kernel  

• N - 1 dilatations with a cross kernel  

• Extraction of the brain mask  

• Final erosion (N cross kernel) 

• The mask that is obtained is multiplied to the original image to 

obtain the brain with no surrounding tissues that are not of interest 

(the result of these steps is shown in Figure 35 Result of the brain 

extraction).   

 
30 https://nist.mni.mcgill.ca/icbm-152lin/  

https://nist.mni.mcgill.ca/icbm-152lin/
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Figure 35 Result of the brain extraction on a MRI image 

Before running the pipeline, it is possible to access some parameters that 

influence each of the core blocks:  

• For the registration step, it is possible to select the type of 

transform and the type of reference atlas to be used 

• For the brain extraction step, it is possible to select the size of the 

kernels and the number of morphological operations 

• For the bias field correction step, it is possible to set the correction 

parameters. 

As detailed in Section Deep Learning for tabular and imaging data the 

workflow of the pipeline was also integrated with the volbrain tool31: this tool 

was used to extract the cortical thickness images. The volbrain tool provides 

brain parcellation, cortical thickness, intracranial cavity, brain tissues using a 

3D T1w MR scan.  

To do so, the vol2Brain pipeline requires a 3D T1w MRI as NIfTI file, 

giving as output the desired images plus a report. The possibility of inserting 

the volbrain step into the workflow of the pipeline showed its flexibility in 

handling different image types.  

4.5.2 Deep Learning for tabular and imaging data 

The analysis of the ADNI dataset was useful to quantify the amount and the 

typology of data that could be collected to create a dataset to be used for the 

training of deep learning networks for the prediction of the evolution of AD in 

 
31 https://volbrain.net/  

https://volbrain.net/
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time, that considers heterogeneous sources of clinical data (i.e. tabular and 

imaging data), and to assess the impact on the performances of the network. 

The tabular data included the variables (continuous or categorical) 

contained in ADNI MERGE. Out of the 86 available, 37 interesting ones were 

selecting, to be down reduced to 21, excluding the variables that referred to 

brain volume metrics. Moreover, the data included corresponded to the 

selected patients (see Section 4.2.1.3 a) ADNI extensive analysis).  

The continuous variables that were selected to be included in the tabular 

DL model are:  

• General variables: AGE, PTEDUCAT, APOE4 

• NP tests scores: CDRSB, ADAS11, ADAS13, ADASQ4, MMSE, 

RAVLT_immediate, RAVLT_learning, RAVLT_forgetting, 

RAVLT_perc_forgetting, LDELTOTAL, DIGITSCOR, TRABSCOR, 

FAQ, MOCA, mPACCdigit, mPACCtrailsB 

The categorical variables that were selected are: DX_in, PTGENDER, 

PTETHCAT.  

Two different tabular datasets were created: one with 2 categorical classes 

(related to the time information, meaning labelling the TP with conv36 if the 

conversion happens between 0 and 36 months, and convover36 if the 

conversion happens after 36 months). The dataset with 3 classes differentiates 

between a conversion between 0 and 24 months, between 24 and 36 months, 

and over 36 months. The information about the switch of the diagnose is 

included as well in the label. 

Such classes were the target of the neural networks that were tested. Three 

different networks models (fastai) were trained, giving as input the tabular 

datasets: 

• Resnet 18  

• Resnet 34 

• Resnet 50 

These models were chosen as the use of ResNet models is promoted in 

present literature (Xu, 2023). Moreover, the ResNet models come with a 
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different number of layers (18, 34, 50, 101, 152): the first three configurations 

were selected, to reduce the chances of promoting overfitting. 

The same networks were also trained giving as input the T1-w MRI images 

corresponding to the TP of interest of the selected subjects.  

The models were trained on 10 epochs, with a learning rate of 10-2 to 

obtain comparable results. Such results are presented and discussed in the 

Results chapter. 

4.5.3 Flexidot tool and the neural network 

Figure 36 Comparison shows the interesting parallel between the 

structure of a dotplot and the structure of an ITR: specific ITR sections (such 

as A, B, B’, C, C’, A’ and D), that characterize the ITR itself, can be recognized in 

the dotplot.   

 

Figure 36 Comparison a dotplot of a ITR and the structure of the same ITR 

The execution of Flexidot was automatized: as it normally runs using the 

command line, needing to manually insert the command every run, the 

flexidot.py script available on the GitHub repository32 was modified to make it 

possible to integrate it with the Colab Shell on a Google Colab notbook: the 

 
32 https://github.com/molbio-dresden/flexidot  

https://github.com/molbio-dresden/flexidot
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creation of the dotplots for the non-mutated and mutated sequences was 

therefore easier and faster, not subject to typo errors.  

A dataset of 2113 self-dotplots, as described in 4.2.2.1 Dotplot images 

dataset creation, was created to train a network to be able to classify a dotplot 

giving as output the wild-type of AAV to which the ITR belongs, and which of 

the two ITRs it represents. Figure 37 Training images for dotplots 

classification shows a batch of the images that are used for the training of the 

network. As it is visible, the dotplots present different degrees of detail, as 

different K-values were used to create them. The processing pipeline 

presented before was modified to take as input the PNG images, crop them, 

resize them, and store them accordingly.  

 

 

Figure 37 Training images for dotplots classification 

The model was trained to recognize patterns and features associated with 

different ITR sequences and AAV types.  A convolutional Resnet18 model, pre-

trained network given the size of the dataset, was fine-tuned for single-label 

classification with a learning rate of 10-3. The results will be discussed in the 

next chapter.  
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Chapter 5 

Results 

5.1 Answering the research questions 

In Section 1.2 Aim and challenges the aim and challenges of the Research 

were presented. This Chapter directly refers to the questions there posed, and 

here mentioned again: 

1) What are the main needs when developing computational solutions for 

the monitoring of neurological diseases such as MS and Alzheimer’s 

disease?   

a. How straightforward is it to use public datasets and publicly 

available tools?  

2) Is it useful to use different types of clinical data for disease monitoring?  

3) Can the solutions developed for the other inquiries be applied to cover 

the needs of another field, such as the gene therapy with AAVs? 

The following paragraphs take each of the three questions, presents the 

obtained results, and answers the question. 

5.1.1 Research question 1 

Question 1: What are the main needs when developing computational 
solutions for the monitoring of neurological diseases such as MS and 
Alzheimer’s disease?  (How straightforward is it to use public datasets and 
publicly available tools?) 

The development of the processing pipeline, and the analysis of different 

datasets allowed to address this question. The pipeline aimed to fill the gap 

between heterogeneous datasets and the use of these as datasets for the 

training of Deep Learning networks: available image pre-processing tools have 

specific requirements and might not be adequate for extensive usage with 

heterogeneous datasets.  
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The processing times of the pipeline are here summarized:  

Registration   4.5 sec 

Other processing time 143.52 sec 

The processing times are comparable to the state-of-the-art: after the 

registration is performed, the rest of the pipeline runs in 143.52 seconds, and 

this includes the steps of brain extraction, the bias field correction, and the 

storage of the images as .png or .jpg files to be used for Deep Learning 

applications.  

• These performances, as already said, are comparable to the state-

of-the-art, but it does not rely on external plug-ins, as many of the 

existing tools, avoiding inconsistencies and versioning issues. 

• Being implemented in Python, it guarantees the possibility to 

directly access each functions’ parameters to allow further 

customizations/optimizations.  

• It differs from other existing software as it incorporates all the steps 

that are needed when preparing heterogeneous datasets for deep 

learning application, from the raw MRI scan (in different image 

formats) to the image that will be the input of a deep learning 

algorithm. 

• It does not only work with a single image type (for example, only 

with T1-w or with T2-w MRI images), and it can handle as input 

DICOM and NIfTI formats, that are the most used ones in the field.  

The reasoning behind the development of the pipeline, was realizing which 

are the main needs behind the development of computational solutions in this 

field: the lack of systematically collected data makes it hard to Researcher to 

access reliable sources, especially for diseases like MS and AD, that are 

heterogeneous and require an approach that avoids focusing on a single data 

or examination to assess well the patient’s status. As this is a limitation on 

which little can be done, at least at the developer end, providing the right tools 

to use the data that is available, is crucial.  

The task of data preparation and image pre-processing cannot be ignored 

or underestimated when constructing datasets for Deep Learning. The 
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pipeline here proposed, aimed to solve this crucial need. Its flexibility and 

performances were assessed also practically, using it in situations that tested 

its characteristics:  

• Using it to process the image data retrieved from ADNI, testing its 

ability to work with different types of MRI images 

• Integrating in its workflow the volbrain tool for the extraction of 

the cortical thickness from the MRI images, as this image modality 

is not provided by ADNI 

• Using it as a backbone to a Deep Learning architecture, to process 

the images and to store  

The steps related to the development of the pipeline, and to the analysis of 

the used datasets (ISBI 2015, ADNI, and NCBI for the AAVs), made it possible 

to deal with the question regarding the usability of public datasets.  

The three datasets that were used, refer to the state-of-the-art, and are 

used in many applications: they are considered well documented, and good 

organised. For ISBI 2015, and NCBI this was the case but, for ADNI, the general 

assumption that a well-known dataset is immediately usable and trusful was 

not always true.  

This might due to the fact that big dataset like ADNI are not built for a 

specific application, nor for not be used only for computational solutions and 

the systematicity of the collection of data is not always well organized between 

different clinical centers.  

5.1.2 Research question 2 

Question 2: Is it useful to use different types of clinical data for disease 
monitoring?  

Alzheimer’s disease was the disease on which this question was directed: 

the initial goal was the integration and analysis of ADNI clinical data with 

computational methods for the prediction of AD disease conversion in time 

through of a Deep Learning framework.  

The focus laid both on the conversion from CN-MCI, and MCI-AD, in a 

variable time window. Moreover, the initial idea was to integrate different 
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sources of data (tabular data and MRI imaging data) and evaluate its impact of 

the on the performances of the network in the prediction of the evolution of 

AD in time.  

Two different types of network were tested, and their performances are 

here reported:  

Table 13 Networks performances 

Tabular network Variables Classes Accuracy 

Resnet 18 21 3 0.5 

Resnet 34 37 2 0.73 

Resnet 50 21 2 0.76 

Image network    

Resnet 18 21 3 0.5 

Resnet 34 37 2 0.6 

Resnet 50 21 2 0.7 

 

Different variables were used, dividing the dataset with different classes 

as described in Section 4.5.2. The Restnet 50 showed the best performances in 

all the configurations. The accuracy reached in the network that uses only 

tabular data, and the one in the network that uses only images, are comparable, 

considering that the use of images is more computationally expensive, in terms 

of pre-processing and network traing.  

It was however not possible – and this is a limitation of the study – to 

develop a network that could take as input both tabular and imaging data. A 

constrain to this part of the Research was put by the impossibility of finding 

an optimal implementation in a reasonable time. Answering the question that 

opens this paragraph is not easy: the similar performances obtained by the 
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networks (Table 13 Networks performances) might be due to the fact that the 

cortical thickness image that were used (no provided by ADNI, but obtained 

during the pre-processing steps), correlate with the neuropsychological 

clinical scores used for training the tabular network, as the cortical thickness 

reflects the status of the gray matter, which deteroration indicates cognitive 

impairment. In retrospect, the use of cortical thickness images might have 

been a limitation to the development of this solution, introducing redundancy. 

The cortical thickness images are a valuable tool for clinicians, and their use 

was also encouraged by the clinicians of the Fondazione St.Lucia, but might not 

be informative enough to be used in this type of application. 

Using different type of clinical data is fundamental for a personalized 

approach to disease monitoring, but translating this into practice it not 

immediate.  

5.1.3 Research question 3 

Question 3: Can the solutions developed for the other inquiries be applied 
to cover the needs of another field, such as the gene therapy with AAVs? 

Answering this question was made possible by having to deal with a 

problem related to a field that has nothing to do with neurological diseases, 

medical imaging, or the monitoring of a disease. The use of AAVs vectors for 

gene therapy has requirements that fall outside the scope of those related to 

the rest of the Research. This represented a challenge and allowed to verify if 

the solutions proposed for the other topics here presented could, with some 

adjustment, be re-used. The concept of medical image was revisited, 

translating – thanks to the dotplots – the information contained in a sequence 

of bases into an informative graph that can be both visually and automatically 

analysed. The performances of the Resnet 18 architecture in classifying the 

dotplots were good, reaching the 80% of accuracy: although the numerosity of 

the dataset on which the network was fine-tuned was not huge, this allows to 

draw interesting considerations: Firstly, it is possible to overcome NGS 

limitations when it comes to the analysis of ITR heterogeneity, suggesting an 

approach not yet followed in the state-of-the-art literature. Secondly, dotplots 

are an informative tool both for analysis and result representation that can 

help gain insights on structures like the ITRs, which structure, variations, and 

characteristics have a direct impact on the safety of vectors for gene therapy.  
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Besides, the processing pipeline and the concepts behind it was re-used in 

this context for the processing of the dotplot images, and as a backbone for the 

deep learning classifier, and lent itself to its personalization for this task, using 

a different image format, removing the unnecessary blocks (i.e. skull-

stripping), adding the cropping and resizing blocks, and storing the images as 

was necessary. 

The adoption of the proposed solutions in different clinical settings or to 

include larger datasets would represents although a challenge: different 

clinical environments pose different questions and, therefore, have different 

requirements, which in turn give importance to different types of data. In this 

context, aiming at scalability means being ready to rethink the structure of the 

whole framework. The flexibility of each building block is therefore a key 

point: including, for example, data related to other biomedical signals (such as 

ECG, EMG or EEG) would require including different pre-processing steps in 

between those already existing, or it would be necessary to exclude some of 

these. Let us suppose of wanting to include the analysis of EMG signals graphs 

instead of on MRI images, to focus the attention on the walking impairment of 

patients with neurological diseases: this would still require the processing of 

images, but the processing needs would be completely different.  

5.2 Challenges and limitations 

Many were the difficulties encountered during the collection and the 

analysis of data, as well as during the development of the tools that were 

described in this chapter.  

As the topic covered were different, for each one of them the approach to 

overcome the difficulties had to be recalibrated and adjusted, although some 

basic assumptions were always at the base of the process: the solutions had to 

be as simple as possible, and scalable. For each point, a brief indication on how 

the challenge was tackled is given in blue. 

1) During the developing of the image processing pipeline, two were the 

main challenges:  

• Existing software propose an approach that relies on many external 

plug-ins, creating compatibility and versioning problems 
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• As the aim of the pipeline was being used to handle different images 

formats and to navigate through differently organized datasets, it 

was necessary to keep into consideration which parts of the pipeline 

needed to allow personalization and – if required – were it is 

possible to add other blocks to perform other functions. 

→ A lot of time and effort was put in evaluating the best Python library to 

be used for building the blocks, and each block was kept well separated from 

the preceding and the following blocks to easy the process of including 

additional blocks. 

2) Working with the ADNI dataset, the following challenges had to be faced:  

• There is a lack of detailed ADNI documentation, and no precise 

insights are given on how the dataset is organized, or on how to 

effortlessly retrieve a big quantity of data 

▪ Data is differently labelled across ADNI phases, and some 

inconsistencies can be also found in each phase, as data is not 

systematically collected 

• There is no biomarker for the prediction of the conversion from CN 

to MCI, nor for MCI-AD conversion, so there were no indications in 

the literature on the most informative data, therefore the support of 

clinicians was fundamental  

→ Before starting with the implementation of any deep learning 

framework for the monitoring of AD, an extensive analysis of ADNI was 

performed, selecting the important documentation, identifying what 

configured as critical in terms of patients selection, of the download of the data 

from the web portal, and of making sure to correctly assign the correct image 

scans to the correct time reference of a specific patient.  

3) The challenges encountered working with AAVs and their ITRs were:  

• The lack of a literature reference that follows the same approach, 

targeting ITRs with the graphical method of the dotplots 

• It was not possible to use a real dataset made of sequences of 

produced vectors 
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→ Initial evaluations on the ITR sequences and the correspondance in the 

dotplots were fundamental to assess if the approach could be of interest in 

practice. A relyable dataset (NCBI) was used to retrieve the AAV sequences, 

and a – small – dataset for this application was crafted introducing mutations 

in the sequences.  
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Chapter 6 

Discussion, conclusions and 

future directions 

This final chapter aims to reflect on the research process, knowing that 

measuring the success of a Research is trivial: it can be based on the number 

or quality of published articles, or on the attended conferences, or it can be 

based on the comparison with the work of peers in the field. It is also true, 

however, that every research path is different in its being shaped by the bumps 

in the road.  

The methodology followed in the work presented in this Thesis can be, in 

retrospect, defined effective: the research questions posed at the beginning 

lead to a in depth-analysis of the state-of-the-art both from a technical and a 

medical point of view. The approach required – since the beginning – to 

acquire hands-on experience on the tools proposed by the literature, and on 

the sources of data essential to the developing of the proposed solutions. The 

variety of topics that were subject of research constituted both a resource and 

a limitation: on one hand, they directed every developing step to be scalable 

and flexible and, on the other hand, they limited the available time to focus 

only on one research question/topic. 

There are many existing and very advanced applications that address the 

topics object of this discussion. However, it was noticed that, often, the more a 

solution is complex, the more difficult it is to use it the clinical practice or for 

research purposes. This research began, for each topic, defining the real needs 

for: 

• The monitoring of neurological diseases, in particular Multiple 

Sclerosis and Alzheimer’s Disease, via computational solution that 

focus on more than one clinical 

• The use of several well-known sources of data 
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• The optimization of the analysis of the structure of AAVs vectors for 

vector safety. 

For many neurological diseases, to ensure a good monitoring of their 

evolution, relying on a single medical evaluation is not advisable: for the 

diagnose of a neurological disease, typically, a protocol is followed, including 

MRI imaging and neuropsychological evaluations. During the follow-up, it is 

more common to rely on MRI imaging – for a question of time and resources. 

This is where computational solutions can find their space of applicability: to 

develop trustworthy and accurate algorithms, it is necessary to have access to 

heterogeneous sources of data, that need to be properly organized as training 

sets.  

This – despite the availability of tools – is not always easy, but can be 

overcome with, on one hand, the support of the clinicians to keep an eye on the 

clinical application and, on the other, providing a tool able to take raw MRI 

images to organize them in a dataset to be directly fed into DL networks. 

Moreover, a crucial aspect often not included in algorithms for the prediction 

of disease progression is the time, as for various subjects the evolution of a 

disease follows different patterns.  

The processing pipeline proposed in this research, allows customization 

and optimization, and can be used in various settings and with different type 

of datasets, allowing as well to be incorporated as a backbone of deep learning 

application, to flawlessly connect the source dataset with the training of neural 

networks. 

Furthermore, the extensive analysis of ADNI and its features constitutes 

another contribution to the field: the method proposed and based on the data 

contained in ADNI, proposes a deep learning framework that focuses on the 

conversion from a healthy condition to cognitive impairment and to 

Alzheimer’s, in a variable period. 

Despite not all the things initially planned were done, such as the 

integration of the two networks into one, and the extension of this approach 

to Multiple Sclerosis, the approach is not yet adopted in recent literature: 

usually, the solutions focus to monitor the disease on periods of 1 year or 2 

years, and not on months, and the prodromes of Alzheimer’s disease are often 
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neglected, and that is considered is the change from an healthy condition to 

the clinical form of Alzheimer’s, without considering the MCI condition. 

 When coming to the contributions related to the gene therapy via AAVs 

field, a similar approach was followed: the first step was identifying a practical 

need – in this case, the analysis of vectors – and to find a practical solution – 

that was found in the use of dotplots as valuable tools to quantify ITRs 

heterogeneity and, in turn, gain information about the AAVs structure. This 

posed the foundations of a novel and useful paradigm aimed to avoid using 

NGS technologies to assess vectors’ characteristics.  

Many are the limitations of this research, and some of these were already 

mentioned in previous chapters. Each of these limitations, opens possible 

future implementations such as: 

• The inclusion of more MCI subtypes for the prediction of 

Alzheimer’s prodroms, and the integration of other types of data 

(such as genetic data, contained in ADNI as well) in a single 

network for the optimization of the monitoring of Alzheimer’s 

disease 

• The inclusion of more clinical data from hospitals, to test the 

performances of the processing pipeline in the integration of these 

in the database for training the DL architecture 

• Testing this approach on data of patients with Multiple Sclerosis 

(where MRI imaging and neuropsychological aspects play an 

important role as well) to evaluate similarities and differences in 

terms of applicability and performances 

• The expansion of the evaluation with the dotplots, considering pair-

dotplots (built comparing ITRs that belong to different AAVs) to 

detect mutations in the sequence that can compromise the 

packaging yield. This could lead to evaluations for looking not only 

at the ITRs in the vector, but to a whole sequence of a produced 

vector to detect the viral origin via ITR recognition, to create a pair-

dotplot between the ITR sequences of the produced vector and the 

reference wild-type sequences, and to analyze the structure of the 

ITRs – and retrieve information about the vector itself, as the ITRs 

determine its stability and functionality. 
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