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Abstract: Motivated by the climate crisis currently ravaging the planet, we propose and
analyze a novel framework for the coupled evolution of anthropogenic climate impact and human
environmental behavior. Our framework includes a human decision-making process that captures
social influence, government policy interventions, and the cost of acting environmentally friendly,
modeled within a game-theoretic paradigm. By taking a mean-field approach at the limit of large
populations, we derive the equilibria and their local stability characteristics. Subsequently, we
study global convergence, showing that the system converges to a periodic solution for almost
all initial conditions. Numerical simulations confirm our findings and suggest that the level of
environmental impact might become dangerously high before the system reaches the periodic
solution, calling for the design of optimal control strategies to influence the system trajectory.
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1. INTRODUCTION

With the rapid rise in temperature and extreme weather
conditions registered in the last few years all around
the globe, it is hard to deny that climate change is a
serious threat to all life on our planet. In a myriad of
ecosystems, the climate change crisis has already been the
cause of substantial damages and often irreversible losses
of biodiversity (Portner et al., 2022).

To mitigate the consequences of the climate crisis, a col-
lective adoption of environmentally responsible behavior is
necessary (Otto et al., 2020). However, even though there
is an increasing global awareness that the climate crisis is
real, dangerous, and occurring right now, this awareness
has not yet translated into sufficiently resolute actions
capable of decreasing carbon dioxide emissions. On the
contrary, preliminary data for the year 2022 suggest a
relative increase in global fossil CO, emissions of 1.0%
compared to 2021 (Friedlingstein et al., 2022), thereby
reaching an atmospheric CO, concentration of 417.2 ppm,
which is 51% above pre-industrial levels.

To predict whether sustainable practices will be collec-
tively adopted, it is necessary to develop accurate models
of the individual-level mechanisms that drive people to
make behavioral decisions. In the design of such mod-
els, evolutionary game theory has emerged as a powerful

* This work was partially supported by the European Research
Council (ERC-CoG-771687) and by the US Air Force (grant n.
FA9550-16-1-0290).

framework (Hofbauer et al., 1998). Of particular inter-
est are feedback-evolving games in which the behavior
of individuals influences the surrounding environment,
which in turn impacts the behavioral decision-making
process (Gong et al., 2022; Weitz et al., 2016). Feedback-
evolving games have proved useful in explaining dynam-
ical phenomena in biological systems, such as resource
harvesting and plant nutrient acquisition (Tilman et al.,
2020). However, such models inherently oversimplify the
complex and evolving nature of human behavior by assum-
ing that individual decision-making is governed by a game
whose payoff matrix depends linearly on the surrounding
environment. Hence, such frameworks are not amenable
to nonlinear features due to the role of social influence,
and they do not explicitly consider the (potentially time-
varying) implementation of policy interventions. There-
fore, feedback-evolving games are limited in their practical
applicability.

To address this gap, we propose a novel mathematical net-
work model for the co-evolution of anthropogenic environ-
mental impact and human behavior, where the decision-
making process of individuals includes factors such as
social influence, policy interventions, and the cost of act-
ing environmentally responsible. We propose a behavioral
revision process in which individuals tend to imitate in-
dividuals with a higher payoff (Hofbauer et al., 1998)
while also preferring to conform to the behavioral norm of
their social environment (Cialdini and Goldstein, 2004).
We formulate our model as a continuous-time Markov
process. By taking a mean-field approach in the limit of
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large populations (Van Mieghem et al., 2009), we derive a
deterministic approximation of our stochastic model and
analyze the obtained system. We start by deriving local
stability properties of the system equilibria, and subse-
quently, we study the system’s global asymptotic behavior
through an argument based on the Poincaré-Bendixson
theorem. Specifically, we prove that for (almost) every
initial condition in the domain’s interior, the system con-
verges to a periodic solution. Finally, we provide numerical
simulations to illustrate our findings and explore feedback
control policies to mitigate risky system trajectories.

Notation: Let R, R>o, and R denote the set of real, real
nonnegative, and strictly positive real numbers, respec-
tively. We state that an event E is triggered by a Poisson
clock with a rate of pg(t) if and only if (iff)

P[E occurs during (¢,¢ + At)]

1i = t).
i Al pe(t)

2. MODEL

We consider a population of n individuals, denoted by
V:={1,...,n}. Each individual is represented by a vertex
in a directed network G := (V, &), where (i,5) € £ iff j
has a social influence on the behavior of i. The neighbor
set of i € V is denoted by N; :== {j € V : (i,) € &},
with cardinality d; := |N;|]. The environmental behavior
of an individual ¢ € V at time ¢t € Ry is captured
by x;(t) € {0,1}, which represents whether i is display-
ing environmentally responsible behavior (z;(t) = 1), or
environmentally irresponsible behavior (z;(¢t) = 0). The
states of all individuals are gathered into an n-dimensional
vector X (t) := [z1(t),x2(t),...,z,(t)] € {0,1}", which
represents the behavior of the entire population at time ¢.

2.1 Environmental Impact

For the past 50 years, anthropogenic COy (i.e., the increase
in the atmospheric value of CO, with respect to the pre-
industrial value) has increased exponentially (Hofmann
et al., 2009; Friedlingstein et al., 2022). Therefore, we
choose to model the evolution of the anthropogenic en-
vironmental impact € € R>( through the following linear,
non-autonomous ordinary differential equation (ODE):

€ =r(t), (1)
where the rate of growth or decay at time ¢ is given by
r(t) == yZo(t) — 7. 2)

Here, the effect of environmentally irresponsible behavior
is modeled by vZ((t), with v € Ry and where

To(t):=2|{i eV : a;(t) = 0} (3)
denotes the fraction of people who act irresponsibly at
time ¢t. The parameter 7 € R~ represents efforts to re-
duce environmental impact via, e.g., massive tree-planting

projects or negative emissions technologies.
2.2 Environmental Behavior

Inspired by the decision-making process proposed in (Ye
et al., 2021; Frieswijk et al., 2022) that employs an evolu-
tionary game-theoretic mechanism (Hofbauer et al., 1998),
each individual ¢ € V has incentives for acting environ-
mentally responsibly or not. For any i € V, we define
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the incentive functions for responsible and irresponsible
behavior as

B K@) = 1 3 00 +pet) +a, ()
b EN;

W)= 3 (1-a0) +r—o.  (4D)
v JEN;

respectively. The behavioral incentives include several
terms whose meanings are detailed below.

Social influence. The first element in (4a)-(4b) repre-
sents social influence, where the incentive of i € V for
certain behavior is higher when more of i’s neighbors
act accordingly. This reflects the tendency of individ-
uals to conform to their social environment (Cialdini
and Goldstein, 2004). Field experiments showed that
social norms influence the behavior of individuals, e.g.,
curbside recycling behavior (Schultz, 1999).

Environmental response. The term pe(t) models the
population response to the environmental impact e(t),
which is reflected in, e.g., global food price inflation
and shortages (Portner et al., 2022). Here, we assume
that the population response increases linearly with the
impact, regulated by p € Rsq; the higher the value of
1, the faster the population reacts to environmental
changes. However, one may consider more complex and
nonlinear response functions, similar to (Ye et al., 2021).

Cost. The higher costs of responsible behavior represent
a barrier to individuals’ “green” behavior (Young et al.,
2010). Thus, the direct and indirect economic costs of
acting responsibly—captured by k € Rso—bolster the
incentive for irresponsible behavior.

Environmental subsidies. Government subsidies stim-
ulate responsible behavior, modeled by reducing the cost
of responsible behavior x by o € [0, ].

Awareness campaigns. Besides the cost, another bar-
rier to ecologically sustainable behavior is a lack of
available information on how to act responsibly (Young
et al., 2010). Awareness campaigns—modeled by the pa-
rameter o € R>p—boost public knowledge and thereby
increase the incentive for responsible behavior.

Individuals change behavior according to a stochastic
adaptation of classical imitation dynamics, often employed
in evolutionary game theory (Hofbauer et al., 1998; Como
et al., 2020). In particular, an individual ¢ € ¥ who acts
irresponsibly at time ¢ (z;(t) = 0) will adopt responsible
behavior if triggered by a Poisson clock with a rate of

ALK, c0) = 7 3 a0 (X(0), (),

' EN:

(5a)

while an ¢ € V who acts responsibly (x;(t) = 1) will cease
to do so if triggered by a Poisson clock with a rate of

, 1 ,

PO (M) =7 D (1= ;(0))i5” (X (1)

' JEN;

The revision protocol driven by the rates in (5) has an in-
tuitive interpretation. Individuals interact with neighbors
and revise their own behavior by imitating neighbors with
a probability proportional to the incentive associated with
that behavior, similar to classical imitation dynamics (Hof-
bauer et al., 1998). The proposed conformity-driven imi-
tation framework combines incentive-driven behavior with

(5b)
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individuals’ propensity to conform to the behavioral norm
of their social environment (Cialdini and Goldstein, 2004).

In summary, the behavioral-environmental feedback model
is characterized by the coupling between i) the environ-
ment £(t) € R>o whose evolution is captured by (1) with
the rate of growth/decay in (2), and ii) the behavior X (¢)
of a network of n individuals that is updated according to
the revision protocol in (5) with incentives in (4).

3. MEAN-FIELD DYNAMICS

All Poisson clocks are independent. Hence, the popula-
tion’s behavioral state X(t) € {0,1}" evolves accord-
ing to a non-homogeneous continuous-time Markov pro-
cess (Levin et al., 2006). Specifically, for any ¢ € V, the
transition rate matrix is given by

(X (1), 2(t)) PSP (X (1), et
Qi(X(t),e(t) = P(Jl(i() (t),e(t)) poi ((i)( ),€(t)) , (6)
p1g (X (1)) —pio (X (1))
where the first and second row/column correspond to the
state x; = 0 and z; = 1, respectively. Thus, the probability
that any ¢ € V transitions from behavior y € {0,1} to
z € {0,1} at time ¢, with y # z, is given by
Plz;(t + At) = z | z4(t) = y] = (Qi(t))yzAt + o(At),

where o(At) is the Landau little-o notation for At \, 0.
From the explicit expression of the transition rate matrix
Qi(X(t),e(t)), we observe that all its entries depend on
other individuals’ behavior through the dependency on the
state of the neighboring nodes in (5) and (4). Moreover, the
transition rates are non-homogeneous since the first row
depends on £(t). The complexity of the transition matrix
Q:(X(t),e(t)) and the fact that the size of the state space
{0, 1}" increases exponentially with the population size n
make a direct analysis of the non-homogeneous Markov
process X (t) unfeasible for large-scale populations.

Following Van Mieghem et al. (2009), we take a mean-field
approach in the limit n — oo; that is, instead of studying
the evolution of the state of all individuals (collected in
X(t)), we study the probability for any i € V to act ir-
responsibly and responsibly, defined as p{” () := P [z;(t) = 0]
and p{”(t) := P [z;(t) = 1], respectively. For any i € V, the
evolution of the mean-field dynamics for p{’ () and (1)
is governed by a system of (non-autonomous) ODEs, ob-
tained by noting that E[z;(t) = 1] = p\”(t). By replacing
X (t) with the vector p (t) := [ (),...,p"™ (#)] in (6) and
by using the Chapman-Kolmogorov equation (Levin et al.,
2006), we obtain [’ 51”] = [} p1”]Q:(p1(1), £(t)) and

By = =pb) (1 (02O + o a(O)p” s

B = ot (1 (8),=(0)p) = pi (a0
for any i € V. Note that (7) is non-autonomous due to the
dependency of p{) on £(t) and, ultimately, on ¢, while the
other terms depend only on ¢ through the state p (¢).

Despite such a dependency on £(t), we can provide a
general invariance result for (7), provided that e(t) is
bounded and Lipschitz. Note that if e(t) is defined via (1),
then it is necessarily Lipschitz since it is the solution of an
ODE. The following lemma shows that—for any function
e(t) that has these properties—(p’ p{”) is well-defined as
a probability vector for all t € R>¢ and for all ¢ € V.
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Lemma 1. Assume that £(t) is Lipschitz-continuous and
bounded for all t € R>g. Then, for all ¢ € V, the set

{8 ) o, >0, pi? +pi? =1}
is positive invariant under (7).

Proof. Consider any i € V. First, note that p{) +p{") = 0,
SO péi) +p§i) =1 for all £ € R>g. Second, since the vector
field in (7) is Lipschitz-continuous, we can apply Nagumo’s
Theorem (Blanchini, 1999). Next, we check the dynamics
at the domain boundary. Note that 5’ > 0 if p{) = 0, and
pgi) > 0if pgi) =0, so p(()”,pgi) >0 for all t € R>o. O

It follows directly from Lemma 1 that only one of the
two equations in system (7) is sufficient to describe the
behavioral evolution of an individual i € V. Hence, the
mean-field dynamics of the population behavior ultimately
consist of an n-dimensional set of non-autonomous ODEs.

Next, let us define the average probability for a randomly
selected individual to act responsibly at time ¢,

1 ,
x(t) =~ p (). (8)
%
Let Z1(t) := %‘{z €V : z;(t) = 1}| denote the fraction
of individuals who behave responsibly at time ¢. For large-
scale populations, the fraction Z; (¢) can be approximated
by the macroscopic variable x(t) with arbitrary accuracy
(while the two quantities coincide in the limit n — oo) for
any finite time horizon (Kurtz, 1971; Zino et al., 2017).
This allows us to accurately study the population behavior
from a macroscopic perspective.

In the mean-field approach, the system’s evolution is cap-
tured by a coupling between i) the system of n inde-
pendent ODEs that governs the behavioral evolution of
all individuals in (7), and ii) the mean-field dynamics of
the environmental impact, obtained via (1) and (2) by
replacing Zo(t) with the macroscopic variable 1 — z(t):

B = o5 (01 (), ()1 = ) = p (i ()P, Vi €V,
g = (7 [1 - %Zpgi) (t)} - 7)5. 9)
ey

The system in (9) is an autonomous system of n + 1
ODEs. In the rest of the paper, we study this system under
the following simplifying assumption, which allows for a
theoretical analysis of the model.

Assumption 1. For any i € V, we assume that i is influ-
enced by the entire population, i.e., N; =V for all i € V.

Under Assumption 1, the incentive functions in (4) become

1 (z(t),e(t)) == x(t) + pe(t) + a,

o(zt)=1—z@lt)+k—0,

where the index ¢ was discarded, as the incentives are no
longer individual-dependent.

(10)

Before analyzing system (9), we will make some realistic
assumptions on the incentive functions in (10) and the
mean-field rate of growth/decay 7(z(t)) := y(1 —z(t)) — 7.
First, we would like to point out that, currently, none of the
negative emission technologies has been demonstrated to
be effective at a sufficiently large scale (Rau, 2019). Hence,
it is natural to assume that the environmental impact
increases if the entire population behaves irresponsibly;
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that is, if 2(¢t) = 0 at time ¢, then 7#(x(¢)) > 0. Second, it
is reasonable to assume that if there is no environmental
impact (i.e., (t) = 0), then ¢o(t) > ¢1(¢) for any x € [0, 1].
These two observations directly lead to the following.
Assumption 2. Let (i) 7 <~ and (ii) kK > 0 + o+ 1.

Under Assumption 1, we derive the macroscopic mean-field
evolution of the population in the following proposition.
Proposition 1. Under Assumption 1 and in the limit of
large-scale populations n — oo, the mean-field evolution of
the macroscopic variable x and the environmental impact
€ is governed by the following autonomous planar system:
t=z(l—2)2e+pe+a+o—r—1), (11)
e = (y1—2)—1)e.
Proof. Under Assumption 1, (5) reduces to p{) = :z:(x
pe +a)and pl) = (1 —z)(1 —z+ Kk —0) for all i €
Using this, (11) immediately follows from (8) and (9)
substituting (9) in #(t) = 2 3., 5\ (¢).

n

0g =+

To show that system (11) is well-defined, we will first show
that the environmental impact is bounded from above for
any initial condition z(0) € (0, 1).

Lemma 2. Under (11), there exists an & € Ry such that
e(t) < & for all (x(0),e(0)) € (0,1) x R>p and ¢ € Rxo.

Proof. Observe that € < 0 for any x > Z and € > 0, where
Z solves y(1—2)—7 = 0, and € solves pé+a+o—r—1=0.
Then, & > 0 for any x € (0,1) and € > &. We will use
proof by contradiction to show that e(¢) is bounded for
all ¢ € R>¢ and for all (z(0),£(0)) € (0,1) x R>¢. Assume
that €(¢) is unbounded. Then, for any M > 0 there exists
a time ¢ such that £(¢) > M. Let us consider a time ¢ such
that £(f) > € and x(¢) € (0,1), so &(f) > 0. Note that
z(t) > q(1 — z) for some constant ¢ > 0 and = € (0,1).
By the Gronwall-Bellman inequality (Pachpatte, 1997),
z(t) > x(£)et®=H for all t > . Hence, there exists a t*
such that z(f +t*) > Z, so £(t +t*) < 0. Note that for any
z € [0,1] and € € Rsg, we have € < e, so the Gronwall-
Bellman inequality yields e(t) < e(f)e?*=? for all t > .
Thus, e(t+t*) < e(f)e?*". Since (+t*) < 0, there does not
exist a time ¢ such that e(t) > M for any M > e(f)e?*. O

Using the above result, the following lemma shows that
(11) is well-defined for all ¢ € Rxo.

Lemma 3. The set (z,¢) €
under (11).

[0,1] X R>g is positive invariant

Proof. It follows directly from Lemma 1 and 2 that for
any initial condition with 2(0) € (0,1), (x,&) € [0,1] X R>
for all ¢ € R>g. Next, we study the boundary behavior.
For z(0) = 0, the dynamics reduce to € = (y — 7)e and
# = 0. This is solved by &(t) = £(0)e®*~"* and z(t) = 0,
which is in the set for all ¢ € R>o. For (0) = 1, the
dynamics reduce to £ = 0 and € = —7¢, which converges
exponentially to the origin, belonging to the set. O

4. MAIN RESULTS

In this section, we perform an analysis of the planar
mean-field system in (11) to fully unveil its asymptotic
behavior. We start by characterizing the equilibria of (11)

K. Frieswijk et al. / IFAC PapersOnLine 56-2 (2023) 7381-7386

and establishing their local stability properties, which are
presented in the following proposition.

Proposition 2. Under Assumption 2, the system in (11)
has three equilibria:

i) (x,e) = (0,0), which is a saddle point;

ii) (x ¢) = (1,0), which is a saddle point;

M)@@%:ﬂ—gi[v+ﬁ—a—a—ﬂ)
which is an unstable spiral.

(12)

Proof. Let Assumption 2 hold. Solving © = 0 yields
r=0,z=1lorz=43i(—pec—a—oc+kKk+ ).Ifa::()
or x = 1, then the only solution to ¢ = 0 is € = 0, giving
equilibria (z,e) = (0,0) and (z,e) = (1,0).

Now consider z = (—pe — a — 0 + k + 1). By solving
0=¢=(y(1 —z)—7)e, we find the equilibrium in (12).
Note that e = 0 is not an option for = € [0, 1], as this gives
r=4i(—a—o+k+1)>1, by Assumption 2(ii).

Next, we examine the local stability. First, consider equi-
librium (12). Linearizing (11) around this equilibrium is
equivalent to linearizing the system (z,£) around the ori-
gin,withZ:=2x—1+Zandé:=e— ([ +r—0—a—1].
Doing so yields

H - [—iw fi[(nl: S 1) ) :)] H ’

where the Jacobian matrix has eigenvalues

T T 7'2 T T T
At :§(1 - ;) + \/?(1*;)2*;(1*;)(2‘#7['{*0*@*1]%
Note that the radicand of A1 is negative iff
2 +y2y - D)1+ k—0c—a—1]>0.
The equation 72 +v(2y — )7+ 3k —0 —a — 1] = 0 is
solved by

e = =372y = 1) £ 57227 - 1)?
Observe that 7+ ¢ R~¢, due to Assumption 2(ii), so
2 y2y -1+ k—0c—a—1]>0

for all 7 € Ryg. Thus, the radicand of A1 is negative and
Re(Ay) = Re(A-) = (1 — 2) > 0 by Assumption 2(i),
which implies that equilibrium (12) is an unstable spiral.
Next, consider (x,e) = (0,0). Linearizing the system in
(11) around (x,¢) = (0,0) yields a Jacobian matrix with
eigenvalues y—7 > 0 and a+o0—1—«. By Assumption 2(ii),
at+o—1—k< —2<0,s0 (z,¢) = (0,0) is a saddle point.
Finally, we consider (z, s) (1,0). Linearizing (11) around
(x,e) = (1,0) gives a Jacobian matrix with eigenvalues
—7 <0and kK — (0 +a+1) >0 (by Assumption 2(ii)), so
(z,e) = (1,0) is a saddle point. O

Using the local stability properties of the system equilibria,
we derive the following (almost) global convergence result.

—4y3k—o—a—1].

Theorem 1. If Assumption 2 holds, there exists a limit
cycle attracting all solutions of (11) that start in the
interior of [0, 1] x R>¢, excluding equilibrium (12).

Proof. Let kK > 0 + o+ 1 (by Assumption 2). To prove
that the system in (11) converges to a limit cycle, we first
need to study the behavior of (11) close to the boundary of
its domain. Consider the boundary x = 1. Let us assume
that there exists a trajectory that reaches x =1 —¢€ at a
time ¢o, where € € (0, 2) is arbitrarily infinitesimally small.
Note that for z € [l —¢,1) and e < L(k —0 —a — 1), we
have 2x+puc+a+oc—rxk—1 < 1+pe+a+o—~k <0, which
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Fig. 1. Simulated trajectories of the system in (11) for parameter values o« = 0.3, 0 = 0.6, K = 3, v = 10, 7 = 0.1 and
1 = 0.6. Saddle points and unstable equilibria are marked with black-white and white asterisks, respectively.

implies that £ = z(1 —2)(2z + pe+ o+ 0 -k —1) <O0.
Hence, & can only be positive for e > (k-0 —a—1). Let
us consider any trajectory with z(tg) = 1 — e that enters
Ri=[1-el] x (;(k—0—a—1)¢(to)]

We will now show that it is not possible for a trajectory in
R to reach the boundary z = 1. First, note that for ¢ > 0
andz > 1-7, wehave é = (y(1—-z)—7)e < 0,s0¢ <0 for
(z,e) € [1 —¢,1] x Ryg and the trajectory cannot exit R
from the the top. Next, let us define u(t) = 1 — z(t). Since
e(t) < e(tg) for any t > 1, it follows that & < p(1 — z) for
some constant p > 0, which is equivalent to —t < —p(—u).
By the Gronwall-Bellman inequality (Pachpatte, 1997), we
have —u(t) < —u(tg)e P~ or equivalently,

z(t) <1—ee Pt <1,
for any t > ty. Next, note that in R,
< —(T—ey)e< —%(T—é’y)(m—a—a— 1).

Thus, [¢] > L(7 — ey)(k — 0 — a — 1). The length of the
g-axis in R is less than e(tg) — L(k — o — a — 1). Hence,
g pe(to)—(k—o—a—1)
3t < (t—evy)(k—o—a—1)
such that e(to +1) < 1(k — o — a— 1). At time o + 1, we
have x(tg +t) < 1 — e 7 < 1 and the trajectory is in the
region S := [1—¢,1] x [0, L[k — o —a—1]]. Since & < 0 for
e <i(k—o0—a—1), the trajectory will move away from
the Boundary and cannot reach x = 1. Similarly, we can
show that any trajectory starting in the interior cannot
reach the boundaries € = 0 and z = 0. This implies that it
is impossible to reach the boundary equilibria if the initial
conditions of the system are in the interior of [0, 1] x R>o.

Lastly, consider the set (z,€) € (0,1) x Rsq. Since the
unique equilibrium in the interior is unstable, there does

not exist a homoclinic orbit. Moreover, Lemma 2 guaran-
tees that all solutions are bounded. Hence, by the gener-
alized Poincaré-Bendixson theorem (Teschl, 2012), every
non-empty compact w-limit set of an orbit is periodic. [

Below, we report a brief characterization of the system
behavior if the initial condition is on the domain boundary.

Proposition 3. Under Assumption 2, the following holds:

i) If 2(0) = 1 and £(0) > 0, then the solution of (11)
converges to the equilibrium (1, 0);
il) If (0) < 1 and €(0) = 0, then the solution of (11)
converges to the equilibrium (0, 0);
ili) If 2(0) = 0 and €(0) > 0, then the solution of (11)
diverges toward (0, 00).

Theorem 1 is illustrated by Fig. 1, which shows that all of
the simulated trajectories converge to a periodic solution.
Additionally, Fig. 1 suggests that before the trajectory
reaches the natural oscillations in the limit cycle, the
environmental impact might increase to an alarmingly
high level during the transient phase, dependent on the
initial system conditions. This observation calls for the
design of optimal control strategies to influence the system
trajectory in the transient regime. By letting the control
parameters k£ and « be time-varying, control strategies
can be developed in terms of environmental subsidies and
awareness campaigns. Specifically, the use of feedback con-
trol schemes—where we let o and x depend on ¢ through
e(t)—might be extremely beneficial toward mitigating the
increase in environmental impact during the transient
phase. This intuition is bolstered by simulations of the
proposed control scheme in Fig. 2—implementing a control
action that is linearly (or even super-linearly) proportional
to the environmental impact seems to be highly beneficial
in reducing the trajectory peaks.
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Fig. 2. Simulated trajectories of the system in (11) for
different choices of the control function «, for o = 0.6,
k=3,7v=10,7=0.1 and u = 0.6.

5. CONCLUSION

We proposed a novel stochastic network model that cap-
tures the coevolution of human environmental behavior
and environmental impact. Our modeling framework in-
cludes a variety of factors such as policy interventions, neg-
ative emission technologies, social influence, a behavioral
response to increases in environmental impact, and the
cost of environmentally friendly behavior. By employing a
mean-field approach, we derived a deterministic approx-
imation of the system in the limit of large-scale popu-
lations, for which we performed a complete asymptotic
analysis. Specifically, we proved global convergence to a
periodic solution for almost all initial conditions.

Our modeling framework and results open up the path for
several directions of future research. First, our theoretical
results are derived under the simplifying assumption of an
all-to-all network of interactions. To better approximate
real-world scenarios, the model can be studied while em-
ploying non-trivial social networks. Second, we assumed
a linear behavioral response to the environmental impact,
but more complex nonlinear functions may be considered.
In particular, one may consider extending the framework
to a multi-population scenario with cautious and reckless
subpopulations, modeled by assigning different environ-
mental response functions. By including a degree of ho-
mophily, i.e., a tendency of people to interact with like-
minded individuals, one can explore the role of a polar-
ized network structure in the evolution of environmen-
tal population behavior. Third, as we discussed through
numerical simulations, future efforts should be placed on
investigating the possibility of mitigating extreme system
trajectories via time-varying control policies and, in partic-
ular, state-dependent policies, where the effort placed by
public authorities is defined as a feedback function of the
environmental state—thereby finding a way to guarantee
that the environmental impact stays less than a critical
threshold above which the planet becomes unsuitable for
life.
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