
Doctoral Dissertation

Doctoral Program in Computer Engineering (36thcycle)

Formal Methods for Test and
Reliability

By

Nikolaos Ioannis Deligiannis

Supervisor(s):
Prof. Matteo Sonza Reorda, Supervisor
Prof. Riccardo Cantoro, Co-Supervisor

Doctoral Examination Committee:
Prof. Chrysovalantis Kavousianos, Referee,
Prof. Görschwin Fey, Referee,
Prof. Wolfgang Kunz,
Prof. Marcello Traiola,
Prof. Ernesto Sanchez

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Nikolaos Ioannis Deligiannis
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

To my grandmother Parthena Deligianni and
in the heartfelt and enduring memory of my beloved grandfather, Nikolaos Deligiannis...

Acknowledgements

First and foremost I would like to deeply thank my two supervisors, Matteo Sonza
Reorda and Riccardo Cantoro who invested in me and allowed me to grow with
their continuous support, care, and guidance. I would like to acknowledge Bernd
Becker and my friend and colleague Tobias Faller further for their contribution and
the paramount assistance they provided. Furthermore, I deeply thank my friends, for
their selfless support and presence especially in the toughest times throughout my
journey. Last but certainly not least, Father and Mother, nothing could have been
achieved without you.

Abstract

In the rapidly evolving landscape of nanotechnology, where innovations promise
groundbreaking advancements in various industries, ensuring the reliability and
safety of digital circuits becomes paramount. While applicable to the broad category
of commercial off-the-shelf products, this becomes significantly more evident when
examining domains or industry sectors, such as automotive, aviation, railways, and
the biomedical sector, that fall into the category of safety-critical applications. In
these cases, the probability that a fault may activate an error and propagate to a
failure that would endanger human lives or cause environmental damage should be
carefully evaluated and kept under predefined thresholds. To achieve this result,
the manufacturers must comply with strict safety standards and procedures that
mandate rigorous coverage thresholds and comprehensive testing protocols. From
end-of-manufacturing up until the in-field phase, each integrated circuit (IC) is
subjected to several testing procedures to ensure that it meets stringent quality
standards, functions reliably within specified parameters, and remains resilient to
various environmental conditions throughout its operational lifespan. Design-for-
testability (DfT) techniques are incorporated during the design phases of electronic
circuits to enhance the testing process.

However, despite the presence of powerful electronic design automation (EDA)
utilities, such as automatic test pattern generation (ATPG) tools, intended for use
alongside DfT-compliant designs during testing, the relentless evolution of technol-
ogy brings about faster, smaller, and denser circuits. This evolution renders certain
utilities inadequate as the complexity of the test procedure significantly increases,
as seen with Burn-In (BI) test. Burn-In, an omnipresent step in the test chain for
products intended for use in safety-critical domains, was, until recently, conducted in
its traditional static format. Notwithstanding its effectiveness, static BI test became
less effective for newer, denser technologies as in its static form it was found not
to fully exercise all internal parts of the ICs. Hence, it evolved into new dynamic

vi

forms, where stress stimuli are applied in an internal manner on top of the external
temperature and voltage increase. However, the generation of appropriate stress-
inducing stimuli is a costly and arduous task for the test engineers, due to the lack of
automation to aid the generation process.

Another test domain that could substantially benefit from automation is the in-
field test. Continuous in-field testing enables the detection of faults or anomalies
that may occur over time. Early detection of potential issues allows for proactive
maintenance or corrective measures, reducing the risk of system failures in critical
situations. However, the task of developing appropriate software test libraries (STLs)
for such scenarios is typically a task that requires a lot of manual effort from the
perspective of the test engineer. In fact, not only the test must consider parameters
such as application time and memory footprint but it must also avoid targeting
untestable faults of the design. This means that the test should only focus on those
faults that are able to produce a failure in the operating scenario, ignoring those that
can not produce any (critical) failure.

This PhD thesis proposes solutions, based on Formal Methods (FMs), addressing
the aforementioned test topics. The manuscript is organized in three main parts.

The initial part provides an introduction and overview of the imperative need
for testing and reliability in the modern digital era. It delves into the distinct testing
areas that form the focus of this thesis.

The second part includes the three main contributions of the thesis. A section
proposing FM-based solutions for dynamic BI test stress stimuli generation is first
presented. These methods consider various switching activity metrics, and their
effectiveness is showcased by applying them on scalar pipelined processors. The
second contribution regards FM-based solutions targeting the identification of func-
tionally untestable faults under the stuck-at and the cell-aware fault models. Lastly,
the final contribution regards methodologies that aid the generation of STLs for
microprocessors and GPUs.

The last part provides the conclusions of the overall work.

Contents

List of Figures xi

List of Tables xiii

Nomenclature xiv

1 Introduction 1

1.1 The need for test and reliability . 1

1.2 The safety-critical domain . 2

1.3 Open problems & State of the Art 3

1.3.1 Burn-In test . 4

1.3.1.1 State of the Art 6

1.3.1.2 Main Contributions 6

1.3.2 Functionally untestable faults identification 7

1.3.2.1 State of the Art 8

1.3.2.2 Main Contributions 9

1.3.3 In-Field test . 9

1.3.3.1 State of the Art 10

1.3.3.2 Main Contributions 11

1.4 Formal Methods . 11

1.4.1 Reduction of ATPG to Boolean satisfiability 12

viii Contents

1.4.1.1 ATPG for combinational circuits via formal methods 14

1.4.1.2 ATPG for sequential circuits via formal methods . 16

1.4.2 Validity checker modules 18

1.4.3 Initial state extraction & application 21

1.5 Thesis organization . 22

2 Burn-In Test 24

2.1 Background . 24

2.1.1 Previous works on combinational circuits 25

2.1.2 Previous works on sequential circuits 27

2.2 Constant & repeatable SWA maximization 28

2.2.1 Problem definition . 29

2.2.2 Stress evaluation metric 30

2.2.3 Search space analysis . 32

2.2.4 Proposed method . 33

2.2.5 Experimental results . 37

2.3 2-Multi-Point SWA maximization 39

2.3.1 Problem definition . 40

2.3.2 Stress evaluation metric 41

2.3.3 Search space analysis . 42

2.3.4 Proposed method . 43

2.3.5 Experimental results . 47

3 Functionally Untestable Faults Identification 51

3.1 Background . 51

3.1.1 Previous works referring to the stuck-at fault model 53

3.1.2 Previous works referring to delay fault models 55

Contents ix

3.1.3 Previous works referring to other fault models 57

3.2 Uncontrollable lines identification 58

3.2.1 Basic idea . 59

3.2.2 Method A . 61

3.2.3 Method B . 64

3.2.4 Experimental results . 67

3.3 Identification of untestable cell-aware faults 70

3.3.1 CAT and User-Defined Fault Models 71

3.3.2 Proposed method . 72

3.3.3 Experimental results . 76

4 In-Field Test 80

4.1 Background . 80

4.1.1 Previous works on STL generation for processors 81

4.1.2 Previous works on STL generation for GPUs 85

4.2 STL generation for RISC-V processors 87

4.2.1 Proposed method . 88

4.2.2 Experimental results . 95

4.3 Supporting the STL generation for GPUs 98

4.3.1 GPU organization . 99

4.3.2 Proposed method . 100

4.3.3 Experimental results . 106

5 Conclusions 109

References 113

Appendix A Example: Combinational ATPG via SAT-solving 125

x Contents

Appendix B Example: Sequential ATPG via BMC-solving 128

Appendix C List of Publications by the Author 149

C.1 Journal Publications . 149

C.2 Conference Proceedings Publications 150

List of Figures

1.1 The bathtub curve. 4

1.2 Static BI (left) and Dynamic BI (right) formats. 5

1.3 Fault universe. 7

1.4 Circuit unrolling technique. 13

1.5 Step-by-step CNF generation via symbolic simulation. 14

1.6 SAT-based ATPG example for combinational circuit and stuck-at 1
fault. 15

1.7 Bounded Model Checking. 17

1.8 BMC-based ATPG example for sequential circuit and stuck-at 0 fault. 18

1.9 Miter circuit and VCM interaction. 19

1.10 Constraint application through the VCM. 19

1.11 Initial state extraction stemming from the synchronous RESET signal
activation for arbitrary sequential circuit. 22

2.1 DFA representation of constant and repeatable switching. 30

2.2 1-bit full adder (top) and 3-bit odd parity checker (bottom) maximum
switching for sequences esFA and esodd

parity, respectively 31

2.3 MaxSAT model. 33

2.4 DFA representation of 2-multipoint switching for a neighborhood of
2 nets. 40

2.5 Maximum stress efficiency sequences for a net pairing on a full adder. 42

xii List of Figures

2.6 Kripke structure for example sequential circuit as DUT. 44

2.7 Proposed method concept. 45

3.1 Abstract concept of Method A applied to arbitrary pipeline stage. . . 62

3.2 Abstract concept of Method B. 65

3.3 Encoding of faulty AND cell for example model 73

3.4 Fault injection on AND cell for example model during BMC 74

3.5 Implementation of proposed cell-aware fault injection for example
AND cell . 74

4.1 Interaction of processor (left) and VCM (right) with mapping layer
in between (middle) . 90

4.2 STL execution from left to right: firmware starts STL, firmware
context is saved, instruction sequences are run, firmware context is
restored, firmware evaluates STL signature. 93

4.3 Instruction sequence BMC problem with initial state, scrambling,
and final propagation to the register x1. 93

4.4 Register x1 scrambling example. 94

4.5 General scheme of GPU’s organization. 99

4.6 Proposed method using BMC for pattern generation followed by
SASS transformation and fault simulation. 101

B.1 Circuit unrolling for timeframe 0 to 1. 130

List of Tables

1.1 Representation of different Boolean operators as CNF sub-expressions. 13

2.1 Experimental Results . 37

2.2 Supplementary Comparisons . 38

2.3 Experimental Results . 48

2.4 Supplementary Comparisons . 49

3.1 Failure metrics per ASIL according to ISO-26262 52

3.2 Experimental Results . 69

3.3 Supplementary Comparisons . 70

3.4 Example defect matrix for AND cell 73

3.5 Untestable stuck-at faults identified by the proposed method. 77

3.6 Untestable cell-aware faults identified by the proposed method. . . . 78

4.1 Constraints for testability check 92

4.2 Experimental Results . 96

4.3 Validation of STLs in Z01X . 97

4.4 Operational Constraints of the Decoding Unit in a GPU 105

4.5 Main Features of the original STLs for the Decoding Unit 106

4.6 Comparison with Commercial ATPG 107

Nomenclature

Roman Symbols

H High. Logic value of 1

L Low. Logic value of 0

Acronyms / Abbreviations

ALU Arithmetic and Logic Unit

ASIL Automotive Safety Integrity Level

ATPG Automatic Test Pattern Generation

BI Burn-In

BIST Built-In Self-Test

CAT Cell-Aware Test

CNF Conjunctive Normal Form

CTM Cell Test Model

DFA Deterministic Finite Automaton

DfT Design-for-Testability

DUT Device Under Test

EDA Electronic Design Automation

FA Full Adder

Nomenclature xv

FC Fault Coverage

FF Flip Flop

FIT Failures In Time

FMECA Failure Mode, Effects and Criticality Analysis

FMs Formal Methods

IC Integrated Circuit

ISA Instruction Set Architecture

LFM Latent Fault Metric

MaxSAT Weighted Maximum Satisfiability

MIMD Multiple-Instructions Multiple-Data

MSB Most Significant Bit

PDF Path Delay Fault

PI Primary Input

PMHF Probabilistic Metric of Hardware Failures

PO Primary Output

PPI Pseudo-Primary Input

PPO Pseudo-Primary Output

SBST Software-Based Self-Test

SE Stress Efficiency

SIMD Single-Instruction Multiple-Data

SM Streaming Multiprocessor

SoC System-on-Chip

SPFM Single Point of Fault Metric

xvi Nomenclature

STL Software Test Library

SWA Switching Activity

TA Test Alternative

TF Timeframe

TP Test Program

UDFM User Defined Fault Model

VCM Validity Checker Module

Chapter 1

Introduction

1.1 The need for test and reliability

In the dynamic realm of digital technology, ensuring the reliability and effective
testing of digital circuits emerges as a fundamental requirement. As our reliance
on electronic systems continues to grow, ensuring digital circuits’ seamless and
error-free operation becomes crucial for various applications, ranging from con-
sumer electronics to safety-critical systems in aerospace and healthcare. The rapid
advancement of integrated circuits (ICs) and the increasing complexity of digital
designs have accentuated the need for rigorous testing methodologies to identify and
fix potential faults and vulnerabilities. Designers and IC manufacturers continue
pushing the boundaries of Moore’s law [1] by advancing to new technology nodes.
This progression results in the emergence of newer, faster, and more powerful circuits
as the number of transistors increases geometrically within the same silicon area.

Despite achieving significant performance gains, the escalating challenge lies
in the exponential increase in the effort needed to test the latest generations of ICs
adequately. This surge in testing complexity is further compounded by a proportional
rise in the likelihood of faults, given the concurrent increase in transistor counts and
the sensitivity of advanced technology nodes to new types of defects and weaknesses.
As performance leaps forward, navigating the intricate landscape of testing becomes
more critical, demanding heightened diligence to ensure the resilience and robust
functionality of cutting-edge IC designs. Thus, from the manufacturer’s standpoint,
the testing process must be meticulously orchestrated and enhanced to ensure that

2 Introduction

the newer ICs meet the same quality standards as their predecessors, despite the
challenges posed by advancing technological nodes.

1.2 The safety-critical domain

Safety-critical systems represent a paramount category in the realm of digital technol-
ogy, where the reliability of circuits takes on heightened significance. These systems,
pervasive in aerospace, healthcare, and automotive industries, are tasked with func-
tions directly impacting human safety and well-being. In safety-critical applications,
the consequences of circuit failure can be severe, ranging from life-threatening in-
cidents to environmental disasters. As our reliance on digital technology expands,
integrating electronic systems into safety-critical domains underscores the critical
need for rigorous testing and uncompromised reliability. The stringent requirements
of safety standards, such as ISO-26262 [2] in the automotive sector and DO-254 [3]
in aerospace, demand that digital circuits undergo meticulous testing to ensure their
resilience in the face of diverse operational scenarios. In this context, pursuing
technological advancements must be balanced with an unwavering commitment to
maintaining the highest reliability standards, given the direct impact on human lives
and the integrity of critical infrastructures.

From the manufacturers’ standpoint, this necessitates a meticulous and compre-
hensive approach at every step of the digital circuit development process. Beginning
with the initial design phase, manufacturers must anticipate and address potential
fault scenarios, considering the critical nature of the applications in which their
circuits will operate. This includes implementing robust fault-tolerant design strate-
gies and ensuring that the circuit can detect, isolate, and recover from faults. The
manufacturing process itself requires rigorous quality control to minimize defects
and variations that could compromise reliability. As the design progresses to fabri-
cation, testing methodologies become increasingly sophisticated to account for the
intricacies of advanced technology nodes. Manufacturers must navigate the delicate
balance between optimizing performance and maintaining reliability, adapting testing
procedures to accommodate the growing complexity of integrated circuits. Post-
production, ongoing monitoring, and maintenance become imperative, as even the
most well-designed circuits may face challenges in real-world operating conditions.
Ultimately, manufacturers must orchestrate a seamless integration of design, testing,

1.3 Open problems & State of the Art 3

and quality assurance processes from concept to deployment to uphold the stringent
standards demanded by safety-critical applications.

1.3 Open problems & State of the Art

Despite the incorporation of numerous Design-for-Testability (DfT) techniques in
the design process of modern ICs and the wide variety of commercial electronic
design automation (EDA) utilities, achieving the high thresholds imposed by safety
standards remains an open problem. This task is far from being optimally solved due
to its diverse and complex nature. Hence, in the absence of a global and uniform
solution manufacturers identify and develop their own, in-house testing flows (in a
“heuristic” manner) that are fine-tuned on their own products.

Among the various testing procedures modern ICs undergo, especially in the
safety-critical domain, the importance and significance of switching activity maxi-
mization for dynamic Burn-In (BI) test, untestable fault identification, and in-field
testing cannot be underestimated. These three pivotal tasks collectively address
critical challenges in ensuring the robustness and dependability of integrated circuits
(ICs). Switching activity (SWA) maximization during dynamic BI test not only
accelerates the detection of latent defects but also enhances the overall reliability
of ICs by subjecting them to realistic operational conditions. On the other hand,
functionally untestable fault identification is instrumental in pinpointing elusive
faults that traditional testing methodologies may overlook, thereby fortifying the
comprehensive quality assessment of semiconductor devices. Finally, in-field testing
stands at the forefront of proactive reliability maintenance, enabling the continu-
ous monitoring and evaluation of ICs in real-world environments. Together, these
contributions advance the state-of-the-art in semiconductor testing and contribute
significantly to the longevity and performance assurance of electronic systems.

This thesis is organized into three distinct sections according to the contribution
of each of the respective test domains. The first section regards the BI test. The
second regards the safety-critical domain and in-field test and is linked with the
identification of functionally untestable faults. The latter regards the automation of
Software Test Library (STL) generation.

4 Introduction

1.3.1 Burn-In test

Fa
ilu

re
 R

at
e

Time

Infant
Mortality

Operational
Life

End of
Life

Fig. 1.1 The bathtub curve.

The BI test [4] is a crucial step typically conducted just before the final System-
Level Test (if present), and it is a standard procedure in safety-critical domains.
This test is pivotal as the primary countermeasure against the “Infant Mortality”
phenomenon [5]. The Infant Mortality phase, which is characteristic of the bathtub
curve as shown in Figure 1.1, is marked by the failure of a significant number of
devices in the early stages of their life cycle. The BI test stands as a proactive
measure, effectively mitigating issues and ensuring the reliability of systems in
safety-critical applications.

During BI testing, the devices under test (DUTs) are placed within climatic
chambers. Operating under higher than nominal power, thermal, and frequency
conditions, the DUTs are exposed to a range of external and internal stresses. This
rigorous process pushes the devices to their specification limits, sustaining the stress
for extended periods, ranging from hours to days. This procedure aims to induce
accelerated aging of the DUTs, equivalent to weeks or even months of regular
operation. The multifaceted stress induces potential weaknesses in components to
surface as observable defects. Any DUT showing such defects is promptly identified
and removed from the testing process. By subjecting the DUTs to this intensive BI
regimen, the testing effectively eliminates the time period associated with Infant
Mortality. Through BI testing, these latent defects are brought to light, ensuring
that only robust and reliable devices proceed to subsequent phases of production or
deployment.

Up until recently, the most commonly applied BI procedure was static BI, during
which the DUTs are exposed to a fixed and elevated temperature (and often voltage)

1.3 Open problems & State of the Art 5

1 1

2 2

3 3

1

1

2

2

3

3

DUT

1 1

2 2

3 3

1

1

2

2

3

3

DUT

Fig. 1.2 Static BI (left) and Dynamic BI (right) formats.

for an extended period of time without the application of any kind of additional stress-
inducing stimulus during the test. However, a major drawback of this approach is that
nets of the circuit are not exercised [4] and the induced stress is uniform over all of
them, differently than during the operational phase. Moreover, as device feature sizes
continue to scale down and their structural and architectural complexity increases,
the complexity of BI testing becomes prohibitive. Simultaneously, process variations
introduce substantial uncertainty. Errors or misconfigurations in BI parameters can
lead to catastrophic consequences, as the testing conditions may damage the DUTs,
resulting in yield losses. For instance, an elevation in the junction temperature
during BI testing can escalate leakage currents, potentially causing thermal runaway.
Concerning test application time, all forms of accelerated aging methods prove
time-consuming, with durations reaching tens or hundreds of hours, especially for
emerging technologies. Consequently, these lengthy testing procedures can become
bottlenecks in the overall manufacturing process.

To amend these obstacles, BI is evolving into new forms [6] where the stress
is generated and induced to the DUTs with less dangerous and more controllable
actions by also resorting to internal stress [7]. If the DUTs are equipped with Design
for Testability (DfT) infrastructures (e.g., scan chains), internal stress can be easily
generated by relying on them. However, in such an approach, the DUTs would
operate in test mode, and thus, they would age in a way that could be different than
in operational mode. Hence, this approach to the problem can possibly introduce
unnecessary test escapes or even overstress the DUTs and potentially cause yield
loss. On the other hand, by using functional stimuli to stress the DUTs, it is not
possible to cause damage to the devices unless there exists a fatal design flaw, since
the circuits are executing code as intended. Furthermore, it has been shown [8], that
creating proper temperature gradients between different parts in a circuit, or cores

6 Introduction

in a System-on-Chip (SoC), may enable the detection of defects that could hardly
be targeted in other ways. Evidently, we can conclude that it is important to devise
strategies able to generate purely functional test stimuli that maximize the switching
activity (SWA) while the DUT works in normal mode.

1.3.1.1 State of the Art

Having emphasized the significance of subjecting DUTs to both external and internal
stress during BI, a common industry practice involves internally stressing the device
by applying stimuli with the aim of toggling every internal net at least once [9].
Given the time-consuming nature of the BI test, this is typically accomplished by
leveraging DfT infrastructures, such as scan, and gradually applying stress vectors
[10].

However, a drawback of this approach is that the DUTs operate in test mode,
leading to aging behavior that differs from the operational mode. Consequently,
this method may introduce unnecessary test escapes or even overstress the DUTs,
potentially resulting in yield loss. To address this issue, manufacturers typically
closely monitor the DUTs during stress application, ensuring that the stress profile
aligns with nominal values and legacy readings by extrapolating from previous
design and test iterations of the DUTs.

1.3.1.2 Main Contributions

This thesis proposes solutions in the domain of internal stress stimulus generation
for dynamic BI test purposes. Initially, a methodology based on Formal Methods
(FMs) is presented to generate functional stress sequences designed to maximize the
constant and repeatable SWA of a sequential circuit [11, 12]. The effectiveness of this
method is further demonstrated through the presentation of results for stress metric
maximization using evolutionary techniques [13, 14]. Additionally, an alternative
stress metric is considered, involving the incorporation of layout information obtained
from a place-and-route procedure. This information is employed to derive topological
insights and calculate minimum distances between neighboring parts of a design,
to dissect the design in neighborhoods, and to generate functional sequences to
optimally stress them [15].

1.3 Open problems & State of the Art 7

1.3.2 Functionally untestable faults identification

Critical Faults

Structurally
Untestable

Functionally
Untestable

Fig. 1.3 Fault universe.

During the structural tests performed at the end of manufacturing but also during
the functional tests performed in the mission cycle of the ICs sufficient fault coverage
(FC) thresholds must be reached. This becomes more evident when considering
the safety-critical application sector where the respective safety standards mandate
high FC thresholds to be met during each test. The fault coverage is traditionally
computed as:

FC =
Tested Faults
Total Faults

(1.1)

The denominator represents the fault universe for the DUT. The fault universe is
depicted in Figure 1.3. The vast majority of the faults (Critical Faults) are testable.
This means that a test stimulus (i.e., an input stimulus able to activate the fault and
produce a failure) can be generated by resorting to a given test methodology (e.g., via
automatic test pattern generation (ATPG)). However, there exist faults for which no
test can be found [16]. These faults are called untestable faults and are distinguished
into two main categories.

The structurally untestable faults correspond to fault sites that cannot be forced
to a specific logic value (0/1) due to either being unconnected (redundant) or due to
the fault site being tied to a specific logic value. These types of untestable faults are
further called uncontrollable. Furthermore, the set of structurally untestable faults
also contains faults that although being controllable, i.e., can be forced to a specific
value, their effect cannot propagate to an observable point of the circuit (e.g., any
primary output) due to a blockage or masking of the fault effect. These faults are
called unobservable.

8 Introduction

As a natural extension, a superset of structurally untestable faults is identified as
functionally untestable faults. Although these faults can be excited and propagated
to an observable point in the circuit, they are incapable of causing any failure under
the considered operational scenario or application profile. In the terminology of
ISO-26262, such faults are called safe.

For instance, consider a standard processor equipped with a debugger module.
While the module may be fully testable through DfT techniques, such as scan, the
nature of the debugger module is such that it always remains inactive during the
system’s functional mode. Consequently, it becomes impossible to excite and/or
propagate any fault within it.

As the untestable faults contribute to the number of total faults for a DUT, their
presence has a negative impact on the computation of the FC (Equation (1.1)). This
can be a serious issue, especially in the safety-critical domain where during the
mission phase a functional test that is periodically performed must achieve a high FC
threshold. As an example, according to ISO-26262, a functional FC of 98% must be
achieved for every critical system of the car (e.g., airbags). However, as researchers
have showcased [17, 18], given the mission profile of a system the number of
functionally untestable faults can reach percentages >10% at times. Thus, unless
these faults are identified and eliminated from the fault list of the DUT, compliance
with the safety standards may be impossible. Hence what is of interest for the test
engineers is the testable fault coverage, which is computed as:

Testable FC =
Tested Faults

Total Faults−Untestable Faults
(1.2)

In the safety-critical domain, among the several possible solutions, the Failure
Mode, Effects, and Criticality Analysis (FMECA) [19] is in charge of identifying
which faults are not able to produce any failure. Since FMECA is barely automated,
the issue of identifying such faults is a major concern for the industry.

1.3.2.1 State of the Art

Regarding the identification of structurally untestable faults, the ATPG engines are
able to deduce certain uncontrollable faults by performing toggling checks on the
DUT. As for the unobservable faults, the branch and bound algorithms used either

1.3 Open problems & State of the Art 9

abort them after reaching a predefined wall clock timer per fault or given enough
time they are able to identify them as untestable.

When considering functionally untestable faults the dominant practice is for
the test engineers to have an in-depth knowledge of the underlying architecture of
the DUT and to perform manual analyses on the circuitry in combination with the
mission/application profile in order to deduce which circuit regions can be considered
redundant. There exists a lack of automation since the EDA tools lack the utility
to formulate complex functional constraints and consider them during the pattern
generation phase [17, 20, 21].

1.3.2.2 Main Contributions

This thesis proposes solutions in the area of uncontrollable fault identification [22]
and also for functionally untestable fault identification under the cell-aware fault
model [23]. The methods are based on FMs and showcase how elaborate operational
constraints can be incorporated in a test pattern generation phase to accurately
circumscribe the search space and enable tools such as Bounded Model Checking
(BMC) solvers and Satisfiability (SAT) solvers to deduce whether lines or faults in a
sequential circuit are untestable under the considered functional scenario.

1.3.3 In-Field test

In the realm of safety-critical applications, where reliability is paramount, the intro-
duction of in-field testing emerges as a pivotal strategy to ensure ongoing operational
integrity. As technological advancements and complexities continue to define our
critical systems, the need for real-time monitoring and evaluation becomes increas-
ingly crucial. In-field testing not only addresses the challenges unique to the dynamic
operational environment but also provides an essential layer of assurance, allowing
for proactive identification and mitigation of potential issues. This approach stands
at the forefront of safeguarding safety-critical applications, offering a responsive
and adaptive methodology to uphold stringent safety standards throughout the entire
lifecycle.

This challenging target is normally achieved using a mix of different solutions,
including redundancy, DfT, and functional self-test. When it comes to the latter,

10 Introduction

which involves conducting tests by manipulating functional inputs and observing
corresponding outputs without relying on DfT, test engineers frequently turn to
Software-Based Self-Testing (SBST). This approach helps them generate STLs tai-
lored to specific fault models [24, 25].

The SBST strategy is a flexible and non-intrusive method that relies on carefully
crafted test programs (TPs) and utilizes the Instruction Set Architecture (ISA) to
apply test patterns. These patterns are designed to activate potential faults within a
targeted unit of a device and propagate their effects to some visible location(s). TPs
are primarily developed at the assembly level and in practice, an STL is a collection
of TPs. These TPs effectively allow the detection of hardware faults in a device.
Their development is up to the manufacturing company, which then passes them to
the system company, which integrates them into the application software. STLs can
be activated during the operational phase, e.g., during the application idle times. The
dominant fault models currently supported by the safety standards are the stuck-at
and the transition delay models. STLs have been used extensively in the past for
end-of-manufacturing [25] and in-field test in the case where the DUT is a processor
or controller [26, 27] and are now used for in-field test of GPUs as well [28].

While STLs offer numerous advantages, their development is frequently a time-
consuming and expensive process, necessitating the expertise of a skilled developer
familiar with the intricacies of the specific processor’s micro-architecture. The
manual creation of the program involves ensuring hardware faults are detectable,
requiring an understanding of the micro-architecture’s behavior under fault influence,
which is a non-intuitive and time-consuming task. Furthermore, the SBST program
must be tailored to its environment (e.g., memory mapping and peripheral configura-
tions), making the creation of SBST a complex process that, up until now, had to be
repeated for each new design.

1.3.3.1 State of the Art

The current approach to STL development heavily relies on manual efforts by
test engineers, primarily due to the unique nature of these tests. The requirement
for periodic execution during idle cycles in a device’s mission phase introduces
application-specific parameters such as test application time, memory footprint,
and firmware configuration. Unfortunately, there is limited room for abstraction or
generalization in addressing these considerations. Another contributing factor to the

1.4 Formal Methods 11

lack of automation in functional pattern generation is the complexity and difficulty
of formulating operational constraints. These constraints arise from the combination
of system specifications and the system’s mission profile.

One obstacle to automation lies in the intricate nature of these operational con-
straints, making their formulation challenging. Although traditional ATPG tools
provide a certain level of constraint formulation, their focus is typically limited to
the primary (PIs) and pseudo-primary inputs (PPIs) and outputs (POs, PPOs) of the
DUT, falling short of addressing the broader operational context.

Despite these challenges, in specific scenarios, a certain level of automation can
be applied. For instance, when examining an arithmetic circuit within the Arithmetic
and Logic Unit (ALU) of a microcontroller, a degree of automation becomes feasible.
Applying a pseudo-random approach or employing ATPG on an isolated unit, such
as the ALU, can be advantageous. This is particularly true when the arithmetic
instructions are known in advance, facilitating the generation of a functional test
routine. Random functional approaches [29] as well as evolutionary techniques-
based approaches [30] have also been employed in the past, which offer a significant
degree of automation.

1.3.3.2 Main Contributions

This thesis introduces innovative solutions leveraging FMs for the streamlined
generation of STLs tailored to both CPUs [31] and GPUs [32]. Specifically, in the
context of CPUs, it demonstrates that with a modular structure and comprehensive
documentation, as exemplified by the RISC-V architecture [33], a substantial portion
of STL generation can be automated. Conversely, for more intricate and densely
designed GPUs, the proposed method systematically addresses challenging-to-test
faults, thereby enhancing the efficiency of an existing STL in terms of testable FC.

1.4 Formal Methods

Formal methods are rigorous mathematical techniques that are used in a variety
of applications spanning specification up to test and validation of software and
hardware [34]. FMs are composed of well-formed statements in a mathematical
logic that are used to produce rigorous deductions in that logic, which means that

12 Introduction

each step follows a rule of inference. The value of formal methods is that they
provide a means to symbolically examine the entire state space of a digital design
and establish a correctness or safety property that is true for all possible inputs.
However, due to the extremely large search spaces that characterize modern systems,
FMs are used in a “divide and conquer” fashion either on isolated components of the
system or on the most critical parts of it.

A design and test area where FMs are dominant is formal verification. In
today’s systems where validation by mere simulation means is not sufficient a
mathematical proof of correctness is essential. Errors that occur during the translation
of a specification into the final IC implementation if not detected will cause all
produced chips to be erroneous. Hence for each step from the RT-level all the way to
the layout level of a design formal verification is performed.

Furthermore, it has long been known that an ATPG problem can be reduced to a
Satisfiability instance and solved using an SAT solver [35]. However, this approach
was not widely adopted as the so-called structural ATPG approaches generally
provide better scalability. More recently, significant improvements in the underlying
SAT solvers in conjunction with extended solving capabilities specifically developed
and tailored to ATPG led to an increased interest in such techniques [36, 37].

The following subsections introduce fundamental concepts of FMs, which serve
as foundational elements for all contributions in this thesis. All proposed methods
presented in this thesis were developed in an FM framework named FreiTest.
FreiTest is an ATPG framework that is derived from PHAETON [38]. The frame-
work has been fully rewritten and redesigned primarily for STL generation. This
includes the circuit import, functional constraint handling, fault simulation, data
export, and visualization, as well as Conjunctive Normal Form (CNF) formula
generation and the whole ATPG process itself.

1.4.1 Reduction of ATPG to Boolean satisfiability

The main goal of reducing the ATPG problem to the problem of Boolean Satisfiability
is comprised of multiple steps. Assuming a sequential circuit, initially the circuit is
unrolled in time. This means, that initially the circuit’s structure is duplicated for a
discrete and finite amount of times. Each instance of the circuit is called a timeframe
(TF) and can be interpreted as a clock cycle. The PPIs of the nth instance of the

1.4 Formal Methods 13

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe0 Timeframe1 Timeframen
PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

Fig. 1.4 Circuit unrolling technique.

circuit are driven from the PPOs of the n-1th instance. The initial state of the circuit
can be freely specified. This process is depicted in Figure 1.4.

Table 1.1 Representation of different Boolean operators as CNF sub-expressions.

Operator Boolean Expression CNF Sub-Expression

AND C = A ·B (A∨B∨C)∧ (A∨C)∧ (B∨C)
NAND C = A ·B (A∨B∨C)∧ (A∨C)∧ (B∨C)

OR C = A+B (A∨B∨C)∧ (A∨C)∧ (B∨C)
NOR C = A+B (A∨B∨C)∧ (A∨C)∧ (B∨C)
BUF C = A (A∨C)∧ (A∨C)
NOT C = A (A∨C)∧ (A∨C)
XOR C = A⊕B (A∨B∨C)∧ (A∨B∨C)∧ (A∨B∨C)∧ (A∨B∨C)

XNOR C = A⊕B (A∨B∨C)∧ (A∨B∨C)∧ (A∨B∨C)∧ (A∨B∨C)

The next step, is to derive the Boolean formula of the unrolled circuit in CNF
in order for an underlying SAT solver engine to be able to handle it effectively.
While tools like Satisfiability Modulo Theory solvers are proficient in managing
Boolean formulas expressed in traditional Boolean algebra format, their scalability
is comparatively limited when compared to conventional SAT solvers. In order to
extract the Boolean formula in CNF we perform symbolic simulation on the unrolled
circuit. During symbolic simulation we traverse the circuit structure in topological
order i.e., starting from the PIs towards the POs and we perform variable assignment
to each primitive cell of the circuit we encounter. Each primitive is identified and
its Boolean formula is replaced with its equisatisfiable formula coming from the
Tseitin transformation [39] as shown in Table 1.1. Finally, all generated sub-formulas
are “merged" together with conjunctions (∧). A simplified example is shown in
Figure 1.5.

14 Introduction

a

b

c

d

e

f

g

h
i

AND1

AND2

OR1

a

b

c

d

e

f

g

h

AND1

AND2

OR1
i

a

b

c

d

e

f

g

h

AND1

AND2

OR1
i

Fig. 1.5 Step-by-step CNF generation via symbolic simulation.

In the CNF, each set of disjunctions is termed a clause, and each variable within
a clause is referred to as a literal and can be either positively (true) or negatively
(false) assigned. It is important to highlight that in the concluding step, a unit
clause (i.e., a clause comprised of precisely 1 literal) is incorporated into the CNF,
featuring the output of the circuit. By doing so, we implicitly instruct the SAT engine
to identify a literal assignment that renders the circuit output equal to 1 (model).
After the CNF of the circuit is generated, we can optionally enforce functional
constraints and ask an SAT solver to generate a model. Assuming that this is feasible,
then by identifying the literals mapped to the PIs and PPIs of the circuit, we can
perform a conversion to 0/1 logic and extract an input pattern.

1.4.1.1 ATPG for combinational circuits via formal methods

In Figure 1.6, a miter circuit of a combinational circuit is shown. While considering
permanent hardware faults (stuck-at), we will see in a step-by-step way how we can
rely on SAT solving to perform automatic test pattern generation.

The stuck-at fault site is shown on the red circuit which represents the faulty
machine (FM). The green circuit represents the fault-free golden machine (GM),
and the outputs of the two circuits drive the final XOR gate. Note that the PIs of
the circuits are the same. The first step is to perform the symbolic simulation of the
miter circuit to generate the Boolean formula in CNF (as shown in Figure 1.5). The
resulting CNF is the following:

1.4 Formal Methods 15

ORfm
cfm

ORgm
cgm dfmdgm

XOR

NOTgm NOTfm

O

a b

sa1
Golden Machine Faulty Machine

Miter Circuit

Fig. 1.6 SAT-based ATPG example for combinational circuit and stuck-at 1 fault.

CNF := CNFgm∧CNFfm∧CNFMiter

CNFgm :=

ORgmz }| {
(a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧

NOTgmz }| {
(cgm∨dgm)∧ (cgm∨dgm)

CNFfm :=

ORfmz }| {
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧

stuck-at 1z }| {
(sa1) ∧

NOTfmz }| {
(sa1∨dfm)∧ (sa1∨dfm)

CNFMiter :=

XORz }| {
(dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧(O)

⇐⇒

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (sa1)∧ (sa1∨dfm)∧ (sa1∨dfm)∧

(dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (O)
(1.3)

Note that for the faulty machine, an additional literal (sa1) has been introduced
to represent the presence of the stuck-at 1, affecting the output of the OR gate (cfm).
This extra literal is necessary to mark the beginning of the fault cone. Furthermore,
with the Boolean formula of the miter circuit, the test engineer can incorporate any
functional or structural constraints into the CNF, not limited to the observable parts
of the circuit (i.e., its primary inputs). Further discussion on constraint formulation
will be provided later in the text. Lastly, the unit clause (O), linked to the output of
the miter circuit, is added to the CNF. This is to explicitly guarantee that a difference

16 Introduction

will be detected between the FM and the GM, i.e., the fault effect will propagate to a
primary output.

At this point, we can ask an SAT solver to search for a model for Equation (1.3).
Given that the circuit is trivial, we can easily identify the input pattern required to
test the indicated stuck-at 1 fault. That pattern is <a,b> := <0,0>.

Most SAT-solvers are based on the CDCL algorithm [40, 41], which draws
inspiration and augments the DPLL (or DLL) algorithm [42, 43]. A DPLL SAT
solver employs a systematic backtracking search procedure to explore the (expo-
nentially sized) space of variable assignments looking for satisfying assignments.
In Chapter A we show how an SAT-solver would identify the aforementioned test
pattern.

Finally, after several steps, the SAT-solver manages to identify a model for the
CNF. By isolating the literals corresponding to the PIs of the circuit, we extract the
test pattern <a, b> := <0,0>.

1.4.1.2 ATPG for sequential circuits via formal methods

Let us now consider the case where a sequential circuit is our DUT, and we wish
to perform functional ATPG. That is, we do not assume full control over the PPI
of the circuit via the presence of any kind of DfT infrastructure, such as scan. In
that case, it may be possible that the fault excitation and propagation may not be
feasible to happen in one clock cycle due to the fact that we also have to consider the
circuit states. For this reason, we cannot rely on plain SAT-solving. The tool we will
employ for this task is Bounded Model Checking.

Bounded model-checking algorithms unroll the state machine of the circuit for a
fixed number of steps, k, and check whether a property violation can occur in k or
fewer steps. This typically involves encoding the restricted model as an instance of
SAT. The process can be repeated with larger and larger values of k until all possible
violations have been ruled out.

During bounded model checking, we embed a desired property (P), i.e., the
desired switching activity is reached, into the CNF formula by defining an upper
bound (k); we ask the underlying solver to check whether this property can be
reached up to a maximum depth k starting from a well defined initial state (I) by

1.4 Formal Methods 17

I

P
k = 1

k = 2

k = n

Fig. 1.7 Bounded Model Checking.

following a transition relation (T). This concept is depicted in Figure 1.7, whereas
the general CNF formula for an arbitrary step k is built as:

CNFk = I0 ∧
k−1̂

i=0

T i → i+1 ∧ Pk (1.4)

Let us consider the circuit of Figure 1.8. We assume a stuck-at fault is present in
the output of the D Flip-Flop, and we need to generate a test vector for it. Also, we
assume that the initial state of the Flip-Flop is 0. Given that the circuit is relatively
trivial, we can infer that the pattern is a = <1, X> to test for the aforementioned
stuck-at 0 fault.

In Chapter B, we show an example of how a BMC-solver would identify the
pattern a = <1, 1> after 2 unrolls (k = 2) of the circuit.

18 Introduction

XOR

D
Q

XORgm
bgm

sa0

D
Q

XORfm
bfm

O
Golden Machine Faulty Machine

Miter Circuit
Q

cgm cfm

D

P

a

Fig. 1.8 BMC-based ATPG example for sequential circuit and stuck-at 0 fault.

1.4.2 Validity checker modules

One key aspect in which formal methods excel over traditional structural EDA tools
is the elegance in which they allow for elaborate and accurate constraint formulation
through rigorous propositional logic statements. As shown in the example of Fig-
ure 1.5, by adding a positively assigned literal that is mapped to a PO of the circuit,
we instruct the underlying solver to find a model that respects this constraint i.e., a
pattern for which the circuit output is 1. However, considering that after the symbolic
simulation, every single net of the design is mapped to at least 1 unique literal1 we
can create arbitrary statements for every internal part of the design.

For example, considering the example of Figure 1.5 let us assume that we want
to inquire further that the generated pattern for which the circuit’s output is set to 1
also sets the output of the AND1 gate to 1. In order to do so, we can simply add the
unit clause (e) to the CNF. In that way, in order for the overall CNF to be satisfied,
the added unit clause must hold true.

To formulate more complicated functional constraints, however, a general mech-
anism for constraint application is required. This is achieved by the Validity Checker
Module (VCM) [38]. The VCM is a small circuit, with respect to the DUT, written in
a Hardware Description Language (HDL) like SystemVerilog and later synthesized
into a gate-level representation using the same technology library as the DUT. The

1For encoding 0/1 logic 1 literal is enough. To support more logic types (e.g., 0/1/X and 0/1/X/Z),
more than 1 literal is required to encode each net of the design.

1.4 Formal Methods 19

DUT and VCM are encoded into a single miter circuit as shown in Figure 1.9. The
VCM’s circuit inputs are connected to the miter circuit and thus enable access to
every part of the faulty and fault-free DUT. The VCM’s logic computes if the state
and behavior of the DUT match the constraints that have been encoded inside the
VCM. The VCM’s validation result is indicated via its outputs. A Boolean value of 1
indicates that the constraint is held, while a 0 indicates that the constraint is not held
and the miter circuit shows an invalid behavior.

Fault Free DUT

Faulty DUT

Functional
Constraints

VCM

Validity
Outputs

Fig. 1.9 Miter circuit and VCM interaction.

By performing a symbolic simulation on the DUT and the VCM gate-level
descriptions the Boolean formula of the combined circuit is generated in a CNF.
In this way, constraints are embedded in the CNF, hence making the underlying
FM engine aware of the desired functional scenario. Thus one is able to formulate
complex functional constraints via circuit logic inside the VCM and apply those
constraints to the DUT.

I2

I1 O
DUT

I4

I3
C

1
0 VCM

HDL statement:

C = (O == 1'b0);

Fig. 1.10 Constraint application through the VCM.

20 Introduction

A very simplified example of this interaction is shown in Figure 1.10. As the
concept of the VCM is applicable to constraining any generic circuit, for brevity
we replace the miter circuit with a single AND gate (called CUT in the following)
in this example. We wish to constrain the output of the AND gate always to be 0.
Note, however, that the constraints encoded in the VCM are typically of complex
nature instead. The final CNF of the circuit is the conjunction of the two sub-CNFs,
for the CUT and the VCM respectively, i.e., CNF = CNFcut ∧CNFvcm. The two
independent CNFs CNFcut and CNFvcm are constructed using the Tseitin transfor-
mation (see Table 1.1) of the logic AND and XOR gates respectively. For the VCM
we additionally add a unit clause for each VCM output, i.e. C here, to enforce the
constraint always to hold.

CNFcut := (¬I1∨¬I2∨O)∧ (I1∨¬O)∧ (I2∨¬O)

CNFvcm := (¬I3∨¬I4∨ C)∧ (I3∨ I4∨ C) ∧
(I3∨¬I4∨¬C)∧ (¬I3∨ I4∨¬C) ∧
(¬I4)∧ (C)

Additionally, a unit clause is created with the constraint that forces the VCM’s
output to 1, which must be evaluated as true, simplifies CNFvcm to the unit clause
(¬I3) (step i.) which is equal to the unit clause (¬O) since the input is driven by the
AND gate’s output (step ii.). Given that the unit clause must be positively assigned
in order for the CNF to be satisfied too, two extra clauses are eliminated (step iii).
This sequence of events is shown below:

CNF = CNFcut∧CNFvcm

≡ (¬I1∨¬I2∨O)∧ (I1∨¬O)∧ (I2∨¬O)∧ (¬I3) i.

≡ (¬I1∨¬I2∨O)∧ (I1∨¬O)∧ (I2∨¬O)∧ (¬O) ii.

≡ (¬I1∨¬I2∨O)∧ (¬O) iii.

≡ (¬I1∨¬I2)∧ (¬O) iv.

1.4 Formal Methods 21

1.4.3 Initial state extraction & application

In all proposed methods discussed in this thesis, all circuits are considered to be
initialized to a well-defined state. That means that there are no X values within
the pipeline, i.e., each Flip-Flop (FF) holds a 0/1 logic value. Traditionally, when
considering processor circuits, this can be achieved either by asserting the processor’s
RESET signal before any code or firmware is executed on the system (general case),
or given the presence of an application profile it may be that a certain initialization
instruction sequence must be applied first. No matter the case, the result is that the
sequential circuit, after the application of an initialization process, is driven to an
initial state.

As previously stated, formal methods enable the modeling of arbitrary initial
states during, e.g., an SAT-based ATPG process. In the methods presented in this
thesis, this is achieved by utilizing the VCM circuit. The initial state of an arbitrary
sequential circuit comprised of n FFs can be considered as a vector with each FF
value concatenated as:

init = < FFi >
n−1
i=0 = < FF0, FF1, · · · , FFn−1 > (1.5)

Assuming that such a vector is available, then it is possible to map each logic
value to the corresponding FF literals and during the very first timeframe constrain
them to hold these specific values. Figure 1.11 depicts a strategy for extracting
the initial state of a sequential circuit, stemming from the activation of the global
RESET signal. Assuming that the signal is asserted for a total of m clock cycles,
then on the very last clock cycle, the circuit is driven to the state sm colored in
yellow. By using a logic simulator and the gate-level of the respective circuit it
is possible to extract the initialization vector (Equation (1.5)) with a few lines of
HDL code in the testbench circuit used for the simulation. For the purpose of the
initial state extraction, the framework R4VES [44] was used. Lastly, the extracted
initialization vector is passed into the formal methods framework and the VCM
circuit is responsible for embedding it in the CNF generation process.

22 Introduction

1

0

1

1

Time

0

1

1

0

0

1

0

1

1

0

0

1

FFn

FF2

FF1

FF0

X

X

X

X

RESET

CLOCK

FFn-1

FF2

FF1

s0 s1 s2 s3 sm

1

0

0

Fig. 1.11 Initial state extraction stemming from the synchronous RESET signal activation for
arbitrary sequential circuit.

1.5 Thesis organization

This thesis offers formal methods-based solutions to the testing areas presented
in Section 1.3. The solutions are based on two tools of the formal methods’ set of
utilities. Namely, Boolean Satisfiability and Bounded Model Checking [45]. The
rest of this manuscript is organized as follows.

In Chapter 2 we focus on the BI test and while considering two stress metrics
we provide methodologies to generate purely functional, stress-inducing stimuli that
maximize them optimally. In Chapter 3 we focus on the problem of the identification
of functionally untestable faults. We consider the stuck-at and the cell-aware fault
models and while targeting processors as DUTs we propose methods that identify
a considerable amount of such faults. In Chapter 4 we target in-field test and we
propose BMC-based methods that are able to generate functional test code (e.g., in
assembly) while considering permanent hardware faults and processors and GPUs as

1.5 Thesis organization 23

the DUTs. Lastly, in Chapter 5 we draw some conclusions and reflect on the overall
thesis contribution.

Chapter 2

Burn-In Test

2.1 Background

Various types of Burn-In (BI) testing rely on applying internal stress to devices under
test (DUTs), ranging from simple stimuli at DUT inputs (Dynamic BI) to output
capturing (Monitored BI) and full evaluation of DUT responses in conjunction with
functional test patterns (Test-In BI). It has been demonstrated that such approaches
significantly reduce test application times without compromising test reliability and
quality [46].

However, generating appropriate stress stimuli for DUTs during BI testing re-
quires careful consideration of two key factors. First, selecting a stress metric is
crucial to quantify stress levels in absolute terms and establish clear thresholds.
Inducing internal stress involves finding the right set of patterns to increase the
switching activity (SWA) within the DUT, with the specific approach determined by
the chosen stress metric [47].

The second key factor involves achieving sufficient internal stressing of DUTs.
Common industry practice employs structural techniques, assuming the presence
of Design-for-Testability (DfT) infrastructure on the DUTs (e.g., scan). However,
stress generated through DfT mechanisms, if not used in a controlled and monitored
way, may damage the devices since the induced stress is not guaranteed to match the
operational constraints. Conversely, functional means regard "ad-hoc" generation
of routines in a low-level language (e.g., assembly) to maximize the employed
stress metric. In contrast to structural methods, the application of functional stress

2.1 Background 25

stimuli does not pose any risk to the DUTs, as the circuit aging is coherent with the
functional specifications.

Comparing the benefits of structural versus functional approaches, a recent
study [48] highlighted distinct differences. Experimental results showed that stress-
ing a 32-bit processor (used as a case study) with scan led to a uniform temperature
increase across various modules. In contrast, applying functional stimuli (i.e., stress
programs) at speed resulted in significantly higher thermal activity in the processor
unit. The authors concluded that purely functional code applied at speed to the DUT
outperforms DfT-based approaches like scan in terms of induced stress.

The subject of SWA maximization has been extensively studied in the past,
especially in the domain of combinational circuits. What follows is an overview
of previous works, distinguished into two categories: combinational and sequential
circuits.

2.1.1 Previous works on combinational circuits

The reliability of integrated circuits is strongly linked with the problem of the
identification of the maximum current consumption during the devices’ testing phases.
The research community has studied the problem extensively in the past. For instance,
in [49] the authors address the problem of the maximum current estimation in MOS
integrated circuits (ICs). They state that unrestricted voltage drops in the circuit’s
power and ground lines can lead a system to misbehave and cause a degradation in
the switching speed. Such current estimates play a crucial role in the accurate timing
analysis of the circuit and can further be used to enhance the reliability of the circuit’s
power and ground buses. In [49] the authors also propose a heuristic approach that
can be applied to small combinational IC blocks to identify their maximum static and
transient current by dividing the circuit into groups of combinational interconnections
of logic gates and acting on each group independently. In [50], the authors approach
the same problem, namely the estimation of the maximum current in CMOS ICs, by
modeling it as an optimization problem. They search for stimuli (i.e., test patterns)
that maximize the circuit’s current value waveform. They further state that identifying
such estimates plays a vital role in the reliability and performance of the circuits since
such knowledge can be used to enhance the circuit’s design, rendering it resilient
to soft errors and overheating scenarios. In [51] the authors propose algorithms for

26 Burn-In Test

probabilistically estimating the average switching activity in combinational circuits
of moderate size. They link the switching activity of a circuit with estimates that
concern the circuit’s power and heat dissipation.

The authors of [52] further highlight the importance that accurate power con-
sumption estimates have for the performance and the reliability of VLSI chips. More
importantly, they state that to obtain such accurate estimates, one has to identify
a pair of two consecutive input patterns (test vectors) that induce as many logical
switches within the device as possible. That is, to maximize the circuit’s switching
capacitance. Moreover, they state that the complexity of such an exhaustive search
for the identification of the appropriate pattern pair on a combinational circuit with n
primary inputs is O(4n). Their approach to compute such power estimates is based
on an automatic test generation technique, while a Monte Carlo methodology is also
described. Although the proposed method is effective, it is applied to relatively small-
sized combinational circuits. Likewise, in [53], the authors approach the problem of
power dissipation in combinational CMOS ICs by relying on formal methods. They
model the circuit power dissipation as a Boolean function of the circuit’s primary
inputs. They also link the power estimation problem to the identification of the
appropriate pair of two consecutive test vectors that maximize the gate switching
of the device. Their solution reduces the problem to a weighted max-satisfiability
(MaxSAT) problem. But, once again, the method was applied to small combinational
circuits due to the high complexity imposed to obtain the circuit’s objective function
and optimize it.

Overall, maximizing the SWA of a circuit can be proven beneficial from a de-
signer’s perspective since it allows for extracting important information that enhances
the overall reliability of the devices by fine-tuning specific design parameters. How-
ever, SWA maximization can be advantageous in the context of device testing as
well. During the multiple test steps that are adopted during the device manufacturing,
it may happen that faults do not manifest themselves during testing and escape
the whole set of test steps. These latent defects are the prime suspects behind the
Infant Mortality behavior, which is resolved via BI. In [54] the authors present a
probabilistic approach (i.e., random excitation of internal nodes) to generate input
patterns that maximize the SWA of a combinational block further to achieve the
maximization of power dissipation during BI testing. In [55] the author relies on a
genetic algorithm to develop a method to maximize a combinational circuit’s SWA
and maximize the circuit’s heat dissipation during BI testing.

2.1 Background 27

Having acknowledged the importance and the benefits that stem from the SWA
maximization on ICs and the acquisition of switching information of a circuit in
general, the researchers focused deeper into the SWA maximization problem and
proposed various methodologies to solve it effectively. In [56] the authors present
a technique to extract estimates about the maximum switching activity of a combi-
national circuit’s nets while also considering delays within the circuit. Although
the method is applied solely to combinational circuits the authors claim that such
an approach can also be employed in sequential circuits by isolating the combina-
tional blocks and applying the method in a divide-and-conquer fashion. In [57] a
methodology based on automatic test pattern generation (ATPG) tools is presented to
identify the pair of test vectors that maximize the weighted SWA of a combinational
IC. This is achieved by appropriately modifying the gate-level description of the
circuit and generating vectors while targeting a selected set of faults on the modified
netlist while considering a variable delay. In [58] the authors present a simulation-
based approach for identifying the appropriate combination of two test vectors for
combinational ICs that maximize the switching activity and thus the circuit’s power
consumption. Although highly effective, the generated pairs of test vectors for a
combinational IC block with many inputs cannot be proven to be the absolute best
due to the exhaustive simulations needed for an exponentially growing number of
vectors. In [59] another approach based on formal methods is presented targeting
combinational circuits. The authors present an integer linear programming approach
that utilizes satisfiability (SAT) solvers as an underlying technology to effectively
compute the maximum weighted switching activity of combinational ICs that can be
used to derive information about the circuits’ power dissipation.

2.1.2 Previous works on sequential circuits

Regarding sequential circuits, and specifically processors (or processor cores), the
authors of [60] propose a method based on formal methods for the generation
of patterns that maximize the SWA on various parts of the processor in a uniform
manner by isolating the functional units of the core and encoding them in conjunctive
normal forms (CNFs). By considering each unit separately, they define simpler
functional constraints (i.e., transitions maximization) per unit flexibly and evaluate
each formula’s satisfiability individually. This enables the construction of functional

28 Burn-In Test

stimuli that can be used during BI to assist the aging process of various parts of the
circuit.

In [61] the authors present a methodology based on evolutionary techniques that
builds stressful assembly programs for a target processor by extracting characteristics
(i.e., code segments) that were found to be causing high switching activity when
executed. These segments, in turn, are used to compose a final stress program
that gets refined during the evolution process and can induce high stress within
the functional units of the core. In [13, 14] we present another method based
on evolutionary techniques, which is able to generate from the ground-up (i.e.,
without dependencies to pre-existing code) assembly programs that induce high stress
amounts within specific units of the processor in a repeatable manner. Although
experimental results prove the method’s effectiveness, there is no guarantee that the
generated programs are the best possible.

In [48] the authors, while targeting a 32-bit processor intended for mission-
critical usage, present a comprehensive methodology and propose metrics for the
comparison and the evaluation of stress procedures that are applied to the circuit
during BI. The processor is used in two variants in their case study. On the one hand,
the core is equipped with DfT infrastructures (e.g., scan); on the other, it is not. Their
experimental results demonstrate that while the processor with scan is being stressed,
a uniform elevation of its temperature is observed inside the various modules. On
the other hand, when functional stimuli (i.e., stress programs) are applied at-speed to
the processor, a much higher thermal activity is observed in the respective processor
unit. The authors conclude that a purely functional code applied at-speed to the DUT
has a notably better performance in terms of induced stress and, thus, renders it more
suitable than DfT-based approaches such as scan.

2.2 Constant & repeatable SWA maximization

To summarize, the SWA maximization problem has been approached with various
methodologies in the past, both for combinational and sequential circuits. In this
section, while covering the case where the DUTs are sub-modules of a pipelined
microprocessor, the aim is to present a methodology based on SAT solving for
generating stimuli that maximize the repeatable constant switching activity within
the targeted module of the core. In this case, the generated functional stimuli

2.2 Constant & repeatable SWA maximization 29

correspond to assembly programs. The proposed algorithm optimally solves the
problem using formal methods. Although the considered DUT is a microprocessor,
there are no limitations to the method’s applicability method to other sequential
circuits.

2.2.1 Problem definition

The goal is, given the gate-level description of a pipelined processor as input and a
sub-module of the processor as a stress target, to generate a functional sequence (i.e.,
assembly instructions) that induces the highest possible switching activity within
that target. More precisely, to identify a pair of two instructions (or vectors) (I1, I2)
that can maximize the repeatable constant switching activity of a certain processor
module (i.e., the processor module for which the test engineer is required to generate
stress stimulus) when executed in sequence. Specifically, the sequence induces the
maximum possible constant switching activity within the module. This means that
each instruction of the two-vector pair is able to maximize the number of logical
switches performed from the nets of the targeted module from High to Low (HL) and
from Low to High (LH) manner when they are applied in sequence. Low corresponds
to the logic value 0 and High to the logic value 1. More specifically, that means that
if the application of I1 forces n nets to toggle, then I2 forces the same n nets to make
the inverse transition.

Note that the objective is to maximize the constant switching activity, i.e., induce
the same stress amounts in the processor unit for an arbitrarily long time period (in
clock cycles); hence, it is required for the generated sequence of instructions to be a
repeatable one. Let us assume that for a specific processor module T the optimal
sequence es of two instructions has been found. It is further assumed that the whole
processor has been initialized properly, either via the activation of its RESET signal
or via the execution of a synchronization sequence. The predefined initialization
phase drives the core to a well-defined and legal functional state sa. The first of the
two stress-inducing instructions of the sequence es, drives the processor to a new
state sb. Lastly, the second instruction drives the processor to the same initial state
sa in order for the generated sequence es to be a repeatable one. By satisfying the
aforementioned equivalence that guarantees a repeatable sequence to be generated,
one can maintain a maximum gate switching activity within the processor module T
for an arbitrarily long period of time.

30 Burn-In Test

Assuming that the optimal stress-inducing pair of instructions (es) has been
generated, it can be used to stress the processor module T (e.g., to create a hot spot
within the core) in a constant manner. This can be achieved by repeating the sequencees for as many times as required (e.g., eses...es). After the repetition of the generated
pair of instructions for a sufficiently large number of times, an unconditional jump
instruction can be issued to transfer the code execution back to the start of the
stress segment. The loop can be forcibly stopped, e.g., by issuing an interrupt call.
the whole process can be interpreted as a deterministic finite automaton (DFA) as
depicted in Figure 2.1.

init sa sb

I1

I2

halt

I1

sb

I2

 INTERRUPT

Fig. 2.1 DFA representation of constant and repeatable switching.

2.2.2 Stress evaluation metric

In order to measure the effectiveness of the generated instruction sequences in terms
of stress induced to the target processor module, we use the average induced stress
percent metric. Given that the generic target processor module T consists of m nets
and the generated sequence esn is composed of n instructions, we calculate the average
induced stress percentage as:

stress% =
∑

m
i=1[HL(i)+LH(i)]

n×m
×100 (2.1)

The numerator of the fraction represents the total amount of HL and LH transi-
tions that were performed by every net out of the m existing in the target processor
module T. The denominator of the fraction represents the maximum achievable
value, corresponding to the case where every net of the module makes a transition

2.2 Constant & repeatable SWA maximization 31

(either from HL or LH) when every instruction of the sequence esn is executed. For
example, assuming a sequence of 2 instructions, then the maximum achievable
value would be 2×m, where the first instruction forces all nets to switch, and the
second instruction forces the same m nets to perform the inverse transitions. When
considering a pipelined processor, in the first phase we assume that every instruction
of the sequence is executed by the target module over 1 clock cycle, unless it is stated
otherwise. We will relax this assumption later. Obviously, the denominator value
of the fraction should be interpreted as a theoretical maximum, which can never
be achieved in practice, e.g., due to the presence of uncontrollable lines within the
module T. But most importantly, it is clearly not given that all nets can be toggled in
the same clock period in a functional manner.

1
0

1

0
0

0

0

1
0

0

0
0

Fig. 2.2 1-bit full adder (top) and 3-bit odd parity checker (bottom) maximum switching for
sequences esFA and esodd

parity, respectively

For example, let us consider the two combinational circuits depicted in Figure 2.2:
a 1-bit Full-Adder (FA) at the top and a 3-bit message odd parity checker below.
Further, let us assume that they are initialized in such a manner that all nets hold
the logic value 0. For the case of the FA one optimal sequence that maximizes the
consecutive gate switching is esFA := < I1, I2 > = < 101, 000 >. This sequence forces
3 out of 5 nets to toggle, and there exists no pair of vectors that when applied to the
FA circuit’s inputs can force a higher number of HL and LH transitions than 3. On
the other hand, considering the parity checker, there exists a sequence that forces all
nets to toggle e.g., esodd

parity := < I1, I2 > = < 010, 000 >.

32 Burn-In Test

2.2.3 Search space analysis

The identification of the instruction pair that leads to the repeatable constant maxi-
mization of the SWA of a processor module is a non-trivial task, with an intricacy
that depends on the size and characteristics of the sub-module we are targeting.

For example, let us consider as a target the 32-bit adder of the processor’s
arithmetic and logic unit. In this case, the search space of the problem can be shrunk
significantly, since we know beforehand which instructions have to be considered
in the search, namely, the add/sub instructions of the processor’s instruction set
architecture (ISA). Thus, the problem can be reduced to the identification of the
appropriate pairs of operands that maximize the SWA of the adder unit.

On the other hand, assuming that the stress target is the processor’s instruction
decode unit then the algorithm should not only consider potential operands like
in the case of the 32-bit adder, but a combination of instructions and operands in
order to generate a stress effective instruction sequence. In fact, the search space
should include the majority of the set of instructions supported by the processor’s
ISA. So, for the case of the decoding unit, the task is harder since the search space is
considerably larger than in the case of the adder.

For example, assuming that there is only one integer addition assembly instruction
in the ISA (to simplify) then the search space (Sadder) can be described as a set given
by the Cartesian product:

Sadder = Sinstruction1×Sinstruction2

Sinstruction1 = IN-bit

Sinstruction2 = IN-bit

where IN-bit is the set of all N-bit integers (e.g., if the processor supports 32-bit
registers then this would be the set of all 32-bit integers). In the case of the decoder
being the stress target, then the search space (Sdecoder) can be described as a set given
by the Cartesian product:

Sdecoder = Sinstruction1×Sinstruction2

Sinstruction1 = SISA×Sop

Sinstruction2 = SISA×Sop

2.2 Constant & repeatable SWA maximization 33

where SISA is the set of all instructions supported in the processor’s ISA and Sop is
the set of all operands that are supported by every instruction of the ISA. It is clear
that the size of the set Sdecoder is much greater than the size of the set Sadder.

Thus, as mentioned earlier, one can safely assume that the scalability of the
method depends on the complexity of the targeted processor module. Also, the
structure of the targeted module has an impact on the overall run-time of the method.

2.2.4 Proposed method

The problem is modeled as a MaxSAT problem. The reason for this selection is the
fact that the problem of the maximization of the SWA of a processor’s module can be
seen as an optimization problem. The core idea is to enforce constraints that encode
differences (transitions) between two consecutive clock cycles and thus, maximize
the SWA over those two cycles. Then, the corresponding MaxSAT solver evaluates
these constraints in order to determine the satisfiability of the CNF formula. Lastly,
if the formula is satisfiable it is possible to extract the two input vectors that stress
the maximum by examining the model identified by the solver.

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe0 Timeframe1 Timeframe

PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe

PP
O

PP
I

PI

PO

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe
PP
O

PP
I

PI

PO

sa

Target Target Target Target Target

Initialization Maximization

sb sc

Fig. 2.3 MaxSAT model.

One crucial parameter to the accuracy and effectiveness of the method is the
unrolling depth, i.e., the total number of times the circuit has to be replicated.
As shown in Figure 2.3 (which can be correlated with Figure 2.1) the unrolling
depth is the sum of the initialization phase timeframes plus the maximization phase
timeframes. We have previously explained that we begin from a valid and well-
defined initial state, i.e., there are no DON’T CARE values in the pipeline and the
processor state is a functional one. The initialization step is vital since the underlying
solver is ignorant about the architectural constraints of the pipeline (e.g., a boot

34 Burn-In Test

address must be set before starting the execution of code in the program counter bits).
Thus, if the initialization step is not done, in an attempt to satisfy the formula the
solver may end up with an assignment, which although satisfying the CNF, forces
the processor to a non-functional state. In our case, we assert the processor RESET
signal and unroll the circuit for the minimum number of times that is required for
the effects of the signal to take effect and propagate to the whole pipeline. This
number is architecture-specific, i.e., for a different processor a different number
of initialization timeframes may be required, and this information can be derived
either from the specification of the architecture (if available) or by inspecting the
RT-level description of the DUT. Following the initialization phase, we must define
the duration of the maximization phase, i.e., the three states encoded by the rightmost
timeframes of Figure 2.3. For most of the processor units, the duration (in terms
of clock cycles) for each instruction is one clock cycle. Yet, there are specific
cases (e.g., for the multiplication unit) where the instruction remains active for more
than one clock cycle. Specifically, the exact number of timeframes required for the
maximization phase can be derived from the Equation (2.2) below:

TFmax = (2×duration)+1 (2.2)

As mentioned earlier, the parameter duration is architecture-specific and rep-
resents the number of clock cycles that the instruction requires to be executed in
the module of the pipeline that we intend to stress. Hence, we need twice the duty
cycle duration of the module in order to fully account for the states TFsa

and TFsb

(see Figure 2.3), respectively. Lastly, we need one extra timeframe in order to force
the equivalence of the resulting state after the execution of the second instruction of
the sequence with the initial state, i.e., TFsc ≡ TFsa

.

Up until this point, we have enforced the constraint for the activation of the
RESET signal in the very first timeframe of the unrolled circuit. In general, the
constraints are encoded as clauses and are appended to the circuit’s CNF formula.
In the MaxSAT terminology, two types of clauses exist. The so-called hard clauses,
which must all be satisfied in order for the CNF to be evaluated as satisfiable, and the
soft clauses, whose satisfiability does not affect the satisfiability of the CNF formula.
Each soft clause is also correlated with an integer weight value and so, the goal of
the MaxSAT solver is to find an assignment that satisfies all the hard clauses of the
CNF formula while maximizing the sum of weights for the satisfied soft clauses at

2.2 Constant & repeatable SWA maximization 35

the same time. A uniform weight distribution is used and thus, each soft clause is
associated with the same integer value as a weight.

In Figure 2.3 we have an abstract representation of the proposed MaxSAT model.
The initialization phase consists of the encoding of a hard clause on the core’s
RESET signal that corresponds to the signal activation. For every one of the following
timeframes, clauses are inserted for the RESET signal in order to render it inactive and
thus, to prohibit the solver from using it for the sensitization of lines in the targeted
module. Although it is true that the activation of the RESET signal in certain cases
can cause a significant amount of concurrent transitions, such behavior is abnormal
and thus it must be prohibited in order to enforce a functional scenario within the
pipeline. Moreover, we have previously introduced the idea of repeatable instruction
sequences that maximize the constant SWA of a given module. In order to guarantee
repeatability, every net of the module must have the same value in TFsa

and in TFsc
.

For this reason, every literal that encodes a net of the targeted processor module
during TFsa

(ls
a

neti), along with every literal that encodes a net of the targeted module
during TFsc

(ls
c

neti) are linked together by inserting the following logic implications as
hard clauses to the CNF formula, which guarantee their equivalence during these
two states:

ωhard : lsa

neti ←→ lsc

neti ≡ (¬lsa

neti ∨ lsc

neti)∧ (l
sa

neti ∨¬lsc

neti)

Hence, given that the solver finds a satisfying assignment for the CNF formula, it
is guaranteed that all of the nets of the module will hold exactly the same logic values
during TFsa

and TFsc
and thus, the generated sequence is indeed repeatable. Besides

the states’ equivalence, we also have to encode the corresponding switching of the
module’s nets between the timeframes TFsa

and TFsb
. This switching corresponds to

soft clauses, i.e., we request from the solver to satisfy as many switching transitions
as possible. For every net i of the targeted processor module we encode an XOR gate
on the CNF as a hard clause, whose inputs are the corresponding literals for the net i
in TFsa

and TFsb
, respectively. In order for the switching requirement to take effect,

we further encode soft clauses (l⊕diffi
) that correspond to the output of the XOR gate

and require it to be 1 as shown below:

36 Burn-In Test

ω
hard : (lsa

neti ∨ ¬lsb

neti ∨ l⊕diffi
) ∧

(¬lsa

neti ∨ lsb

neti ∨ l⊕diffi
) ∧

(lsa

neti ∨ lsb

neti ∨ ¬l⊕diffi
) ∧

(¬lsa

neti ∨ ¬lsb

neti ∨ ¬l⊕diffi
)

ω
so f t : (l⊕diffi

)

lsa

neti⊕ lsb

neti in CNF

The first four clauses correspond to the Tseitin transformation of the XOR
(lsa

neti⊕ lsb

neti⇔ l⊕diffi
) gate in order to be represented as a CNF. The very last unit clause

requests that the output of the XOR gate must be evaluated as 1. Thus, if satisfied it
corresponds to a difference between the two literals that encode net i in TFsa

and in
TFsb

i.e., the corresponding net performed an HL or an LH transition. Due to the
state equivalence enforced by the aforementioned hard clauses, it is redundant to
enforce another set of switching constraints for the target module’s nets between
TFsb

and TFsc
since it is already implied due to the equivalences enforced for TFsc

and TFsa
.

When it comes to the application of functional constraints (e.g., ISA encoding,
memory mapping, program counter limits), a VCM circuit is employed which is
responsible for embedding them in the CNF in the manner presented in Section 1.4.2.

Assuming that the solver managed to satisfy the CNF, we can now extract the
input vectors in the corresponding timeframes and compose the stress-inducing
sequence. In order to do so, we need to identify the literals that are used to encode
the PIs of the module and extract the 0/1 logic values from the found model. For
instance, considering the FA circuit of Figure 2.2, we can extract the first vector
v1 := < 1, 1, 0 > from the first timeframe and the second vector v2 := < 0, 0, 0 > from
the second timeframe by examining the assignments of the corresponding input
literals. In the general case, we can extract and disassemble the N-bit instructions
from the respective pipeline instruction register and use it in combination with the
previously decoded vectors in order to compose an assembly program that effectively
stresses the target processor module. In the general case, one can always use the
instruction bus of the processor as a probing point and disassemble the N literals
back to N-bit instructions (while always respecting the bit order).

2.2 Constant & repeatable SWA maximization 37

2.2.5 Experimental results

The proposed method has been applied to two single-issue, scalar, pipelined RISC
processors, namely to the OR1200 [62] and to the RISC-V processor RI5CY [63]. The
OR1200 is a 32-bit scalar RISC processor using the Harvard micro-architecture. It is
mainly intended for embedded, portable and networking applications. The processor
RI5CY is a 4-stage in-order 32-bit RISC-V processor core. The ISA of the processor
was extended to support multiple additional instructions including hardware loops,
post-increment load and store instructions, and additional ALU instructions that
are not part of the standard RISC-V ISA. RI5CY has become a popular core for a
huge variety of applications and especially for Internet-of-Things designs. Both
processors’ RT-level descriptions were synthesized using the Silvaco 45nm Open
Cell Library [64] via Design Compiler by Synopsys.

The experiments were performed on a machine using an Intel i9-9900 processor
running at 3.10GHz. For every sequence generated for the targeted modules within
the considered processor cores, a logic simulation environment was set up using
QuestaSIM by Mentor Graphics. Specifically, during the simulation of the generated
stress-inducing sequences, the targeted processor module was isolated and a toggling
evaluation was performed for every clock cycle. The reported results from every
processor module were then aggregated and post-processed in order to calculate the
stress induced via Equation (2.1).

Table 2.1 Experimental Results

Processor
Stress Program

Generation Approach
Average Induced Stress CPU Generation Time

Adder Decoding Unit Load Store Unit Adder Decoding Unit Load Store Unit

OR1200
MaxSAT 82% 91% 65% 3sec 15min 8sec

Stuck-At Test Program 24% 44% 57% -

RI5CY
MaxSAT 76% 36% 34% 5sec 14min 7sec

Stuck-At Test Program 73% 30% 32% -

For both cores, the units that we targeted to generate stress-inducing stimuli are:
(i) the 32-bit Adder of the processors’ ALU (ii) the Instruction Decode unit (iii) the
Load and Store unit.

In order to have a mean of comparison with our results, both cores we use for
hand-written test programs that reach a high stuck-at fault coverage (>85%). These
test programs are simulated in the same manner as the generated sequences and
their effects on the targeted processor units in terms of induced switching activity

38 Burn-In Test

are investigated clock cycle per clock cycle. The results are then post-processed in
pairs of two consecutive instructions in order to effectively compare them with the
instruction pair of the MaxSAT-generated sequences. The highest stress-inducing
pairs are considered in the comparison presented in Table 2.1.

Experimental results show that for both processor cases, for all considered
functional units, the proposed method generated sequences that outperform the
respective segments found in the functional stuck-at test programs. Most importantly,
there is a notable difference in the case of the Decoding Unit and the Load and Store
Unit of the RI5CY core. One can see that in fact, the maximum sustainable switching
activity is lower than that of the respective units in the OR1200 processor. Although,
one cannot directly compare two completely different (structurally) circuits this
deviation is fully justified by the complexity imposed by the respective units in the
case of the RI5CY processor. It is safe to assume (as can also be seen in Figure 2.2)
that as the complexity of the module increases, the percentage of possible concurrent
logical switches within a circuit decreases, i.e., they are related in an inversely
proportional manner. Regarding the two units, in the case of the RI5CY processor,
it is true, that they cover a significantly larger set of instructions than those of the
OR1200 processor. Lastly, it can be seen that there exists no clock cycle, during the
application of the stuck-at test program on the RI5CY core, in which a higher number
of concurrent toggling was found than the number of concurrent toggling induced by
any of the generated instructions.

Table 2.2 Supplementary Comparisons

Generation
Approach

Average Induced Stress
Adder Multiplier Decoding Unit Load Store Unit

MaxSAT 82% 62% 91% 65%
Evo 61% 55% 63% 58%
Test Program 24% 6% 44% 57%

In order to provide the reader with a further comparison, we have also developed
stress programs for the OR1200 processor (considering the same modules) via µgp
[65], which is an evolutionary optimizer that was developed to produce assembly
programs maximizing a given fitness function for a variety of processors. The
implemented evolutionary algorithm is similar to the one described in [13, 14]. We
also considered the special case of the 32-bit multiplier unit. The results are reported
in Table 2.2 below.

2.3 2-Multi-Point SWA maximization 39

We can clearly see that although the evolutionary-based stress program generation
yields sequences of instructions that are better in terms of induced stress in the
considered processor units than the test programs, they are sub-optimal solutions and
thus, the proposed method outperforms them in all cases. For the case of the 32-bit
multiplier though, the required CPU time was quite large (approximately 85 hours),
and considerably greater than for the rest of the considered units. It is well known
that the arithmetic multiplier circuits represent an arduous task for formal methods
[66, 67]. In order to overcome the complexity imposed by the multiplier circuit, a
heuristic sampling approach was employed. Specifically, instead of generating a
switching constraint for every net of the multiplier unit, we sampled a portion of
high fan-out nets of the circuit and enforced switching constraints only on them.
This implies that since the circuit has not been fully considered (in terms of nets
being constrained for maximization), the generated solution is still a sub-optimal
one, although better than the one produced with other approaches.

2.3 2-Multi-Point SWA maximization

In this section, while also covering the case where the DUTs are sub-modules of a
pipelined microprocessor, the aim is to present a methodology, based on bounded
model checking (BMC), for generating stimuli that maximize the SWA of a tar-
geted module of the core while considering topological, layout information about
neighboring nets of the design. That is, the DUT is dissected into neighborhoods
consisting of 2 nets, and for each group, we aim to generate a functional sequence
(i.e., an assembly program) that enforces all possible transitions. IC manufacturers
steer towards the usage of such stress-inducing approaches due to their effective-
ness in generating targeted heat gradients within the DUTs. This is achieved by
incorporating information derived from the layout of the designs. The proposed
algorithm optimally solves the problem by relying on formal methods. Although the
considered DUT is a microprocessor, there are no limitations to the applicability of
the method to other sequential circuits.

40 Burn-In Test

2.3.1 Problem definition

Given the gate-level description of a processor and assuming that the layout L of the
target processor’s sub-module M is available, then it is possible to know the pairs
of nodes which are neighboring, i.e., they are placed within a minimum specified
distance from one another. Given a list that contains pairs, with each pair consisting
of two neighboring nodes, the goal is to generate functional stimuli (i.e., snippets of
assembly code) that each force the maximum switching activity for a pair of nets
within the targeted unit. In other words, for every pair of two nodes, to generate a
sequence of instructions that is able to induce both transitions to each pair starting
from a well defined initial state. Furthermore, given that the resources (e.g., tester
memory) are limited during the BI test, the case where the generated instruction
sequence length is minimal is considered. This means the transitions of the nodes
must happen over a short period of clock cycles.

α

β

I2 α

βI1

I3 α

βI4

W

init

init

Fig. 2.4 DFA representation of 2-multipoint switching for a neighborhood of 2 nets.

The process can be visualized as a DFA as shown in Figure 2.4. Considering
a pair of two neighboring nodes (α , β), they are initially assigned a logic value
stemming from the initialization phase. The initialization phase can be either the
result of an initialization sequence or the state that follows the activation of the
global RESET signal of the processor. Thus, after both nets are assigned a logic
value α , β ∈ B, the application of the optimal switching sequence begins with the
execution of instruction I1 causing the second net to toggle. Following that, the
execution of the second instruction of the sequence I2 forces the first net to toggle,
and consequently, instruction I3 sets it back to the logic value imposed by the
initialization phase. Lastly, the second net follows which is also set to its initial logic
value by the instruction I4.

2.3 2-Multi-Point SWA maximization 41

In this scenario, which presents the ideal case, the neighborhood has been fully
sensitized since both nets toggled twice. Also, as it is required the sequence of
transitions occurs over a small time window (W). This parameter is crucial given that
for each net neighborhood of the stress target a sequence will be generated. Thus,
the total memory footprint for storing the stress-inducing stimuli has to be minimal.
It is of course possible for both nets to perform a transition at the same time by the
execution of a single instruction. Clearly, it is also not given that this switching
pattern will be possible for every pair of nodes, due for example to uncontrollable
lines or to the inability of both nodes of a pair to perform both transitions from their
initial states as shown in Figure 2.4.

2.3.2 Stress evaluation metric

When it comes to the evaluation of the stress induced in the DUT by the application
of stress stimuli, the test engineers may resort to single-point metrics which evaluate
how many times each net of the DUT toggle. Such metrics are useful for computing
extended statistics for the DUTs such as the number of times a net toggles during the
test stimuli application or the average toggling frequency of the circuit. However, the
proposed method is based on the concept of the multi-point switching metric [47].

In order to compute the effectiveness of a generated instruction sequence (seq)
of a given pair (α,β) of nets, the stress efficiency metric (SE) is introduced which is
defined as follows:

SE(seq) := ∑
i∈{α,β}

T (i,seq) |init (2.3)

where T is a function that computes the number of states (transitions) reached
from the initial init state of node i during the application of the sequence seq. Thus,
the range of values that can be held by the function T used to compute Equation (2.3)
is {0,1,2,3,4}.

For every pair of nodes, we are interested in generating functional sequences for
which the SE function gives the maximum value (4), meaning that both nodes were
forced to perform both transitions. Note that our metric differs from the multi-point
stress metric introduced in [47]. Namely, we do not only consider the case where the
nodes of each pair hold opposite initial values. Instead, we generalize by considering

42 Burn-In Test

A
B

C

<0,1,0>
<0,0,0>

<1,1,1>
<0,0,0>

<0,1,1>
<1,1,0>
<0,0,0>

Fig. 2.5 Maximum stress efficiency sequences for a net pairing on a full adder.

whichever initial value for both nodes. In Figure 2.5, a full adder is presented as
an example that has been dissected into neighborhoods of size 2. Then, assuming
that all gates’ outputs are initialized to logic 0, an optimal sequence that enforces
both transitions starting from the initial state is computed. Note that as mentioned
earlier, for the group depicted with green color and the group depicted with red color,
it is possible with just 2 functional vectors to obtain a SE of 4. This is the optimal
scenario as not only is the maximum SE value achieved but also with the minimal
amount of vectors. However, clearly, this is not always possible. As can be seen,
with the group depicted in blue, the maximal SE value of 4 can be achieved with
a minimum of 3 functional vectors. Lastly, by considering Equation (2.3) as an
objective function, the goal can be defined as an optimization problem:

∀ pair ∈ L : max
seqpair

{SE(seqpair)}|#seq ≤ W

2.3.3 Search space analysis

Similarly to the explanation provided in Section 2.2.3, the problem’s search space
depends once again on the characteristics and also the size of the sub-module of
the processor that we are considering as a stress target. The size of the stress target
affects the total number of nets, and thus the total amount of neighborhoods for
which an optimal stress-inducing functional sequence must be generated. Thus, the
size of the search space increases proportionally with the size of the stress target.

2.3 2-Multi-Point SWA maximization 43

Furthermore, the complexity of the targeted processor module affects the search
space. For instance, once again by considering as a stress target the processor’s
32-bit adder, we know beforehand the assembly instructions to be used. Hence,
the search space is limited to the total combination of operands. Conversely, when
considering the processor’s decoding unit as a stress target, then the search space is
also affected by the total combination of opcodes (i.e., assembly instructions) on top
of the combination of operands. One key parameter that differentiates this approach
from the approach presented in Section 2.2, is the usage of the parameter W. As we
have seen in the example of Figure 2.5, the total number of instructions may exceed
two in order to obtain the optimal SE from a functional sequence.

Hence, the search space for the optimal sequence required to stress a pair of the
modules can be approximated by the Cartesian product:

Sseq ≤
W

∏
i=1

Sinstructioni

The reader should note that the set Sinstructioni differs according to the functional
unit we target. It holds that Sadder

instructioni
≪ Sdecoder

instructioni
since the decoder is responsible

for handling every instruction of the processor’s ISA, which means that the search
space for the case of the decoder is much larger than the search space for the case of
the adder.

2.3.4 Proposed method

The method used to model the problem is BMC. The reason for this is due to the
nature of the maximization problem. For an arbitrary group comprised of 2 nets,
the requested sequence must be generated at most within a specified window of
timeframes (W) rather than a strict, predefined static amount of timeframes. This
means, that the generated process may be generated, e.g., in two or in three clock
cycles (as shown in the example of Figure 2.5). This behavior points towards the
usage of incremental SAT solving, hence the usage of a bounded model checker.

As explained in Section 1.4, During bounded model checking, we embed a
desired property (P), i.e., the desired switching activity is reached, into the CNF
formula by defining an upper bound (k) we ask the underlying solver to check
whether this property can be reached up to a maximum depth k starting from a well

44 Burn-In Test

defined initial state (I) by following a transition relation (T). The general CNF
formula for an arbitrary step k is built as:

CNFk = I0 ∧
k−1̂

i=0

T i → i+1 ∧ Pk (2.4)

Note, that the so-called classical BMC aims to show that an invariant (safety
property) P can be falsified i.e., ¬P can be reached in at most k steps [45]. We
use the equivalent ¬Pk := Pk, where P is equal to “the target switching activity is
reached”.

During each step, a call to an SAT solver is issued. If CNF is satisfiable then this
means that the property is satisfied. Otherwise, no conclusion is drawn and the next
iteration begins. If however, during the last step (i.e., maximum unrolling depth k is
reached) the CNF is proven unsatisfiable then no valid assignment exists that can
satisfy the desired property within k steps.

Considering the problem at hand, the maximum depth k is the parameter W of
the method. As an initial state I, the process stemming from the activation of the
reset state of the processor is considered and thus what is missing is the definition
of the property. What we want to embed as a property to the BMC problem is the
following: “For a pair of neighboring nets (α , β), does there exist a sequence of input
vectors that can force both transitions starting from I?”. However, (i) a mechanism
of encoding this property into CNF must be formulated and (ii) it is not given that
the maximum toggling i.e., that both nets can switch twice is given. Let us consider
the sequential circuit of Figure 2.6 as an example of our DUT.

x = 0, r = 0 x = 1, r = 0

{y} {x, α, β}

x = 0, r = 1

{r, α, β}

x = 1, r = 1

{x, y, r, α}

D Q

x

r

yα

β

Fig. 2.6 Kripke structure for example sequential circuit as DUT.

2.3 2-Multi-Point SWA maximization 45

The group of nets to be stressed is α and β . The initial state for the DUT is
considered to be r = 0. Hence, the Kripke structure [68] of the sequential circuit can
be generated as shown on the right side of Figure 2.6. The initial state I is highlighted
in the yellow color and the transition states T i → i+1 are highlighted in blue. Each
state shows the set of circuit points that evaluate to logic 1 enclosed in brackets.
Furthermore, the combination of PIs/PPIs that drive the circuit to the corresponding
state is shown within each state. As we can see, the maximum switching that can be
achieved for the pair (α , β) starting from I is 3 since there is no way for the net α

after switching from L to H to switch back to L whereas for net β this is possible by
switching back and forth from the bottom states of the Kripke structure.

D Q

x

r

yα

β

x = 0, r = 0 x = 1, r = 0

{y}

{x, α, β}

x = 0, r = 1

{r, α, β}

x = 1, r = 1

{x, y, r, α}

D Q

D Q D Q

D Q

qα
1 qα

0

{qα
1, q

β
1}

{qα
1, q

β
1, q

β
0}{qα

1, q
β
1}

0

1
S1

0

1
S

D Q

S
1

0

1

D Q

S
1

0
qβ

1 qβ
0

D Q

Fig. 2.7 Proposed method concept.

However, what is missing from the example, is the target property P. The
method’s mechanism that implements the embedding of the multi-point switching
property is presented in Figure 2.7. Initially, each net of interest (i.e., α and β) is
intercepted and difference detectors are added (colored orange) for each one. Albeit
being internal circuit parts which by traditional electronic design automation (EDA)
tools are inaccessible, in the domain of propositional logic we know which literals
are mapped to each gate, and thus we can easily access and constrain them (see
Figure 1.5). The purpose of the difference detector circuits is to detect whether a

46 Burn-In Test

toggle has been performed in the current clock cycle by comparing it with the latched
value that each net holds. The D Flip-Flop (FF) holds the previous value of the net
and in each timeframe this value is compared against the current value the net has.
Extra care is taken to assign each FF of the difference detectors the initial value the
nets α and β hold rather than initializing them to 0. This is because it is not always
given that every net of a design is initialized to 0.

The circuits colored in purple are unary counters. These counters use the unary
system (base-1) which represents each natural number by a corresponding number
of 1-symbols. They count the number of transitions for each net. Since each net,
starting from the initial state can perform at most two transitions, two-bit counters
are used which are initialized at 0 as indicated by the Kripke structure. The Kripke
structure of the enhanced version of the DUT has been updated with a second set of
signals that are positively assigned on each state. The signals qx

y correspond to the
net x and the bit index y of the respective counter. In the current state, we can define
the BMC target P as (qa

0 ∧ qb
0). This means for the circuit to reach a state where

both unary counters to hold the value 11.

However, as we observed from Figure 2.6, the neighborhood (α ,β) cannot
achieve a SE of 4. Hence the current BMC problem, after reaching the maximum
unrolling depth k=W, would yield Unreachable, indicating that there exists no
stress sequence that can achieve a SE of 4. However, it is possible to achieve a SE of
3. In Figure 2.7 this corresponds to the state of the Kripke structure which is colored
in green.

To account for all possible switching count permutations the following strategy
shown in Algorithm 1 is employed:

Initially (lines 1 to 7), we generate all switching permutations for the neighbor-
hood. Considering that each net’s switch count can be 0, 1, or 2 and that there are 2
nets per neighborhood, the total number of permutations is 32 = 9. However, out of
these permutations, we do not care for the permutation (0,0) i.e., for neither net to
switch. After the permutations are sorted in a descending order of their switching
sum starting from (2,2) down to (1,0) and (0,1) a call to a BMC solver is issued. If
the solver responds with Reachable the generation stops and the stress sequence
is extracted by decoding the PI literals to 0/1 logic for each TF. The loop continues
until either a Reachable state is found or no further permutations are left to consider.
In the latter case, this means that the current neighborhood is uncontrollable since no

2.3 2-Multi-Point SWA maximization 47

Algorithm 1 Stress sequence generation for arbitrary neighborhood (α,β).
1: switching_permutations← {}
2: for i← 0,2 do
3: for j← 0,2 do
4: switching_permutations← (i, j)
5: end for
6: end for
7: SortSumDescending(switching_permutations) ▷ (2,2), (2,1), (1,2) ... (0,0)
8: perm_index← 0
9: S← NIL

10: repeat
11: S← Solve(switching_permutations[perm_index])
12: perm_index← perm_index + 1
13: until S = Reachable || perm_index == len(switching_permutations) - 1

sensitization pattern exists under the considered functional scenario. Lastly, to incor-
porate functional constraints in the stimuli generation process a VCM is employed
(see Section 1.4.2) which is responsible for prohibiting any kind of non-functional
state from being reached during the BMC process. Note that the presented algorithm
can be extended to maximize the SWA for arbitrary groups of N nets, e.g., N=3
(triplets) instead of N=2 (pairs), resulting in a complexity of O(3N) for each group.

2.3.5 Experimental results

The proposed method has been applied to the RI5CY processor, synthesized using the
Silvaco 45nm Open Cell Library [64] via Design Compiler by Synopsys. Since we
did not have the actual layout of the processor available, we generated an artificial
layout-derived mapping of the nets of the functional unit to be stressed instead.
Without loss of generality, for every unit, we grouped the internal nets and divided
them into unique pairs by using a uniform distribution.

As stress target modules within the RI5CY core we used:

• the 32-bit adder, consisting of 538 internal nets that were grouped into
538

2 = 269 node pairs

• the decoding unit, consisting of 616 internal nets that were grouped into
616

2 = 308 node pairs.

48 Burn-In Test

Table 2.3 Experimental Results

Stimulus
Type

Generation
Approach

Adder Decoding Unit

Runtime Stress Efficiency (SE) Runtime Stress Efficiency (SE)
0 1 2 3 4 0 1 2 3 4

Functional
BMC 8 min 0.74% 0.00% 14.58% 0.00% 84.75% 15 min 0.65% 0.00% 12.34% 4.87% 82.14%
STL - 1.12% 0.00% 14.87% 0.00% 84.01% - 0.32% 0.32% 19.16% 2.60% 77.60%

Non Functional SCAN - 0.37% 0.00% 1.86% 1.86% 95.91% - 0.65% 0.00% 13.27% 3.56% 82.52%

The results of the experiments are shown in Table 2.3. The table shows the
percentage of pairs of nodes that achieve a given stress efficiency (from 0 to 4). All
sequences generated had a length of W ≤ 10. The ideal window size W is dependent
on the underlying micro-architecture. In the case of RI5CY, we experimentally
verified that the optimal stress efficiency achieved by both methods does not increase
if the window size is bigger than the aforementioned value. The results of both
methods were compared with those produced by an STL achieving 95% of functional
stuck-at fault coverage on the whole processor with a duration of approximately
130k clock cycles. In order to accurately compare our results with the STL we
performed a coverage profiling logic simulation. Namely, we calculated the number
of transitions for all pairs for both units every W=10 clock cycles. The chunk of
instructions achieving the maximum value of Equation (2.3) is used for comparing
with our results.

As a reference, we performed a further comparison with DfT-based stimuli. After
converting the processor into its scan equivalent, we launched an ATPG process,
using TestMAX by Synopsys, and considered the generated vectors. By using
a test-bench written in SystemVerilog we applied the patterns and computed the
maximum stress efficiency they induced to the DUTs in a manner identical to the
SBST program (i.e., by using a window of W=10 capture cycles). For the case of the
adder, we can see that with scan it is possible to optimally stress pairs of nodes that
no functional method managed to toggle. The same can be seen in the case of the
decoder. This is expected, since as it has been showcased in [48] DfT approaches
enable a better stress distribution since they simultaneously exercise many cells in
the circuit. Yet, for both cases, we can see that the stress efficiency of the proposed
methods is not that far off from the case of scan-induced stress. On the other side,
functional stimuli can be applied at-speed to the DUTs (in contrast to scan), thus
can be better for exciting possible weak points in the circuit. Moreover, functional
stimuli are guaranteed not to stimulate the circuit differently than in the operational
mode (thus avoiding any form of overtesting).

2.3 2-Multi-Point SWA maximization 49

Table 2.4 Supplementary Comparisons

Stress Target Runtime Stress Efficiency
0 1 2 3 4

Adder 6 h 0.74% 0.00% 14.58% 0.00% 84.75%
Decoding Unit 171 h 0.97% 0.32% 23.70% 2.92% 72.07%

In order to provide an additional comparison, we have also implemented in µgp
an evolutionary-based approach to generate stress-inducing sequences maximizing
the employed stress metric [15]. The results are presented in Table 2.4. For the
evolutionary approach, we constrained all sequences to have a fixed length of W=10
instructions. For the case of the adder, we can see that both methods converged to the
same results by achieving to force 84.75% of the unit’s pairs to all 4 combinations of
values in the target time window. Both methods were found to slightly outperform the
stuck-at STL in terms of induced stress. For the case of the decoder, the BMC-based
approach outperformed the evolutionary-based one and also the STL program by
achieving a notable stress efficiency of 82.14% while the rest achieved 72.07% and
77.60% of optimal switching, respectively. Furthermore, the pair switching is also
achieved in a notably shorter period of time than in the case of the STL. For instance,
if we concatenate the generated sequences by the evolutionary-based approach for
a given unit into a test program the final size would be 10× total_pairs in terms of
instructions whereas for the BMC-based approach, this would be ≤ 10× total_pairs.
It is also clear that the latter dominates the former in terms of CPU runtime since
for both test generation procedures it converged faster by orders of magnitude, most
notably for the case of the decoder.

The justification is the following. Firstly, the way the two methods approach the
problem and generate solutions is different. The evolutionary algorithm starts from
a completely random (yet valid) set of sequences that are refined in every iteration.
Thus, the initial solutions may in fact be far off from the optimal point, and hence
longer times are required for the algorithm to converge. On the other hand, the BMC-
based algorithm starts by searching for a solution sensitizing both nodes at the same
time. As most node pairs are shown to be fully sensitizable, it is rare that multiple
BMC problems need to be solved and fast reasoning is achieved. Additionally, the
BMC algorithm increases the number of timeframes gradually starting by searching
for short, easy-to-compute sequences aiding in reducing the runtime. In theory,
through the k-induction [69] and Craig interpolation [70] implemented in the BMC

50 Burn-In Test

solver, unsensitizable node pairs can be found before reaching the maximum depth
W, which increases the convergence speed of the optimization loop.

Chapter 3

Functionally Untestable Faults
Identification

3.1 Background

From the design phase of an integrated circuit (IC) up to the end of the manufacturing
phase, but also during the operational phase of the circuits, meticulous testing
procedures are applied in order to evaluate and in certain cases (e.g., the safety-
critical domain) guarantee that each design works as it was specified and intended.
However, in certain end-of-manufacturing tests (e.g., during the structural test) but
also during the in-field functional tests, especially in the safety-critical domain, the
stringent reliability safety standards mandate extremely high fault coverage (FC)
thresholds to be met, in order for an electronic product to be compliant, and thus
considered as a part of a safety-critical system.

To provide some perspective, considering the ISO-26262 safety standard regard-
ing the functional safety of electrical and electronic systems in road vehicles, each
application of the system is characterized by an automotive safety integrity level
(ASIL). As an example, let us consider the entertainment system of a modern auto-
motive vehicle against the subsystem responsible for the airbag control. Obviously,
a failure in the entertainment system of the vehicle is less severe than a failure in
the airbag control system. To quantify the severity of each ASIL level classes have
been devised ranging from quality management (QM), indicating that all assessed
risks are tolerable from a safety perspective minor severity, and ASIL A, which is

52 Functionally Untestable Faults Identification

the lowest rating of the functional safety, up to ASIL D which mandates the most
stringent level of safety measures to apply. For each category, the safety standard
introduces the probabilistic metric of hardware failures (PMHF), which reports the
robustness of the system against generic random hardware faults and is expressed
in an absolute number called failures in time (FIT), which is the number of failures
expected in one billion hours of operation. Furthermore, the standard introduces the
single point of fault metric (SPFM) to quantify the resilience of a given component
against single-point faults, while resilience against latent faults is expressed by the
latent fault metric (LFM).

Table 3.1 Failure metrics per ASIL according to ISO-26262

ASIL PMHF (FIT) SPFM (%) LFM (%)
A < 1000 - -
B < 100 ≥ 90 ≥ 60
C < 100 ≥ 97 ≥ 80
D < 10 ≥ 99 ≥ 90

Table 3.1 contains all of the aforementioned metrics as they are defined in the
ISO-26262 standard per ASIL. These metrics, especially the SPFM and LFM, are
evaluated by FC percentages. Similar classification and quantification are mandated
by other safety standards as well, e.g., DO-254 for aviation, IEC-62279 for railways,
and IEC-62061 for industrial machinery.

However, to reach such percentages by means of either structural or functional
tests a major requirement is that the vast majority of the DUT structures are control-
lable and testable. That is, for almost all faults of the design we can generate a test
vector that is able to excite and propagate the fault effect to an observable point of
the design. However, in reality, this is rarely the case. As new generations of ICs
are following an iterative design approach from which parts are either omitted or
refined, it is typically the case that certain parts of the circuits are either unused (thus
uncontrollable) or given the application profile they become functionally uncontrol-
lable or unobservable, or both. As explained in Section 1.3.2 the presence of such
untestable faults has a negative impact on the computation of the FC. Hence, they
must be identified and excluded from the final coverage computation.

3.1 Background 53

The research community has put a lot of effort into developing methodologies
for identifying untestable faults in the past under various fault models. What follows
is an overview of such works, classified according to the employed fault model.

3.1.1 Previous works referring to the stuck-at fault model

The authors of [71, 72] propose an efficient method to identify sequential redundant
faults when adopting the stuck-at fault model. Their approach focuses on identi-
fying Flip-Flops (FFs) that cannot be initialized and circuit lines that cannot be
controlled to definite values. They classify redundant faults into four types and use
this classification to improve the efficiency of test generation systems. This method
involves a simple procedure to find uncontrollable lines, aiding in the identification
of invalid states and redundant faults, thereby enhancing test generation system
efficiency. While their method efficiently identifies sequential redundant faults, it
has a disadvantage in terms of computational complexity for large circuits. This is
because the process involves an exhaustive search to identify uncontrollable lines
and invalid states, which can become computationally intensive as the size of the
circuit increases.

In [73] the authors of the FIRE algorithm [74] propose as an extension a novel
fault-independent algorithm for identifying untestable faults in sequential circuits
under the stuck-at fault model, termed FUNTEST. This method avoids exhaustive
searches by utilizing simple implications to identify conflicts in the circuit that
indicate untestability, requiring no global reset state or state transition information.
This approach significantly outperformed the traditional exhaustive search methods
in identifying untestable faults, offering a speed-up of up to three orders of magnitude
at that time. However, it is noted that while FUNTEST efficiently identifies a large
subset of untestable faults, it does not guarantee the identification of all such faults
in the circuit.

In [75] the authors introduce two theorems for identifying untestable faults in
sequential circuits using combinational automatic test pattern generation (ATPG).
The first theorem focuses on single faults within a combinational array, indicating
that if a fault is untestable in this context, it remains untestable in the broader
sequential circuit. The second theorem extends this concept to multi-fault scenarios,
suggesting that untestable multi-faults in a combinational array correlate to untestable

54 Functionally Untestable Faults Identification

single faults in sequential circuits. This approach leverages combinational ATPG
to simplify and enhance the efficiency of identifying untestable faults in sequential
circuits, offering a practical method without the need for an exhaustive search or
reset state. However, the effectiveness of their methods might be reduced in highly
sequential circuits or in circuits where sequential behavior significantly influences
fault testability. This implies that while the method is powerful for a wide range
of applications, its utility could be constrained in circuits with complex sequential
interactions or minimal combinational components.

In [76] the FILL and FUNI algorithms are presented, which focus on identifying
illegal states and sequentially untestable faults in synchronous sequential circuits
without assuming a global reset mechanism. FILL uses binary decision diagrams
for efficient identification of a large subset of illegal states, while FUNI identifies
untestable faults that require some of these illegal states for detection, working
faster and identifying many untestable faults without exhaustive search required by
automatic test generation procedures. However, FILL cannot detect illegal states
forming cycles of length two or more, trading completeness for simplicity and
efficiency. In [77], the MUST algorithm is presented as another extension of the
FIRES algorithm for identifying sequentially untestable faults in circuits without
exhaustive search. MUST extends the FIRES algorithm by performing multiple-stem
analysis, identifying additional untestable faults that single-stem analysis misses. It
significantly reduces the run-time compared to sequential ATPG by using a more
efficient computational approach, although it does not guarantee the identification
of all untestable faults. The method’s limitation lies in its focus on faults requiring
multiple stem assignments, potentially overlooking complex conditions for fault
detection.

More recently, the authors of [78, 79] present innovative strategies for identifying
untestable faults in sequential circuits. These works introduce fault-independent
techniques, including a theorem for fault injection across any timeframe and a method
for maximizing local impossibilities to detect multinode conflicting assignments.
Together, these approaches advance the capability to identify untestable faults beyond
the limitations of previous methods, offering more efficient and comprehensive tools
for fault analysis in complex sequential circuits.

The authors of [80] introduce a novel approach for identifying untestable stuck-
at faults at the RT-level using model-checking. This method, distinct from logic-level

3.1 Background 55

analysis, efficiently identifies untestable faults by generating property specification
language assertions. The technique allows for the formal verification of untestable
faults in sequential synchronous designs, demonstrating effectiveness in reducing
testing complexity and enhancing high-level test synthesis. However, it acknowl-
edges that while it captures a large subset of untestable faults, it may not identify all
such faults, indicating a trade-off between comprehensiveness and computational
efficiency.

Lastly, in [17] the authors present methods for identifying on-line functionally
untestable faults in embedded processor cores. Their approach focuses on the chal-
lenges of functional testing under on-line conditions, identifying faults related to
debug/test circuitry and memory configuration constraints. They propose techniques
for measuring the impact of these untestability sources on fault coverage, with exper-
imental results showing a potential fault coverage loss of more than 13%. This work
highlights the complexity of ensuring comprehensive fault coverage in embedded
systems, particularly when functional tests must be executed on-line. Similarly,
in [20] the authors present a semi-automated approach for identifying on-line func-
tionally untestable faults in microprocessor cores within safety-critical systems. They
highlight the significance of these faults, often overlooked yet crucial for achieving
desired fault coverage in in-field tests. Their method, focusing on the fixed appli-
cation code executed by the processor, demonstrates that a considerable number of
faults can be untestable due to the specific operational conditions, contributing to
more efficient testing and reliability analysis efforts.

3.1.2 Previous works referring to delay fault models

The research community has extensively focused on the identification of untestable
faults, with particular emphasis on the prevalent stuck-at fault model, which effec-
tively characterizes a significant majority of cases. Notably, safety standards such
as ISO-26262 have introduced requirements for the consideration of delay faults.
Consequently, the exploration of untestable faults has expanded to encompass the
comprehensive analysis of delay faults, reflecting the evolving landscape of fault
models in safety standards.

In [81] the authors propose an algorithm to identify untestable delay faults in
digital circuits quickly. Utilizing pre-computed static logic implications, their fault-

56 Functionally Untestable Faults Identification

independent approach can identify large sets of untestable faults without enumeration,
offering a lower bound on the number of such faults. This method, applicable to
both segment and path delay fault models, significantly speeds up the process by
avoiding exhaustive searches when compared to typical ATPG tools. However, it’s
noted that the method provides only a lower bound on untestable faults due to its
reliance on an incomplete set of logic implications.

In [82] the authors propose an efficient method to identify untestable path delay
faults (PDFs). Their approach reduces the runtime and memory requirements of
traditional methods by leveraging equivalence relations between sub-paths within
fan-out-free regions of a circuit. This method dynamically prunes the search space
to identify pairs of sub-paths that cannot be sensitized together, thus speeding up
the identification of untestable paths. However, the authors acknowledge that the
requirement to generate sensitization conditions for each sub-path only once can
increase memory usage in large circuits and that the computation time may grow
quadratically with the number of fan-out-free region sub-paths.

In [83] the authors introduce a novel approach to identifying functionally untestable
transition faults in non-scan sequential circuits. They develop a new dominance
relationship for transition faults and utilize it to identify a larger number of untestable
faults efficiently. The method is structured in two phases: initially identifying a broad
set of untestable faults through fault-independent logic implications across multiple
time frames, then refining this set by applying dominance relationships to pinpoint
additional untestable faults. This technique has been shown to significantly outper-
form previous methods in experimental evaluations, identifying more untestable
faults with less computational effort. While the method efficiently identifies a signif-
icant number of untestable faults, it does not guarantee the identification of all such
faults. The limitation arises because the approach, although advanced in utilizing
logic implications and dominance relationships, may overlook some untestable faults
due to the inherent complexity of the circuits or the method’s reliance on specific
fault models and assumptions.

The authors of [84] introduce a comprehensive methodology for pinpointing
untestable transition faults within latch-based systems that incorporate multiple
clock domains. This approach significantly enhances the identification process
by considering architectural constraints and the varying sizes of defects, thereby
facilitating a more accurate and efficient fault analysis in complex designs. However,

3.1 Background 57

a limitation mentioned is the increased computational complexity and memory
requirements due to the intricacies of handling multiple clock phases and the diverse
defect sizes, which can complicate and lengthen the analysis process.

In [85] the researchers propose a method for identifying testable and untestable
PDFs in circuits, utilizing decision diagrams. This approach enhances efficiency
by focusing on partial paths or fanout-free segments, enabling the identification
of all testable critical PDFs under the bounded delay fault model. The method
is shown to be scalable and effective, particularly in handling very path-intensive
benchmarks. However, there exist limitations in the processing complexity and the
memory requirements for circuits with extensive path counts.

Lastly, in [86] the authors propose two incremental ATPG procedures aimed at
enhancing the detection of invalidly tested transition faults caused by untestable
defects. Their experimental results, derived from industrial circuits, demonstrate that
the proposed methods can maintain or improve the quality of the transition fault test
set with a minimal increase in the number of test patterns required.

3.1.3 Previous works referring to other fault models

The subject of the untestable fault identification has also been studied under other
fault models such as the bridge faults and the gate-exhaustive fault models.

In [87] the authors propose an efficient implication-based method to identify
untestable bridging faults in sequential circuits. Their approach uses sequential
symbolic simulation as a pre-processing step to identify uncontrollable nets, followed
by an implication-based analysis to determine the testability of each fault. The
technique aims to quickly identify untestable bridges, reducing the computational
effort required by ATPG tools. They demonstrated the effectiveness of their method
through experiments on benchmark and industrial circuits, achieving significant
reductions in the size of the bridging fault list for ATPG analysis.

In [88] the authors introduce an ATPG framework for testing both inter-gate
and intra-gate bridging faults. They propose Satisfiability (SAT)-solving techniques
to efficiently generate test patterns for IDDQ testing, which detects faults based
on abnormal quiescent power supply current levels. Their methodology combines
random simulations with deterministic stages, leveraging the SAT solver to confirm
if a fault is testable or categorically untestable.

58 Functionally Untestable Faults Identification

Lastly, in [89] the author focuses on the efficient identification of undetectable
two-cycle gate-exhaustive faults. The method centers on using input necessary
assignments to explore the vast number of necessary assignments characteristic of
two-cycle gate-exhaustive faults. By efficiently identifying undetectable faults, the
approach helps in reducing the computational effort required for test generation. It
is highlighted that gates with a large proportion of undetectable faults are crucial
targets for test generation. The method is shown to be effective through experimental
results on benchmark circuits. However, while the procedure correctly identifies
undetectable faults, it is not complete and may not identify all undetectable faults.

3.2 Uncontrollable lines identification

Efforts in developing methodologies for identifying untestable faults across vari-
ous fault models have been extensive. Primarily, the focus has been on detecting
structurally untestable faults. However, it has become evident, as illustrated in
Figure 1.3, that structurally untestable faults constitute only a subset of a larger
category: functionally untestable faults. These faults, particularly critical within
the context of achieving a sufficient FC percentage given a mission profile, deserve
attention. Furthermore, as it can also be inferred from the literature, there exists a
lack of a systematic, “global” method that can guarantee the identification of all
untestable faults of a circuit. This comes naturally, as the more complicated and
highly configurable the IC designs become, the harder it becomes to systematically
identify such faults.

In this section, we present two SAT-solving-based methods tailored for identify-
ing sets of functionally uncontrollable lines, utilizing scalar, pipelined processors as a
case study (without loss of generality). An uncontrollable circuit line corresponds to
a circuit location for which no input pattern exists that can force the line to both logic
values, namely logic 0 and 1 due to structural impediments such as, e.g., a blockage
of the driver signal of the line. A functionally uncontrollable line, corresponds to a
circuit location, that is uncontrollable under the imposed set of functional constraints
for the circuit. As an example, let us consider permanent faults related to the most
significant bits (MSBs) of a program counter of a 32-bit processor that is employed
in a SoC that utilizes 64kB of instruction memory. Given that the memory requires

3.2 Uncontrollable lines identification 59

16 bits for indexing (216 = 65,536→ 64kB), it follows that the upper 16 bits of the
program counter correspond to functionally uncontrollable lines.

If a circuit line is proven to be uncontrollable, then it is safe to assume that
the respective fault(s) (e.g., stuck-at) corresponding to that particular fault site are
untestable. However, if a line is proven to be controllable, no verdict can be drawn
as it may be that the fault (corresponding to that controllable line) albeit controllable,
may be unobservable. The proposed methods target the case of controllability.

3.2.1 Basic idea

One basic solution to the uncontrollable lines identification problem corresponds
to simply adding switching constraints for every line (in an iterative way and one
at a time) of the circuit to the Boolean conjunctive normal form (CNF) formula
by encoding them as clauses and then trying to satisfy it e.g., via an SAT-solver.
For every line of the circuit, one CNF formula would have to be constructed and
solved. This solution, although theoretically feasible, becomes computationally
very critical for non-trivial circuits like CPUs, where each sequence corresponds
to a piece of code with the related input data, causing the search space for the SAT
solver to become extremely large. The SAT solver would have to find a sequence (if
any), which satisfies all the clauses for the given toggling constraint. In this section,
we propose to actually divide the problem into smaller ones by considering one
instruction at a time. This corresponds to constraining the bits in the CPU instruction
register to the values of each instruction’s opcode. In this way, we simplify the
problem by assigning a specific value to some of the formula clauses. Thus, we
are trimming the search space of the solver. It is up to the SAT solver to identify
possible values for the CPU inputs in any of the following clock cycles, able to
satisfy the specified clauses. The general idea is first to identify the uncontrollable
lines when each instruction is considered separately (which is a simpler task) and
then to combine the results by identifying lines that are uncontrollable no matter
the considered instruction. The final set of uncontrollable lines U includes the lines
we can identify in this way. In detail, assuming n instructions are included in the
instruction set architecture (ISA) of the target processor, we can state that:

U ⊇
n\

i=1

Ui = U1∩ U2∩· · ·∩ Un (3.1)

60 Functionally Untestable Faults Identification

where

• U is the total set of the processor’s uncontrollable lines

• Ui is the set of uncontrollable lines considering instructioni, only.

The reader should note that when computing Ui the SAT solver abstracts from
the initial state of the CPU (i.e., on the previously executed instructions) when
considering the generic instruction.

A well-known problem when dealing with test problems in a sequential circuit
(hence, in a CPU, too) lies in the identification of the maximum number of timeframes
(TFs) to be considered. Given a k-stages pipelined CPU, this number is k in the
absence of stalls. However, under operational conditions, a processor’s pipeline
is prone to stalls originating either from data dependencies or from slow memory
accesses. The latter can occur due to a miss in the instruction cache or the data cache
of the processor. If we consider a traditional single-issue, scalar pipelined processor
comprised of 5 pipeline stages, when a data dependency exists and data forwarding
techniques are not sufficient, 2 extra clock cycles can resolve this issue [90]. For
example, when there is a data dependency between two consecutive instructions (i.e.,
a LOAD followed by an ADD that needs the data loaded in the register from the LOAD)
the pipeline has to stall for 2 clock cycles so that the results of the former instruction
can be forwarded to the latter one. The information about the maximum latency (in
clock cycles) for accessing the memory is normally available in the processor’s or
system’s architecture manual/documentation. In other cases, the same information
can be extracted by logic simulation or by analyzing the HDL code.

This micro-architectural information is crucial for setting a resource limit to
the underlying SAT engine and to model the problem accurately. The resource
limit is set by defining an overall amount of timeframes to be used by the solver.
When working with a k-staged pipelined processor, we need to consider at least
k timeframes. Extra timeframes are added according to the latencies values that
were previously mentioned. For example, in a processor with 5 pipeline stages
that accesses a memory with 2 clock cycles and needs 2 clock cycles to resolve
a data dependency stall, we should model our SAT problem to consider 5+2+2
timeframes, or 5+ 2+ 2+ 2 timeframes if the model concerns instructions that
access also the data cache (e.g., LOAD). In this way, we can model a possible cache

3.2 Uncontrollable lines identification 61

miss scenario and data dependency stalls. This is achieved by adding the appropriate
constraints on the CNF formula and thus identifying the lines that cannot be toggled
in such scenarios.

In both methods one extra timeframe (TF0) is added which is used solely for
initialization purposes [91]. We leave out constraints on this timeframe in order
to consider all possible initial states and not a specific one e.g., an initialization
stemming from the activation of the RESET signal. This initial timeframe is used to
start from a given state, no matter which. In terms of switching activity, we only
consider toggling arising in the following timeframes, excluding timeframe 0. No
constraints are added in either of the following methods on this timeframe.

Furthermore, in both methods, the RESET signal of the processor is constrained to
be inactive in all timeframes except timeframe 0 in order to prevent the solver from
using it to toggle the circuit’s lines, thus violating this typical constraint existing in
the operational phase.

3.2.2 Method A

The idea behind Method A is to observe the switching effects that a specific in-
struction would produce on each pipeline stage separately (one at a time). We
can analyze the effects of a specific instruction on a given pipeline stage by con-
straining the respective upstream pipeline registers. Most pipeline registers include
some bits to store the opcode of the currently executed instruction. For a typical
5-stage pipeline the pipeline is divided into #pipeline_stages−1 = 4 sections, i.e.,
the Decode stage (ID), the Execute stage (EX), the Memory stage (MEM), and the
Write Back stage (WB). We do not include the Instruction Fetch stage because in
that stage the instruction is not yet in the pipeline, but it is being fetched from the
memory. Method A is simple and relatively fast since it uses just three TFs (one for
initialization, and two others to check for possible toggling conditions). This results
in smaller and easy-to-handle CNF formulas for the SAT solver.

The abstract model of Method A is shown in fig. 3.1. For each pipeline stage,
one CNF formula is constructed, which is comprised of exactly three timeframes.
In each timeframe, the rectangle colored in blue/green represents the respective
stage’s instruction register. It is assumed that each pipeline stage holds an instruction
register that holds the opcode of the instruction that is currently being executed on

62 Functionally Untestable Faults Identification

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe0 Timeframe1
PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe2

PP
O

PP
I

PI

PO

solver-inferred valuesolver-inferred value forced instruction

Line LineLine

Fig. 3.1 Abstract concept of Method A applied to arbitrary pipeline stage.

the respective stage. However, in the case that a processor’s architecture does not
mandate for each stage to have an instruction register such as, e.g., the Memory and
Write Back stage [92], extra architectural details are required for the test engineer to
instead apply the appropriate control words and operands to these stages for every
instruction rather than the instruction itself. This ensures the proper functioning of
the processor despite the absence of dedicated instruction registers in certain stages.

For each instruction and pipeline stage the method compares the values of the
circuit lines at timeframe TF2, in which the instruction is forced into the respective
stage’s pipeline register and the timeframe TF1, in which the instruction is not yet
executed by the pipeline stage. Then, in the constructed CNF formulas (for each
line separately) the toggling constraints for comparing the value of the selected
line between the two respective timeframes are considered e.g., by intercepting the
corresponding line’s literals for each timeframe and encoding an XOR gate with
them, for which we request that its output is 1. Furthermore, we assume that no
exceptions are triggered during the computation of the controllability verdict for the
circuit’s lines.

For Method A, the sets Ui of Equation (3.1) are computed as:

Ui = UIDi ∩ UEXi ∩ UMEMi ∩ UWBi (3.2)

• Ui is the final set of uncontrollable lines for instruction i.

• UIDi/EXi/MEMi/WBi is the set of uncontrollable lines found when instruction
i is considered for the Decode, Execute, Memory and Write Back stage,
respectively.

3.2 Uncontrollable lines identification 63

Algorithm 2 Method A applied to a 5 stage scalar pipelined processor.
1: uncontrollable_per_instruction← {}
2: CNF← GenerateCNF(gate_level)
3: for i← 0,n do ▷ ISA has n instructions
4: opcode← all_opcodes[I]
5: not_toggling← {}
6: for S in {ID,EXE,MEM,WB} do
7: ForceLogic(RESET, 0, TF1)
8: ForceLogic(RESET, 0, TF2) ▷ Assuming RESET active at logic 1
9: ForceLogic(EXCEPT, 0, TF1)

10: ForceLogic(EXCEPT, 0, TF2) ▷ Assuming EXCEPT active at logic 1
11: ForceLogic(instruction_register[S], opcode, TF2)
12: for all lines ∈ DUT do
13: AddTogglingClause(TF1, TF2)
14: result← Solve(CNF)
15: if result = UNSAT then
16: not_toggling[S]← line
17: end if
18: ClearTogglingClause()
19: end for
20: end for
21: uncontrollable_per_instruction[i]← Intersect(not_toggling)
22: end for
23: method_A_result← Intersect(uncontrollable_per_instruction)

The method, is presented in pseudo-code format in Algorithm 2. Initially, the
circuit is unrolled for a fixed amount of 3 timeframes. Then, for each instruction
opcode of the processor’s supported ISA and for each of the pipeline stages targeted,
the functional constraints (lines 6 to 9) are applied in the form of extra clauses to the
CNF in a fashion similar to the one discussed in Section 1.4.2. Of course, given the
application profile these constraints can become more elaborate. However, as it is
typically up to the customer to select the mission profile, we consider the general
case where a minimal set of functional constraints are applied to the DUT.

64 Functionally Untestable Faults Identification

3.2.3 Method B

In contrast to Method A, Method B considers all pipeline stages together. However,
for every instruction, we further divided the problem into sub-problems. The first
sub-problem aims to identify uncontrollable lines in the presence of stalls due to
misses in the instruction cache (IC)1 only. The second one looks for uncontrollable
lines in the presence of stalls due to misses in the data cache (DC) only. Hence, with
respect to Equation (3.1), the sets Ui are now computed as:

Ui = UICi ∩ UDCi (3.3)

• Ui is the final set of uncontrollable lines for instruction i.

• UICi is the set of uncontrollable lines found by taking into consideration stalls
due to data dependencies and misses in the IC for instruction i.

• UDCi is the set of uncontrollable lines found by taking into consideration stalls
due to data dependencies and misses in the DC for instruction i.

A miss in the data cache typically concerns only the LOAD and STORE (LS)
instructions of the processor’s ISA. Hence, Equation (3.3) is applicable only for
these instructions. For the rest of the ISA’s instructions (non-LS instructions), there
can only be misses in the instruction cache and so Equation (3.3) is simplified to:

Ui = UICi| i /∈ {LOAD, STORE} (3.4)

While all instructions could be stalled due to a miss in the instruction cache, only
the LS instructions are prone to data cache misses. Hence, two instances of Method B
should be launched: one that concerns all the instructions and one that concerns
only the LS instructions of the processor. The Ui sets are calculated according to
Equation (3.4) for all instructions, apart from the LOAD and STORE instructions, for
which we use Equation (3.3).

1Not to be confused with the abbreviation used in the rest of the text where IC stands for Integrated
Circuit.

3.2 Uncontrollable lines identification 65

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe0 Timeframe1
PP
O

PP
I

PI

PO

PP
O

PP
I

PI

PO

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe2

PP
O

PP
I

PI

PO

solver-inferred valuesolver-inferred value forced instruction

Line LineLine

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe3

PP
O

PP
I

PI

PO

solver-inferred value

Line

1 1

2 2

3 3

1

1

2

2

3

3

DUT
(Gate Level)

Timeframe4

PP
O

PP
I

PI

PO

solver-inferred value

Line

Fig. 3.2 Abstract concept of Method B.

Figure 3.2 depicts the abstract model of the Method. The instructions are now
forced in the timeframe, which models the ID stage of the pipeline, which is colored
green. Toggling constraints are added for each consequent timeframe for the con-
sidered line of the DUT. The total number of timeframes, in this case, depends on
the number of stall cycles required from the DUT in the case of an instruction or
a data cache miss and also on the number of stall cycles required to resolve a data
dependency scenario. This information is derived typically from the documentation
of the architecture of the processor. The formula by which the total timeframes
are set is shown in the first lines of Algorithm 3 which presents Method B in a
pseudo-code format.

As shown both in Figure 3.2 and in line 18 of the algorithm, the timeframe in
which each instruction is forced to the pipeline is not a static one. In the case that
instruction cache misses are artificially forced (non-LS mode) then the timeframe
that models the Decode stage, which is also the timeframe in which the instruction
must be forced into the pipeline is the one right after the cache miss is resolved. For
instance, if the instruction cache latency lasts for 2 clock cycles, then this timeframe
would be the fourth timeframe i.e., timeframe 3. That is one timeframe for the
initialization (timeframe 0), two for the cache miss resolution (timeframe 1 and 2),
and one for processing the instruction in the Fetch stage (timeframe 3). Whereas, for
the LS mode where misses in the data cache are considered, then the timeframe that
corresponds to the Decode stage would be the third timeframe i.e., timeframe 2.

Method A targets the lines that are uncontrollable when considering the combi-
national part of a CPU circuit by itself, assuming full control over its inputs. Clearly,
this is a subset of the whole set of uncontrollable lines in the CPU, which can be
computed with relatively low CPU time requirements. Method B targets a larger
set of uncontrollable lines in the processor, taking into account the evolution of the
pipeline in time.

66 Functionally Untestable Faults Identification

Algorithm 3 Method B applied to a 5 stage scalar pipelined processor.
1: CNF← GenerateCNF(gate_level)
2: if mode = non-LS then ▷ Models instruction cache miss
3: TFs← #pipeline_stages + insn_cache_latency + data_dep_latency
4: end if
5: if mode = LS then ▷ Models data cache miss
6: TFs← #pipeline_stages + data_cache_latency + data_dep_latency
7: end if
8: for i← 0,n do ▷ ISA has n instructions
9: opcode← all_opcodes[I]

10: not_toggling← {}
11: for all lines ∈ DUT do
12: for j← 0, TFs do
13: ForceLogic(RESET, 0, TF j) ▷ Assuming RESET active at logic 1
14: ForceLogic(EXCEPT, 0, TF j) ▷ Assuming EXCEPT active at logic 1
15: if j > 1 then ▷ Avoid comparing with TF0

16: AddTogglingClause(TF j, TF j−1)
17: end if
18: end for
19: ForceLogic(instruction_register[ID], opcode, TFDecode)
20: if mode = non-LS then
21: ForceInsnCacheMiss()
22: end if
23: if mode = LS then
24: ForceDataCacheMiss()
25: end if
26: result← Solve(CNF)
27: if result = UNSAT then
28: not_toggling[opcode]← line
29: end if
30: ClearTogglingClauses()
31: end for
32: end for
33: method_B_result← Intersect(not_toggling)

3.2 Uncontrollable lines identification 67

However, Method B suffers from complexity issues that significantly increase
the required computation time. Both methods do not start from a given initial state,
but from whichever possible state. This leads to a result (i.e., a set of uncontrollable
lines) which is an under-approximation of the total set of uncontrollable lines of the
circuit, but can be computed with acceptable CPU time requirements.

3.2.4 Experimental results

The two methods presented in the previous sub-sections were applied to the OR1200 [62]
processor, which was synthesized using the Silvaco 45nm Open Cell Library [64] via
Design Compiler by Synopsys. Two classes of experiments were performed. Those
using Method A are fast in terms of computation time, but yield a relatively small
subset of the circuit’s uncontrollable lines. On the other side, experiments based on
Method B are more time-consuming, but identify a higher number of uncontrollable
lines. The 32 instruction opcodes supported by the ISA of OR1200 were forced one
at a time in the pipeline before combining the results.

Method A consists of three separate runs, differing in the stage considered in
timeframe 2:

• The Instruction Decode stage.

• The Execute and the Memory (for LS instructions) stages.

• The Write Back stage.

The reason for running 3 different experiments rather than 4 since the OR1200
implementation was a 5-stage pipeline is that the Execute and the Memory stage
of the pipeline are merged into one stage. This happens because the processor
implementation used for the experiments treats the Execute stage as a Memory stage
for the LS instructions. Furthermore, the caches of the processor were disabled.
All the necessary inputs of the Memory stage (i.e., the effective address of the LS
instructions) are calculated by combinational modules (i.e., operandmuxes) which
are located right after the Decode stage.

Three sets of uncontrollable lines are generated for every instruction (one for
each stage), which are then processed according to Equation (3.2). In order to get

68 Functionally Untestable Faults Identification

the final list of uncontrollable lines, we perform the intersections of the sets related
to the different instructions, following Equation (3.1).

Method B, consists of 2 runs. Misses in the processor’s caches are considered by
constraining the instruction and data cache acknowledgment signal. By forcing this
signal to 0 for a given number of timeframes, we manage to stall the pipeline, hence
creating a scenario for the underlying SAT-solver to investigate uncontrollable lines
that occur due to stalls originating from a cache miss. Data dependencies on the
other hand are considered by suitably setting the number of timeframes. Specifically,
data dependencies are taken into consideration in the experiments by considering a
number of timeframes given by: (1+#pipeline_stages+2). 2 extra timeframes are
considered in our case study because the implementation of the OR1200 processor
we used handles all data dependencies within 2 clock cycles. Lastly, in order to also
account for possible cache miss scenarios, which are also handled within 2 clock
cycles in our processor, we add 2 extra timeframes to the previous formula (for every
cache).

The experiments were performed on two machines using Intel’s i9-9990 CPU run-
ning at 3.1GHz. Both Method A and Method B experiments are fully parallelizable.
Thus we assigned one instance to every core in each machine.

The version of OR1200 is comprised of 68,899 lines. This number of lines comes
after the removal/pruning of unconnected lines which is automatically performed
by the FM framework by performing some topological analysis. In total, out of the
68,899 lines, 315 were found to be uncontrollable by Method A and 1,592 by Method
B. The 315 lines are a subset of the 1,592 lines. Table 3.2 reports the percentage of
uncontrollable lines found by the two methods and the pipeline component that they
belong to. We can see that in some cases (e.g., dc_top, du, wbmux etc.), Method
A detects the same amount of uncontrollable lines as Method B. In other cases the
better structured approach of Method B proves to be more effective, detecting a
larger set of lines (e.g., dc_fsm, ic_fsm).

In order to validate the results yielded by the two methods, we performed a
logic simulation of a test program, that reached 85% stuck-at fault coverage and we
analyzed the resulting toggling circuit activity of the circuit. The logic simulation,
performed in QuestaSIM by Siemens EDA, indicated that 8,229 lines of the circuit
did not toggle. This set of lines includes the 1,592 lines identified as uncontrollable
by Method B. Remarkably, a similar percentage (about 13%) of uncontrollable

3.2 Uncontrollable lines identification 69

Table 3.2 Experimental Results

Unit #Lines % of Uncontrollable Lines

Method A Method B

dc_fsm 993 2.11 29.71
except 4,091 0.37 6.72
ic_fsm 734 0.68 36.92

iwb_biu 1,844 0.98 14.37
mult_mac 13,802 0.93 1.11

sprs 2,386 2.05 2.60
immu_top 604 8.44 8.44

operandmuxes 1,489 0.07 1.01
genpc 1,615 0.06 0.80
ctrl 3,045 0.03 0.33

rf 24,656 0.01 0.04
dwb_biu 1,110 0.09 0.72
freeze 60 1.67 13.33

lsu 1,117 0.36 0.63
alu 5,335 0.04 0.13

ic_top 1,112 0.54 0.54
if 1,520 0.33 0.33

wbmux 949 0.11 0.11
du 140 0.71 0.71

dc_top 1,239 0.08 0.08

faults was identified in a previous work [17] using a different version of the same
processor, however with some additional operational constraints which may increase
the number of uncontrollable lines. These results further demonstrate that the set of
uncontrollable lines identified by the method is a correct under-approximation of the
circuit’s total uncontrollable lines.

To provide a further reference to compare our results with, we run a commer-
cial ATPG on the processor in order to find the uncontrollable lines. We first ran
the ATPG on the combinational part of the CPU (i.e., after converting it into its
scan version), but the ATPG did not identify any uncontrollable line. Then, for
every instruction (opcode) we launched three instances, one for each pipeline stage

70 Functionally Untestable Faults Identification

(ID/EX/WB), of a combinational stuck-at ATPG, having the respective instruction
register bits constrained, similarly to what Method A does. The ATPG identified 88
uncontrollable lines. Lastly, we also launched a sequential ATPG (mimicking the
behavior of Method B), but after 48 hours the tool did not detect any uncontrollable
lines and thus we stopped it. Results are reported in the 2 bottom lines of Table 3.3.

Table 3.3 Supplementary Comparisons

Method CPU time #Uncontrollable
Lines

Method A 12hrs 315
Method B 90hrs 1,592
Combinational ATPG 21min 88
Sequential ATPG -

The 1,592 uncontrollable lines identified by Method B represent about 2.3% of
the total number of lines. By running the commercial ATPG tool on the same pro-
cessor we identified 88 uncontrollable lines (all of them contained in the ctrl unit),
corresponding to 0.1% of the total lines. This comparison proves the effectiveness of
the proposed method. Lastly, all experiments were performed without enforcing any
real constraint on the processor’s behavior. By adding functional constraints (e.g.,
on the used instructions, or on the input data), the number of untestable faults would
increase.

3.3 Identification of untestable cell-aware faults

Over the years, device manufacturers have utilized a diverse array of fault models.
Apart from the well-established stuck-at model and transition delay model, prominent
models include the bridging fault model [93–95], gate-exhaustive fault model [96],
embedded-multi-detect fault model [97], and n-detect fault model [98]. Despite their
effectiveness in end-of-manufacturing test phases, a concerning trend has emerged
in recent years, with customers reporting an increasing number of faulty devices
received from manufacturers [99]. This trend is noteworthy as the manufacturers’
test flows have historically met the required thresholds for test coverage, as stipulated
by the respective standards. The root cause of the failing devices was in some cases
proved to be latent defects related to cell-internal faults [100].

3.3 Identification of untestable cell-aware faults 71

These defects are not covered by the state-of-the-art fault models (e.g., stuck-at
and transition delay faults) because, in these models, the common assumption is that
a fault can only be present on the connections between cells (i.e., the ports of the
technology library cells). The cell-aware fault model [99] has been proposed as a
solution to systematically target all cell-internal defects of a technology library with
great success. Researchers have presented results from high-volume production tests
that showed a significant reduction in the defective parts-per-million rate.

Although these aforementioned benefits of cell-aware testing (CAT) regard the
end-of-manufacturing test, the in-field test can also benefit from it. Most dominant
fault models share the common assumption that a fault is not occurring in the internal
part of the cells. Thus, the same latent defects (if not caught early) could still be a
serious threat in a safety-critical system. CAT, being able to amend these defects, has
the potential to be included as a complementary fault model in the upcoming safety
standards revisions. Furthermore, in the area of advanced semiconductor technology
manufacturing, where silicon aging is a prime concern, the cell-aware test seems to
be a valuable solution.

However, the issue of the identification of the functionally untestable faults
(i.e., those faults that will never be able to produce any failure in the considered
operational scenario) under the cell-aware fault model remains an open topic. This
issue is expected to become increasingly critical due to the growing importance of
in-field test of systems including devices manufactured with the latest semiconductor
technologies, as explained in the following section.

In this section, we face this issue for the first time to the best of our knowledge and
present a method based on bounded model checking (BMC) to systematically identify
the untestable static cell-aware faults in combinational cells in a microprocessor
given a set of functional constraints. To demonstrate its effectiveness, our method
was applied to a RISC-V processor with a minimum functional constraint set, i.e.,
the minimum constraints required to enable a functional behavior of the system. That
is, no assumptions about the software executed on the core were made.

3.3.1 CAT and User-Defined Fault Models

The quality requirements imposed on the industry in recent years are becoming
increasingly tougher. This means that the manufacturers have to refine their test

72 Functionally Untestable Faults Identification

flow in order to improve the defect coverage of their products. However, as men-
tioned previously, an increasing number of failing devices has been reported by the
semiconductor companies’ customers to their suppliers although sufficient cover-
age percentages have been achieved under the state-of-the-art fault models. These
numerous test escapes led to cell-aware and other fault models being developed.
Instead of focusing only on defects outside the cell and only its interconnections with
neighboring cells, the internal structure is also included in the fault model generation.

Typically, each cell’s behavior is simulated via an electrical simulator (e.g.,
SPICE) under different defects and operating conditions. A cell-aware fault model is
derived from the resulting defect injection campaign, called cell test model (CTM)
[101], or user-defined fault model (UDFM) [102]. During ATPG, the cell-aware fault
model is applied to the cells in the circuit which approximates the faulty behavior of
the defective cell. Experimental results have showcased the effectiveness of CAT
in industrial scale circuits in terms of reduced dppm figures [99]. Ultimately, test
escapes related to internal-cell defects can be effectively targeted by CAT or even
custom fault models [103]. Although it is true that the generation of the cell test
models can be time-consuming due to SPICE simulations being computationally
expensive, this process needs to happen only once for each new technology library.

3.3.2 Proposed method

The core concept of BMC is to extract the Boolean formula of the CUT and convert
it into a conjunctive normal form. Then, custom requirements are encoded on top
in the form of properties. For example, the textual definition of the property for
identifying if a fault X is uncontrollable would be: “Can the fault site X be assigned
to both logic values?”. After the BMC instance is formulated, the BMC solver is
started with the task of identifying a model (solution) for the BMC instance. The
solver unrolls and solves the BMC problem incrementally by typically translating
it to multiple SAT instances that are solved by an SAT-solver, up until a predefined
maximum unrolling depth k is reached or a timeout is reached.

For test generation the cell-aware fault model specifies a set of faults per cell of
the technology library in the form of defect matrices. Each fault can have one or
multiple test alternatives that excite the fault. Table 3.4 contains a simplified defect
matrix representing a defect in an AND gate with two inputs A and B, and one output

3.3 Identification of untestable cell-aware faults 73

O. This fault model only contains the input combinations for which the cell’s outputs
differ from the fault-free outputs. In this example, the cell has two different entries,
called test alternatives (TAs) in the following, with input combinations, called fault
conditions, for which the fault effect of the respective combination is made visible to
the gate’s output port.

Fault Conditions Fault Effects

Test Alternative No. A B O

1 1 0 1

2 1 1 0

Table 3.4 Example defect matrix for AND cell

For each fault in the cell-aware fault list an ATPG process is started. This process
builds a BMC instance for the defect matrix and solves the BMC instance generating
a test pattern or reports it to be unreachable. In the case that a test pattern could be
generated, the fault is marked testable and a fault dropping simulation is performed
to check for other detectable faults. In case no test pattern can be generated, the fault
is marked untestable.

A∧¬B→ O
A∧ B→¬O

¬(A∧¬B)∧¬(A∧B)→ (A∧B↔ O)| {z }
fault-free behavior

Fig. 3.3 Encoding of faulty AND cell for example model

In the case of the example from Table 3.4, a BMC instance encoding both test
alternatives is generated. The faulty cell is encoded according to the formula shown
in Figure 3.3, where the first two lines encode the faulty behavior according to the
defect matrix; the third line encodes the behavior of the cell when none of the test
alternatives is applied to the cell’s inputs and is equal to the fault-free behavior.

74 Functionally Untestable Faults Identification

O
B

A
0

1
0

O
B

A
1

0
1

O
B

A
0

0
0

Faulty1

0
0

0

1

0

0

TFi-1 TFi TFi+1

Fig. 3.4 Fault injection on AND cell for example model during BMC

Additionally to the fault propagation, for ATPG efficiency, the BMC instance
is extended to enforce a fault activation in at least one timeframe. This is shown
in Figure 3.4, where in TFi the cell-aware fault is sensitized, while the first and
last timeframes show no fault behavior. The propagation of the fault effect is then
enforced to at least one primary output, which is encoded as the target property for
the BMC problem.

Defect Matrix

A B O
1 0 1
1 1 0

Fault
Site

A

B

1

1

0

1

S1

0
S

1

0

01
O

TA2

TA1

LATCH
D Q

SET
A

Fig. 3.5 Implementation of proposed cell-aware fault injection for example AND cell

Figure 3.5 depicts the injection of a cell-aware fault. On the left side, the defect
matrix (similar to Table 3.4) is composed of two TAs. The inputs A and B of the
faulty AND cell are tapped and a set of logic detectors (that are almost equivalent
to the XNOR gates which are depicted instead for convenience) are encoded for
each TA and for every input of the cell. The total number of XNOR gates required

3.3 Identification of untestable cell-aware faults 75

for a faulty cell with n inputs with a corresponding defect matrix with m TAs is
n×m. Each color (green/blue) shows the corresponding entry of the defect matrix
associated with the set of XNOR gates. The outputs of the XNOR gates are then
placed into an AND gate which, implies that during BMC solving the respective
fault condition must be triggered and thus, the output of the cell is replaced with the
TA’s faulty output value.

This is achieved by the chain of multiplexers that are placed downstream from the
faulty cell’s output. Each multiplexer’s 0 input is driven by the cell’s output. However,
for S=1 each multiplexer instead propagates the fault effect of the respective TA
of the defect matrix downstream. The S input of each multiplier is driven by the
appropriate output of the TA1 and TA2 AND gates. The faulty machine propagates
the fault effect in the downstream logic for S=1 on some TA, whereas the golden
machine propagates the output O of the fault-free AND cell.

To encode the fault sensitization as a property in BMC, the circuit part colored in
purple is added. The D-latch simply preserves its state and thus, we can now add the
target property unit clause corresponding to the literal of the Q output of the latch to
be positively assigned. This implies, given the D-latch’s reset state is 0, that the SET
input is 1 in at least one timeframe, and with that, the output of the preceding OR
gate must be 1 which in turn implies that either TA1 or TA2 must be activated. To
encode the fault propagation as a property in BMC, we simply have to ask that the
difference that will be visible in the O output of the last multiplexer of Figure 3.5
will be shown as a difference to the XOR gates of the miter circuit (Figure 1.9) i.e., a
XOR output driven by the circuits’ POs to be set to 1.

To apply functional constraints during BMC, we once again employ the VCM
concept (see Section 1.4.2), and the initial state of the processor is enforced by the
activation of the RESET signal (see Section 1.4.3). The BMC process is repeated
for each combinational cell of the DUT with its corresponding defect matrix and
a testability verdict is drawn according to the response of the BMC solver. If the
response is Reachable then this means that the cell-aware fault has been sensitized
and propagated, thus it is testable. If the solver responds with Unreachable however,
this means that the cell-aware fault is functionally untestable. The unreachability
verdicts are provided by the solver after performing unbounded model checking
via Craig interpolation [70] and k-induction [69]. Furthermore, to detect whether
a fault is structurally untestable we perform SAT solving for exactly 1 timeframe.

76 Functionally Untestable Faults Identification

The functional constraints are applied through the VCM once again however the
initial circuit state is unconstrained. To prove that a fault is structurally untestable,
we add a sensitization constraint to the SAT solver which corresponds to the output
of the OR gate of Figure 3.5 (colored in purple) to be set to 1. If the solver responds
with Unsatisfiable then this means that no TA can be applied to the fault site in a
functional manner considering whichever possible state (due to the initial state being
unconstrained and hence freely selected by the solver) and thus, the corresponding
fault is structurally untestable.

3.3.3 Experimental results

According to the application running on the CUT, a different set of functional
constraints may apply. We consider the general case where the set of minimal
constraints is chosen to ensure the functional behavior of the processor. The minimal
constraint set includes the following constraints and ensures that the ATPG only
allows valid functional behavior.

• Valid processor control (reset, run, etc.)

• Valid pipeline control (stall, IF misses)

• Valid executed instructions (ISA)

• Valid control and status registers (CSRs)

• Disable interrupts

• Disable auxiliary processing unit (APU) interfaces

• Disable debug interface.

The executed instructions of the processor are constrained on the instruction
bus itself by encoding the RISC-V ISA opcodes into the VCM by automatically
transforming them from the official RISC-V opcode specifications into Verilog
code [104]. The interrupts are disabled since the interrupt logic is typically tested
resorting to different test solutions.

A total of 1,600 SystemVerilog code lines have been used for specifying the
constraints via the VCM. 1,500 of them are automatically generated wire declarations

3.3 Identification of untestable cell-aware faults 77

and connections for observing decoded RISC-V instructions and operands. The VCM
is synthesized with Yosys and the resulting gate-level VCM has a size of 405 gates.

In order to validate the proposed approach we evaluated it resorting to the
processor RI5CY [63] synthesized for the Nangate 45nm PDK [64]. The BMC depth
has been set to 50 timeframes and the timeout to 5 minutes. The experiments have
been run on an AMD Threadripper 3970X system (32 cores, 64 threads) with 256 GB
of RAM and a dual AMD EPYC 7343 system (2x16 cores, 2x32 threads) with 2 TB
of RAM in parallel.

Table 3.5 Untestable stuck-at faults identified by the proposed method.

Stuck-At

Functional Unit
Combinational

Cells
Sequential

Cells
Total
Faults

Structurally
Untestable

Functionally
Untestable

if_stage 2,013 304 10,979 123 (1.12 %) 179 (1.63 %)

id_stage 2,944 590 16,240 226 (1.39 %) 196 (1.21 %)

id_stage/regs 3,561 992 27,079 0 (0.00 %) 0 (0.00 %)

ex_stage 168 6 593 26 (4.38 %) 2 (0.34 %)

ex_stage/alu 4,583 107 24,948 18 (0.07 %) 4 (0.02 %)

ex_stage/mult 3,814 3 24,381 2 (0.01 %) 19 (0.08 %)

ls_unit 712 40 4,511 0 (0.00 %) 15 (0.33 %)

cs_registers 2,088 974 15,730 188 (1.20 %) 3,679 (23.39 %)

pmp_unit 11,983 1 50,591 4 (0.01 %) 22,744 (44.96 %)

top 25 1 118 2 (1.69 %) 8 (6.78 %)

total 31,891 3,018 175,170 589 (0.34 %) 26,846 (15.33 %)

CPU Time (hours) 128.96 h (2.42s per fault on EPYC system)

For the evaluation two fault models in UDFM format are used. The first fault
model is created to compare with the conventional stuck-at fault model. It is created
by a custom tool and the resulting cell-aware fault model is equivalent to a simple
stuck-at model that only contains stuck-at faults at all the input and output ports of
the cells. Note that this fault list contains equivalent faults. This UDFM allows for a
simplified comparison with conventional stuck-at simulation results. The UDFM has
534 faults with a total of 2,410 test alternatives. The second fault model is a cell-
aware fault model generated by a commercial tool for the Nangate 45nm PDK which
is converted into the UDFM format. It contains fault models for testable open, short,

78 Functionally Untestable Faults Identification

and transistor open and transistor short defects derived from Nangate 45nm PDK
SPICE cell models that have been extended with parasitic elements from the layout
information. This UDFM has 1,244 faults with a total of 10,546 test alternatives.

Table 3.6 Untestable cell-aware faults identified by the proposed method.

Cell-Aware

Functional Unit Combinational
Cells

Sequential
Cells

Total
Faults

Structurally
Untestable

Functionally
Untestable

if_stage 2,013 304 22,387 161 (0.72 %) 218 (0.97 %)
id_stage 2,944 590 31,336 426 (1.36 %) 247 (0.79 %)
id_stage/regs 3,561 992 61,878 26 (0.04 %) 0 (0.00 %)
ex_stage 168 6 904 50 (5.53 %) 1 (0.11 %)
ex_stage/alu 4,583 107 48,782 201 (0.41 %) 7 (0.01 %)
ex_stage/mult 3,814 3 83,360 69 (0.08 %) 69 (0.08 %)
ls_unit 712 40 9,121 14 (0.15 %) 21 (0.23 %)
cs_registers 2,088 974 36,479 363 (1.00 %) 6,378 (17.48 %)
pmp_unit 11,983 1 98,792 144 (0.15 %) 31,790 (32.18 %)
top 25 1 150 2 (1.33 %) 11 (7.33 %)

total 31,891 3,018 393,189 1,456 (0.34 %) 38,742 (9.85 %)
CPU Time (hours) 285.27h (2.50s per fault on EPYC system)

Table 3.5 and Table 3.6 show the results of our method regarding the untestability
analysis under the stuck-at fault model and the cell-aware model, respectively. The
reported percentages for the two fault models are not correlated i.e., one is not a
subset of the other. As mentioned earlier, the constraint set we have applied is the
minimum functional one. That is, no further constraints derived from assumptions
about the executed program(s) or the system configuration are made. For instance,
combinatorial logic blocks in the fetch and decode stages that are driven by the reset
and the clock gating enabling signals are marked as safe (i.e., faults that are unable
to produce any failure) due to the fact that they are always expected to be forced to
fixed values in order to ensure functional behavior. Furthermore, extra functionally
untestable faults arise for logic related to the program counter, which is bound to
a specific start and end address as is typical to happen in an embedded system in a
mission-critical system with limited or shared resources with other peripheral devices
that share the same memory which is divided into distinctive regions. In total, 1.12 %
/ 1.63 % of structurally / functionally untestable faults have been identified for the
fetch stage for the stuck-at fault model and 0.72 % / 0.97 % for the cell-aware
respectively.

3.3 Identification of untestable cell-aware faults 79

Since the solver is completely agnostic of the architecture’s ISA, we enforce
all valid instructions with valid operands and operand ranges. Hence, any kind of
interrupt stemming from an invalid instruction during decode is not triggered, and
thus, the logic blocks related to handling such cases are functionally untestable faults.
Furthermore, certain control and status registers related to the generation and the
handling of interrupts also contain functionally untestable faults. This is because,
in the in-field test scenario, the test is scheduled during idle periods of the system;
hence, the interrupts are being disabled during this time to avoid any unpredictable
scenario occurring which could potentially have catastrophic consequences to the
system and finally to the user(s). For the decode stage, we have identified 1.39 % /
1.21 % of structurally / functionally untestable faults for the stuck-at and 1.36 % /
0.79 % for the cell-aware.

The highest amount of untestable faults are detected in the physical memory
protection (PMP) unit and the CSRs. The PMP unit provides machine-mode control
and status registers per hardware thread to allow memory access privileges to be
specified for each physical memory region. The unit performs checks on both the
instruction and data memory of the system and is accessible via dedicated CSRs.
The usage of certain registers in our configuration was not considered in the BMC
search space, which is something that leads to a large number of faults inside the
PMP unit being identified as safe. Furthermore, regarding the CSR unit, the number
of safe faults identified as a result of the fact that only user level [105] has been
considered in the processor configuration. For the CSRs, we have identified 1.20 % /
23.39% of structurally / functionally untestable faults for the stuck-at and 1.00 %
/ 17.48 % respectively for the cell-aware. For the PMP unit, the percentages are
0.01 % / 44.96 % and 0.15 % / 32.18 % respectively.

Overall, a total of 9.85% of functionally untestable faults have been identified
on the whole processor by our method for the static, combinational cell-aware fault
model and 15.33% for the stuck-at model. To verify the results of our method, we
have performed a fault simulation of a manually written STL that has been developed
for the stuck-at fault model, reaching ≈ 60% of fault coverage and compared it with
our findings. Two flows were developed in Z01X by Synopsys. One for the stuck-at
and one for the cell-aware model. The results showed that the proven untestable
faults in Z01X which correspond to structurally untestable faults were a subset of
the faults we have identified with our method. Lastly, all the proven functionally
untestable faults remained undetected in Z01X.

Chapter 4

In-Field Test

4.1 Background

Functional testing is a crucial step in the development and quality assurance process
of integrated circuits (ICs). It involves assessing the performance of the circuits
to ensure they meet the specified functional requirements. For the purpose of this
document, it is defined as a test performed acting on the functional inputs and
observing the functional outputs only, without resorting to any kind of Design-for-
Testability (DfT). It is used for end-of-manufacturing testing mainly because it may
cover defects that may have escaped any other kind of structural test. However, in
the domain of safety-critical applications, functional test is always performed as
an in-field test because of its flexibility and ease of applicability and because it is
guaranteed not to target safe faults. Also, functional test can be performed by the
system company.

In the realm of in-field testing, unique challenges arise, stemming from various
constraints that the testing process must adapt to. Such constraints often originate
from the specific mission or application profile for the circuit, where the intended use
case imposes certain limitations. Additionally, when the DUT is part of an SoC, such
as a microprocessor core, further constraints may arise from the configuration of the
larger system, potentially prohibiting certain functionalities that would otherwise be
accessible in isolation.

In-field test is sometimes applied through software-based self-test (SBST) for the
development of software test libraries (STLs) [25]. STLs are practically a collection

4.1 Background 81

of test programs (TPs) and are typically executed in a repetitive manner between idle
times of the system in order to ensure that the system functions correctly and safely.
They are favored due to their non-intrusiveness as they preserve the system state and
do not alter it, are flexible and capable of providing coverage for the widest possible
number of faults.

The dominant models, are the stuck-at and transition delay fault models as they
adequately model the vast majority of faults that may happen in an operational
scenario. However as explained in Section 1.3.3, the generation of STLs is an
arduous task for the test engineers as it typically requires a lot of manual effort,
especially to target the hard-to-test faults of a modern design.

In this chapter we will introduce Bounded Model Checking (BMC)-based STL
test generation routines to target permanent hardware faults for two cases. In the first,
the considered DUT is a pipelined processor, whereas in the second, it is a sub-unit
of a GPU.

4.1.1 Previous works on STL generation for processors

In [106], the researchers propose a novel SBST methodology for processor cores, ad-
dressing the limitations of traditional hardware-based logic Built-In Self-Test (BIST)
techniques, especially for high-speed microprocessors. They highlight that while
BIST is effective for embedded memory testing, its application to complex logic
like microprocessors faces challenges due to high area and performance overheads,
and low fault coverage for random-pattern-resistant circuits. Their methodology
utilizes software embedded in the processor memory to generate and apply test
patterns, enabling structural tests at the processor’s operational speed without addi-
tional hardware or significant manual effort. This approach significantly enhances
fault coverage and testing efficiency, leveraging the processor’s own capabilities for
self-testing.

In [107], the authors introduce an on-line SBST framework specifically designed
for microprocessor cores. This methodology focuses on enabling periodic and non-
concurrent on-line testing of microprocessor cores, such as the Motorola PowerPC
603, under stringent timing and coverage requirements. By leveraging deterministic
SBST approaches, the framework allows for the execution of complex test programs
with minimal hardware and software overhead, ensuring system availability and

82 In-Field Test

quality of service in critical environments. The test routines are designed to be
modular and fit within tight time slices, thereby not impacting the microprocessor’s
operational performance.

In [108], the authors introduce a groundbreaking technique for the automatic
generation of instruction sequences that target hard-to-detect structural faults in
processor cores. This method leverages a software-based approach for executing
instruction sequences directly from the processor’s cache, enhancing the efficiency
and effectiveness of testing. By automating the propagation of module-level test re-
sponses to primary outputs, the technique simplifies the complex process of mapping
module-level test vectors to instruction sequences, making it feasible to detect faults
that are otherwise difficult to uncover with conventional testing methods. However,
the authors acknowledge a limitation in their approach: the dependence on auto-
matic test pattern generation (ATPG) tools for generating initial module-level test
sequences, which may not always produce optimal results for all types of faults. This
highlights an area for future improvement in ensuring the technique’s applicability
across a broader range of fault models and testing scenarios.

In [109], the authors present an advanced technique for automatically generating
instruction sequences to robustly test delay defects in processors. This approach
utilizes an ATPG engine for local delay test generation, a Satisfiability (SAT)-based
verification engine for global test mapping, and an intelligent feedback mechanism to
enhance efficiency. The methodology is capable of achieving nearly 96% coverage
of delay faults by loading the generated instruction sequences into the processor’s
cache for functional testing. This technique represents a significant advancement in
the field of processor testing, particularly for identifying and mitigating delay defects
that could impact processor performance.

In [110], the authors present an SBST methodology tailored for system peripher-
als within Systems-on-Chips (SoCs), with a specific focus on direct memory access
controllers. This approach is designed to generate compact and efficient test pro-
grams that leverage the functional description and high-level architectural view of
the peripherals, thus facilitating both design validation and testing. The methodology
encompasses two main phases: module configuration and operation, aiming to en-
sure comprehensive fault coverage through the application of tailored test programs.
Experimental results demonstrate the method’s effectiveness in achieving significant
stuck-at fault coverage with limited test set size and duration.

4.1 Background 83

In [24] the authors present a comprehensive overview of the SBST technique,
discussing its role in the microprocessor test and validation process. They elaborate
on how SBST serves as a complementary method alongside traditional functional-
and structural-test approaches by utilizing software routines to test the processor’s
functionality. The paper offers a taxonomy of SBST methodologies based on test
program development philosophies and summarizes research on optimizing key
SBST aspects. Furthermore, it addresses the emerging market demands for higher
computational performance at lower costs, which have made SBST an integral
part of the manufacturing test flow for major processor vendors, highlighting the
method’s nonintrusiveness, ability for at-speed testing, avoidance of overtesting, and
applicability in the field.

In [111], the authors propose an effective RT-level SBST methodology for em-
bedded processor cores, focusing on enhancing fault coverage without the need for
DfT modifications or changes to the processor architecture. This method, rooted
in the instruction set architecture and RTL description of the processor, aims to
address the challenge of testing SoCs that incorporate embedded processor cores.
Their methodology demonstrates superior test quality by significantly increasing
fault coverage and reducing test time compared to existing methods.

In [112], the authors propose an SBST methodology specifically designed for
on-line testing of small cache memories, such as L1 caches and translation lookaside
buffers, in microprocessors. They focus on overcoming the challenges posed by
the hidden nature of these memories, utilizing special-purpose instructions and
mechanisms like direct cache access instructions, performance monitoring, and trap
handling to achieve comprehensive fault coverage. This approach combines crucial
features for on-line testing, such as compact test validation, simplified coding style,
low invasiveness, and a small memory footprint. The methodology’s effectiveness is
demonstrated on the OpenSPARC T1 processor, showcasing significant improvements
in test time and efficiency compared to previous SBST approaches that do not utilize
direct cache access instructions.

In [113], the authors introduce an automated tool for SBST program generation
for microprocessors, leveraging a novel approach that uses High-Level Decision
Diagrams (HLDD) for modeling microprocessors and faults. This tool automates the
creation of SBST programs from the instruction set architecture of the processor, em-
ploying previously developed code templates and HLDD models to generate efficient

84 In-Field Test

test programs. By demonstrating the tool’s functionality on the 8-bit PARWAN and
32-bit SPARCv8 microprocessor Leon 3, they showcase its potential to significantly
enhance the fault coverage and testing efficiency for microprocessors, promising a
valuable resource for test engineers.

In [114] the authors introduce a fault-independent test generation method for
SBST of processor-based devices and SoCs. This approach is designed to address
the shortcomings of existing SBST techniques that rely heavily on the stuck-at fault
model, which is becoming increasingly inadequate for newer semiconductor tech-
nologies. By employing a novel SBST-oriented probabilistic metric, their method
aims to achieve high coverage of non-modeled faults without the need for the ex-
tensive, complex, and CPU-intensive test-generation and fault-simulation processes
typically associated with traditional SBST approaches. The proposed method is
almost fully automated, significantly reduces the test-program generation time, and is
demonstrated through extensive experiments on the OR1200 processor to effectively
improve the coverage of non-modeled faults under strict test-application-time and
test-program-size constraints.

In [115] the authors propose a high-level, implementation-independent approach
for generating functional STL programs for RISC processors. This novel method is
designed to quickly produce manufacturing tests with high stuck-at fault coverage,
focusing on the separation of test generation for the control and data parts of proces-
sors’ high-level functional units. For the control part, a new high-level control fault
model is introduced, while for the data part, pseudo-exhaustive test strategies are
applied, maintaining independence from implementation details. The methodology
includes a novel high-level fault simulation method for evaluating fault coverage
and identifies redundant gate-level faults in the control part. Experimental results
showcase the effectiveness of this approach in generating tests for various units of a
RISC processor.

In [116] the authors present a methodology to automatically improve the transi-
tion delay fault (TDF) coverage of STLs targeting delay faults starting from STLs for
stuck-at faults. Their method identifies excited but not observed TDFs and enriches
the STLs with suitable instructions to detect these faults. Through experimental vali-
dation on a RISC-V processor, they demonstrate the ability to significantly enhance
TDF coverage with a reasonable increase in computational effort and test code size.
The approach systematically tests not-observed TDFs with effects reaching user-

4.1 Background 85

accessible registers, achieving nearly complete detection of targeted faults. However,
they highlight the potential need for future strategies to test hidden register faults,
aiming to closely match the upper bounds of recoverable fault coverage identified in
prior studies.

Lastly, in [117] the authors introduce a binary decision diagram (BDD)-based
self-test program generation technique for processor cores, focusing on minimizing
the efforts required in test template development. By employing BDDs for the
justification and optimization of test programs, this method aims to improve fault
detection efficiency and coverage, specifically targeting transition delay faults. The
methodology has been validated on a RISC-V processor, achieving a notable increase
in fault coverage. However, the process of pattern-to-program conversion is identified
as time-consuming, highlighting an area for future optimization.

4.1.2 Previous works on STL generation for GPUs

The SBST strategy has been extensively employed for the generation of STLs on
microprocessors. More recently, researchers have begun applying this strategy to
scenarios where the DUT is a GPU. This is connected to the adoption of GPUs by
the safety-critical application sector where in-field testing is mandatory.

In [118], the authors propose a comprehensive SBST and fault localization
methodology for CUDA Fermi GPUs. This innovative approach employs custom
test strategies for different components within the GPU architecture, ensuring both
permanent fault detection and precise fault localization. The methodology is vali-
dated through experiments on Fermi GPUs, showcasing its effectiveness in achieving
high fault detection rates while maintaining short execution times, making it suitable
for on-line testing applications.

In [119], the researchers propose a novel functional test methodology for the
GPU scheduler, focusing on the NVIDIA Fermi architecture. This methodology aims
to leverage SBST techniques to assess and ensure the reliability of the GPU scheduler,
a critical component in managing computation cores and memory operations. The
approach outlined seeks to extend traditional CPU-based testing methods to the
unique parallel processing environment of GPGPUs, addressing the challenges of
testing such complex and highly parallel systems.

86 In-Field Test

In [120], the authors introduce a multi-kernel approach for testing permanent
faults in pipeline registers of GPGPUs. This innovative method is designed to
effectively identify and diagnose faults within the highly parallel and complex
architecture of GPGPUs, specifically targeting the control path fields in pipeline
registers. By leveraging multiple testing kernels, each focusing on different aspects
of the GPU’s functionality, the approach aims to maximize fault coverage and
diagnostic resolution, addressing the unique challenges of GPU testing.

In [121], the authors develop an on-line testing technique targeting the scheduler
memory of GPGPUs. They introduce a method to generate functional self-test pro-
grams that can identify permanent static faults in the memory of the warp scheduler,
a critical component for GPU operation. This technique translates fault primitives
into self-test functions and programs, enabling effective detection of faults through
a sequence of operations designed to excite and propagate the fault to a detectable
output. This method emphasizes the importance of maintaining GPU reliability,
especially in applications where safety is paramount.

In [122], the authors propose a novel in-field testing strategy for the Divergence
Stack Memory within GPGPUs, leveraging a SBST approach. This method focuses
on the detection of permanent faults in the stack memory, which is crucial for manag-
ing divergent execution paths in parallel processing environments. By employing a
modular and scalable testing framework, the strategy enables effective fault coverage
and adaptability to different GPU architectures. The proposed approach is validated
through extensive simulations, demonstrating its efficiency in detecting a wide range
of faults, thereby enhancing the reliability of GPGPUs in safety-critical applications.

In [123], the authors present a functional testing methodology for Special Func-
tion Units (SFUs) in GPUs, utilizing a SBST approach. This method is innovative
in its strategy for generating test programs that exploit the GPU’s parallelism to
enhance test speed and minimize memory requirements. The effectiveness of their
approach is demonstrated on an open-source GPU model compatible with NVIDIA
GPUs, achieving high fault coverage and demonstrating the technique’s potential for
efficiently testing SFUs in GPUs, particularly in safety-critical applications.

In [124], the authors introduce a new methodology for generating STLs for in-
field GPU testing, utilizing High-Level Languages (HLLs) like CUDA. This approach
aims to simplify the development process of STLs by reducing the complexity
associated with assembly-level encoding. The methodology is demonstrated to be

4.2 STL generation for RISC-V processors 87

effective for regular modules within the GPU, although the authors acknowledge
that certain modules may require a combination of HLLs and Low-Level Languages
due to compiler optimizations and architectural features that limit observability and
controllability.

Lastly, in [125] the authors explore the use of STLs for effective in-field testing
of GPU cores. Their work evaluates the fault coverage attainable through STLs for
all logic modules within a GPU core, showcasing a method to support FMEA in
safety-critical applications. They demonstrate that STLs can achieve up to 92.6%
stuck-at fault coverage in GPU cores, highlighting the potential of STLs to ensure
reliability and functional safety in GPUs without hardware modifications, especially
for applications requiring ASIL B or higher when combined with other safety
mechanisms.

4.2 STL generation for RISC-V processors

The introduction of the license-free RISC-V [126] ISA facilitated the creation of
a vast amount of new processor cores featuring different micro-architectures, base
instruction sets, and extensions posing new challenges for STL creation. Especially
the shortened development cycles and the automated high-level synthesis of whole
processor families that provide ISA extensions depending on the targeted use case
require a new adaptive, automated approach.

BMC has been shown to allow semi-automatic generation of STLs for processors
using manually constrained ATPG [127–129]. Extending that, [38] introduced an
abstraction of the applied constraints by introducing the Validity Checker Module
(VCM) concept, which allows for specifying constraints as a circuit written in an
HDL and is used during SBST generation to apply constraints to the processor (see
Section 1.4.2). By using a VCM the development of constraints for complex STL
scenarios is simplified.

However, specifying SBST constraints for whole processor families requires
an even higher abstraction level. In this section, we present a structured approach
consisting of an enhanced VCM architecture together with an exemplary constraint
set that allows for targeting multiple processor cores in an automated way in terms
of functional test stimuli generation. Reusability of constraints is provided by having

88 In-Field Test

a configurable constraint set that is specified in a processor-agnostic way. These
constraints are mapped onto the processor at hand by a well-defined interface that
relates signals and behavior between the processor and the interface. The architecture
allows for generating STLs that show different behavior compared to the example
constraint set presented in this section as a case study.

The example constraint set constructs an STL to be run by the firmware during
idle times. It consists of only arithmetic instructions and targets hard-to-test faults in
the ALU and register file. The STL generation makes minimal assumptions about the
firmware and is designed to be completely independent of the firmware’s instruction
memory and state. It computes a checksum in an architecture register which is
later verified by the firmware. If a mismatch is detected the firmware can take the
appropriate measures according to its use case.

4.2.1 Proposed method

The STL generation is a computationally expensive and complex task. Therefore, we
split the problem of SBST generation into simpler steps that are executed as shown
in the listing below:

1. Processor and VCM gate-level description import

2. Fault list generation

3. Reset sequence generation

4. Testability check for each fault

5. Instruction sequence generation using BMC

6. Instruction sequence elimination

7. Instruction sequence concatenation to an STL

8. STL evaluation and statistics export.

During steps 3, 4, 5, and 8 the VCM is used to apply constraints to the processor
or to evaluate the processor’s behavior. For the STL generation, the processor and
VCM are expected to be available as gate-level descriptions. The VCM and processor

4.2 STL generation for RISC-V processors 89

sources are previously synthesized from RTL to a gate-level description using the
synthesis tool of choice and a target technology library.

Initially, the gate-level sources are parsed (step 1). Then, a fault list is generated
for the processor which serves as the DUT (step 2). A reset sequence is then
generated in order to drive the processor to a well-defined state, i.e., all Flip-Flops
(FFs) are assigned valid 0/1 logic values (step 3). Then, multiple testability checks
are performed for each fault of the fault list. The checks are performed to find
faults for which no test can be generated (for instance, faults that in order to be
detected require a reset of the processor or a non-functional state in general, e.g.,
faults within the debug unit (step 4). After the testability check, the status of all
faults, except untestable faults, is set to a NOT TESTED state, and the generation of
instruction sequences for the STL starts. An instruction sequence is a short sequence
of instructions that is created to activate and propagate the fault effect to an observable
point (e.g., a Primary Output (PO) of the processor). A BMC problem that generates
an instruction sequence is constructed and solved. Subsequently, when a solution
is found a fault simulation is performed that tests all so far NOT TESTED faults. If
they are detected, they are dropped (step 5). After all instruction sequences have
been generated, a reverse fault simulation is performed. This removes duplicates and
unnecessary or dominated instruction sequences that have been generated during the
parallel instruction sequence generation (step 6). Lastly, the full STL is constructed
by concatenating all instruction sequences (step 7) and the fault list is reset to its
original state for a final fault simulation to be performed in order to evaluate the test
program by computing the final fault coverage (step 8).

The original concept of the VCM as Boolean constraint specification has been
significantly extended. Support for detecting DON’T CARE values in the miter circuit
is added by providing additional IS DON’T CARE inputs for the VCM. This is
required for processing DON’T CARE values in the VCM as it operates on a purely
Boolean gate-level and for defining the BMC target state later on.

To support a fast adaptation of the STL generation to new processors a VCM
architecture that abstracts from processor implementation details was devised. This
architecture is shown in Figure 4.1 where the processor is depicted on the left side.
On the right side is the VCM which consists of a mapping layer (orange) that is
connected to the processor’s essential components. The mapping layer connects
the processor’s signals to a well-defined interface that interacts with the generic

90 In-Field Test

constraints that are shown on the right in red. The generic constraints encode the
valid SBST and processor behavior, including the valid RISC-V instructions. For
decoding and validating the executed RISC-V instructions an embedded decoding
module is included. This decoder module’s source code is automatically generated
from the formal specification used by the MINRES DBT-RISE-RISC-V instruction
set simulator [130] and is adjusted to the supported instruction set of the processor
core at hand. The instruction set extensions A, M, F, and D are directly available
through the formal specification. For custom extensions, the decoding module
can be extended by specifying opcodes of supported RISC-V instructions in JSON
format [131].

VCM

1 1

2 2

3 3

4 4

5 5

6 6

1

1

2

2

3

3

4

4

5

5

6

6

RISC-V
Processor

PP
O

PP
I

PO

Register File
x0 x1 x2
. . .

x29 x30 x31

FF FF FF FF

FF FF

FF

FF FF

PI

I-BUS D-BUS

B
U

S
M

A
PP

IN
G

N
A

M
E

M
A

PP
IN

G

R
IS

C
-V

 I
SA

ST

L
 B

E
H

AV
IO

R

Fig. 4.1 Interaction of processor (left) and VCM (right) with mapping layer in between
(middle)

The mapping layer is responsible for translating the processor’s signal lines to
the generic interface. By applying constraints to the generic side of the interface the
constraints are propagated to the processor at hand. For the different steps of the
STL generation, the processor signal mappings listed below are implemented:

• Processor control (reset, halt, run)

• Processor state (resetting, halted, running)

• Pipeline state (bubble, flush, halted)

4.2 STL generation for RISC-V processors 91

• Program counter

• Architecture register file (x1 to x31)

• Instruction bus transactions

• Data bus transactions.

The instruction and data bus interfaces are both mapped using a bus mapping
module written in Verilog. It is exchanged according to the processor bus at hand to
reduce adaption efforts. Currently, the bus protocols Advanced High-performance
Bus (AHB), Open Bus Interface (OBI), PicoRV32 [132], and DarkRISCV [133]
protocols are implemented. Each bus interface is mapped to a set of nine generic
signals that monitor transactions. These are a transaction active signal, a transaction
commit signal that signals that the transaction was acknowledged, an address signal,
a read enable and write enable signal, a read and write byte mask that signals the
size of a transaction, and a signal for the read and written value.

For STL generation, the signals listed above are mapped in five variants corre-
sponding to the miter-related inputs available in the VCM. This includes the fault-free
and faulty signal, the DON’T CARE input for the fault-free and faulty signal, and a
difference signal that observes fault propagations for the processor signal. This
enables the VCM to implement many different constraints including checking for
signals to be well-defined (not DON’T CARE), checking for expected signal values
and behaviors, and constraining and enforcing fault propagation.

Building on top of the VCM architecture a configurable, generic constraint set
is implemented. The constraints are translated through the mapping layer and are
applied to the processor. Depending on the SBST generation step different subsets
of constraints are enabled to enforce a desired behavior of the processor. We will
now give a more detailed overview of the constraint subsets:

Step 3) The first subset of constraints is used to generate a reset sequence for the
processor. The RESET processor control signal is forced to be active for at least one
timeframe. Once the reset signal has been deactivated it is disallowed to be enabled
again. Only ADDI instructions are allowed by enforcing the opcode on instruction
bus read transactions. The data bus is constrained not to allow transactions during
the reset sequence. As the BMC target, a defined program counter and a fully defined
register file are enforced through constraining the respective DON’T CARE signals.

92 In-Field Test

Step 4) The second subset is used for testability checking. This step finds
untestable faults that are not relevant in a functional scenario. Table 4.1 shows the
four stages that apply increasingly complex constraints to the processor. During each
stage, a BMC problem is solved for each fault. If for a fault no solution exists, the
fault is marked untestable and excluded from further processing. If a timeout occurs
or the maximum unrolling depth is reached, the next step is executed, and no change
to the fault status is made.

Table 4.1 Constraints for testability check

Constraint 1 2 3 4

Initial state - - ✓ ✓

Processor running * - ✓ ✓ ✓

RISC-V instructions * - ✓ ✓ ✓

Fault activation and propagation ✓ ✓ ✓ ✓

Directed fault propagation * - - - ✓

1 Combinational full-scan 2 Combinational partial SBST

3 Sequential partial SBST 4 Sequential SBST

Constraints marked with * are enforced via the VCM while the rest are enforced
through the FM framework directly. The first constraint subset is equivalent to a
classical full-scan ATPG that only enforces fault activation and propagation but no
functional constraints. This step finds untestable faults caused by signal reconver-
gences. The next step additionally constraints the processor to be running via the
processor state signals and allows only valid RISC-V opcodes on read transactions of
the instruction bus. This step finds functionally untestable faults, i.e., faults that are
only relevant for disallowed operational situations, e.g. when illegal instructions are
executed or the processor resets. The third step additionally forces the SBST initial
state (reset sequence) to be applied. This step finds faults requiring unreachable
states via unbounded model checking features (e.g., Craig interpolation [70]) of
the BMC solver. Such faults are also functionally untestable due to unreachable
states of the processor like for example unused encodings of pipeline registers. The
fourth and last step applies all the previous constraints combined with a directed
fault propagation. The fault propagation is enforced by enforcing a difference signal

4.2 STL generation for RISC-V processors 93

for either the data bus, the instruction bus, or the register file on the miter circuit
(Figure 1.9).

Step 5) The most sophisticated constraint subset is used for the instruction
sequence generation since each instruction sequence has to be constructed in a way
that it tests its targeted fault but also allows for concatenation to build the final SBST
program. The STL example considered is meant to be run in between firmware
idle times to check for degradation and makes minimal assumptions regarding the
firmware including the instruction memory, data memory, and the register file.

Firmware
Idle

Firmware
Evaluating

Result

Time

State
Save

State
Restore

Instruction
Sequence 1 ... Instruction

Sequence N

Fig. 4.2 STL execution from left to right: firmware starts STL, firmware context is saved,
instruction sequences are run, firmware context is restored, firmware evaluates STL signature.

The final STL program in Figure 4.2 is built from multiple instruction sequences.
It is executed by the firmware which first saves the register file to the data memory
(e.g., in the stack), and then jumps to the STL program. The STL program computes
a checksum in the architecture register x1 and then jumps back to the firmware which
does a state restore excluding the checksum register x1. The checksum is verified by
the firmware and appropriate action is taken if the verification fails.

Start
State

Fault Activation
and Propagation

Propagation to
Register x1

Scrambling of
Register x1

Time

Fig. 4.3 Instruction sequence BMC problem with initial state, scrambling, and final propaga-
tion to the register x1.

Figure 4.3 shows the structure of an instruction sequence generation. The initial
state is set to the reset sequence end state to start with a valid pipeline state. Then, a
scramble sequence is generated that permutates register x1 to reduce the likelihood
of fault effect cancellations. Then, arbitrary instructions follow for fault activation

94 In-Field Test

and propagation. Finally, the fault effect is propagated to the x1 register to update
the checksum. An example of a scramble sequence is shown in Figure 4.4.

srli x2, x1, 0x1f
slli x1, x1, 0x01
or x1, x1, x2
add x2, x0, x0

Register x1

Fig. 4.4 Register x1 scrambling example.

The scramble sequence enforces pre-defined instructions for four time frames
rotating register x1 by one bit and then clearing the temporarily used register x2.
This results in the fault propagation spreading evenly to all bits of the register and
reduces fault effect cancellations. The instruction sequence is enforced by directly
constraining the first four instruction fetch transactions on the instruction bus.

The fault propagation to register x1 is enforced via the miter difference signals for
register x1 in the BMC target. To be independent of previous checksum values only
a limited set of interactions with register x1 are allowed. This requires constraining
instruction fetch transactions that interact with register x1. First, only XOR and
XORI instructions are allowed to interact with register x1 while the destination and
exactly one source register is register x1, ensuring that the register is updated like a
checksum.

Further constraints are applied to ensure a functional STL program and the
independence of instruction sequences. Specifically, to ensure independence from
one instruction sequence to another, we have to abstract from the current register
state at the start of each instruction sequence. This is achieved through the VCM.
Registers have to be initialized before they are used to further aid starting state
independence. This is enforced by keeping a list of initialized architecture registers.
Uninitialized registers are forbidden to be used as a source operand. Once a register
is written to by an executed instruction, the register is marked as initialized and can
be used as a source operand for following instructions. With that, multiple measures
are made for instruction sequence independence from the program memory position,
the firmware state, and the start state of the processor. Afterward, we proceed with
the fault activation and propagation. Hence, we can easily concatenate the sequences
without caring about previous processor states.

4.2 STL generation for RISC-V processors 95

Furthermore, we enforce via the VCM for the processor to be running without
interrupts. All transactions on the data bus are forbidden by constraining data
transactions. A read or write on the data bus would either make the STL dependent on
or change the firmware state which is disallowed. Instruction fetches are constrained
to allow only valid RISC-V opcodes. The program counter is constrained to increase
linearly creating a single, linear instruction stream. The STL program is later
extracted by monitoring instruction fetches. Further, JUMP and BRANCH instructions,
as well as instructions that are dependent on the value of the program counter, e.g.
AUIPC are forbidden making the STL’s memory location irrelevant.

Step 7-8) After all instruction sequences are generated they are concatenated to a
single STL program and evaluated via a fault simulation. During fault simulation, the
VCM monitors the processor and its environment and extracts instructions and fault
propagations to the register x1 and the program counter. The results are obtained
from the VCM’s result outputs and evaluated for fault coverage. A difference in
register x1 at the STL end marks the fault as detected.

4.2.2 Experimental results

The STL generation has been evaluated for two processor families with four con-
figurations in total while considering permanent hardware faults (stuck-at). The
non-hierarchical DarkRISCV (3-stage pipeline) [133] and a proprietary, hierarchical
industrial core (5-stage pipeline) have been chosen to show the effectiveness but
also the limitations of the presented constraint set and were synthesized with the
Silvaco 45nm [64] technology library. The BMC depth has been set to 15 timeframes
and the timeout to 5 minutes. All experiments have been conducted using an AMD
Threadripper 3970X system (32 cores, 64 threads) with 256 GB of RAM.

Table 4.2 contains the resulting fault and STL statistics and the respective test
generation times. It can be seen that fault coverages of roughly 80 % are achieved
for the DarkRISCV processor with a program size of 16 kB to 26 kB. Even though
the STL program has been constructed to target mainly units that can be tested with
arithmetic instructions it can be seen from the test coverage that only roughly 20 %
of the processor remains untested.

However, the evaluation of the proprietary core paints a different picture. Here,
only the ALU and register file show a fault coverage over 93 % while the testable

96 In-Field Test

Table 4.2 Experimental Results

Processor and ISA
Fault

Coverage
(percentage)

Testable Fault
Coverage

(percentage)

Generated
Sequences
(number)

Program
Instructions

(number)

Generation
Time

(hours)

Testable
Faults

(number)

Untestable
Faults

(number)

Aborted
Faults

(number)

Solver
Timeouts
(number)

DarkRISCV
RV32E 75.85% 79.10% 587 4,112 16.78h 17,301 933 4,576 2
RV32I 82.42% 84.96% 934 6,526 46.80h 28,056 1,015 4,968 3
RV32I_Zicsr 79.18% 82.17% 811 5,645 54.18h 28,222 1,299 6,124 7

Proprietary
RV32I
_Xunknown

IF Stage 6.54% 14.01% 13 76 15.59h 749 1,688 9,018 6,242
ID Stage 40.29% 45.26% 58 479 4.08h 1,546 421 1,870 1,417¬

Register File 93.40% 99.67% 730 7,196 34.19h 16,536 1,112 56 3
EX Stage 11.66% 13.65% 67 514 29.82h 2,060 2,575 13,027 10,260¬

ALU 99.70% 99.89% 428 3,087 5.36h 7,848 15 9 3
MEM Stage 12.88% 18.94% 17 94 2.45h 303 753 1,297 975
WB Stage 25.63% 26.67% 13 59 0.84h 132 20 363 261
Miscellaneous 4.27% 5.21% 15 84 4.06h 135 569 2,455 2,029
Sum 45.40% 51.06% 1,341 11,589 96.39h 29,309 7,153 28,095 21,200

fault coverage surpasses 99.5 %. Other units require an extended constraint set to
test. Through the strict constraint set multiple components are not testable, e.g. the
exception unit in the instruction fetch (IF) stage, the decoding, bypassing, and hazard
detection logic in the instruction decode (ID) stage, the CSRs in the execute (EX)
stage and the memory (MEM) stage as no data transactions are allowed.

The STL generation time ranges from 16 h to 100 h. However, 15 % to 50 %
(not shown in the table) of the time was spent on fault simulation of the final SBST
program in the FM framework and can be further optimized. Additionally, by moving
the scramble sequence out of the BMC problem and prepending it manually the
runtime of the BMC could be significantly reduced. This shows that the overall
generation runtime has the potential to be optimized.

Comparing the program sizes with existing STLs [134] shows that the generated
SBST programs require optimizations to reach the compactness of company-provided
STLs (46 kB our approach vs 5.8 kB company-provided). However, considering
that each instruction sequence currently only uses 4-byte instructions and contains
a scrambling sequence that might not be required in most cases the current figures
clearly show room for optimizations.

The STL programs have been additionally evaluated and validated with Z01X by
Synopsys via the R4VES framework [44], which allows for an accurate memory model
to be used. This allows simulating advanced fault propagations, e.g., propagation
chains from the program counter to the instruction memory to the register file. A
custom strobing module evaluates the behavior of the STL program and evaluates the
content of register x1 after the STL program has reached its end. This final validation
step was performed in order to prove, with the assistance of a commercial-grade

4.2 STL generation for RISC-V processors 97

fault simulator, the effectiveness of the proposed method. The results are listed
in Table 4.3.

Table 4.3 Validation of STLs in Z01X

Processor and ISA Detected
Potentially
Detected

Undetected
End Not
Reached

Data Bus
Used

Exception
Occurred

Unknown Untestable

DarkRISCV
RV32E 69.24% 6.32% 12.74% 3.46% 0.05% 0.00% 3.39% 4.80%

RV32I 75.70% 6.62% 8.47% 2.26% 0.03% 0.00% 2.16% 4.76%

RV32I_Zicsr 71.23% 6.53% 11.39% 2.35% 0.03% 0.00% 3.63% 4.82%

Proprietary
RV32I
_Xunknown

IF Stage 3.43% 0.12% 78.16% 1.46% 0.01% 7.22% 3.40% 6.20%

ID Stage 40.57% 0.05% 70.67% 0.91% 0.09% 7.44% 7.60% 4.30%¬

Register File 91.23% 0.00% 0.12% 0.00% 0.00% 0.08% 3.33% 5.24%

EX Stage 11.69% 0.00% 75.24% 0.24% 0.00% 1.13% 6.15% 5.55%¬

ALU 93.75% 0.00% 0.03% 0.00% 0.00% 5.89% 0.20% 0.12%

MEM Stage 14.42% 0.00% 76.57% 1.05% 0.00% 0.12% 2.20% 5.64%

WB Stage 23.88% 0.10% 73.69% 0.68% 0.00% 0.05% 1.31% 0.29%

Miscellaneous 4.25% 0.14% 83.03% 0.37% 0.03% 7.65% 0.70% 3.85%

Sum 38.51% 0.04% 48.86% 0.51% 0.01% 3.34% 3.90% 4.83%

The faults in Table 4.3 are either classified as Detected if the content of the
register is fully known at the program end and it differs from the golden value, or
Maybe Detected if the register is dependent on an unknown state like unspecified
instruction memory regions or uninitialized (CSR) registers, or Undetected if no
difference from the golden signature emerges. Custom fault statuses were used to
signal exceptions during the STL execution under fault influence. This includes cases
where the end of the SBST is not reached (End Not Reached), the firmware state is
modified or the fault detection is dependent on the firmware state (Data Bus Used),
or the processor raises an exception or traps (Exception Occurred). Structurally
untestable faults are shown in the Untestable column. All remaining behaviors that
are not classified are put into the Unknown category.

The evaluation using Z01X shows that the detected faults for the DarkRISCV
processors are roughly 5 % below the fault coverage of our approach. However,
roughly 6 % of faults have shown to be dependent on uncontrolled factors like the
firmware state and could potentially be detected. No exceptions occur since the
processor has no exception handling. Two to four percent of faults do not fall into
any described behavior (Unknown).

The proprietary, industrial core shows that a 3.3 % of the faults create an excep-
tion and can be considered as detected. The number of undetected faults for the ALU
and register file shows that almost all detectable faults are detected by the built STL

98 In-Field Test

program, validating the assumption of the STL being able to make hard-to-detect
faults visible and propagate them to the checksum register. To detect faults in other
modules (exception unit, CSRs, IF, ID, and MEM stages) however, the constraint set
has to be extended.

4.3 Supporting the STL generation for GPUs

GPUs are particularly important for computationally intensive tasks involving ma-
chine learning (ML) applications and computer vision algorithms. In the automotive
industry, GPUs have found widespread utilization in various applications such as au-
tonomous guided vehicles [135, 136] and advanced driver assistance systems [137].
In the avionics and space industry, GPUs are utilized as underlying engines to support
vision-based navigation and mid-air object detection [138]. Additionally, GPUs aid
in computationally intensive tasks, including flight management and data processing,
playing a vital role in the industry [139, 140]. Furthermore, there are plans to employ
GPUs in railway systems as a powerhouse to enable trains’ safe and dynamic man-
agement based on environmental and geometrical parameters [141]. Lastly, GPUs
are utilized in various industrial applications, including industrial control robots
and predictive equipment maintenance [142]. It is worth noting that GPUs are not
the exclusive hardware options for data accumulation and processing tasks (e.g.,
silicon health and operational metrics [143]). In many cases, Tensor Processing
Units (TPUs), ASICs, and FPGAs are used alongside GPUs for these purposes.

Given the outlined scenarios where GPUs are utilized in safety-critical contexts,
it becomes imperative to implement testing methodologies that align with rigorous
safety standards. In the realm of field testing, STLs emerge as a leading choice
owing to their adaptability, flexibility, and non-disruptive nature. In practice, an
STL is a collection of TPs. These TPs are mainly designed to target individual units
and allow the singular identification of faults in a device. Several works [120, 118]
have proposed strategies to develop TPs for GPUs, targeting the functional units, the
register files, and the internal controllers.

In this section we will present a method based on BMC to aid the generation of
TPs to form an STL targeting a specific GPU sub-unit while considering permanent
faults. Assuming a pre-existing STL that achieves a certain fault coverage (FC)
percentage, we target the remaining, untested hard-to-test faults and try to generate

4.3 Supporting the STL generation for GPUs 99

functional test stimuli for them or, if possible, prove that they are functionally
untestable.

4.3.1 GPU organization

Considering that GPUs are more complicated and dense circuits than processors,
the problem of generating TPs to form an STL becomes harder. The test engineer
must consider a bigger and more convoluted set of functional constraints given that
the GPU architecture follows a mix of the Single-Instruction Multiple-Data (SIMD)
and Multiple-Instructions Multiple-Data (MIMD) paradigms in order to efficiently
process large amounts of data in a parallel fashion [144].

MEMORY
PARTITION

MEMORY
PARTITION

BUS

SM
CLUSTER

...
...

SMGlobal scheduler

Load scheduler

Decoding unit

SP0

SPn-1

DMU

Register File

In-chip memories

Load scheduler

Decoding unit

SP0

SPn-1

DMU

Register File

In-chip memories

Fig. 4.5 General scheme of GPU’s organization.

100 In-Field Test

In general, each SM is organized as a set of pipeline stages, controlled by one
or more schedulers and dispatcher units. In each pipeline stage, the SM executes
one parallel instruction, internally divided into the procedures of fetching, decoding,
execution, reading from memory, and writing to memory. Moreover, the SMs include
several execution units (CUDA cores or Streaming Processors or SPs) and other
accelerators (i.e., Special Function Units, or SFUs). In detail, one parallel program is
divided as a set of blocks (Cooperative Thread Arrays, short CTAs) and distributed
among the available SMs. The internal controllers submit one instruction from
the parallel program for processing, each for a group of threads (Warps) [145].
The submitted instruction is initially decoded and then processed in parallel by the
available SPs, as one SP per lane. In fact, the same instruction is processed in parallel
by several threads using different operands per thread. Then, a new instruction (from
the same or another thread group) is submitted and processed.

Modern GPU designs allow the decoding and execution of several instructions
in parallel and divide the distribution of the available SPs per SM among the in-
structions to process, so more than one instruction per thread group can be executed
simultaneously [146]. More in detail, the decoding unit plays an important role (as
a control unit inside the SMs) in identifying incoming instructions and assigning
hardware units and operand sources for the parallel processing among the different
parallel threads.

4.3.2 Proposed method

Although BMC is a known technique [38] for STL generation targeting processor cir-
cuits, in order to be applied to GPU hardware some parameters have to be considered
in greater detail than in the case of CPUs. For example, the complex starting state of
the GPU hardware circuit. In the aforementioned papers, a synchronization sequence
is typically generated that drives the circuit in a well-defined initial state where
there are no DON’T CARE values in the flip-flops of the DUT. Whereas, if an initial
state is a-priori known and extracted (e.g., via logic simulation of the STL), in our
method it can be directly applied on every memory cell saving valuable computation
time considering the size of the GPU. Furthermore, certain GPU units depend on
architecture-specific memory models (e.g., the DMU interacts with an auxiliary
stack). Later in the text, we explain in detail how our method enables abstraction
from memory models with the so-called free literals thus making the method suitable

4.3 Supporting the STL generation for GPUs 101

for tackling such cases. The method is graphically presented in Figure 4.6 and will
be presented step-by-step. We begin by identifying the target unit inside the GPU
as our DUT. Also, we assume a pre-existing STL to be available as a baseline that
achieves a certain percentage of coverage on the DUT under the stuck-at fault model.
The method focuses on the faults left untested by this original STL. We also assume
the DUT will be first synthesized into a gate-level representation using a user-given
technology library to target relevant stuck-at faults accurately.

GPU

VCM

DUT

PatternsSASS

Untested
Faults Results Fault Simulator

BMC TPGFunctional
Constraints

Fig. 4.6 Proposed method using BMC for pattern generation followed by SASS transforma-
tion and fault simulation.

A critical step in ensuring the success of the method lies in formulating and
applying constraints to the DUT. To replicate the operating conditions of the DUT a
functional constraint set has to be devised. This constraint set ensures that the behav-
ior of the DUT can later be mapped to a functional STL. In general, this constraint
set includes enforcing valid states and control inputs (e.g., limiting the behavior
of component interfaces to adhere to the present bus protocols, limiting memory
address ranges, etc.). This crucial task is carried out by the VCM (see Section 1.4.2)
adapted to the special needs in the context of GPUs. These constraints are derived
from various sources, including (i) the complex architectural characteristics and
the valid architecture states of the DUT, (ii) the interactions between the DUT and
the entire GPU; for example, certain DUT input signals may have unique values
enforced by neighboring functional blocks, (iii) the dependencies of the DUT on

102 In-Field Test

specific configurations; for instance, if a particular input is influenced by the program
counter, it must not exceed a certain value. The VCM’s logic computes if the state
and behavior of the DUT match the constraints that have been encoded inside the
VCM. The VCM’s validation result is indicated via its outputs. A Boolean value of 1
indicates that the constraint is held, while a 0 indicates that the constraint is not held
and the miter circuit shows an invalid behavior.

BMC-based ATPG

The next step in our method is the BMC-based ATPG. We start with a well-defined
initial state for the DUT. That is, there are no DON’T CARE values in the circuit and
all signal assignments abide by the functional constraints. The search or transition
space is circumscribed implicitly by the constraints imposed through the VCM.
Remember that, during BMC the VCM’s validation outputs are constrained via an
invariant always to have a value of 1. This enforces the VCM’s constraints as they
are propagated through the VCM’s circuit logic to the VCM’s inputs and with that to
the miter circuit itself.

For each stuck-at fault of the DUT a property is generated and added as a target
state of the BMC problem, responsible for activating and propagating the fault to an
observable point. For example, for a generic stuck-at fault X, a textual definition of
this property is “Can the fault site X be set to the opposite logic value and propagate
the fault-effect to a primary output of the DUT?”. When this iterative process finishes,
we obtain solutions (models) for each BMC problem solved for every stuck-at fault.

In the case that the target state is reached for a fault, then this fault is marked as
potentially testable, and decoding of the DUT’s input signals’ literals to 0/1 logic
represents a potential test pattern for the fault. Note, that the verdict is potentially
testable due to the fact that the propagation points are the primary outputs of the
GPU unit and not the GPU itself. Hence, although it may be the case that a fault
is identified as testable in the context of the GPU unit, it is not propagatable to a
GPU output or observation point, i.e., a designated part of the circuit from which we
are able to observe a signal’s value and compare it with a known fault-free value to
determine whether a fault is detected or not.

However, in the case that the target state cannot be reached, then the fault is
marked as untestable under the functional constraints imposed during the BMC

4.3 Supporting the STL generation for GPUs 103

process. It is safe to deduce that a fault classified as functionally untestable within
the boundaries of the GPU’s sub-unit will also be functionally untestable for the
whole GPU since if the fault cannot be controlled within the sub-unit then it will
also not be controllable when considering the whole circuit as well. Furthermore,
considering that the observation points of the unit are the primary and pseudo-primary
outputs of the sub-module if the fault is controlled but not observed, then it will also
not be propagatable to the rest of the GPU. Lastly, if for a given fault during the
BMC process, the solver exceeds a specific limit such as maximum unrolling depth
or maximum solve time, then the fault is marked as aborted and no verdict about its
testability is generated.

Conversion to SASS assembly & fault simulation

Once the candidate patterns are generated, a conversion and mapping process trans-
lates them into valid test assembly instructions, considering the supported ISA for
the target device (e.g., SASS ISA in NVIDIA GPUs).

We initially identify the supported ISA of a targeted device and analyze two
main features: i) instruction’s opcode and ii) data operand formats, that are directly
involved in the mapping of each test pattern as one or a set of instructions. Then,
we determine the mapping complexity that depends on the location of the targeted
unit in the GPU’s structure and the unit’s correlation with the assembly instructions.
A low mapping complexity indicates that the targeted unit is part of the data path
or directly interacts with the execution of assembly instructions. In contrast, high
mapping complexity involves that other units interact with the instructions before
the operation reaches a targeted unit.

In general, selecting an instruction opcode determines the type of operation
performed (e.g., data movement or arithmetic operation). Thus, we analyze the test
patterns to identify a feasible and valid opcode. Once a valid opcode is determined,
we complete the instruction’s missing parts with the information from the original
test pattern. In this case, we resort to the identification of data operand formats, e.g.,
the definition of constant/immediate values or the identification of memory/register
addresses that are used by the encoded assembly test instruction. At this point, most
candidate test patterns can be mapped into valid instruction’s opcode.

104 In-Field Test

As an example let us consider the case of the ALU’s adder circuit. The mapping
in this scenario is relatively simple since we just have to identify the appropriate
instruction operands. Another example, of medium mapping complexity can be
considered the decoder unit. From the generated test pattern, we have to identify the
instruction opcode and also identify the instruction operands to create the equivalent
assembly instruction.

Regarding the mapping complexity, the low complexity case does not introduce
additional considerations in the mapping process. Thus, the development of TPs
is simplified. In contrast, a high mapping complexity requires the identification of
those units involved in the execution of an assembly test instruction. In this case,
we determine those possible complementary operations (instructions) to provide
initialization conditions to correctly apply an instruction on a targeted unit (e.g.,
when a test instruction requires parallel data-movement operations from memory,
we must initialize the involved registers with valid memory addresses or values for
each thread).

Finally, we resort to focused fault simulations to validate the effectiveness of the
mapped assembly test instructions on the targeted unit. In this case, we resort to
commercial-grade logic simulators to confirm the effective activation and propagation
of a targeted fault inside a unit by resorting to the equivalent effect from the mapped
test instructions inside the architecture of the device. To reduce the execution
time during validation, we focused on the individual execution of each candidate
test pattern and its associated targeted fault. When one or a set of assembly test
instructions correctly activate and propagate the effects into an observable point (e.g.,
unit’s outputs), we classify the test instructions as effective and include them as part
of TPs. When the validation of a test instruction fails, the fault propagation does not
reach an observable point and we discard the instruction and classify it as potentially
untestable for the system. It must be noted that custom frameworks are adapted
according to a targeted unit inside the device.

Case study: The GPU decoding unit

Table 4.4 reports the main identified parallel operational constraints for the decoding
unit, which are used to generate the VCM hardware module during the analysis.
These constraints are determined considering the primary inputs and outputs of the

4.3 Supporting the STL generation for GPUs 105

Table 4.4 Operational Constraints of the Decoding Unit in a GPU

Operational
feature

Operational constraint

instruction set All supported instructions from the SM 1.0 of the
G80 architecture

warp processing Dispatched and executed in increasing order (from 0
to 31)

warp lanes Dispatched according to scheduler; Increasing se-
quence (from 0 to 3)

cooperative thread
array (CTA) id

Dispatched according to scheduler; Round-robin ap-
proach (from 0 to 15)

thread register size From 0 to 64
thread active state Active threads in a warp during execution of an in-

struction; active (1) or inactive (0); at least one active
field must be active to execute an instruction

warp instruction
program counter

Within the limits of the GPU’s system memory

pipeline stall Status and control line in the SM; when active, the
unit stops its execution until this line is released

pipeline done Completion acknowledge status of a previous opera-
tion from all pipeline’s stages in the SM; when active,
the unit is ready for the next operation

unit and the interaction with the system (i.e., the parallel configuration parameters,
which are commonly used for executing instructions). The first group of constraints
comprises the supported instructions from the GPU’s ISA. This constraint allows
the generation of test patterns that are later translated into valid instructions. The
second group of constraints depends on the feasible and valid configurations for
instructions during the execution (i.e., the size of registers per thread and the number
and distribution of warps, CTAs, and SP lanes).

Another group of constraints handles the control features in the unit, including
the stall and done conditions in the operation of the unit, and the instruction program
counter’s limit, which is defined according to the system memory. Finally, the
thread’s status in a warp (active/inactive) is listed as an additional constraint for the
unit since the status affects the execution of a possible instruction by the GPU.

106 In-Field Test

4.3.3 Experimental results

In the experiments, we employed the FlexGripPlus GPU model [147, 148] targeting
the gate-level description of the decoding unit inside one SM. Moreover, a custom
workflow was developed to include the proposed formal method analysis and the
evaluation and validation steps for the TPs. The formal analysis, the evaluation,
and the verification fault-injection campaigns are performed on a server of 12 Intel
Xeon CPUs running at 2.5 GHz and with 256 GB of RAM. The targeted module
(the decoding unit) is synthesized using the Silvaco 45nm Open Cell Library [64],
consisting of 987 combinational and 359 sequential cells that account for 11,610
permanent stuck-at faults. The proposed method has been implemented within our
FM framework (see Section 1.4).

For the fault simulation experiments devoted to verifying possible new test
patterns, we employ two commercial tools handling the GPU. First, a logic simulator
(QuestaSIM) traces the execution of an existing or new TP, resorting to a mixed-level
description of the GPU model (RT- + gate-level). In this case, the targeted unit
is the only one simulated at the gate level. Moreover, in this procedure, a trace
report is produced from the complete workload (TP) execution, covering the primary
inputs and outputs of a targeted unit. Then, the generated trace report serves as
input for a functional simulator (Z01X). This tool performs individual fault injection
campaigns only on the targeted unit (injecting permanent stuck-at faults) to verify
the effectiveness of the instructions in each TP in terms of activation and propagation
of fault effects. A fault is identified as detected when at least one of the GPU primary
outputs is modified by the effect of the propagation of a fault while executing one of
the TPs.

Table 4.5 Main Features of the original STLs for the Decoding Unit

Test Program Duration
(# of ccs)

Size
(# of instructions)

FC (%)

IMM 2,229,225 32,736 71.13
MEM 3,186,236 32,581 76.59

CNTRL 710,100 366 71.18
IMM + MEM + CNTRL 6,125,561 65,653 80.15

We employ one STL previously developed to functionally test the decoding unit
of a GPU [149]. This STL is composed of three main TPs (denoted as IMM, MEM, and

4.3 Supporting the STL generation for GPUs 107

CNTRL) using immediate operand, memory movement, and control-flow instructions,
respectively, to excite permanent faults inside the decoding units and propagate
their possible effects. The main features of the TPs are reported in Table 4.5. It
is worth noting that all TPs (IMM, MEM, and CNTRL) were designed by employing a
pseudo-random approach in combination with the operational constraints of the unit.

Table 4.6 Comparison with Commercial ATPG

Full-Sequential
ATPG

BMC-based
TPG

Generated test patterns 86 1,172
New instructions 86 1,809
% Fully ISA-coherent instructions 100 50.34
% Increase in the STL FC 0 9.57

Then, we employed the set of previously described constraints to analyze the
decoding unit and generate new test patterns, which are finally translated into in-
structions. Table 4.6 reports the results of this process. A commercial sequential
ATPG tool was used for comparison purposes. In the analysis, the implemented
framework identified 1,172 undetected permanent faults, which the original STLs do
not cover. Moreover, the analysis provided a total of 1,809 new test patterns able
to excite and propagate faults inside the decoding unit of the GPU. In detail, 535
faults are detected by an individual test pattern, while 637 faults are detected via
a sequence of two patterns. The total run-time of the analysis framework was 198
seconds taking advantage of the heavy parallelization of the method to reduce its
execution time.

After translating the test patterns into equivalent instructions from the GPU’s
ISA, we evaluated 1,172 test routines, including only the new instructions (one
or two) and the parallel configuration constraints determined during the formal
analysis of the unit (i.e., the number of active warps, thread ID, block number, etc.).
The experimental results of the evaluation show that out of the newly identified test
patterns, about 25% can be directly translated into valid instructions in the GPU’s ISA
and be executed with minimal restrictions of parallel configuration, so enhancing the
test coverage directly without significant effort in the design of the TPs. Thus, these
new instructions can be added to the existing TPs. In contrast, a moderate percentage
of new test patterns (around 25.34%) require specific parallel configurations after
being translated into instructions (i.e., specific memory locations or the addressing

108 In-Field Test

of particular memory resources, such as the shared memory), which means that these
instructions cannot be included in previously developed test routines and ad-hoc test
programs must be developed.

On the other hand, a considerable percentage of the newly identified patterns
(49.66%) can only be translated into valid instructions conditioned to the activation
of unfeasible predicate flags (e.g., an always ’false’ execution of a global memory
load). These instruction types are valid for the ISA but are commonly avoided
during the compilation procedures, so they cannot be generated by conventional
GPU compilers. Hence, since it is not possible to generate an inline assembly code
for GPUs and embed it in any application code, these faults can never force an
application to produce a failure. According to safety standards (e.g., ISO 26262)
these faults can thus be labeled as safe and removed from the computation of the
achieved Fault Coverage. In the end, 16 stuck-at faults in the unit were proven to be
uncontrollable and labeled as untestable during the BMC-based ATPG process.

Finally, we compute the overall fault coverage as a combination of the TPs in
the original STLs, and the new TP including the newly generated instructions. The
overall results provide an FC of 89.72% (an increase of 9.57%, when excluding
the identified safe faults), which shows the effectiveness of the proposed technique.
These results support the idea that formal methods can be used as a supporting and
complementary technique to enhance the development of SBST routines for GPUs
devoted to the safety-critical domain.

Although the experiments were performed targeting the decoding unit in a GPU,
we claim that the same technique can be adapted for other controllers, functional
units, and other modules in the GPU architecture.

Chapter 5

Conclusions

In this PhD thesis we propose solutions based on formal methods for addressing
open challenges in burn-in testing, functional untestable fault identification, and
in-field testing. While formal methods are widely recognized tools in some domains,
their utilization in test and reliability, particularly in comparison to verification,
remains relatively limited. This discrepancy can be attributed partly to the non-trivial
adaptation required compared to algebraic and structural testing methods, as well as
scalability concerns [34].

However, the expressive power offered by formal methods presents a compelling
advantage that warrants further exploration across various testing domains. Formal
methods have the potential to mitigate certain obstacles, such as formulating func-
tional constraints during test generation. Additionally, the completeness provided by
formal methods is a significant asset. A formal method-based approach consistently
delivers comprehensive and optimal results based on the set of assumptions and
constraints considered by the test engineer. Furthermore, in cases where the problem
is unsolvable, formal methods yield counterexamples, offering insights that can aid
in refining the overall test flow in which they are applied.

In Chapter 2 we provide methodologies based on formal methods to generate
stress-inducting stimuli for the area of burn-in test. We consider a couple of stress
metrics, i.e., the repeatable constant switching activity and the 2-multipoint switching
activity. We showcase that by functional means it is possible to effectively and
efficiently maximize the SWA in the DUT. Experimental results for the first SWA
metric, applied to two RISC processors, namely OR1200 and RI5CY, showcase an

110 Conclusions

improvement ranging from 2% up to 58% for the functional units considered in
terms of induced stress. These improvements are computed with respect to other
functional test methods such as stressful segments of stuck-at STLs and evolutionary-
based approaches for the maximization of the same stress metric. Regarding the
second SWA metric, which further incorporates layout information of the DUT, we
not only see an improvement when it comes to comparing with other functional
methods, but we also observe a deviation from the state-of-the-art approach (based
on scan) ranging from 0.38% up to 11.16% (on the optimal stress efficiency). The
difference in terms of stress efficiency between the functional and structural (scan)
approaches is attributed to the presence of functionally uncontrollable lines. In the
functional scenario, the set of nets that the scan method managed to sensitize remains
uncontrollable. Hence, any potential fault stemming from those fault sites would be
considered safe as it would be impossible to cause any system failure. Overall, by
having a well-defined stress metric and a system specification available, we showcase
that it is possible to generate functional constraints and optimal functional stress-
inducing stimuli, with respect to the stress metric and the constraints by relying on
FMs.

In Chapter 3, we emphasize the importance of the identification of functionally
untestable faults. We focus on functionally uncontrollable lines in a circuit while
considering permanent faults and propose two methods based on SAT-solving to face
the issue of uncontrollable line identification. The effectiveness of the methods was
showcased on the OR1200 processor, where a percentage of 2.3% of functionally
uncontrollable lines was detected compared to a 0.1% percentage detected by a
commercial automatic test pattern generation engine. Furthermore, we consider
the relatively new cell-aware test, and we propose a method based on BMC to
identify functionally uncontrollable cell-aware faults while targeting combinational
cells in the DUT. We underline that as the cell-aware test is a prime candidate
for consideration in the new functional safety standards revisions, the issue of the
identification of functionally untestable faults is likely to become soon a hot one.
The method was applied on the RI5CY processor synthesized with the Nangate 45nm
technology library for which cell test models were generated for each technology
cell. A total of 9.85% of functionally untestable cell-aware faults were detected and
15.33% of functionally untestable stuck-at faults. To our knowledge, this is the first
work proposing a solution able to systematically identify functionally untestable
cell-aware faults.

111

Lastly, in Chapter 4, we employ FMs (more specifically, BMC) to generate in
a ground-up manner functional test stimuli to compose STLs for the stuck-at fault
model. We consider the case where the DUT is a scalar pipelined processor, but
also the case where the DUT is a GPU, which is a denser and more sophisticated
circuit. The STL generation method for processors was applied to DarkRISCV and a
proprietary RISC-V core. The STL generation was focused on stuck-at faults on the
register file and the ALU of the cores. For the DarkRISCV variants, a testable fault
coverage of > 79% was achieved, whereas for the sub-units of the proprietary core
percentages, a > 99% figure was reached (Table 4.2). For the case of the GPU, we
isolated the decoding unit of the FlexGripPlus GPU and focused on hard-to-test
stuck-at faults within this sub-module. By having as a reference an STL targeting the
decoding unit and achieving 80.15% of coverage (Table 4.5) we managed to increase
it to 89.72% (9.57% increase) by resorting to BMC-based test pattern generation
with extensive functional constraints.

Overall, FMs represent a powerful tool, which can be adapted in a "divide
and conquer" fashion to a wide variety of test and reliability problems and provide
optimal and high-quality solutions. Currently, there are concerns about the scalability
of FMs in the general test and reliability area. However, with the continuous growth
and evolution of computational hardware, powerful FM engines (solvers) have been
developed, able to process large Boolean formulas in combination with high-quality
software engineering. Hence, considering the wide applicability that such tools have,
while also weighting in the optimality and quality of the yielded solutions, future
advancements in hardware and software engineering hold promising potential [150]
to address scalability concerns and further enhance the applicability and quality of
FM-based solutions in the field of test and reliability.

Future directions

The work presented in this PhD thesis opens the way for new investigations. Specifi-
cally, concerning the area of the Burn-In test (presented in Chapter 2) a wider variety
of stress metrics can be devised, while also considering real, safety-critical hardware
and observing the effects of the internal stress in a manner similar to [48]. By pro-
ducing heat maps from the application of FM-based stress stimuli, one can compare
with other solutions and showcase the quality of the proposed method. When it
comes to stress metrics similar to the ones presented in Section 2.3.2, one can also

112 Conclusions

consider optimal net grouping approaches based on layout-derived information, as
done in [151].

Regarding the area of functionally untestable fault identification (presented
in Chapter 3), a wider variety of fault models can be considered. For instance, when
it comes to cell-aware test, dynamic or 2-pattern faults are not covered by the method
proposed in Section 3.3.2 and remain an open issue.

Lastly, when it comes to STL generation (presented in Chapter 4) approaches
that better consider the mission profile should be explored, as well as programs that
cover further sub-units of a processor core or GPU.

References

[1] Synopsys. What is Moore’s Law? https://www.synopsys.com/glossary/
what-is-moores-law.html#d. Accessed 19/12/2023.

[2] International Organization for Standardization. Road vehicles – Functional
Safety. https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en, 2018.
Accessed 31/12/2023.

[3] Radio Technical Commission for Aeronautics. Design Assurance Guidance for
Airborne Electronic Hardware. https://www.rtca.org/training/do-254-training/,
2005. Accessed 31/12/2023.

[4] R. Vollertsen. Burn-In. In IEEE International Integrated Reliability Workshop,
1993.

[5] T. M. Mak. Infant Mortality - The Lesser Known Reliability Issue. In IEEE
International On-Line Testing Symposium (IOLTS), 2007.

[6] C. He. Advanced Burn-In - An Optimized Product Stress and Test Flow for
Automotive Microcontrollers. In IEEE International Test Conference (ITC),
2019.

[7] Y Han Ng, Y. Hock Low, and S. Demidenko. Improving Efficiency of IC
Burn-In Testing. In IEEE Instrumentation and Measurement Technology
Conference (I2MTC), 2008.

[8] N. Aghaee, Z. Peng, and P. Eles. Temperature-Gradient-Based Burn-In and
Test Scheduling for 3-D Stacked ICs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 23:2992–3005, 2015.

[9] C. He and Y. Yu. Wafer Level Stress: Enabling Zero Defect Quality for
Automotive Microcontrollers without Package Burn-In. In IEEE International
Test Conference (ITC), 2020.

[10] A. Sinha, G. Colon-Bonet, M. Fahy, P. Pant, H. Mao, and A. Shukla. Maximiz-
ing Stress Coverage by Novel DFT Techniques and Relaxed Timing Closure.
In IEEE International Test Conference (ITC), 2023.

https://www.synopsys.com/glossary/what-is-moores-law.html#d
https://www.synopsys.com/glossary/what-is-moores-law.html#d
https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.rtca.org/training/do-254-training/

114 References

[11] N I. Deligiannis, R. Cantoro, T. Faller, T. Paxian, B. Becker, and M. Sonza Re-
orda. Effective SAT-based Solutions for Generating Functional Sequences
Maximizing the Sustained Switching Activity in a Pipelined Processor. In
IEEE Asian Test Symposium (ATS), 2021.

[12] N. I. Deligiannis, T. Faller, R. Cantoro, T. Paxian, B. Becker, and M. Sonza Re-
orda. Automating the Generation of Programs Maximizing the Repeatable
Constant Switching Activity in Microprocessor Units via MaxSAT. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
42:4270–4281, 2023.

[13] N. I. Deligiannis, R. Cantoro, and M. Sonza Reorda. Maximizing the Switch-
ing Activity of Different Modules Within a Processor Core via Evolutionary
Techniques. In Euromicro Conference on Digital System Design (DSD), 2021.

[14] N. I. Deligiannis, R. Cantoro, and M. Sonza Reorda. Automating the Genera-
tion of Programs Maximizing the Sustained Switching Activity in Micropro-
cessor units via Evolutionary Techniques. Microprocessors and Microsystems,
98:104775, 2023.

[15] N. I. Deligiannis, T. Faller, Z. Chenghan, R. Cantoro, B. Becker, and
M. Sonza Reorda. Automating the Generation of Functional Stress Inducing
Stimuli for Burn-In Testing. In IEEE European Test Symposium (ETS), pages
1–5, 2023.

[16] V.D. Agrawal and S.T. Chakradhar. Combinational atpg theorems for identify-
ing untestable faults in sequential circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 14:1155–1160, 1995.

[17] P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan. On-
line functionally untestable fault identification in embedded processor cores.
In IEEE Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013.

[18] X. Liu and M.S. Hsiao. On identifying functionally untestable transition faults.
In IEEE International High-Level Design Validation and Test Workshop, 2004.

[19] International Electrotecnical Commission. IEC 60812:2018 - Failure Modes
and Effects Analysis (FMEA and FMECA). IEC, 2018.

[20] R. Cantoro, A. Firrincieli, D. Piumatti, M. Restifo, E. Sanchez, and
M. Sonza Reorda. About on-line functionally untestable fault identifica-
tion in microprocessor cores for safety-critical applications. In IEEE Latin
American Test Symposium (LATS), 2018.

[21] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. Sonza Reorda, and
J.-G. Mess. An Analysis of Test Solutions for COTS-based Systems in
Space Applications. In IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2018.

References 115

[22] N. I. Deligiannis, R. Cantoro, M. Sauer, B. Becker, and M. Sonza Reorda.
New Techniques for the Automatic Identification of Uncontrollable Lines in a
CPU Core. In IEEE VLSI Test Symposium (VTS), 2021.

[23] N. I. Deligiannis, T. Faller, I. Guglielminetti, R. Cantoro, B. Becker, and
M. Sonza Reorda. Automatic Identification of Functionally Untestable Cell-
Aware Faults in Microprocessors. In IEEE Asian Test Symposium (ATS),
2023.

[24] N. Kranitis, D. Gizopoulos, A. Paschalis, and Y. Zorian. Instruction-based
self-testing of processor cores. In IEEE VLSI Test Symposium (VTS), 2002.

[25] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda. Microproces-
sor Software-Based Self-Testing. IEEE Design & Test of Computers, 27:4–19,
2010.

[26] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis,
A. Raghunathan, and S. Ravi. Systematic Software-Based Self-Test for
Pipelined Processors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 16:1441–1453, 2008.

[27] Y. Zhang, Y. Ding, Z. Peng, H. Li, M. Fujita, and J. Jiang. BMC-Based
Temperature-Aware SBST for Worst-Case Delay Fault Testing Under High
Temperature. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 30:1677–1690, 2022.

[28] J. E. Rodriguez Condia, F. A. da Silva, A. Ç. Bağbaga, J. D. Guerrero-
Balaguera, S. Hamdioui, C. Sauer, and M. Sonza Reorda. Using STLs for
Effective In-Field Test of GPUs. IEEE Design & Test, 40:109–117, 2023.

[29] P. Parvathala, K. Maneparambil, and W. Lindsay. FRITS - a microprocessor
functional BIST method. In IEEE International Test Conference (ITC), 2002.

[30] F. Corno, E. Sanchez, M. Sonza Reorda, and G. Squillero. Automatic test
program generation: a case study. IEEE Design & Test of Computers, 21:102–
109, 2004.

[31] T. Faller, N. I. Deligiannis, M. Schwörer, M. Sonza Reorda, and B. Becker.
Constraint-Based Automatic SBST Generation for RISC-V Processor Fami-
lies. In IEEE European Test Symposium (ETS), 2023.

[32] N. I. Deligiannis, T. Faller, J. E. Rodriguez Condia, R. Cantoro, B. Becker,
and M. Sonza Reorda. Using Formal Methods to Support the Development of
STLs for GPUs. In IEEE Asian Test Symposium (ATS), 2022.

[33] J. Anders, P. Andreu, B. Becker, S. Becker, R. Cantoro, N. I. Deligiannis,
N. Elhamawy, T. Faller, C. Hernandez, N. Mentens, M. N. Rizi, I. Polian,
A. Sajadi, M. Sauer, D. Schwachhofer, M. Sonza Reorda, T. Stefanov, I. Tuzov,
S. Wagner, and N. Zidarič. A Survey of Recent Developments in Testability,
Safety and Security of RISC-V Processors. In IEEE European Test Symposium
(ETS), 2023.

116 References

[34] National Aeronautics and Space Administration. What is Formal Methods?
https://shemesh.larc.nasa.gov/fm/fm-what.html. Accessed 12/01/2024.

[35] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
11:4–15, 1992.

[36] R. Drechsler, S. Eggergluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and
D. Tille. On Acceleration of SAT-based ATPG for Industrial Designs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27:1329–1333, 2008.

[37] K. Scheibler, D. Erb, and B. Becker. Accurate CEGAR-based ATPG in pres-
ence of unknown values for large industrial designs. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016.

[38] M. Sauer, B. Becker, and I. Polian. PHAETON: A SAT-Based Framework
for Timing-Aware Path Sensitization. IEEE Transactions on Computers,
65:1869–1881, 2016.

[39] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, 1983.

[40] S.J.P. Marques and K.A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. In IEEE International Conference on Computer Aided Design
(ICCAD), 1996.

[41] J.P. Marques-Silva and K.A. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers, 48:506–521,
1999.

[42] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7:201–215, 1960.

[43] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

[44] CAD Group, Politecnico di Torino & University of Freiburg. R4VES: RISC-V
Environment For Simulations. https://github.com/cad-polito-it/r4ves, 2023.
Accessed 01/02/2024.

[45] A. Bierre. Handbook of Satisfiability. IOS Press, 2009.

[46] M. Fairuz Zakaria, Z. Abu Kassim, M. P. L. Ooi, and S. Demidenko. Reduc-
ing Burn-In Time Through High-Voltage Stress Test and Weibull Statistical
Analysis. IEEE Design & Test of Computers, 23:88–98, 2006.

[47] W. Ruggeri, P. Bernardi, S. Littardi, M. Sonza Reorda, D. Appello, C. Bertani,
G. Pollaccia, V. Tancorre, and R. Ugioli. Innovative methods for Burn-In
related Stress Metrics Computation. In International Conference on Design
& Technology of Integrated Systems in Nanoscale Era (DTIS), 2021.

https://shemesh.larc.nasa.gov/fm/fm-what.html
https://github.com/cad-polito-it/r4ves

References 117

[48] D. Appello, P. Bernardi, G. Giacopelli, A. Motta, A. Pagani, G. Pollaccia,
C. Rabbi, M. Restifo, P. Ruberg, E. Sanchez, C.M. Villa, and F. Venini. A
Comprehensive Methodology for Stress Procedures Evaluation and Compari-
son for Burn-In of Automotive SoC. In IEEE Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017.

[49] S. Chowdhury and J. Sabir Barkatullah. Estimation of Maximum Currents in
MOS IC Logic Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 9:642–654, 1990.

[50] H. Kriplani, F. Najm, and I. Hajj. Maximum Current Estimation in CMOS
Circuits. In ACM/IEEE Design Automation Conference (DAC), 1992.

[51] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White. Estimation of
Average Switching Activity in Combinational Logic Circuits Using Symbolic
Simulation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 16:121–127, 1997.

[52] C. Y. Wang and K. Roy. Maximum Power Estimation for CMOS Circuits
Using Deterministic and Statistical Approaches. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 6:134–140, 1998.

[53] S. Devadas, J. White, and K. Keutzer. Estimation of Power Dissipation in
CMOS Combinational Circuits Using Boolean Function Manipulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
11:373–383, 1992.

[54] K. C. Huang, C. L. Lee, and J.E. Chen. Maximization of Power Dissipation
Under Random Excitation for Burn-In Testing. In IEEE International Test
Conference (ITC), 1998.

[55] A. Sagahyroon. Maximizing Heat Dissipation for Burn-In Testing. In IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE),
2002.

[56] F. Najm and M. Zhang. Extreme Delay Sensitivity and the Worst-Case
Switching Activity in VLSI Circuits. In ACM/IEEE Design Automation
Conference (DAC), 1995.

[57] S. Manich and J. Figueras. Maximizing the Weighted Switching Activity in
Combinational CMOS Circuits Under the Variable Delay Model. In IEEE
European Conference on Design and Test (EDTC), 1997.

[58] W. Qing, Q. Qinru, and M. Pedram. Estimation of Peak Power Dissipation in
VLSI Circuits Using the Limiting Distributions of Extreme Order Statistics.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20:942–956, 2001.

[59] F. A. Aloul and A. Sagahyroon. Estimation of the Weighted Maximum
Switching Activity in Combinational CMOS Circuits. In IEEE International
Symposium on Circuits and Systems (ISCAS), 2006.

118 References

[60] F. A. Aloul and A Sagahyroon. Using SAT Techniques in Dynamic Burn-
In Vector Generation. In IEEE Mediterranean Electrotechnical Conference
(MELCON), 2010.

[61] R. Cantoro, M. Sonza Reorda, A. Rohani, and H. G. Kerkhoff. On the
Maximization of the Sustained Switching Activity in a Processor. In IEEE
International On-Line Testing Symposium (IOLTS), 2015.

[62] OpenRISC. https://openrisc.io. Accessed 21/01/2024.

[63] PULP. https://pulp-platform.org/. Accessed 21/01/2024.

[64] Silvaco 45nm Open Cell Library. https://si2.org/open-cell-library. Accessed
21/01/2024.

[65] Sanchez E., Schillaci M., and Squillero G. Evolutionary Optimization: the
µGP toolkit. Springer, Berlin, New York, 2011.

[66] A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers. In
International Conference on Computer-Aided Design (ICCAD), 2018.

[67] D. Kaufmann, A. Biere, and M. Kauers. Verifying Large Multipliers by
Combining SAT and Computer Algebra. In Formal Methods in Computer
Aided Design (FMCAD), 2019.

[68] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of Model
Checking. Springer Publishing Company, Incorporated, 2018.

[69] T. Wahl. The k-Induction Principle. https://www.ccs.neu.edu/home/wahl/
Publications/k-induction.pdf. Accessed 25/01/2024.

[70] K. McMillan. Applications of Craig Interpolation to Model Checking. In
International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (ICATPN), 2005.

[71] H.-C. Liang, C. L. Lee, and J.E. Chen. A sequential redundant fault iden-
tification scheme and its application to test generation. In IEEE Asian Test
Symposium (ATS), 1994.

[72] H.-C. Liang, C. L. Lee, and J.E. Chen. Identifying Untestable Faults in
Sequential Circuits. IEEE Design & Test of Computers, 12:14–23, 1995.

[73] M.A. Iyer and M. Abramovici. Sequentially Untestable Faults Identified
Without Search ("Simple Implications Beat Exhaustive Search!"). In IEEE
International Test Conference (ITC), 1994.

[74] M.A. Iyer and M. Abramovici. Low-Cost Redundancy Identification for
Combinational Circuits. In International Conference on VLSI Design (ICVD),
1994.

https://openrisc.io
https://pulp-platform.org/
https://si2.org/open-cell-library
https://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf
https://www.ccs.neu.edu/home/wahl/Publications/k-induction.pdf

References 119

[75] V.D. Agrawal and S.T. Chakradhar. Combinational atpg theorems for identify-
ing untestable faults in sequential circuits. In IEEE European Test Conference
(ETC), 1993.

[76] D. E. Long, M.A. Iyer, and M. Abramovici. FILL and FUNI: Algorithms to
Identify Illegal States and Sequentially Untestable Faults. ACM Transactions
on Design Automation of Electronic Systems, 5:631–657, 2000.

[77] Q. Peng, M. Abramovici, and J. Savir. MUST: multiple-stem analysis for iden-
tifying sequentially untestable faults. In IEEE International Test Conference
(ITC), 2000.

[78] M. Syal and M.S. Hsiao. Untestable Fault Identification Using Recurrence
Relations and Impossible Value Assignments. In International Conference on
VLSI Design (IVCD), 2004.

[79] M. Syal and M.S. Hsiao. New Techniques for Untestable Fault Identification
in Sequential Circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25:1117–1131, 2006.

[80] J. Raik, H. Fujiwara, R. Ubar, and A. Krivenko. Untestable Fault Identification
in Sequential Circuits Using Model-Checking. In IEEE Asian Test Symposium
(ATS), 2008.

[81] K. Heragu, J.H. Patel, and V.D. Agrawal. Fast Identification of Untestable
Delay Faults Using Implications. In International Conference on Computer
Aided Design (ICCAD), 1997.

[82] Y. Shao, S.M. Reddy, S. Kajihara, and I. Pomeranz. An Efficient Method to
Identify Untestable Path Delay Faults. In IEEE Asian Test Symposium (ATS),
2001.

[83] X. Liu and M.S. Hsiao. On Identifying Functionally Untestable Transition
Faults. In IEEE International High-Level Design Validation and Test Work-
shop (HLDVT), 2004.

[84] M. Syal, S. Chakravarty, and M.S. Hsiao. Identifying Untestable Transition
Faults in Latch Based Designs with Multiple Clocks. In International Conferce
on Test (ITC), 2004.

[85] S. Padmanaban and S. Tragoudas. Efficient Identification of (Critical) Testable
Path Delay Faults Using Decision Diagrams. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24:77–87, 2005.

[86] X. Lin and J. Rajski. The Impacts of Untestable Defects on Transition Fault
Testing. In IEEE VLSI Test Symposium (VTS), 2006.

[87] M. Syal, M.S. Hsiao, K.B. Doreswamy, and S. Chakravarty. Efficient
implication-based untestable bridge fault identifier. In IEEE VLSI Test Sympo-
sium (VTS), 2003.

120 References

[88] T. Nakura, Y. Tatemura, G. Fey, M. Ikeda, S. Komatsu, and K. Asada. SAT-
based ATPG testing of inter- and intra-gate bridging faults. In IEEE European
Conference on Circuit Theory and Design (ECCTD), 2009.

[89] I. Pomeranz. Efficient Identification of Undetectable Two-Cycle Gate-
Exhaustive Faults. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 41:776–783, 2022.

[90] Henessy, J. L. and Patterson, D. A. Computer Architecture: A Quantitative
Approach. Elvesier, 6 edition, 2017.

[91] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract
DPLL Modulo Theories. In Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), 2005.

[92] VCAS Laboratory, University of Ioannina. Tethorax: A RISC-V Base Integer
ISA Implementation (RV32I). https://github.com/NikosDelijohn/Tethorax,
2019. Accessed 07/02/2024.

[93] F.J. Ferguson and T. Larrabee. Test Pattern Generation for Realistic Bridge
Faults in CMOS ICs. In IEEE International Test Conference (ITC), 1991.

[94] J. Rearick and J.H. Patel. Fast and accurate CMOS bridging fault simulation.
In IEEE International Test Conference - (ITC), 1993.

[95] P. Engelke, I. Polian, J. Schloeffel, and B. Becker. Resistive Bridging Fault
Simulation of Industrial Circuits. In IEEE Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2008.

[96] K.Y. Cho, S. Mitra, and E.J. McCluskey. Gate Exhaustive Testing. In IEEE
International Conference on Test (ITC), 2005.

[97] J. Geuzebroek, E.J. Marinissen, A. Majhi, A. Glowatz, and F. Hapke. Embed-
ded multi-detect ATPG and Its Effect on the Detection of Unmodeled Defects.
In IEEE International Test Conference (ITC), 2007.

[98] I. Pomeranz and S.M. Reddy. On N-detection Test Sets and Variable N-
Detection Test Sets for Transition Faults. In IEEE VLSI Test Symposium
(VTS), 1999.

[99] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast. Cell-Aware Test. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33:1396–1409,
2014.

[100] F. Hapke, R. Krenz-Baath, A. Glowatz, J. Schloeffel, H. Hashempour,
S. Eichenberger, C. Hora, and D. Adolfsson. Defect-oriented cell-aware
ATPG and fault simulation for industrial cell libraries and designs. In IEEE
International Test Conference (ITC), 2009.

[101] Synopsys. CMGen User Guide, 2022.

https://github.com/NikosDelijohn/Tethorax

References 121

[102] Siemens EDA. Tessent Shell Reference Manual, 2019.

[103] S. Kundu, G. Bhargava, L. Endrinal, and L. Ranganathan. Using Custom Fault
Models to Improve Understanding of Silicon Failures. In IEEE International
Test Conference (ITC), 2022.

[104] RISC-V International. RISC-V Opcodes. https://github.com/riscv/
riscv-opcodes, 2022.

[105] RISC-V International. Volume 2, Privileged Specification version 20211203.
https://riscv.org/technical/specifications/. Accessed 13/02/2024.

[106] C. Li and S. Dey. Software-Based Self-Testing Methodology for Processor
Cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20:369–380, 2001.

[107] A. Benso, A. Bosio, P. Prinetto, and A. Savino. An On-Line Software-
Based Self-Test Framework for Microprocessor Cores. In IEEE International
Conference on Design and Test of Integrated Systems in Nanoscale Technology
(DTIS), 2006.

[108] S. Gurumurthy, S. Vasudevan, and J.A. Abraham. Automatic Generation
of Instruction Sequences Targeting Hard-to-Detect Structural Faults in a
Processor. In IEEE International Test Conference (ITC), 2006.

[109] S. Gurumurthy, R. Vemu, J.A. Abraham, and D.G. Saab. Automatic Genera-
tion of Instructions to Robustly Test Delay Defects in Processors. In IEEE
European Test Symposium (ETS), 2007.

[110] M. Grosso, W.J.H. Perez, D. Ravotto, E. Sanchez, M. Sonza Reorda, and J.V.
Medina. A Software-Based Self-Test Methodology for System Peripherals.
In IEEE European Test Symposium (ETS), 2010.

[111] P. Sha’afi Kabiri and Z. Navabi. Effective RT-level Software-Based Self-
Testing of Embedded Processor Cores. In International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS), 2012.

[112] G. Theodorou, N. Kranitis, A. Paschalis, and D. Gizopoulos. Software-
Based Self-Test for Small Caches in Microprocessors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33:1991–2004,
2014.

[113] A. Jasnetski, R. Ubar, and A. Tsertov. Automated software-based self-test
generation for microprocessors. In Mixed Design of Integrated Circuits and
Systems (MIXES), 2017.

[114] P. Georgiou, X. Kavousianos, R. Cantoro, and M. Sonza Reorda. Fault-
independent test-generation for software-based self-testing. In IEEE Interna-
tional Symposium on On-Line Testing And Robust System Design (IOLTS),
2018.

https://github.com/riscv/riscv-opcodes
https://github.com/riscv/riscv-opcodes
https://riscv.org/technical/specifications/

122 References

[115] A.S. Oyeniran, R. Ubar, M. Jenihhin, and J. Raik. High-Level Implementation-
Independent Functional Software-Based Self-Test for RISC Processors. Jour-
nal of Electronic Testing, 36:87–103, 2020.

[116] R. Cantoro, F. Garau, P. Girard, N. Kolahimahmoudi, S. Sartoni, M. Sonza Re-
orda, and A. Virazel. Effective techniques for automatically improving the
transition delay fault coverage of Self-Test Libraries. In IEEE European Test
Symposium (ETS), 2022.

[117] H. Cheng, C.-J. Li, H.-L. Chen, and J.-L. Huang. Bdd-based self-test program
generation for processor cores. In IEEE International Test Conference in Asia
(ITC-Asia), 2023.

[118] S. Di Carlo, G. Gambardella, M. Indaco, I. Martella, P. Prinetto, D. Rolfo,
and P. Trotta. A Software-Based Self Test of CUDA Fermi GPUs. In IEEE
European Test Symposium (ETS), 2013.

[119] B. Du, J.E.R. Condia, M. Sonza Reorda, and L. Sterpone. About the functional
test of the GPGPU scheduler. In International Symposium on On-Line Testing
And Robust System Design (IOLTS), 2018.

[120] J.E.R. Condia and M. Sonza Reorda. Testing permanent faults in pipeline
registers of GPGPUs: A multi-kernel approach. In International Symposium
on On-Line Testing and Robust System Design (IOLTS), 2019.

[121] S. Di Carlo, J.E.R. Condia, and M. Sonza Reorda. An On-Line Testing
Technique for the Scheduler Memory of a GPGPU. IEEE Access, 8:16893–
16912, 2020.

[122] J.E.R. Condia and M. Sonza Reorda. Testing the Divergence Stack Memory
on GPGPUs: A Modular in-Field Test Strategy. In International Conference
on Very Large Scale Integration (VLSI-SOC), 2020.

[123] J.-D. Guerrero-Balaguera, J.E.R. Condia, and M. Sonza Reorda. On the
Functional Test of Special Function Units in GPUs. In IEEE International
Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2021.

[124] J.-D. Guerrero-Balaguera, J.E.R. Condia, and M. Sonza Reorda. A New
Method to Generate Software Test Libraries for In-Field GPU Testing Resort-
ing to High-Level Languages. In VLSI Test Symposium (VTS), 2022.

[125] J.E.R. Condia, F.A. da Silva, A.Ç. Bağbaga, J.-D. Guerrero-Balaguera,
S. Hamdioui, C. Sauer, and M. Sonza Reorda. Using STLs for Effective
In-Field Test of GPUs. IEEE Design & Test, 40:109–117, 2023.

[126] RISC-V International. Volume 1, Unprivileged Specification version
20191213. https://riscv.org/technical/specifications/. Accessed 13/02/2024.

https://riscv.org/technical/specifications/

References 123

[127] Y. Zhang, A. Rezine, P. Eles, and Z. Peng. Automatic Test Program Generation
for Out-of-Order Superscalar Processors. In IEEE Asian Test Symposium
(ATS), 2012.

[128] P. Bernardi, R. Cantoro, S. De Luca, E. Sanchez, A. Sansonetti, and
G. Squillero. Software-Based Self-Test Techniques for Dual-Issue Embedded
Processors. IEEE Transactions on Emerging Topics in Computing, 8:464–477,
2020.

[129] A. Ruospo, R. Cantoro, E. Sanchez, P.D. Schiavone, A. Garofalo, and
L. Benini. On-line Testing for Autonomous Systems driven by RISC-V
Processor Design Verification. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019.

[130] Minres. DBT-RISE-RISCV Instruction Set Simulator. https://github.com/
Minres/DBT-RISE-RISCV. Accessed 13/02/2024.

[131] European Computer Manufacturers Association (ECMA). The JSON Data In-
terchange Standard. https://www.json.org/json-en.html. Accessed 13/02/2024.

[132] Yosys Headquarters. PicoRV32 - A Size-Optimized RISC-V CPU. https:
//github.com/YosysHQ/picorv32. Accessed 13/02/2024.

[133] Marcelo Samsoniuk. DarkRISCV. https://github.com/darklife/darkriscv.
Accessed 13/02/2024.

[134] A. Ruospo, D. Piumatti, A. Floridia, and E. Sanchez. A Suitability Analysis
of Software Based Testing Strategies for the On-line Testing of Artificial
Neural Networks Applications in Embedded Devices. In IEEE International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2021.

[135] S. Alcaide, L. Kosmidis, H. Tabani, C. Hernandez, J. Abella, and F.J. Cazorla.
Safety-Related Challenges and Opportunities for GPUs in the Automotive
Domain. IEEE Micro, 38, 2018.

[136] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella. High-Integrity GPU
Designs for Critical Real-Time Automotive Systems. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2019.

[137] I.S. Olmedo, N. Capodieci, and R. Cavicchioli. A Perspective on Safety and
Real-Time Issues for GPU Accelerated ADAS. In Annual Conference of the
IEEE Industrial Electronics Society (IECON), 2018.

[138] M. Benito, M.M. Trompouki, L. Kosmidis, J.D. Garcia, S. Carretero, and
K. Wenger. Comparison of GPU Computing Methodologies for Safety-Critical
Systems: An Avionics Case Study. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2021.

[139] C. Adams, A. Spain, J. Parker, M. Hevert, J. Roach, and D. Cotten. Towards
an Integrated GPU Accelerated SoC as a Flight Computer for Small Satellites.
In IEEE Aerospace Conference (AESS), 2019.

https://github.com/Minres/DBT-RISE-RISCV
https://github.com/Minres/DBT-RISE-RISCV
https://www.json.org/json-en.html
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://github.com/darklife/darkriscv

124 References

[140] L. Kosmidis, J. Lachaize, J. Abella, O. Notebaert, F.J. Cazorla, and D. Steenari.
GPU4S: Embedded GPUs in Space. In Euromicro Conference on Digital
System Design (DSD), 2019.

[141] J. Athavale, A. Baldovin, and M. Paulitsch. Trends and Functional Safety
Certification Strategies for Advanced Railway Automation Systems. In IEEE
International Reliability Physics Symposium (IRPS), 2020.

[142] NVIDIA Corporation. Industrial-Scale AI. https://www.nvidia.com/en-us/
industries/industrial-sector/. Accessed 15/02/2024.

[143] Synopsys. Silicon Lifecycle Management. https://www.synopsys.com/
solutions/silicon-lifecycle-management.html. Accessed 15/02/2024.

[144] J. Choquette. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro, 43:9–17, 2023.

[145] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A
unified graphics and computing architecture. IEEE Micro, 28:39–55, 2008.

[146] NVIDIA. NVIDIA Tesla V100 GPU Architecture White Paper. https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf,
2017. Accessed 15/02/2024.

[147] J.E.R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone. FlexGripPlus: An
Improved GPGPU Model to Support Reliability Analysis. Microelectronics
Reliability, 109, 2020.

[148] J.E.R. Condia. FlexGrip: an Open Source GPU Model for Reliability
Evaluation and Micro Architectural Simulation. https://github.com/Jerc007/
Open-GPGPU-FlexGrip-, 2019. Accessed 16/02/2024.

[149] J.-D. Guerrero-Balaguera, J.E.R. Condia, and M. Sonza Reorda. A Com-
paction Method for STLs for GPU In-Field Test. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2022.

[150] R. Metta, R.K. Medicherla, and S. Chakraborty. BMC+Fuzz: Efficient and
Effective Test Generation. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2022.

[151] N.I. Deligiannis. LAP: Layout Aware Pairing. https://github.com/
NikosDelijohn/LAP, 2023. Accessed 29/02/2024.

https://www.nvidia.com/en-us/industries/industrial-sector/
https://www.nvidia.com/en-us/industries/industrial-sector/
https://www.synopsys.com/solutions/silicon-lifecycle-management.html
https://www.synopsys.com/solutions/silicon-lifecycle-management.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/Jerc007/Open-GPGPU-FlexGrip-
https://github.com/Jerc007/Open-GPGPU-FlexGrip-
https://github.com/NikosDelijohn/LAP
https://github.com/NikosDelijohn/LAP

Appendix A

Example: Combinational ATPG via
SAT-solving

Step 1: Unit Propagation 7−→ O = 1

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (sa1)∧ (sa1∨dfm)∧ (sa1∨dfm)∧

(dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (dgm∨dfm∨O)∧ (O)

⇐⇒

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (sa1)∧ (sa1∨dfm)∧ (sa1∨dfm)∧

(dgm∨dfm)∧ (dgm∨dfm)

(A.1)

Step 2: Unit Propagation 7−→ sa1 = 1

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (sa1)∧ (sa1∨dfm)∧ (sa1∨dfm)∧

(dgm∨dfm)∧ (dgm∨dfm)

⇐⇒

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (dfm)∧ (dgm∨dfm)∧ (dgm∨dfm)

(A.2)

126 Example: Combinational ATPG via SAT-solving

Step 3: Unit Propagation 7−→ dfm = 0

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (dfm)∧ (dgm∨dfm)∧ (dgm∨dfm)

⇐⇒

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (dgm)

(A.3)

Step 4: Unit Propagation 7−→ dgm = 1

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm∨dgm)∧ (cgm∨dgm)∧
(a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)∧ (dgm)

⇐⇒

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm)∧(a∨b∨ cfm)∧ (a∨ cfm)∧
(b∨ cfm)

(A.4)

Step 5: Unit Propagation 7−→ cgm = 0

CNF = (a∨b∨ cgm)∧ (a∨ cgm)∧ (b∨ cgm)∧ (cgm)∧(a∨b∨ cfm)∧ (a∨ cfm)∧
(b∨ cfm)

⇐⇒

CNF = (a)∧ (b)∧ (a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm) (A.5)

Step 6: Unit Propagation 7−→ a = 0

CNF = (a)∧ (b)∧ (a∨b∨ cfm)∧ (a∨ cfm)∧ (b∨ cfm)

⇐⇒

CNF = (b)∧ (b∨ cfm)∧ (b∨ cfm) (A.6)

Step 7: Unit Propagation 7−→ b = 0

CNF = (b)∧ (b∨ cfm)∧ (b∨ cfm)

127

⇐⇒

CNF = (cfm) (A.7)

Step 8: Unit Propagation 7−→ cfm = 0

CNF = SAT (A.8)

Appendix B

Example: Sequential ATPG via
BMC-solving

Base Case: CNF0 = I0 ∧ P0

The base case of the problem for k = 0 is comprised of the initial state and the desired
property. This translates to checking whether the desired target property be reached
directly from the initial state. Considering that the initial state of the circuit is 0, then
the state I0 is (cgm) ∧ (cfm). The desired property is for a difference to occur in
the output of the XOR gate of the miter circuit (i.e., for the fault to propagate to a
primary output). Hence, the target state P0 would be (O). Hence, the generated CNF
would be:

CNF0 = (cgm) ∧ (cfm) ∧ (O) (B.1)

This CNF is trivially Satisfiable, and its model is <0, 0, 1>. However, the
transition relation is not considered for the base case, and thus, the circuit behavior
is disregarded. To get around this issue, we latch the miter output and initialize
the latch with the value of 0. This is evident in Figure 1.8 by the insertion of the
D Flip-Flop at the output of the miter’s XOR gate. The Flip-Flop will capture the
output of the XOR gate, and its state translates to whether the fault effect has been
observed, i.e., if the fault has been detected.

After this modification, the initial state I0 is now (cgm) ∧ (cfm) ∧ (P). The extra
unit clause is required in order to explicitly encode that the target state is not reached
without considering the transition relation. The Equation (B.1) is now corrected and

129

transformed to:
CNF0 = (cgm) ∧ (cfm) ∧ (P) ∧ (P)| {z }

Contradiction
(B.2)

The CNF now is Unsatisfiable as we intended, and thus, we can proceed with
the first unrolling of the circuit to check for the desired property. Before we move to
the next step, let us see the CNF formula for the transition relation T of the example
circuit. Below we present the general formula for T . The reader should note that the
exponent on the literals indicates the timeframe to which they correspond.

T i→i+1 =

XORgmz }| {
(a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm)

∧

XORfmz }| {
(a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧

XORz }| {
(cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O)

∧

stuck-at 0z }| {
(sa0) ∧

D-FFi→i+1
gmz }| {

(bgm∨ ci+1
gm) ∧ (bgm∨ ci+1

gm) ∧

D-FFi→i+1
fmz }| {

(bfm∨ ci+1
fm) ∧ (bfm∨ ci+1

fm)

∧

D-FFi→i+1
Miterz }| {

(O∨Pi+1) ∧ (O∨Pi+1)
(B.3)

One should note that the D Flip-Flops are encoded as buffers (see Table 1.1).
Each flip-flop of a sequential circuit is removed and its input is mapped to a literal
corresponding to the current timeframe whereas its output is mapped to a literal
corresponding to the following timeframe. This is also shown in Figure B.1 where a
transition from one timeframe to another is shown for an arbitrary sequential circuit.

k = 1) CNF1 = I0 ∧ T 0 → 1 ∧ P1

During the first unrolling of the circuit, the transition relation from the initial state to
timeframe 1 will be considered. The corresponding CNF will be the following:

130 Example: Sequential ATPG via BMC-solving

D Q

Timeframe0 Timeframe1

PPO PPI
Combinational

Logic
Combinational

Logic
D

Timeframe1

PPO
Q

Timeframe0

PPI

Initial
State

Target
State

Fig. B.1 Circuit unrolling for timeframe 0 to 1.

CNF1 = I0 ∧ T 0→1 ∧ P1

=

I0z }| {
(cgm) ∧ (cfm) ∧ (P)

∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

T 0→1∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)|{z}
P1

(B.4)

Step 1.1: Unit Propagation 7−→ cgm = 0

CNF1 = (cgm) ∧ (cfm) ∧ (P)

∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

⇐⇒

131

CNF1 = (cfm) ∧ (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)
(B.5)

Step 1.2: Unit Propagation 7−→ cfm = 0

CNF1 = (cfm) ∧ (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

⇐⇒

CNF1 = (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

(B.6)

132 Example: Sequential ATPG via BMC-solving

Step 1.3: Unit Propagation 7−→ P = 0

CNF1 = (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

⇐⇒

CNF1 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

(B.7)

Step 1.4: Unit Propagation 7−→ sa0 = 0

CNF1 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

⇐⇒

133

CNF1 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (O)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

(B.8)

Step 1.5: Unit Propagation 7−→ O = 0

CNF1 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (O)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (P1)

⇐⇒

CNF1 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (P1)
)

Contradiction
∧ (P1)

⇐⇒

CNF1 = UNSAT (B.9)

134 Example: Sequential ATPG via BMC-solving

k = 2) CNF2 = I0 ∧ T 0 → 1 ∧ T 1 → 2 ∧ P2

During the second unrolling of the circuit, the transition relation from the initial state
to timeframe 1 and from timeframe 1 to timeframe 2 will be considered, and the
resulting CNF will be the following:

CNF2 = I0 ∧ T 0→1 ∧ T 1 → 2 ∧ P2

=

I0z }| {
(cgm) ∧ (cfm) ∧ (P)

∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

T 0→1∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

T 1→2

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)|{z}
P2

(B.10)

135

Step 2.1: Unit Propagation 7−→ cgm = 0

CNF2 = (cgm) ∧ (cfm) ∧ (P)

∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm) ∧ (a∨ cgm∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O) ∧ (cgm∨ sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 = (cfm) ∧ (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.11)

136 Example: Sequential ATPG via BMC-solving

Step 2.2: Unit Propagation 7−→ cfm = 0

CNF2 = (cfm) ∧ (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm) ∧ (a∨ cfm∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 = (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.12)

137

Step 2.3: Unit Propagation 7−→ P = 0

CNF2 = (P)

∧ (a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.13)

138 Example: Sequential ATPG via BMC-solving

Step 2.4: Unit Propagation 7−→ sa0 = 0

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (sa0∨O) ∧ (sa0∨O)

∧ (sa0) ∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (O)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.14)

139

Step 2.5: Unit Propagation 7−→ O = 0

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (O)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (O∨P1) ∧ (O∨P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.15)

140 Example: Sequential ATPG via BMC-solving

Step 2.6: Unit Propagation 7−→ P1 = 0

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (P1)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

(a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.16)

141

Step 2.7: Unit Propagation 7−→ sa01 = 0

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1) ∧ (c1
gm∨ sa01∨O1) ∧ (c1

gm∨ sa01∨O1)

∧ (sa01) ∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨O1) ∧ (c1

gm∨O1)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)
(B.17)

142 Example: Sequential ATPG via BMC-solving

Step 2.8: Unit Propagation 7−→ P2 = 1

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨O1) ∧ (c1

gm∨O1)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1∨P2) ∧ (O1∨P2)

∧ (P2)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨O1) ∧ (c1

gm∨O1)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1)
(B.18)

143

Step 2.9: Unit Propagation 7−→ O1 = 1

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm∨O1) ∧ (c1

gm∨O1)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

∧ (O1)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)
(B.19)

144 Example: Sequential ATPG via BMC-solving

Step 2.10: Unit Propagation 7−→ c1
gm = 1

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm∨ c1
gm) ∧ (bgm∨ c1

gm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm) ∧ (a1∨ c1
gm∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (c1
gm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)
(B.20)

145

Step 2.11: Unit Propagation 7−→ bgm = 1

CNF2 =

(a∨bgm) ∧ (a∨bgm)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bgm) ∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 =

(a)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)
(B.21)

Step 2.12: Unit Propagation 7−→ a = 1

CNF2 =

(a)

∧ (a∨bfm) ∧ (a∨bfm)

∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

146 Example: Sequential ATPG via BMC-solving

⇐⇒

CNF2 =

(bfm)

∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)
(B.22)

Step 2.13: Unit Propagation 7−→ bfm = 1

CNF2 =

(bfm)

∧ (bfm∨ c1
fm) ∧ (bfm∨ c1

fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 =

(c1
fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)
(B.23)

147

Step 2.14: Unit Propagation 7−→ c1
fm = 1

CNF2 =

(c1
fm)

∧ (a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm) ∧ (a1∨ c1
fm∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 =

(a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨b1
fm) ∧ (a1∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

(B.24)

Step 2.15: Decision 7−→ a1 = 1

CNF2 =

(a1∨b1
gm)∧ (a1∨b1

gm)

∧ (a1∨b1
fm) ∧ (a1∨b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 =

(b1
gm) ∧ (b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

(B.25)

Step 2.16: Unit Propagation 7−→ b1
gm = 0

CNF2 =

(b1
gm) ∧ (b1

fm)

∧ (b1
gm∨ c2

gm) ∧ (b1
gm∨ c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

148 Example: Sequential ATPG via BMC-solving

CNF2 = (b1
fm)∧ (c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm) (B.26)

Step 2.17: Unit Propagation 7−→ b1
fm = 0

CNF2 = (b1
fm)∧ (c2

gm) ∧ (b1
fm∨ c2

fm) ∧ (b1
fm∨ c2

fm)

⇐⇒

CNF2 = (c2
gm) ∧ (c2

fm) (B.27)

Step 2.18: Unit Propagation 7−→ c2
gm = 0

CNF2 = (c2
gm) ∧ (c2

fm)

⇐⇒

CNF2 = (c2
fm) (B.28)

Step 2.19: Unit Propagation 7−→ c2
fm = 0

CNF2 = SAT (B.29)

Appendix C

List of Publications by the Author

C.1 Journal Publications

2021

1. N. I. Deligiannis, R. Cantoro, M. Sonza Reorda, M. Traiola and E. Valea,
"Towards the Integration of Reliability and Security Mechanisms to Enhance
the Fault Resilience of Neural Networks," in IEEE Access, vol. 9, pp. 155998-
156012, 2021, doi: 10.1109/ACCESS.2021.3129149.

2023

1. N. I. Deligiannis, T. Faller, R. Cantoro, T. Paxian, B. Becker and M. Sonza
Reorda, "Automating the Generation of Programs Maximizing the Repeatable
Constant Switching Activity in Microprocessor Units via MaxSAT," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 42, no. 11, pp. 4270-4281, Nov. 2023, doi: 10.1109/TCAD.2023.3252467.

2. N. I. Deligiannis, R. Cantoro and M. Sonza Reorda, "Automating the Genera-
tion of Programs Maximizing the Sustained Switching Activity in Microproces-
sor units via Evolutionary Techniques," in Elvesier Microprocessors and Mi-
crosystems, vol.98, 2023, doi: https://doi.org/10.1016/j.micpro.2023.104775.

150 List of Publications by the Author

2024

1. N. I. Deligiannis, T. Faller, J. E. R. Condia, R. Cantoro, B. Becker and M.
Sonza Reorda, "Enhancing the Effectiveness of STLs for GPUs via Bounded
Model Checking," in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Submitted - Under Review.

C.2 Conference Proceedings Publications

2020

1. R. Cantoro, N. I. Deligiannis, M. Sonza Reorda, M. Traiola and E. Valea,
"Evaluating the Code Encryption Effects on Memory Fault Resilience," 2020
IEEE Latin-American Test Symposium (LATS), Maceio, Brazil, 2020, doi:
10.1109/LATS49555.2020.9093670.

2. R. Cantoro, N. I. Deligiannis, M. Sonza Reorda, M. Traiola and E. Valea,
"Evaluating Data Encryption Effects on the Resilience of an Artificial Neural
Network," 2020 IEEE International Symposium on Defect and Fault Toler-
ance in VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 2020, doi:
10.1109/DFT50435.2020.9250869.

2021

1. N. I. Deligiannis, R. Cantoro, M. Sauer, B. Becker and M. Sonza Reorda,
"New Techniques for the Automatic Identification of Uncontrollable Lines
in a CPU Core," 2021 IEEE VLSI Test Symposium (VTS), San Diego, CA,
USA, 2021, doi: 10.1109/VTS50974.2021.9441040.

2. N. I. Deligiannis, R. Cantoro and M. Sonza Reorda, "Maximizing the Switch-
ing Activity of Different Modules Within a Processor Core via Evolutionary
Techniques," 2021 Euromicro Conference on Digital System Design (DSD),
Palermo, Italy, 2021, doi: 10.1109/DSD53832.2021.00086.

3. N. I. Deligiannis, R. Cantoro, T. Faller, T. Paxian, B. Becker and M. Sonza
Reorda, "Effective SAT-based Solutions for Generating Functional Sequences

C.2 Conference Proceedings Publications 151

Maximizing the Sustained Switching Activity in a Pipelined Processor," 2021
IEEE Asian Test Symposium (ATS), Matsuyama, Ehime, Japan, 2021, doi:
10.1109/ATS52891.2021.00025.

2022

1. N. I. Deligiannis "New Solutions for Generating Functional Sequences Max-
imizing the Sustained Switching Activity of Complex SoCs." 2022 IEEE
European Test Symposium (ETS), PhD Forum, Barcelona, Spain, 2022, uri:
http://hdl.handle.net/2117/369981.

2. N. I. Deligiannis, R. Cantoro, M. Sonza Reorda, M. Traiola and E. Valea,
"Improving the Fault Resilience of Neural Network Applications Through
Security Mechanisms", 2022 IEEE/IFIP International Conference on Depend-
able Systems and Networks - Supplemental Volume (DSN-S), Baltimore, MD,
USA, 2022, doi: 10.1109/DSN-S54099.2022.00017.

3. N. I. Deligiannis, T. Faller, J. E. Rodriguez Condia, R. Cantoro, B. Becker
and M. Sonza Reorda, "Using Formal Methods to Support the Development
of STLs for GPUs", 2022 IEEE Asian Test Symposium (ATS), Taichung City,
Taiwan, 2022, doi: 10.1109/ATS56056.2022.00027.

2023

1. J. E. Rodriguez Condia, N.I Deligiannis, J. Sini, R. Cantoro, M. Sonza Re-
orda. "Functional Testing with STLs: A Step Towards Reliable RISC-V-based
HPC Commodity Clusters", High Performance Computing. ISC High Perfor-
mance 2023. Lecture Notes in Computer Science, vol 13999. Springer, doi:
https://doi.org/10.1007/978-3-031-40843-4_33

2. N. I. Deligiannis, T. Faller, Z. Chenghan, R. Cantoro, B. Becker and M. Sonza
Reorda, "Automating the Generation of Functional Stress Inducing Stimuli for
Burn-In Testing", 2023 IEEE European Test Symposium (ETS), Venice, Italy,
2023, doi: 10.1109/ETS56758.2023.10174232.

3. T. Faller, N. I. Deligiannis, M. Schwörer, M. Sonza Reorda and B. Becker,
"Constraint-Based Automatic SBST Generation for RISC-V Processor Fami-

152 List of Publications by the Author

lies," 2023 IEEE European Test Symposium (ETS), Venice, Italy, 2023, doi:
10.1109/ETS56758.2023.10174156.

4. J. Anders, P. Andreu, B. Becker, S. Becker, R. Cantoro, N. I. Deligiannis,
N. Elhamawy, T. Faller, C. Hernandez, N. Mentens, M. N. Rizi, I. Polian, A.
Sajadi, M. Sauer, D. Schwachhofer, M. Sonza Reorda, T. Stefanov, I. Tuzov, S.
Wagner, N. Zidarič, "A Survey of Recent Developments in Testability, Safety
and Security of RISC-V Processors", 2023 IEEE European Test Symposium
(ETS), Venice, Italy, 2023, doi: 10.1109/ETS56758.2023.10174099.

5. N. I. Deligiannis, T. Faller, I. Guglielminetti, R. Cantoro, B. Becker and M.
Sonza Reorda, "Automatic Identification of Functionally Untestable Cell-
Aware Faults in Microprocessors", 2023 IEEE 32nd Asian Test Symposium
(ATS), Beijing, China, 2023, doi: 10.1109/ATS59501.2023.10317988.

2024

1. N. I. Deligiannis, R. Cantoro, M. Sonza Reorda and S. E. D. Habib, "Evaluating
the Reliability of Integer Multipliers With Respect to Permanent Faults",
2024 27th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), Kielce, Poland, 2024, hdl: https://hdl.handle.
net/11583/2986512.

2. M. Bartolomucci, N. I. Deligiannis, R. Cantoro and M. Sonza Reorda, "Fault
Grading Techniques for Evaluating Software-Based Self-Test with Respect to
Small Delay Defects" IEEE International Symposium on On-Line Testing and
Robust System Design (IOLTS), Rennes, France, 2024.

https://hdl.handle.net/11583/2986512
https://hdl.handle.net/11583/2986512

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 The need for test and reliability
	1.2 The safety-critical domain
	1.3 Open problems & State of the Art
	1.3.1 Burn-In test
	1.3.1.1 State of the Art
	1.3.1.2 Main Contributions

	1.3.2 Functionally untestable faults identification
	1.3.2.1 State of the Art
	1.3.2.2 Main Contributions

	1.3.3 In-Field test
	1.3.3.1 State of the Art
	1.3.3.2 Main Contributions

	1.4 Formal Methods
	1.4.1 Reduction of ATPG to Boolean satisfiability
	1.4.1.1 ATPG for combinational circuits via formal methods
	1.4.1.2 ATPG for sequential circuits via formal methods

	1.4.2 Validity checker modules
	1.4.3 Initial state extraction & application

	1.5 Thesis organization

	2 Burn-In Test
	2.1 Background
	2.1.1 Previous works on combinational circuits
	2.1.2 Previous works on sequential circuits

	2.2 Constant & repeatable SWA maximization
	2.2.1 Problem definition
	2.2.2 Stress evaluation metric
	2.2.3 Search space analysis
	2.2.4 Proposed method
	2.2.5 Experimental results

	2.3 2-Multi-Point SWA maximization
	2.3.1 Problem definition
	2.3.2 Stress evaluation metric
	2.3.3 Search space analysis
	2.3.4 Proposed method
	2.3.5 Experimental results

	3 Functionally Untestable Faults Identification
	3.1 Background
	3.1.1 Previous works referring to the stuck-at fault model
	3.1.2 Previous works referring to delay fault models
	3.1.3 Previous works referring to other fault models

	3.2 Uncontrollable lines identification
	3.2.1 Basic idea
	3.2.2 Method A
	3.2.3 Method B
	3.2.4 Experimental results

	3.3 Identification of untestable cell-aware faults
	3.3.1 CAT and User-Defined Fault Models
	3.3.2 Proposed method
	3.3.3 Experimental results

	4 In-Field Test
	4.1 Background
	4.1.1 Previous works on STL generation for processors
	4.1.2 Previous works on STL generation for GPUs

	4.2 STL generation for RISC-V processors
	4.2.1 Proposed method
	4.2.2 Experimental results

	4.3 Supporting the STL generation for GPUs
	4.3.1 GPU organization
	4.3.2 Proposed method
	4.3.3 Experimental results

	5 Conclusions
	References
	Appendix A Example: Combinational ATPG via SAT-solving
	Appendix B Example: Sequential ATPG via BMC-solving
	Appendix C List of Publications by the Author
	C.1 Journal Publications
	C.2 Conference Proceedings Publications

