
09 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Ditching the Queue: Optimizing Coprocessor Utilization with Out-of-Order CPUs on compact Systems on Chip / Caon,
Michele; Masera, Guido; Martina, Maurizio. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 13:15(2024).
[10.3390/electronics13153018]

Original

Ditching the Queue: Optimizing Coprocessor Utilization with Out-of-Order CPUs on compact Systems on
Chip

Publisher:

Published
DOI:10.3390/electronics13153018

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991126 since: 2024-07-23T13:53:23Z

MDPI

Citation: Caon, M.; Masera, G.;

Martina, M. Ditching the Queue:

Optimizing Coprocessor Utilization

with Out-of-Order CPUs on Compact

Systems on Chip. Electronics 2024, 13,

3018. https://doi.org/10.3390/

electronics13153018

Academic Editor: Ricardo Martins

Received: 29 May 2024

Revised: 22 July 2024

Accepted: 23 July 2024

Published: 31 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Ditching the Queue: Optimizing Coprocessor Utilization with
Out-of-Order CPUs on Compact Systems on Chip
Michele Caon , Guido Masera and Maurizio Martina *

Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy;
michele.caon@polito.it (M.C.); guido.masera@polito.it (G.M.)
* Correspondence: maurizio.martina@polito.it

Abstract: The growing demand for high-performance and energy-efficient processing in edge-
oriented Systems-on-Chip is driving the adoption of dedicated integrated circuits that accelerate
computationally intensive workloads. To minimize area and performance overhead, low-power,
general-purpose CPUs are often tightly coupled with domain-specific coprocessors implementing
custom instructions, thereby delivering higher throughput and reduced memory traffic. However,
commonly used in-order CPUs are not optimized for instruction-level parallelism, leading to stalls in
the instruction stream while waiting for long-latency coprocessor operations and under-utilization of
the coprocessor while executing other instructions. This work investigates the benefits of replacing
simple in-order cores with a more complex out-of-order architecture to dynamically schedule in-
structions for the main core and coprocessor, optimizing resource utilization and reducing execution
time. To ensure generality, an in-depth analysis was carried out by offloading instructions to a
custom dummy coprocessor capable of emulating iterative and pipelined operations with arbitrary
latency. Various workloads simulating real-world applications were executed on two variants of
an open-source microcontroller equipped with a recent out-of-order core and the state-of-the-art
CV32E40X in-order core, respectively. Results from Register Transfer Level simulations show that the
former configuration executes up to 60% more instructions per cycle, with a modest 12% system area
overhead on a 65 nm CMOS technology node.

Keywords: CPU microarchitecture; out of order; RISC-V; edge computing; coprocessors

1. Introduction

With the recent shift towards a data-driven computing paradigm, the demand for
higher processing capabilities and better energy efficiency in edge-oriented Systems-on-
Chip (SoCs) to overcome the bandwidth and latency limitations of the existing centralized
computing infrastructure has dramatically increased. Artificial Neural Networks (ANNs)
are increasingly being embedded in Internet of Things (IoT) devices to provide private
and low-latency advanced functionalities. Health monitoring [1], robotics [2], and au-
tonomous driving [3] are some of the possible applications of ANNs on resource- and
energy-constrained devices.

In this context, heterogeneous SoCs have been proposed as a promising solution
to address the inherent inefficiency of the von Neumann architecture, which has been
the mainstay of embedded computers since their introduction. These systems accelerate
computationally intensive parts of the workload by offloading them to specialized, tightly
coupled coprocessors implementing domain-specific Instruction Set Architecture (ISA)
extensions. Semantically rich instructions replace long sequences of scalar instructions,
significantly reducing the pressure on the memory hierarchy and execution time, ulti-
mately leading to higher throughput and energy efficiency at the system level. This benefit
is amplified by the preference for Reduced Instruction Set Computer (RISC) instruction
sets in low-power embedded systems, where executing computationally intensive tasks

Electronics 2024, 13, 3018. https://doi.org/10.3390/electronics13153018 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13153018
https://doi.org/10.3390/electronics13153018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-4446-8389
https://orcid.org/0000-0003-2238-9443
https://orcid.org/0000-0002-3069-0319
https://doi.org/10.3390/electronics13153018
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13153018?type=check_update&version=1

Electronics 2024, 13, 3018 2 of 15

on the Central Processing Unit (CPU) requires several additional instructions to move
operands from the main memory into the CPU General-Purpose Registers (GPRs) and
to construct potentially complex operations using elementary arithmetic instructions. In
contrast, domain-specific instructions are usually designed to apply Single-Instruction
Multiple-Data (SIMD) or vectorized operations, possibly implementing complex data flow
patterns, in a single instruction. Consequently, the latency of instructions offloaded to
the coprocessor is often significantly higher than that of scalar instructions executed in
the CPU pipeline. Therefore, the effectiveness of such an approach partially depends on
the ability of the host CPU to efficiently offload accelerated instructions without causing
stalls in the main program while waiting for the coprocessor to produce the instruction
results. To this end, exploiting Instruction-Level Parallelism (ILP) in addition to Data-Level
Parallelism (DLP) is crucial. One possibility is to take advantage of strategies to leverage
ILP that are already implemented in general-purpose, application-class microprocessors.
In particular, Out-of-Order (OoO) instruction execution is a well-known technique to opti-
mize the Instructions Per Cycle (IPC). It exposes a large pool of instructions to the CPU
execution engine, allowing it to select those without data hazards with previous instruc-
tions for immediate execution, possibly breaking the original program order. Superscalar
execution, which allows more than one instruction to be executed simultaneously, offers
additional opportunities to exploit ILP, especially when coupled with OoO execution.
Though the main purpose of OoO superscalar microprocessors is to achieve a superior IPC
with conventional scalar instruction sets, their architectural solutions can also be beneficial
in hiding the latency of long-latency coprocessors by reordering the program instructions
and executing scalar instructions in parallel with those offloaded to the coprocessor. This
work elaborates on this concept to propose an analysis of the performance benefits and
limitations of employing an OoO-capable CPU to drive coprocessors with arbitrary latency
as an alternative to the simple in-order CPUs employed in most edge-oriented scenarios.
In particular, the main contributions of this article are twofold:

• It defines a general strategy to comprehensively evaluate the benefits of OoO instruc-
tion execution in the context of tightly coupled coprocessors using a variable-latency
module and an automatic generator of test applications with different instruction
compositions and instruction dependency patterns.

• It demonstrates the effectiveness of an existing open-source OoO CPU in covering the
latency of long-latency coprocessors in a wide selection of workloads.

The rest of this paper is organized as follows: Section 2 discusses relevant use cases
of tightly coupled coprocessors in edge applications and provides examples of existing
OoO CPUs; Section 3 focuses on key aspects of the CPU microarchitecture selected for
the experiments; Section 4 elaborates on the experimental setup and discusses the results
obtained; finally, Section 5 concludes the paper.

2. Background and Related Works
2.1. Tightly Coupled Coprocessors

To motivate the need for better ILP exploitation in coprocessor-based computing
systems, this section presents a brief review of some relevant examples of state-of-the-art
tightly coupled coprocessors. While loosely coupled, memory-mapped accelerators typi-
cally offer superior peak performance and energy efficiency with large workloads, they lack
flexibility and area efficiency, which are crucial for devices targeting low-effort application
deployment across various domains. Similar considerations apply to reconfigurable solu-
tions like Field-Programmable Gate Arrays (FPGAs) and Coarse-Grained Reconfigurable
Arrays (CGRAs). Accordingly, this work focuses on small, versatile, general-purpose
SoCs where maximum flexibility is paramount, driving the need for more fine-grained,
instruction-level acceleration to enhance performance while maintaining programmability.
In this context, custom instruction set extensions, implemented by tightly coupled copro-
cessors that cover a subset of common operations in the data flow graphs of the target
applications, are a more suitable solution compared to the aforementioned alternatives [4],

Electronics 2024, 13, 3018 3 of 15

and have gained traction since the recent diffusion of extendable ISAs [5]. As argued in [4],
the effectiveness of a tightly coupled coprocessor can be measured by the reduction in
overall program execution latency when using the custom instructions. Generally, the
speedup is proportional to the amount of computation that is atomically implemented by a
single offloaded instruction, albeit with some trade-offs in terms of flexibility. Moreover,
physical constraints such as the available area and power budget or the target operating
frequency often result in a multi-cycle instruction execution latency due to the iterative or
pipelined implementation of custom instructions. This ranges from a few cycles for simple
arithmetic operations, such as those in floating-point or ANN-focused coprocessors [6,7],
to tens or hundreds of cycles for more complex data manipulation like that performed by
cryptographic accelerators [8] or vector processing units [9]. While custom instructions
alone significantly reduce the overall execution time, their latency creates opportunities for
deeper ILP exploitation. Scalar instructions following the accelerated ones can be issued
and executed in parallel, provided there are no data dependencies between them. This
is a common scenario where scalar instructions perform housekeeping tasks or control
operations. Dynamic instruction scheduling capabilities in the CPU can thus maximize the
utilization of computing resources in both the CPU and the coprocessor, leading to further
performance and energy efficiency improvements.

2.2. Out-of-Order Central Processing Units

To demonstrate the effectiveness of dynamic instruction scheduling in coprocessor-
accelerated systems, the analysis presented in Section 4 compares the performance of the
state-of-the-art in-order CPU with an OoO core when offloading instructions with variable
latency to a configurable dummy Configurable-Latency Coprocessor (CLC), described in
Section 4.1.2. The well-known CV32E40X microprocessor [5] was selected as the reference
in-order core due to its design, which is specifically optimized for IPC, thus represent-
ing a best-case baseline for the experiments. On the other hand, selecting a candidate
OoO core was challenging due to the limited availability of open-source designs and
deployment examples. Three alternatives were considered: the Berkeley Out-of-Order
Machine (BOOM) [10], Alibaba’s OoO RISC-V core [11], and the LEN5 microprocessor [12].
Ultimately, LEN5 was chosen for its modularity and scalability, and its most relevant archi-
tectural features are described in Section 3. In particular, LEN5 has the following features:

• LEN5’s modular microarchitecture facilitates the straightforward deployment of cus-
tom instruction set extensions and coprocessors. This modularity greatly simplified the
integration of the CLC in the system, whereas the centralized execution control scheme
used by the available OoO cores would have required significant modifications.

• Compared to other OoO cores, LEN5’s architecture prioritizes scalability over perfor-
mance, resulting in a more area-efficient design. Conversely, BOOM and Alibaba’s
cores are optimized for superscalar instruction execution, featuring wider issue win-
dows and multiple execution units for each instruction class. While these features
yield superior IPC when executing sequences of scalar instructions, they are less ad-
vantageous for the purposes of this work. When handling long-latency accelerated
instructions, maximizing the number of scalar instructions executed per cycle could
result in the CPU Execution Units (EUs) idling while awaiting the completion of
offloaded instructions, thus not justifying the additional area and power overhead.

• The base variant of LEN5 targets bare-metal applications without a cache hierarchy,
thereby offering a simpler interface with the host system bus. This interface is com-
patible with common bus protocols used in low-power Microcontroller Units (MCUs)
like the OBI bus in the X-HEEP platform [13] selected for the experiments. Adapting
the interface of other available cores would have required additional efforts.

Apart from the above considerations, the conclusions drawn from the analysis in
Section 4 are general and applicable to any CPU with OoO capabilities. The minor differ-
ences in the obtained IPC due to the specific architectural choices do not impact the overall
justification for considering OoO cores in coprocessor-accelerated systems.

Electronics 2024, 13, 3018 4 of 15

3. Out-of-Order Central Processing Unit Microarchitecture

This section elaborates on the general concepts of OoO execution that are relevant
to achieving optimal exploitation of the available computing resources when executing
long-latency instructions using the LEN5 microprocessor presented in [12] and briefly
introduced in Section 2.2 as a reference. Regardless, most of the insights discussed in this
section are applicable to any OoO microprocessor.

In general, the key to hiding the latency of in-flight instructions is threefold:

1. It enables sufficient entry of instructions into the execution engine of the core, re-
gardless of their readiness for execution. This approach maximizes the chances of
identifying instructions that are independent of the previous ones, allowing for their
immediate scheduling and execution, irrespective of the original program order.

2. It facilitates the parallel execution of multiple instructions (a superscalar design)
so that if one instruction requires a prolonged time to complete, another can be
dispatched to different EUs and executed concurrently.

3. It ensures the prompt retirement of completed instructions, potentially out of program
order, to allow new instructions to enter the execution engine, thereby maintaining
the EUs’s productivity.

Item 1 leverages the generally valid assumption that a program is typically composed
of two types of instructions: those implementing the computation core of the algorithm
and those performing housekeeping tasks, such as updating loop iteration indexes or
memory addresses. Generally, these two categories of instructions do not depend on each
other, allowing them to be executed concurrently. However, this assumption does not hold
in scenarios where the program control flow or memory access patterns are dependent
on the computed results, as is common in iterative search algorithms. These scenarios
are typically more challenging to predict, leading to significant performance penalties
unless additional hardware resources and energy are allocated to more complex branch
predictors. Nevertheless, the majority of modern data-intensive applications predominantly
involve workloads that fit the former category, which is the focus of this work. LEN5
implements Item 1 and Item 2 with its OoO execution engine, which is based on Tomasulo’s
algorithm [14], extensively discussed in [15]. This implementation is enhanced with support
for precise exceptions and efficient handling of speculative instructions. To promptly free
the decode stage, newly decoded instructions are moved into designated buffers, known as
Reservation Stations (RSs), until all associated execution conditions are met, such as the
availability of the input operands from previous instructions or the resolution of previous
speculative branches. A ReOrder Buffer (ROB) then accumulates the produced results
and selects instructions ready for retirement, potentially out of program order, if no Write-
After-Write (WAW) dependencies are present. It is important to note that the OoO commit
strategy employed in the current version of LEN5 does not fully guarantee Item 3. Although
newer instructions can be retired while older ones are still completing, the ROB allocation
is still sequential, preventing the reassignment of freed entries to new issued instructions.
The effects of this limitation are further discussed in Section 3.2.

As previously noted, LEN5’s design philosophy emphasizes extendability and modu-
larity, granting system implementers the flexibility to adapt its internal components to a
broad spectrum of physical implementation constraints, operating conditions, and expected
workloads. This adaptability is facilitated by a system-wide valid-ready handshake protocol,
enabling each internal component to function independently of the latency affecting other
parts of the architecture. To mitigate potential bottlenecks, LEN5 incorporates several inter-
nal buffers of configurable size that queue outstanding requests from upstream modules
when downstream hardware is engaged, aiming to minimize stalls in the fetch and issue
stages that would otherwise lead to system-level delays due to their in-order nature.

Similarly, RSs provide a flexible interface between the dynamically scheduled exe-
cution pipeline and the EUs. They enable straightforward integration of new processing
elements tailored to specific domain or application needs with minimal modifications to

Electronics 2024, 13, 3018 5 of 15

the core architecture. This is in contrast with microarchitectures relying on centralized
control and instruction tracking mechanisms.

These principles also facilitate the optional inclusion of hardware enhancements like
the M and F/D RISC-V extensions, which support integer operations and floating-point
calculations, respectively. LEN5’s design effectively minimizes the latency impact of
these operations, which is critical for applications relying on complex calculations. In our
analysis (Section 4), a dummy coprocessor was employed to maintain generality, though
similar results were observed when dispatching long-latency Floating-Point Unit (FPU)
instructions in data-intensive kernels.

To keep the EUs continually operational, LEN5 incorporates a speculative frontend
with a configurable gshare branch predictor, Branch Target Buffer (BTB), and Return Ad-
dress Stack (RAS), detailed in [12]. Figure 1 showcases LEN5’s backend architecture and
exemplifies resource allocation during execution, highlighting the system’s adaptability
and efficiency.

1

Figure 1. Block diagram of the backend of LEN5 with examples of OoO execution and commit. In the
in-flight sequence of instructions (shown in the ROB), the sw is waiting for the result (t2) produced by
the long-latency coproc instruction (Read-After-Write (RAW) hazard) that has just completed. The
result is therefore broadcast to the sw instruction and the ROB through the Common Data Bus (CDB).
In the meantime, the addi and bne instructions, which do not depend on coproc, have already
completed their OoO execution (grayed out in their RS) and are eligible for commit.

3.1. Out-of-Order Instruction Execution

Building on the overview presented in [12], this section delves into the microarchitec-
ture of LEN5’s OoO execution engine, elucidating how its design contributes to the IPC
improvements discussed in Section 4.

The decode stage of LEN5 handles several critical tasks:

• Translating incoming instructions into commands for the associated RS and EU.
• Allocating an available ROB entry to buffer the result of the instruction once it com-

pletes. From this moment, the instruction is uniquely tagged with the index of the
assigned ROB entry.

• Fetching the operands for the instruction from the Register File (RF) or the ROB, if
available.

A dedicated module monitors the status of each register, forwarding their values
from the RF or the ROB based on whether the last instruction that wrote to a specific
register has been committed. If the operand is from an in-flight instruction that has not yet
completed, no forwarding occurs at issue time. Regardless, the instruction is dispatched
to the target RS. Concurrently, its assigned tag (i.e., the ROB index) is linked with the
instruction’s destination register, effectively implementing a renaming mechanism that
eliminates false Write-After-Read (WAR) dependencies. This strategy obviates the need
for dedicated register renaming resources, as the RSs and ROB collectively function as a
distributed register file.

Electronics 2024, 13, 3018 6 of 15

Each instruction is uniquely associated with an ROB entry, setting the maximum
number of in-flight instructions to the adjustable ROB size. If, at issue time, either the
ROB or the destination RS is full, the processor experiences a stall. This is a primary cause
of performance degradation when dealing with instructions with a very long execution
latency, as discussed in Section 4. The size of an RS determines the maximum number
of outstanding instructions of the same type that can be dispatched. This sets an upper
limit on LEN5’s capability to mask the latency of long-latency instructions, even when
they are pipelined. Specifically, filling the RS causes a stall at issue time if instructions of
varying types are not fetched subsequently. A full RS, when combined with the fetch of an
instruction of the same type, leads to performance degradation similar to what is observed
due to a full ROB.

Once an instruction is loaded into the target RS, and its operands are available, it is
ready for execution. The order of selection at this stage is irrelevant for program coherence
since the forwarding and renaming mechanism previously discussed ensures that all RAW
hazards are correctly resolved. To prevent starvation, a round-robin approach determines
the sequence of execution inside each RS; no new instructions are considered until all
previously eligible instructions have been issued to the EU. The Branch Unit (BU) is an
exception as its instructions must execute sequentially to accurately recover from branch
mispredictions. Similarly, the Load–Store Unit (LSU) enforces additional checks to handle
memory hazards correctly, employing store-to-load forwarding managed internally until
additional space is needed, effectively creating a level-zero caching mechanism inspired
by [16].

Once an instruction completes its execution, its result is stored in the RS, awaiting
acceptance by the CDB to be forwarded to the ROB and other RSs while releasing the
EU for other instructions of the same kind. Branch instructions have the highest priority
on the CDB since their resolution has the greatest potential to unlock new commit and
memory update operations, thereby freeing up resources for new instructions. All other
instructions are subject to a round-robin selection policy. The CDB implements an efficient
forwarding mechanism that connects one instruction’s output to potentially all other
in-flight instructions through a simple 1-to-N interconnect rather than a fully parallel
N-to-N crossbar. The tag of the instruction producing the result is checked against the
one associated with each operand of a waiting instruction to trigger the forwarding. Since
instructions’ operands are tagged at issue time in program order with the tag of the latest
instruction that wrote to the corresponding register, this mechanism effectively ensures the
correct resolution of RAW hazards. It is possible for multiple instructions to become ready
for execution as a result of operand forwarding. In such cases, they may be selected for
execution within the same cycle, provided that sufficient EUs are available.

3.2. Out-of-Order Instruction Commit

As mentioned in the previous section, an ROB entry is allocated for each new instruc-
tion at issue time, in program order. Once the result of a completed instruction is received
on the CDB, it is buffered within the allocated ROB entry. Subsequently, any instruction
that requires the destination register of the completed instruction as a source operand has
its value forwarded from the ROB, marking it as immediately ready for execution.

Once buffered in the ROB, an instruction becomes eligible for commit into the physical
register file, if necessary, and for retirement. LEN5’s ROB includes two commit slots,
which facilitate instruction commitment in both program order and out of program order.
Out-of-order commit is permitted under the following conditions for a given instruction:

• Its execution is complete, making the instruction result available in the ROB.
• It is no longer speculative, meaning all previous branch predictions have been vali-

dated.
• It did not trigger any exceptions.

Electronics 2024, 13, 3018 7 of 15

• There are no newer instructions eligible for commit that would write to the same
destination register (WAW hazard). In such cases, the older instruction is simply
retired without updating the RF.

Due to these stringent conditions, the out-of-order commit slot never advances past
mispredicted branches or exception-raising instructions, ensuring consistency with the pro-
gram order. The in-order commit slot consistently points to the oldest instruction awaiting
commitment. If a mispredicted branch or an exception-raising instruction is committed
through the in-order slot, the entire execution pipeline, including the ROB, is flushed, and
execution restarts. To minimize the penalty associated with branch mispredictions, the
BU immediately communicates the correct branch target to the frontend upon resolving a
misprediction.

However, the LEN5 OoO commit process does not permit the reallocation of ROB
entries freed by the out-of-order commit slot to new instructions. Instead, ROB entries are
allocated in a fixed sequence. Nevertheless, the OoO commit process expedites the clearing
of the ROB when an older instruction, waiting for its result, is selected for commitment.
This reduces the issue stage’s backpressure, thus diminishing the stalls caused by an over-
committed ROB. An enhanced OoO commit strategy, currently under development, would
eliminate the in-order allocation constraint, enabling the issuance of a greater number of
independent instructions after a very-long-latency instruction than the ROB size permits,
thereby addressing the performance bottleneck discussed in Section 4.

4. Experimental Results

Assessing the effectiveness of employing an OoO-capable CPU to optimize the of-
floading process necessitates a comprehensive test plan and simulation environment in-
corporating a diverse array of applications, instruction set extensions, and coprocessor
characteristics. While there are several open-source examples of tightly coupled copro-
cessors, their variations in communication protocols and physical integration with their
intended host CPU pose significant challenges in creating a unified test plan. Moreover, the
generality of the results is constrained by the specific combinations of CPU and Instruction
Set Architecture (ISA), coprocessor architecture, and instruction-level dependency patterns,
demanding substantial technical effort and time to achieve sufficient comprehensiveness.
Instead, this work aims to provide general guidance on the benefits and limitations of using
an OoO-capable CPU to drive coprocessors with arbitrary architectures (i.e., iterative or
pipelined data flow) and latencies. To this end, this study employs a synthetic approach
composed of two main components: a Configurable-Latency Coprocessor (CLC) whose
latency can be specified at runtime and an automatic code generator that assembles test
applications featuring various combinations of instructions (i.e., scalar and accelerated)
and data dependencies. The LEN5 and CV32E40X [5] CPUs, representing an OoO and
an in-order core, respectively, are used as host CPUs in the experiments. Their average
IPC is utilized to evaluate their capacity to continue program execution while waiting for
offloaded instructions to complete. A higher IPC indicates more effective exploitation of
coprocessor resources and, consequently, a reduced overall execution time. As noted in
Section 2.2, both cores were selected for their modular architecture, ease of extendability,
and interface compatibility with the X-HEEP platform, chosen as an example Microcon-
troller Unit (MCU). Additionally, their focus on optimizing the IPC within their respective
CPU classes plays a crucial role. The differences in IPC performance when managing in-
struction offloading primarily stem from their contrasting execution paradigms—dynamic
for LEN5 and static for CV32E40X. While low-level microarchitectural details influence
the IPC achieved in the experiments, they do not significantly alter the conclusions of this
work, which are generalized at the end of this section.

The subsequent sections will detail the software and hardware configurations used in
the experiments and discuss the results obtained.

Electronics 2024, 13, 3018 8 of 15

4.1. Experimental Setup
4.1.1. System Configuration

For the experiments, LEN5 parameters were set to align with the Max Performance con-
figuration as described in [12]. This setup includes a 32-entry ROB, an 8-entry Arithmetic
Logic Unit (ALU) RS, a 4-entry BU, a 4-entry multiplication and division unit featuring a
2-stage pipelined multiplier and a serial divider, a 16-entry Store Buffer (SB), and an 8-entry
Load Buffer (LB). This configuration, whose post-synthesis characteristics are detailed
in Table 1, imposes a minimal 12% area overhead on the host system compared to the
CV32E40X core in a basic 256 KiB X-HEEP configuration. The choice of the Max Performance
configuration was intended to maximize the benefits of out-of-order execution, thereby
offering the best-case performance improvements across a comprehensive set of test ap-
plications. While optimized LEN5 configurations or other OoO CPU microarchitectures
might provide even better trade-offs in terms of area and power consumption, these are not
the focus of this work. A dedicated bridge was developed to adapt LEN5’s data memory
requests to X-HEEP’s 32-bit bus. The bridge splits 64-bit requests into two 32-bit ones and
ensures correct alignment and handshaking. Because the application software used in the
experiments exclusively relies on 32-bit data, most of the memory accesses complete in a
single cycle, making the performance impact of the bridge negligible. Apart from these
changes in the CPU subsystem, no other modifications were made to the X-HEEP platform.

Table 1. Area and clock frequency of the LEN5 Max Perf variant from [12], implemented on a
low-power 65 nm CMOS technology node.

LEN5 Max Perf CV32E40X

Clk Freq. [MHz] 438 360
Area [1 × 103 µm2] 423 49
Area [kGE] a 294 34
Relative System Area b 1.12 1.00

a GE is the 2-input drive, strength-one NAND gate equivalent area. b X-HEEP host system with 256 KiB memory.

4.1.2. Configurable-Latency Coprocessor Architecture

The CLC was engineered to comprehensively emulate the behavior of coprocessors
with arbitrary latencies, accommodating both iterative and pipelined instructions. The
operational mode—iterative or pipelined—and the latency are configurable at runtime
using a dedicated control signal and one of two input operands. This input operand
specifies which of the internal pipeline registers serves as the output for the coprocessor.
A Finite-State Machine (FSM) manages the handshaking with the CPU according to the
selected mode. Specifically, in pipelined mode, the coprocessor can accept a new input
transaction every cycle. In contrast, in iterative mode, it must wait to accept a new input
until the CPU has acknowledged the output of the previous transaction. The maximum
latency and the number of pipeline stages are adjustable Register Transfer Level (RTL)
parameters. The second operand is propagated to the output after a predetermined number
of cycles, facilitating experiments with various data dependency patterns in the software.
Additionally, the coprocessor adheres to a valid-ready handshake protocol for managing
both input and output transactions.

From a software standpoint, the CLC is controlled by a custom RISC-V ISA extension
that defines two I-type instructions for the iterative and pipelined operating modes, re-
spectively. Each accepts an input GPR as the input operand and a 12-bit immediate value
encoding the desired latency or pipeline register to be used as output.

xdummy.iter rd, rs1, imm # iterative mode, imm is the latency
xdummy.pipe rd, rs1, imm # pipelined mode, imm is the number of stages

Electronics 2024, 13, 3018 9 of 15

This architecture allows for a pure software-controlled configuration of the CLC,
making it possible to explore a wide range of scenarios without the need to modify the RTL
description and recompile the simulation model, resulting in a streamlined and efficient
exploration process.

The CLC is integrated into LEN5 through the following key modifications to the core
architecture:

1. The new custom instructions are incorporated into the main decoder, specifying the
expected control signals for the CLC, the necessary source operands, and the result
type so that the CPU can correctly manage dependencies and commit.

2. A new FOUR-entry RS is adapted from the ALU one and added to LEN5’s backend
with negligible impact on the overall area.

3. The CLC is connected to the dedicated RS. Dynamic synchronization between the
CLC and the CPU is inherently achieved by the system-wide valid-ready handshake
protocol.

On the other hand, the integration into the CV32E40X CPU is achieved through the
CORE-V eXtension Interface (CV-X-IF) [17] using a bridge to convert the simple valid-ready
interface of the CLC into compliant instruction-offloading transactions.

4.1.3. Configurable Test Applications

As previously outlined in Section 3, instructions within a typical data-intensive work-
load fall into two distinct categories: those that form the core of the processing algorithm,
and those that perform housekeeping tasks, such as updating iteration counters and man-
aging the memory addresses of input and output data. The processing core generally
consists of a loop that processes input data iteratively, where each iteration may or may
not depend on the results of the previous one. Housekeeping tasks, on the other hand,
are typically independent of the processing core as loop indices and memory addresses
usually do not directly relate to the outcomes of the algorithm. For instance, linear algebra
vector kernels and general-purpose algorithms that include floating-point operations are
practical examples that reflect this bifurcation. Tasks such as loop maintenance, exception
handling, and memory management are executed through sequences of instructions that
lack direct data dependencies with the computational results produced by the core code. To
assess the impact of coprocessor latency on the execution times of workloads with varying
dependency patterns, an automatic application generator was developed.

This tool generates the main function of a C program containing a loop with a single
CLC instruction followed by a block of single-cycle arithmetic and logic instructions derived
from the base RISC-V ISA. The Number of Instructions per Block (NIB) and the latency of
the CLC are both configurable, enabling detailed exploration of how increasing coprocessor
latencies and different quantities of other instructions affect performance. The simplest
configuration, which illustrates the CLC operating independently of other instructions, is
presented in Listing 1a.

Listing 1. Example of assembly code with dummy instructions.

1 B4:
2 xdummy.iter a0, a1, 5
3 add a2,a4,a3
4 xor a2,a5,a4
5 addiw a5,a5,-1
6 bnez a5, B4

(a) Loop with independent it-
erations.

1 B4:
2 xdummy.iter a0, a0, 5
3 add a2,a4,a5
4 xor a2,a4,a5
5 addiw a3,a3,-1
6 bnez a3, B4

(b) Loop with dependent iter-
ations.

1 B4:
2 xdummy.iter a0, a0, 5
3 jal [bookeeping]
4 add a0,a0,s1
5 addiw s0,s0,-1
6 bnez s0, B4

(c) Loop with dependent iterations
and housekeeping.

Electronics 2024, 13, 3018 10 of 15

To emulate algorithms with dependent loop iterations, such as reduction and accumu-
lation operations, the output register of the CLC instruction in a certain loop iteration can
optionally be used as an input register for the same instruction in the next loop iteration,
as shown in Listing 1b. The tool can also add to the main loop a function call to a routine
that performs a configurable number of instructions that are independent of the offloaded
one. The appropriate compiler directives were employed to ensure that the housekeeping
routine is never inlined, to evaluate the impact of LEN5 branch prediction over the in-order,
non-speculative CPU. An example of such a case is reported in Listing 1c.

4.2. Instructions per Cycle Analysis

As explained in Section 3.1, LEN5’s dynamically scheduled execution engine can
select instructions as soon as their operands are ready. To evaluate the effectiveness of
OoO execution in the presence of long-latency instructions, LEN5’s IPC is compared to that
of CV32E40X while executing a large set of automatically generated test applications. In
particular, tests were conducted with the CLC latency varying from one to twenty cycles.
For each latency value, the NIB was swept from one to twenty as well. Several test program
configurations were considered, each time repeating the test with the CLC in iterative and
pipelined mode. The collected data are reported in the following paragraphs.

All the tests reported in the following sections were compiled for both CPUs using
GCC with the -O2 optimization level. Only 32-bit variables were used to generate analogous
assembly code for the 64-bit LEN5 core and the 32-bit CV32E40X core. The IPC was
measured as a ratio between the values of the minstret and mcycle control and status
registers, accessed immediately before and after the test application code. The C++ RTL
simulation model used to run the simulations was compiled using Verilator.

The first set of tests is conducted using the simplest kind of workload: a loop where
a single CLC instruction is followed by a block of independent single-cycle instructions.
Each loop iteration produces a result that does not depend on the previous operations. The
IPC obtained by LEN5 and CV32E40X is reported in Figure 2. As shown, the performance
degradation on the in-order CPU is significant even for the lowest latency values and only
marginally improves with a higher NIB. A similar trend is observed with iterative (left) and
pipelined (right) instructions. In contrast, LEN5 is able to keep an optimal IPC close to 1
even for the highest latency values, provided that there are enough single-cycle instructions
to execute while waiting for the CLC instruction to complete.

In LEN5, the pipelined case shows significantly better performance even with low
NIB values thanks to the possibility of issuing multiple coprocessor instructions to the
four-entry reservation station before having to stall the issue stage. With a twenty-stage
pipeline, a new coprocessor instruction can be accepted every five cycles. Therefore, four
single-cycle instructions, including the add and bnez instructions implementing the loop,
are, in theory, enough to prevent stalls due to a full RS. However, the internal handshake
between the RSs, the CDB, and the issue stage adds a few cycles before an entry in the RS
is actually freed, which motivates the performance degradation observed for NIB values
below 5 instead of 2.

Despite this, LEN5 succeeds in dynamically scheduling multiple iterations of the for
loop at the same time, pipelining their instruction execution. In the iterative case, while it is
possible to hold up to four coprocessor instructions from the four initial loop iterations in
its RS, they cannot be executed in parallel, causing the issue to stall on subsequent iterations
because of the structural hazard on the full RS. Therefore, in the iterative case, a high IPC is
possible only if the number of single-cycle instructions equals the latency of the coprocessor
minus one (the coprocessor instruction itself). Regardless, LEN5 achieves an IPC which
is up to 50% higher than CV32E40X with both iterative and serial instructions. This test
also proves how the LEN5 branch predictor is able to correctly predict the loop condition,
avoiding expensive flushes and keeping the IPC close to 1.

Electronics 2024, 13, 3018 11 of 15

Figure 2. IPC comparison between LEN5 and CV32E40X using an example application without
housekeeping and dependencies when using iterative (left) and pipelined (right) CLC.

If the system running the application is required to perform housekeeping actions
while the accelerator is running, then the ability to execute those independent instructions
becomes crucial. In this experimental setup, the housekeeping routine, containing a config-
urable number of single-cycle instructions, is invoked while the CLC runs. As illustrated
in Figure 3, the trend in both the CPUs resembles the one from the previous experiment
except, this time, the performance penalty with a low NIB is lower due to the presence of
the additional instructions to call and execute the bookkeeping routine.

Like before, the in-order processor must pause before executing the subsequent loop
iteration, whereas LEN5 can continue queuing new instructions. For low NIB values, LEN5
achieves more than twice the IPC of the in-order code.

Figure 3. IPC comparison between LEN5 and CV32E40X using an example application with house-
keeping and without dependencies when using iterative (left) and pipelined (right) CLC.

The next test emulates a scenario where the loop iterations are interdependent, cre-
ating RAW hazards between consecutive coprocessor instructions. Such cases limit the
exploitation of pipelined coprocessors, resulting in the same performance penalty as when
relying on an iterative coprocessor. This effect is clearly shown by Figures 4 and 5, which
report the IPC when executing the exact same applications with iterative and pipelined
CLC instructions, respectively. In both cases, the positive effect of housekeeping instruc-
tions observed in Figure 2 is visible, offering more instructions to cover the latency of the
coprocessor and thus increasing the IPC.

The left examples for both experiments, where no housekeeping was performed, show
that the two CPUs reach the same IPC for the combination of highest latency and lowest
NIB. In this case, the body of the for loop solely contains the coprocessor instruction,
offering no opportunities for the OoO core to perform any operation besides resolving the
branch condition and updating the loop counter. This scenario is also true for the four-stage
CV32E40X, which is able to fetch and execute two additional scalar instructions before
stalling in the writeback stage, waiting for the external coprocessor to provide its result.

Electronics 2024, 13, 3018 12 of 15

Figure 4. IPC comparison between LEN5 and CV32E40X using an example application with depen-
dencies when using iterative CLC without housekeeping (left) and with it (right).

Figure 5. IPC comparison between LEN5 and CV32E40X using an example application with depen-
dencies when using pipelined CLC without housekeeping (left) and with it (right).

One final experiment is set up to highlight the limitations of the current LEN5 commit
stage when dealing with very-long-latency coprocessors, such as those implementing Post-
Quantum Cryptography (PQC) cryptographic functions. In these cases, the coprocessor
latency exceeds the ROB size. As previously noted, due to the in-order allocation of the
ROB, it is not possible to issue more instructions than those that can fit inside the ROB. The
simplest test case is run with the NIB set equal to the coprocessor latency to demonstrate the
performance degradation resulting from this limitation. This setup matches the condition
where, in all previous tests, LEN5 could reorder instructions and completely hide the
coprocessor’s execution latency. The experiment is repeated for a wide range of latency
values, with the results reported in Figure 6. As shown, once the latency value approaches
the ROB size (32), the IPC of LEN5 starts to degrade, eventually reaching an asymptotic
limit of 0.5, similar to the in-order CPU. This degradation occurs because, once the ROB
is full, the issue stage must stall until the oldest in-flight instruction, the coprocessor
instruction, is retired.

1 10 20 120 220 300
Latency

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

LEN5 CV32E40X

Figure 6. IPC comparison between LEN5 and CV32E40X as the CLC latency and NIB increase.

Electronics 2024, 13, 3018 13 of 15

The value of the asymptotic limit can be verified by expressing the IPC as a function of
the coprocessor latency L, the ROB size R, and the number of other instructions N (N + 1
instructions in total). At the beginning of the program, one coprocessor instruction and
R − 1 single-cycle instructions can be issued. The single-cycle instructions are executed
while waiting for the coprocessor result. After this point, the issue stage stalls, and no
more instructions can be issued until the coprocessor completes. When that happens, the
coprocessor instruction is removed from the ROB, which becomes empty, allowing the
remaining N − (R − 1) single-cycle instructions to be issued and executed one per cycle
until the next coprocessor instruction is fetched, and the cycle repeats. The IPC during one
iteration can therefore be expressed as follows:

IPC =
1 + N

L + N − R + 1

In the hypothesis of this experiment, N = L (the instructions implementing the loop
are neglected); therefore,

lim
L=N→∞

IPC = 0.5

Because compensating for large values of the latency L by increasing the ROB size R
is not sustainable from a hardware resources standpoint, a better solution is to manage
the ROB in such a way that new issuing instructions can be allocated to free ROB entries
regardless of their position, overcoming the limitations of the current in-order ROB alloca-
tion policy. This approach guarantees a possibly infinite window of candidate instructions
to be selected for execution while waiting for the long-latency instruction to complete.
However, the additional hardware resources needed to ensure the correct resolution of
WAW hazards and consistently recover from branch mispredictions and exceptions are
justified only if the control, dependency patterns, and instruction count in the expected
workload provide enough instructions eligible for execution before structural hazards
emerge in the accelerator reservation station. In the case of pipelined accelerators, this last
problem can be mitigated by removing instructions from an RS as soon as they are selected
for execution, relying on the accelerator to propagate the information required to commit
the result in the ROB and to handle the CDB handshake.

5. Conclusions

This work investigates the performance benefits and limitations of replacing conven-
tional in-order cores with OoO implementations within edge-oriented SoCs. The study
demonstrates the performance gains achievable through dynamic instruction schedul-
ing by comparing the IPC of the OoO LEN5 RISC-V CPU with that of the state-of-the-
art CV32E40X in-order CPU. A variety of workloads with variable-latency coprocessor-
accelerated instructions and differing data dependency patterns were executed. Utilizing
a Configurable-Latency Coprocessor (CLC) and an automatic code generator, the study
simulated a broad spectrum of use cases, revealing substantial performance improvements
across all workloads when compared to the in-order core, even when managing instructions
with extensive latencies. LEN5 consistently achieves near-optimal IPC in parallelizable
workloads devoid of data dependencies and markedly mitigates performance degradation
in loops with interdependent iterations. Overall, the experimental results indicate that
employing cores with OoO capabilities and speculative branch prediction can enhance the
IPC by up to 60% compared to in-order cores.

Considering the modest system-level area overhead introduced by the added com-
plexity of the OoO CPU, this study advocates for the integration of OoO execution in
edge-oriented SoCs as a viable solution to fully leverage the benefits of tightly coupled
coprocessors. This approach contributes significantly to reducing overall execution time
and energy consumption. Furthermore, the study exposes a notable limitation of LEN5
when handling instructions whose latency surpasses the size of the ROB. In such scenarios,
the processor struggles to utilize unrelated instructions to mask the coprocessor latency,

Electronics 2024, 13, 3018 14 of 15

leading to diminishing returns in terms of IPC gains. This effect asymptotically approaches
the performance level of an in-order core for extremely-long-latency operations. These
findings suggest that more sophisticated OoO instruction commit schemes could unlock
additional performance improvements without necessitating the complexities associated
with enlarging the ROB or expanding other internal buffers.

In light of these findings, future research on extendable, CPU-based embedded systems
should investigate the balance between performance optimization and the area and power
overhead introduced by OoO execution engines. The insights gained from this study
indicate that further microarchitectural enhancements are necessary to fully capitalize on
the energy efficiency and performance benefits associated with the increasingly prevalent
paradigm of tightly coupled coprocessor acceleration in edge SoCs.

Author Contributions: Conceptualization, methodology, software, validation, and writing, M.C.;
funding acquisition, review, and supervision, G.M. and M.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially supported by NODES project no. ECS00000036, which has received
funding from the MUR-M4C2 1.5 of PNRR funded by the European Union NextGenerationEU. This
work was partially supported by project SERICS (PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union NextGenerationEU.

Data Availability Statement: The original contributions presented in the study are included in the
article. The raw data supporting the conclusions of this article will be made available by the authors
on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALU Arithmetic Logic Unit
ANN Artificial Neural Network
BTB Branch Target Buffer
BU Branch Unit
CDB Common Data Bus
CGRA Coarse-Grained Reconfigurable Array
CLC Configurable-Latency Coprocessor
CPU Central Processing Unit
DLP Data-Level Parallelism
EU Execution Unit
FPGA Field-Programmable Gate Array
FPU Floating-Point Unit
FSM Finite-State Machine
GPR General-Purpose Register
ILP Instruction-Level Parallelism
IoT Internet of Things
IPC Instructions Per Cycle
ISA Instruction Set Architecture
MCU Microcontroller Unit
NIB Number of Instructions per Block
OoO Out-of-Order
PQC Post-Quantum Cryptography
LB Load Buffer
LSU Load–Store Unit
RAS Return Address Stack
RAW Read-After-Write
RISC Reduced Instruction Set Computer
RF Register File
ROB ReOrder Buffer

Electronics 2024, 13, 3018 15 of 15

RS Reservation Station
RTL Register Transfer Level
SB Store Buffer
SIMD Single-Instruction Multiple-Data
SoC System-on-Chip
WAR Write-After-Read
WAW Write-After-Write

References
1. Daoud, H.; Bayoumi, M.A. Efficient Epileptic Seizure Prediction Based on Deep Learning. IEEE Trans. Biomed. Circuits Syst. 2019,

13, 804–813. [CrossRef] [PubMed]
2. Hoshino, S.; Kubota, Y. Mobile Robot Motion Planning through Obstacle State Classifier. In Proceedings of the 2023 62nd Annual

Conference of the Society of Instrument and Control Engineers (SICE), Tsu, Japan, 6–9 September 2023; pp. 120–126.
3. Wang, Y.; Jiang, J.; Li, S.; Li, R.; Xu, S.; Wang, J.; Li, K. Decision-Making Driven by Driver Intelligence and Environment Reasoning

for High-Level Autonomous Vehicles: A Survey. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10362–10381. [CrossRef]
4. Galuzzi, C.; Bertels, K. The Instruction-Set Extension Problem: A Survey. ACM Trans. Reconfigurable Technol. Syst. 2011, 4, 1–28.

[CrossRef]
5. Gautschi, M.; Schiavone, P.D.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gürkaynak, F.K.; Benini, L. Near-threshold

RISC-V core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,
25, 2700–2713. [CrossRef]

6. Mach, S.; Schuiki, F.; Zaruba, F.; Benini, L. Fpnew: An open-source multiformat floating-point unit architecture for energy-
proportional transprecision computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 29, 774–787. [CrossRef]

7. Garofalo, A.; Tagliavini, G.; Conti, F.; Rossi, D.; Benini, L. XpulpNN: Accelerating Quantized Neural Networks on RISC-V
Processors Through ISA Extensions. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 9–13 March 2020; pp. 186–191.

8. Fritzmann, T.; Sigl, G.; Sepúlveda, M.J. RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR
Cryptol. ePrint Arch. 2020, 2020, 446. [CrossRef]

9. Perotti, M.; Cavalcante, M.; Wistoff, N.; Andri, R.; Cavigelli, L.; Benini, L. A “New Ara” for Vector Computing: An Open Source
Highly Efficient RISC-V V 1.0 Vector Processor Design. In Proceedings of the 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), Gothenburg, Sweden, 12–14 July 2022; pp. 43–51.

10. Zhao, J.; Korpan, B.; Gonzalez, A.; Asanovic, K. SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Proceedings
of the Fourth Workshop on Computer Architecture Research with RISC-V, Virtual, 29 May 2020.

11. Chen, C.; Xiang, X.; Liu, C.; Shang, Y.; Guo, R.; Liu, D.; Lu, Y.; Hao, Z.; Luo, J.; Chen, Z.; et al. Xuantie-910: A Commercial
Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with Vector Extension: Industrial Product.
In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Valencia, Spain,
30 May–3 June 2020; pp. 52–64.

12. Caon, M.; Petrolo, V.; Mirigaldi, M.; Guella, F.; Masera, G.; Maurizio, M. Seeing Beyond the Order: A LEN5 to Sharpen Edge
Microprocessors with Dynamic Scheduling. In CF ’24: Proceedings of the 20th ACM International Conference on Computing Frontiers,
Ischia, Italy, 7–9 May 2024; Association for Computing Machinery: New York, NY, USA, 2024.

13. Machetti, S.; Schiavone, P.D.; Müller, T.C.; Peón-Quirós, M.; Atienza, D. X-HEEP: An Open-Source, Configurable and Extendible
RISC-V Microcontroller for the Exploration of Ultra-Low-Power Edge Accelerators. arXiv 2024, arXiv:2401.05548.

14. Tomasulo, R.M. An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res. Dev. 1967, 11, 25–33. [CrossRef]
15. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Morgan Kaufmann: Burlington, MA, USA, 2017.
16. Alves, R.; Ros, A.; Black-Schaffer, D.; Kaxiras, S. Filter caching for free: the untapped potential of the store-buffer. In ISCA’19:

Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 436–448.

17. OpenHW Group. OpenHW Group Specification: Core-V eXtension Interface (CV-X-IF). 2023. Available online: https:
//docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/ (accessed on 28 May 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TBCAS.2019.2929053
http://www.ncbi.nlm.nih.gov/pubmed/31331897
http://dx.doi.org/10.1109/TITS.2023.3275792
http://dx.doi.org/10.1145/1968502.1968509
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/TVLSI.2020.3044752
http://dx.doi.org/10.46586/tches.v2020.i4.239-280
http://dx.doi.org/10.1147/rd.111.0025
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/
https://docs.openhwgroup.org/projects/openhw-group-core-v-xif/en/latest/

	Introduction
	Background and Related Works
	Tightly Coupled Coprocessors
	Out-of-Order Central Processing Units

	Out-of-Order Central Processing Unit Microarchitecture
	Out-of-Order Instruction Execution
	Out-of-Order Instruction Commit

	Experimental Results
	Experimental Setup
	System Configuration
	Configurable-Latency Coprocessor Architecture
	Configurable Test Applications

	Instructions per Cycle Analysis

	Conclusions
	References

