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Politecnico di Torino, Turin, Italy
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Abstract—Packet loss, an omnipresent issue that degrades
the QoE in Real-time Transport Protocol (RTP)-based real-
time communications (RTC) applications, serves as a pivotal
indicator for gauging network performance. Conventionally,
loss detection hinges on sequence number irregularities. How-
ever, many contemporary applications incorporate customized
mechanisms that diverge from the standard, confounding loss
identification. Although the actual losses are transparent to
applications themselves, they remain unobservable to other
entities such as network operators, hampering the prospect of
overall network management and performance optimization. To
address this challenge, we investigate multitudinous RTC traffic
gathered across various locations and times. Consequently, we
uncover two types of anomalous patterns pertaining to sequence
numbers. To discern between factual losses and aberrations in
RTP flows, i.e., to detect the unobservable losses, we curate
three distinct datasets, aggregating packets into time bins and
calculating multiple traffic statistics. Subsequently, we leverage
Machine Learning (ML) technologies, training the algorithm
on one dataset while testing the remaining two, to classify the
loss presence in a bin. Despite the inherent hurdles posed by
class imbalance and intricate traffic dynamics, we achieve decent
outcomes (0.64 F1-score), effectively identifying the majority of
lossy bins (0.64 recall) while guaranteeing the performance for
lossless scenarios (0.94 recall).

Index Terms—Real-time communications, RTP, packet loss,
machine learning.

I. INTRODUCTION

Real-time communications (RTC) have experienced an
unprecedented development and consolidated their position
as indispensable tools in recent years, supporting services
such as videoconferencing, streaming, and online gaming, to
play a profound role in remote work, recreation, education,
and beyond. As RTC applications continue to proliferate,
observing and understanding the Quality of Experience (QoE)
are of paramount significance for stakeholders including end-
users, network operators, and service providers. Standing out
as one of the key indicators for QoE metrics, packet loss is an
inevitable and adverse event for traffic of Real-time Transport
Protocol (RTP) [1], which underpins the vast majority of RTC
services, encompassing the globally ubiquitous framework
for web browsers — WebRTC1. A packet loss/losses could
diminish the QoE, resulting in information corruption, fuzzy
audio/video fidelity, transmission interruption, etc,. Hence,
it becomes increasingly imperative to properly mitigate the
repercussions caused by packet loss, which evidently neces-
sitates the detection of losses as a foundational step.

This work was supported by the SmartData@PoliTO center on Big Data
and Data Science, and funded by Cisco Systems Inc. and the European
Union under NextGenerationEU. PRIN 2022 Prot. n. 2022MWBFEE.

1https://webrtc.org/

Conventionally, the identification of packet loss entails a
straightforward examination of sequence numbers embedded
in packet headers, adhering to default protocol specifications.
In the modern landscape, a myriad of RTC applications
have emerged in the market [2], and many of them invent
unique and bespoke mechanisms atop RTP tailored to their
own requirements [3], [4]. Nevertheless, certain customized
features deviate from the original RTP paradigm, such as
yielding a deliberate discontinuity between sequence numbers
of consecutive packets. Thus, discerning packet loss in traffic
generated by such applications becomes mired in ambiguity
and unreliability, attributable to the intentionally and artifi-
cially engineered “defects”. While the occurrence of actual
losses remains detectable by the respective software imple-
mentations, they are not perceptible to external observers
due to the proprietary nature of these alterations, commonly
safeguarded under closed-source environments inaccessible
to third parties. Amidst the thriving advancement of net-
work technologies, and further catalyzed by the escalating
consumer demands for high QoE, measuring QoE metrics
like loss rate merely for the application level proves insuf-
ficient and antiquated. First, granting end-users’ equipment
access to loss conditions empowers auxiliary programs to
intervene, optimizing configurations to better accommodate
lossy events, given the typically limited control exerted by
RTC applications over device settings. Second, monitoring
packet loss within network nodes, such as edge routers, offers
insights into localized performance issues, facilitating the
discovery of network anomalies and enabling optimization
efforts from a particular vantage point. Third, the network
operators and service providers that are notified with loss
metrics might be able to undertake diagnosis and enact
responsive countermeasures, thereby effectively managing
network systems and alleviating QoE degradation.

Traditional approaches of active or passive measurement
for network losses can estimate the loss rate, by send-
ing probe packets or leveraging Management Information
Base (MIB) via Simple Network Management Protocol
(SNMP) [5], [6]. However, they fall short in revealing actual
losses within specific end-to-end RTP flows, not to men-
tion the inadequate accuracy of the estimation in numerous
scenarios [7] and the additional resource overhead incurred,
such as the injection of extra packets. Authors in [8] has
introduced a novel technology to measure losses for video
streaming, but the applicability of the proposed measurement
mark inserted into the user data field is questionable for
existing RTC applications in the market. On top of that,



the assessment of QoE metrics concerning packet loss in
RTC remains relatively understudied. The works of [9]–[11]
have endeavored to map Quality-of-Service (QoS) metrics
to video QoE, and [12], [13] have conducted extensive
evaluation campaigns on videoconferencing performance, but
they presuppose the availability of packet loss knowledge.
[14], [15] have tried to predict packet loss, whereas the works
are valid only for regular RTP flows. Meanwhile, recent
contributions by [16]–[20] have developed multiple sophis-
ticated methodologies to estimate QoE metrics in common
videoconferencing applications, yet all of them have cast a
veil over the measurement of packet loss, acknowledging
such a limitation in their works.

To this end, we aim to fill in the gap by analyzing and
detecting the unobservable losses in RTC. We scrutinize an
enormous amount of RTC traffic sourced from different van-
tage points, including border routers featuring both generic
and anonymous RTP traces, as well as edge-nodes capturing
real video-teleconferencing sessions, spanning a period of
approximately three years. Consequently, we unveil two types
of peculiar patterns incurred by dynamic payload type and
video frame segmentation. The involved RTP flows exhibit
intermittent gaps in sequence numbers that are not generated
by packet loss. These unforeseen gaps, when assessed within
the context of the original RTP, are mistaken as losses,
obscuring the identification of genuine losses entwined within
these flows. In order to tackle the problem, we craft three
independent datasets, aggregating packets into 500-ms time
bins and computing numerous traffic statistics. Each bin is
categorized based on the existence of packet loss, with actual
labels assigned to traffic conforming to RTP, and artificial
labels created for unusual traffic. Subsequently, we formu-
late a supervised classification problem, examining multiple
Machine Learning (ML) algorithms grounded in statistical
features, and conducting a meticulous evaluation process.
As a result, our best solution demonstrates a commendable
performance, boasting class recalls of 0.94 and 0.64 for
lossless and lossy time bins in anomalous traffic with un-
observable losses. Our work represents the inaugural attempt
to investigate, unravel and identify such anomalous traffic,
thereby contributing to the holistic network management and
full-stack observability. Additionally, our method does not
seek to substitute the basic approach for loss detection; rather,
it is conceived to operate as a supplementary tool to enhance
the QoE metrics measurement.

II. PROBLEM CONTEXT

In this section, we start with a brief introduction of the
collected traffic. Then, we characterize the loss phenomenon
and formulate the problem.

A. Collected traffic

The RTC traffic in our possession with a temporal span
of roughly 3 years are collected from two distinct vantage
points:

• Campus router — The border router is situated in our
university campus to handle inbound and outbound net-
work traffic. Specifically, we rely on the TCP STatistic

and Analysis Tool (Tstat) [21] with the Cryptography-
based Prefix-preserving Anonymization (Crypto-PAn)
algorithm [22] to selectively capture and filter anony-
mous traffic, retaining only RTP packets for the sake of
our analysis. Although the provenance of the collected
traces is undisclosed, we anticipate a diverse spectrum
of traffic in terms of applications, mediums, locations,
etc., owing to the global origins of these RTP flows
frequenting the university’s network at different times.

• End-user device — The users’ devices, referred to as
edge-nodes, actively generate traffic during multiple real
video conferences (71 calls and 70 hours in total) with
2 to 6 participants connected to either Ethernet, mobile,
or WiFi. We adopt 2 video conferencing applications
(VCAs), namely Jitsi Meet2 and Webex3. Notably, it is
confident that both applications comply with RTP, thus
ensuring the reliability of loss identification based on
sequence numbers. Additionally, we employ Wireshark4

to capture transmitted RTP packets during a session.
Notably, all traffic is archived into pcap format, and we only
focus on the inbound traces, since they traverse the entire
network path, reflecting the overarching network patterns
affected by various factors, e.g., congestion, during transmis-
sion.

B. Packet loss

According to RTP specifications, the packet loss can be
detected using sequence numbers on a per-flow basis. An
RTP flow is determined by a tuple composed of (IPsrc, IPdst,
Portsrc, Portdst, SSRC, Typepayload). For each flow, the first
sequence number is initialized randomly, and an increment
of one is added for each RTP packet produced. Therefore, a
lost packet results in a missing number in the monotonically
increased sequence, i.e., a loss/losses are identified if an RTP
flow manifests a gap within successive sequence numbers.
Conversely, we investigate the traffic from the campus router,
discovering two types of anomalies, as portrayed in Figure 1.
In particular:

• Dynamic payload type — The type of payload denotes
the specific media format encapsulated in a packet. The
descriptor “dynamic” means that the payload type is
not consistently tied to a particular content category,
e.g., audio, but rather is supposed to remain fixed
within an individual RTP flow. Unusually, certain traffic
occasionally alter the payload type of some packets
within the same flow, while other attributes, including
sequence numbers, remain compliant. When examining
the presence of losses, such packets with modified pay-
load types but ordered sequence numbers are segregated
from the flow, leading to deficiency in the sequence
numbers and thus mistakenly identified losses.

• Video frame segmentation — Due to the relatively large
size of a video frame, it is not efficient to encapsulate
an entire frame within a single packet. Modern codecs

2An open source framework, https://meet.jit.si/
3A commercial application, https://www.webex.com/
4https://www.wireshark.org/
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Fig. 1: The pattern of abnormal RTP flows.

typically segment an individual video frame into mul-
tiple fragments, each packetized separately. In essence,
a series of continuous packets are collectively decoded
as a single frame for video flows, discernible through
the identical RTP timestamp shared by packets from the
same frame, thanks to their simultaneous generation. In
general, there is no exception for sequence number in
video traces, but some flows exhibit irregular gaps in
sequence numbers when RTP timestamp changes from
one series of same numbers to another. This indicates
that the generators of such flows intentionally introduce
a transition between two consecutive video frames, i.e.,
the sequence number difference between the last packet
of a preceding frame and the first packet of a subsequent
frame exceeds one, engendering indistinguishable fake
losses.

The actually losses occurred in these abnormal RTP flows
become unobservable, overshadowed by pseudo losses in-
duced by the aforementioned factors, significantly impairing
the effective detection of real loss rate and hindering the
reliable observability of QoE metrics. Noteworthily, while
the traces are collected in an application-agnostic manner
because of the traffic anonymization, we manage to glean
insights into the possible software origins through the reverse
DNS lookup. As a result, we are able to decipher a portion
of domains pointing to certain applications, including Google
Meet, Microsoft Teams, etc. However, the analysis regarding
the pattern and reason behind these applications to introduce
peculiar mechanisms lies beyond our current scope, and we
intend to investigate pertinent facets in the future.

Importantly, although we already comprehend the under-
lying patterns of abnormal traffic, we refrain from simply
applying a rule to eliminate these anomalies for several
reasons: i) The elucidated mechanisms merely represent
current solutions adopted by certain applications. As RTC

services and network technologies continue to prosperously
evolve, it is foreseeable that more advanced applications tend
to emerge, probably introducing novel techniques that further
complicate loss detection, not to mention the possible updates
of present technologies that may change the rules again.
Thus, imposing multiple rules becomes untenable, especially
considering the challenge of staying abreast of both existing
and emerging technologies. ii) Our understanding of the
impediments to loss detection stems from having full ac-
cess to all relevant packet information post-traffic collection,
which is, however, impossible in reality, due to the trend
of increasingly prevalent and strict packet encryption [23],
[24]. Therefore, applying rules might be infeasible in the
first place because of the unavailability of certain attributes
necessary for their implementation. iii) The employment of
rules carries the risk of rendering loss detection unreliable.
For instance, a loss/losses may coincidentally occur exactly
between two video frames, where an intentional gap exist in
sequence numbers, but is ignored alongside the actual loss
if the rule is applied. In such cases, we may inadvertently
overlook the actual loss, leading to inaccuracies in detection.

C. Problem statement

As long as RTC applications adopt RTP under the hood,
we posit that the traffic characteristics could provide insights
into the patterns of packet loss, e.g., a loss might elongate
the inter-arrival time. Given the massive and heterogeneous
nature of traffic at our disposal, we assert that it is plausible
to extract insights regarding packet loss embedded in the
attributes of RTP flows. To this end, we aim to utilize these
patterns to identify the existence of losses in an aggregated
manner. Specifically, we refer to a new concept of an RTP
link, denoted by a tuple of (IPsrc, IPdst, Portsrc, Portdst,
SSRC), that is the definition of an RTP flow devoid of
Typepayload. For all packets associated to a certain link, we



TABLE I: Dataset information.

Dataset Campus-2020 Campus-2023 VCA-2020

Collection period 2020-01 →
03 2023-03 2020-04 →

2021-01
#total packets 116,230,197 96,047,339 56,269,893

#total time bins 4,478,085 4,468,413 2,008,073
#lossy bins 58,819 (1.3%) 23,812 (0.5%) 32,734 (1.6%)

#bins (abnormal) 387,043 286,451 –
#lossy bins 4,065 (1.1%) 1,122 (0.4%) –

aggregate them into consecutive and chronologically ordered
500-ms time bins, in which we discern the presence of
packet loss and compute various statistics to represent traffic
patterns. Generally, our goal is to develop ML algorithms
capable of classifying time bins into two categories: lossless
(class 0) and lossy (class 1) based on the computed statistics.

III. METHODOLOGY

Herein, we introduce the dataset with a focus on statistical
features. Following this, we delineate considered ML models
and the performance evaluation process.

A. Dataset introduction

Dataset. Based on different periods and locations for the
traffic collection, we construct three independent datasets,
namely Campus-2020, Campus-2023, and VCA-2020. Traces
are segmented accordingly, with packets associated with
individual links extracted and grouped. For the packet flow
of each link, we conceive sequential time bins, aggregating
packets into 500 ms intervals5. As a result, each dataset com-
prises time bins with their corresponding attributes including
timestamp, statistical features, class label, etc,. Table I lists
the related information. For the Campus datasets, abnormal
traces account for roughly 6% to 9% of time bins, which
assume a substantial proportion, given the comprehensiveness
and diversity of the overall traffic. Additionally, we also offer
insights into the occurrence of packet loss by inspecting the
duration between two adjacent lossy bins for each dataset.
According to the Empirical Cumulative Distribution Func-
tion (ECDF) plots in Figure 2, around 40% of lossy bins
experience another loss or losses in its subsequent 500 ms
(duration between two bins is 0 s), and the majority (nearly
80%) of durations are less than 10 s, indicating a high
likelihood of encountering a series of losses. Such bursts
of losses are common in RTC, as the primary causes of
packet loss, e.g., network congestion, normally are not in-
stantaneous events, but endure, exerting a lingering influence.
This further underscores the impetus of effectively measuring
losses, as successful observations may herald extra future
losses, enabling proactive interventions to mitigate issues and
potentially prevent loss occurrence.

Statistical features. Utilizing all packets in each time bin, we
calculate multiple traffic statistics inspired by [3]. Differently,
we solely refer to attributes available in IP/UDP headers
to circumvent the potential complication arising from the

5At first glance, the 500 ms may appear to be an empirical choice;
however, our preliminary results demonstrate consistent performance for
different window sizes, a topic we will elaborate on in future works.
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Fig. 2: ECDF of duration between adjacent losses (unob-
servable losses in both Campus datasets are highlighted to
confirm an unified pattern).

packet encryption [16]. In particular, we derive 29 features,
encompassing statistics for UDP length, inter-arrival time
(IAT), number of packets, and bitrate. Detailed descriptions
are provided in Table II. For example, iatmean represents
the mean value of IATs of all packets within a time bin. On
top of that, we extend our horizon beyond a current time
bin, also incorporating information from its preceding bin as
additional features, since we postulate that a lossy bin could
introduce certain variations comparing to its neighborhood.
Consequently, we arrive at a total of 58 features for a single
time bin (target).

Class labelling. Although the datasets are constructed on
a per-link basis, the class label —whether a time bin is
lossless (0) or lossy (1)— is still assigned on a per-flow
basis. Class labelling for normal RTP flows in all datasets is
straightforward by examining the missing sequence numbers.
Notably, we employ the default jitter buffer size of 50 for
WebRTC [25], considering also out-of-order packets that
arrive too late as losses. As for abnormal flows present in both
Campus datasets, we need to artificially inspect the traffic,
applying the rules to eliminate pseudo losses — locating
the missing packet with a different payload type in another
flow and disregarding gaps among sequence numbers caused
by frame transitions. While we remove abnormalities for
labelling purposes, we still annotate the corresponding bins
with marks for future reference.

B. ML models & Evaluation process

In order to solve the supervised binary classification
problem, we resort to multiple ML classifiers: k-Nearest-
Neighbors (kNN) [26], Gaussian Naive Bayes (GNB) [27],
decision tree (DT) [28], random forest (RF) [29], and eX-
treme Gradient Boosting (XGB) [30]. Crucially, our problem
is compounded by an inherent challenge of class imbalance
— only around 1% of time bins are lossy, resulting in
the domination of the majority class (lossless bins) and
consequent poor performance of the algorithms. To mitigate
the issue, striking a balance between minimizing misclas-
sifications for class 0 and ensuring acceptable performance
for class 1, we leverage a simple under-sampling strategy
with more but not overmuch lossless bins, randomly selecting
twice as many lossless samples as lossy bins during training
phase instead of using all available data.



TABLE II: Traffic features computed in each time bin.

Category Shared features Unique feature

UDP length
mean, max, min, std, kurtosis, skewness, 3rd/4th moment, max-min difference, m-m ratio1, %max

#unique length, %unique length

Inter-arrival time #IAT (> 50th percentile)2

Others – #packets, kbps
1 max-min ratio = max/(max + min);min-max ratio = min/(max + min).
2 Number of IATs that are greater than the 50th percentile of all IATs in Campus-2020 dataset.

More importantly, we devise an elaborate performance
evaluation process to select the most proficient model, justify
the generalizability, and assess the suitability for abnormal
traffic. In general, we consider the earliest Campus-2020
dataset as a basis, with VCA-2020 serving as a reference, and
Campus-2023 used for evaluating the ultimate performance.
Initially, we perform 50 trials of random segmentation for
the Campus-2020 dataset, partitioning the data into 70% for
training and 30% for testing in a stratified manner. This
process resembles cross-validation, but instead of shuffling
the entire dataset, we opt to shuffle the links to ensure that
samples from individual links are exclusively allocated to
either the training or test sets. Throughout each trial, we
train and assess all candidate models, recording the evaluation
metrics to identify the best-performing option. Noteworthily,
due to the severe class imbalance in our dataset, not all
evaluation metrics for binary classification are useful, e.g.,
precision is biased towards the majority class. Hence, we
adopt class recalls to examine each individual class, and
the macro-average F1 score for overall performance. After
discovering the optimal choice, we retrain the model on the
entire Campus-2020 dataset and then apply it to the remain-
ing two datasets, with the aim of demonstrating the versatility
and generalizability under various scenarios, including times,
locations, applications, etc,. On one hand, with the VCA-
2020 dataset composed of traffic from known applications
that adhere to RTP, we investigate the model to verify its
competence, given the reliability of class labels in this case.
On the other hand, with the Campus-2023 dataset, not only do
we further consolidate the assessment on normal traffic, we
also focus on the anomalous traffic, examining the model’s
efficacy for time bins with ambiguous gaps among sequence
numbers.

IV. EXPERIMENTAL RESULT

In this section, we showcase the experimental findings
throughout the evaluation process.

To commence, the bar plots in Figure 3 present the
performance metrics in terms of class recalls and macro-
average F1-score attained by all considered models across
the complete evaluation trials. All models share a similar
behaviour of lossless time bins outperforming lossy ones.
GNB turns out to be the worst choice with both class 1
recall and F1-score below 0.5, while kNN and DT yield
intermediate performance levels. Evidently, RF and XGB
excel the others with recall for class 1 surpassing 0.8 and F1-
score hovering around 0.6. Given the relatively lightweight
and highly configurable nature of XGB, we opt for the model
for the subsequent analysis.
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Fig. 3: Overall performance with 95% confidence interval of
all models after all evaluation trials.
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Fig. 4: Final performance evaluation.

Subsequently, we proceed to retrain the selected XGB
model on the entire Campus-2020 dataset6, intending to en-
compass various facets from diverse traffic, whether anoma-
lous or not, and evaluate the performance from three different
perspectives, as illustrated in Figure 4. Starting with the
VCA-2020 dataset, our solution bolsters a commendable
outcome, successfully identifying 70% of lossy time bins,
which substantiates the reliability, given that the model
functions efficaciously for traffic with assured presence of
packet loss. Moving forward to the Campus-2023 dataset, the
performance escalates, showcasing an exceptional class recall
of 0.99 for lossless bins, consequently yielding the highest
F1-score of 0.65. While these results affirm the model’s
proficiency, our primary focus lies on time bins in which
discontinuities among sequence numbers exist, because the
unobservable loss can only occur in such circumstances.

6Besides all lossy bins, we still refer to the under-sampling strategy for
lossless bins.



Therefore, we use the aforementioned marks to identify
and isolate abnormal bins from the Campus-2023 dataset,
evaluating the model to ascertain the final performance.
Although we observe a marginal decline for both classes,
the overall performance remains respectable, boasting an F1-
score of 0.64 with recalls of 0.94 and 0.64 for classes 0 and
1, respectively. Given that the labels of such time bins are
artificially generated, the performance degradation might be
induced by mislabelling, and thus the model overfitting is
acceptable to a certain degree. In general, due to the intrinsic
difficulty posed by the serious class imbalance and the mul-
tifaceted characteristics from diverse traffic, it is arduous to
improve both classes simultaneously. Nonetheless, our efforts
still obtain satisfactory and generalized outcomes, adeptly
recognizing the majority of unobservable losses without
compromising the detection of normal traffic. Additionally,
the model can be tuned to favor a certain class, but this results
in trade-offs such as excessive misclassifications for class 0
or inferior performance for class 1, while our finalized model
achieves a judicious balance between both classes.

V. CONCLUSION

In this paper, we methodically examine ample RTP-based
RTC traffic amassed under various conditions, revealing two
types of anomalies that obfuscate the identification of packet
losses and render the actual losses unobservable in such
traffic. To surmount the challenge, we refer to an aggregated
approach to derive traffic statistics in time bins and formulate
a supervised classification problem to predict the presence of
packet loss in a bin. We create three independent datasets and
explore multiple ML technologies. Moreover, we conduct a
meticulous evaluation process, selecting the optimal model
based on one dataset while comprehensively assessing the
performance on the other two. Consequently, we achieve
decent performance, identifying a significant portion of lossy
samples, whilst maintaining a moderate level of misclassifica-
tions for lossless bins. Our proposed solution stands poised to
serve as a supplementary instrument for packet loss measure-
ment in RTC, contributing to a transparent and dependable
observability of network performance. Future work could aim
to investigate thoroughly the source applications of abnormal
traffic.
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