
26 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Nonlinear Beam Finite Element with Bending–Torsion Coupling Formulation for Dynamic Analysis with Geometric
Nonlinearities / Patuelli, Cesare; Cestino, Enrico; Frulla, Giacomo. - In: AEROSPACE. - ISSN 2226-4310. -
ELETTRONICO. - 11:4(2024). [10.3390/aerospace11040255]

Original

A Nonlinear Beam Finite Element with Bending–Torsion Coupling Formulation for Dynamic Analysis with
Geometric Nonlinearities

Publisher:

Published
DOI:10.3390/aerospace11040255

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987443 since: 2024-03-30T17:47:57Z

MDPI



Citation: Patuelli, C.; Cestino, E.;

Frulla, G. A Nonlinear Beam Finite

Element with Bending–Torsion

Coupling Formulation for Dynamic

Analysis with Geometric

Nonlinearities. Aerospace 2024, 11, 255.

https://doi.org/10.3390/

aerospace11040255

Academic Editor: Earl H. Dowell

Received: 22 February 2024

Revised: 19 March 2024

Accepted: 21 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

A Nonlinear Beam Finite Element with Bending–Torsion
Coupling Formulation for Dynamic Analysis with
Geometric Nonlinearities
Cesare Patuelli , Enrico Cestino * and Giacomo Frulla

Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy
* Correspondence: enrico.cestino@polito.it

Abstract: Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to
avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can
induce nonlinear couplings, causing a different dynamic behavior from the linear counterpart, and
nonlinear effects should be considered for more realistic simulations. Moreover, composite materials
and aeroelastic tailoring require new simulation tools to include bending–torsion coupling effects. In
this research, a beam finite element with bending–torsion coupling formulation is used to investigate
the effects of the deflection of beam structures with different aspect ratios. The nonlinear effects
are included in the finite element formulation. The geometrical effect is considered, applying a
deformation dependent transformation matrix. Stiffness effects are introduced in the stiffness matrix
with Hamilton’s Principle and a perturbation approach. The results obtained with the beam finite
element model are compared with numerical and experimental evidence.

Keywords: nonlinear modal analysis; beam finite element; bending–torsion coupling

1. Introduction

Aircraft design is moving to increasingly slender and lightweight wings for higher
efficiency and lower CO2 emissions. These structures bring new design challenges due to
their high flexibility and high deflections under normal loads. The geometric nonlinearities
introduced with large deformations require models to predict the effects on the aeroelastic
phenomena. The importance of aerodynamic and structural geometrical nonlinearities
in the aeroelastic behavior of high-aspect-ratio wings has been established by Patil and
Hodges in [1]. Patil et al. [2] have looked at the effect of structural geometric nonlinearities
on the flutter behavior of high-aspect-ratio wings, and they presented the changes in the
structural and aeroelastic characteristics of a steady-state deflection of a wing. Their study
revealed a significant change in the structural frequencies and a significant reduction in the
flutter speed.

Detailed coupled computational fluid dynamics and finite element method formu-
lation for aeroelastic analysis have been widely studied [3]. These models can be very
sophisticated and generally require a large number of calculations which are not efficient
for design and optimization. For this reason, the research moves to low-order aeroelastic
models, which consent to reduce the computational cost with similar prediction capabilities
if compared to high-order models. A popular approach for nonlinear elasticity consists in
geometrically exact beam formulation; an example is given by Hodges [4,5], who presented
an intrinsic formulation for nonlinear dynamics of initially curved and twisted anisotropic
beams. These models use equivalent beam properties derived from finite element models
(FEMs) [6,7]. These formulations have been used in several works for studying very flexible
wing structures: Drela [8] used nonlinear beams to develop an integrated model for aero-
dynamic and structural simulation of flexible aircraft, while Patil [9] presented a theory for
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flight dynamic analysis of highly flexible wing configuration, accounting for geometrically
nonlinear structural deformations. A more recent class of low-order structural models relies
on high-order modal expansions [10,11]. These models require nonlinear static responses
of an FEM to identify modal expansion terms. Another model has been presented by Bruni
et al. [12], who expanded the partial differential equations for the beam dynamics up to the
third order to explore the effects of static deflection, external trim, gust loads, and aerody-
namic stall. The solution was obtained with Galerkin’s method and with a multi-modal
approach. Other models for static and dynamic nonlinear analysis of beam structures
exist in the literature and employ different solutions to simulate specific conditions. Some
models consider only one-dimensional finite elements as in [13], while other developed
models consider all the possible degrees of freedom. Yang et al. [14] developed a six degree
of freedom beam element, including material nonlinearity; they described a procedure for
nonlinear static analysis which involves piecewise linearization of the response equations
and iterations at each incremental step to achieve equilibrium. Surana et al. [15] presented
a geometrically nonlinear formulation for a 3D curved beam element using a Lagrangian
approach and verified the accuracy and efficiency of the formulation with literature results
of nonlinear static analysis. More recently, Jin and Yun [16] developed a three-dimensional
beam element for geometrically nonlinear dynamic analysis; the derivation is based on
the co-rotational formulation. The model showed good results and can undergo large
deflection and rotations, but small strains are assumed.

Low-order beam structural models can be further developed to consider also mate-
rial couplings and expand the aeroelastic design domain. Anisotropic materials can be
used to improve wing box structural performance according to the concept of aeroelastic
tailoring [17,18]. The advantages of aeroelastic tailoring are enhanced by orthotropic mate-
rials. Bakthavatsalam [19] demonstrated the effect on the flutter speed of aeroelastically
tailoring wing and tail surfaces of a closely coupled wing–tail flutter model, and it was
shown that tailoring the wing surface produced the largest increase in flutter speed, but
tailoring the tail and reducing its stiffness could also produce an increase in flutter speed.
Weisshaar [20–22] focused on the use of laminated composites to increase the divergence
speeds of swept forward wings. Weisshaar included bending–torsion coupling, defining a
stiffness parameter that describes the amount of interaction between the bending curvature
and twist rate. This parameter is a function of the orientation and stacking sequence of
symmetrical laminate plies with respect to a reference axis along the wing. Composite
panels layups can be studied to achieve specific aeroelastic performance and consider-
ing also functionally graded materials [23–26] and variable angle tow [27–30]. However,
aeroelastic tailoring is not limited to composite materials, as several studies [31–33] have
shown that the arrangement of stiffeners can be used to control directional stiffness and
bending–torsion coupling.

Beam finite elements are particularly suitable for high-aspect-ratio wing analysis.
However, traditional beam elements do not consider the bending–torsion couplings granted
by the use of oriented orthotropic materials. Recently, Patuelli et al. [34] presented a beam
finite element with bending–torsion coupling formulation (BTCE). The linear finite element
was derived with Galerkin’s method, while the bending–torsion coupling was obtained
with specific shape functions and the hypothesis of constant torsional moment along
the beam element. The resulting model was validated with experimental and numerical
results [34,35], showing good accuracy for static and dynamic analysis. The scope of
the present research work is to develop a procedure to perform dynamic analysis in the
presence of geometric nonlinearities. Cestino et al. [36] studied the flutter instability of
high-aspect-ratio wings and considered the phenomenon as the sum of two effects, the
geometrical effect (GE) given by the deformed geometry and the stiffness effect (SE), which
is the effect caused by the loads at the equilibrium condition on the differential stiffness
matrix. They demonstrated that the GE is the main contribution in the nonlinear dynamic
analysis of slender structures and that the results of the flutter analysis are verified by
experimental evidence either when considering only GE or when accounting for SE.
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This research work presents the derivation of a nonlinear beam finite element with
bending–torsion coupling formulation (BTCE-NL), which considers both GE and SE. The
element stiffness matrix is derived considering the nonlinear terms through the perturbation
of a known equilibrium configuration. Moreover, an approach that accounts only for
the GE (BTCE-GE) has been developed considering a deformed equilibrium dependent
transformation matrix to orient the BTCE. The derived models have been validated with
several experimental modal analyses performed with Laser Doppler Vibrometer (LDV).
The experimental data gathered have been used to validate the characteristic frequencies
and the mode shape predicted with the new models, but they also consented to understand
at which level of deflection the dynamic linear analysis is no longer suitable for mode
shape prediction, and advanced models are needed. The experimental tests considered a
beam structure with a coupling coefficient equal to zero to avoid flapwise vibrations. The
results revealed that both models can predict characteristic frequencies and modes with
good precision for moderate-to-large deflections and that the BTCE-GE can be sufficient to
analyze slender structures with moderate initial deflections. The models has been tested
also for a composite beam-box structure with a circumferentially asymmetric stiffness
(CAS) configuration described in [37]. The experimental modal analysis of a beam structure
with bending–torsion couplings involves both edgewise and flapwise coupled modes and
would require more sophisticated equipment; for this reason, the BTCE models results have
been compared with the results of a SHELL FE model solved with NASTRAN SOL106.
The methods adopted showed good correlation with the SHELL FE model for moderate
deformations. The models presented in this research can be used to perform optimization
cycles with low computational costs and find layup configurations able to mitigate the
deformation-induced nonlinear effects.

2. Model Derivations

In this section, the BTCE derived in [34] is used to develop two procedures for modal
analysis of predeformed structures. The first procedure considers only the geometrical
effects given by the deformed configuration, while the second procedure uses a perturbation
approach to include nonlinear effects in the beam element stiffness matrix. The generic
beam finite element is represented in Figure 1, each node presenting three translations and
three rotations. Out-of-plane bending involves vertical translation w and rotation around
the z axis θz, while in-plane bending involves horizontal translation v and rotation around
the y axis θy. The torsion of the beam is described by the rotation around the beam axis φ
and the extension of the beam by translation u.

x

y

L

z

Node 2 (x=L)

Node 1 (x=0)

u2

u1

w2

v 2

v 1

w1

φ2

φ1

θ
2y

θ
1y

θ
2z

θ
1z

Figure 1. Beam element reference system.

2.1. BTCE-GE

The BTCE stiffness and mass matrices [Kel] and [Mel] reported in Equations (A1) and (A3)
can be obtained through Galerkin’s method following the procedure described in [34]. The
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BTCE formulation allows to consider the bending–torsion coupling given by oriented
fibers or stiffeners for an inextensible slender box beam in a CAS configuration. This
coupling is obtained through the shape functions reported in Table A1, derived with the
hypothesis of constant torsional moment along the beam element. To perform a dynamic
analysis of a predeformed structure considering only the geometrical effects, the beam
can be discretized in finite elements with the position and orientation given by a known
equilibrium configuration. This can be achieved with the rotation of the mass and stiffness
matrices with an opportune transformation matrix [T] defined in Equation (1):

[T] =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 (1)

The members Tij for an inextensible beam are reported in Equation (2) according to
the derivation presented in [38]. The Tij are obtained with a Taylor’s expansion truncated
at the second order, which introduces the hypothesis of moderate-to-large deformations
with deflections between 10% and 15% of the beam length:

T11 = 1 − 1
2

v′2 − 1
2

w′2

T12 = v′

T13 = w′

T21 = −v′ − w′φ

T22 = 1 − 1
2

v′2 − 1
2

φ2

T23 = φ

T31 = −w′ + φv′

T32 = −φ − v′w′

T33 = 1 − 1
2

w′2 − 1
2

φ2

(2)

v, w, and φ are the displacement variables function of the coordinate x. The known
deformed configuration can be denoted with v0, w0, and φ0. For the two-node finite element
represented in Figure 1, the equilibrium deformation can be expressed as the product of
shape functions times the nodal degrees of freedom of the element as represented in
Equation (3), the suffix 0 denoting the equilibrium value of the degree of freedom:


w0(x) = Nw1(x)w01 + Nw2(x)θy01 + Nw3(x)w02 + Nw4(x)θy02

v0(x) = Nv1(x)v01 + Nv2(x)θz01 + Nv3(x)v02 + Nv4(x)θz02

φ0(x) = Nφ1(x)φ01 + Nφ2(x)w01 + Nφ3(x)θy01 + Nφ4(x)φ02 + Nφ5(x)w02 + Nφ6(x)θy02

(3)

Substituting Equation (3) into Equation (2), the transformation matrix is obtained for
each element of the structure. However, the members Tij vary along the beam element
length. The orientation of the element can be obtained evaluating the Tij at the first node of
the beam element. This procedure introduces the hypothesis that the deformation along the
element are negligible, and it can be considered straight. Once the matrix [T] is obtained,
the finite element mass and stiffness matrices in local coordinates [Kel ] and [Mel ] can be
rotated according to the orientation of the deformed structure with Equations (4) and (5).
The oriented element can be assembled to solve the eigenvalue problem (6), computing
the corresponding eigenvectors solution of Equation (7) with the global stiffness and mass
matrices [Kg] and [Mg]:

[Kg] = [T]T [Kel ][T] (4)

[Mg] = [T]T [Mel ][T] (5)
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det
(
[Kg]− ω2

n[Mg]
)
= 0 (6)

([Kg]− ω2
n[Mg])ϕn = 0 (7)

2.2. BTCE-NL

The second procedure presented in this research work takes into account the stiffness
effect of an equilibrium deformed configuration. Considering a uniform straight orthotropic
inextensible beam, the Cartesian coordinate system XYZ describes the undeformed ge-
ometry, and the Cartesian system ξηζ describes the deformed geometry (Figure 2). The
derivation uses Hamilton’s Principle reported in Equation (8):∫ t

0
(∂T − ∂π + ∂Wnc)dt = 0 (8)

where ∂T is the kinetic energy and ∂Wnc are the nonconservative terms. The variation of
the elastic energy ∂π can be written as in Equation (8) according to [38]:

∂π =
∫ L

0
(M1∂ρ1 + M2∂ρ2 + M3∂ρ3)ds = 0 (9)

with the moment resultants: 
M1 = GJρ1 + Kρ2

M2 = EI2ρ2 + Kρ1

M3 = EI3ρ3

(10)

The curvatures ρ1, ρ2 and ρ3 are obtained from the transformation matrix [T] according
to [38]: 

ρ1 = φ′ + v′′w′

ρ2 = −w′′ + v′′φ
ρ3 = v′′ + w′′φ

(11)

and the assumption that allows to obtain linear equations is to consider the displacement
variables as the sum of an equilibrium term denoted with the suffix 0 and a perturbation term:

φ = φ0 + φ̃

w = w0 + w̃
v = v0 + ṽ

(12)

where substituting Equation (12) in Equation (11) and neglecting the equilibrium terms,
Equation (11) becomes: 

ρ1 = φ̃′ + v′′0 w̃′ + w′
0ṽ′′

ρ2 = −w̃′′ + v′′0 φ̃ + φ0ṽ′′

ρ3 = ṽ′′ + w′′
0 φ̃ + φ0w̃′′

(13)

and the differential of the curvatures can be written as:
∂ρ1 = ∂φ̃′ + v′′0 ∂w̃′ + w′

0∂ṽ′′

∂ρ2 = ∂(−w̃)′′ + v′′0 ∂φ̃ + φ0∂ṽ′′

∂ρ3 = ∂ṽ′′ + w′′
0 ∂φ̃ + φ0∂w̃′′

(14)

With these considerations, is it possible to substitute Equations (13) and (14) into
Equation (9). Considering only the perturbation terms, it is possible to obtain Equation (15).
The three members of Equation (9) are presented separately for the sake of clarity:
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M1∂ρ1 = [GJ(φ̃′ + v′′0 w̃′ + w′

0ṽ′′) + K(−w̃′ + v′′0 φ̃ + φ0ṽ′′)]∂ρ1

M2∂ρ2 = [EI2(−w̃′′ + v′′0 φ̃′ + φ0ṽ′′) + K(φ̃′ + v′′0 w̃′ + w′
0ṽ′′)]∂ρ2

M3∂ρ3 = [EI3(ṽ′′ + w′′
0 φ̃ + φ0w̃′′)]∂ρ3

(15)

Equation (15) can be written in matrix form as
M1∂ρ1 = {∂d̃}{ 1 0 w′

0 v′′0 0 }T{ GJ K GJw′
0 + Kφ0 GJv′′0 Kv′′0 }{d̃}T

M2∂ρ2 = {∂d̃}{ 0 1 φ0 0 v′′0 }T{ K EI2 EI2 φ0 + Kw′
0 Kv′′0 EI2v′′0 }{d̃}T

M3∂ρ3 = {∂d̃}{ 0 −φ0 1 0 w′′
0 }T{ 0 −EI3 φ0 EI3 0 EI3w′′

0 }{d̃}T

(16)

with {∂d̃} and {d̃} defined as in Equations (17) and (18)

{∂d̃} = {∂φ̃′ ∂(−w̃′′) ∂ṽ′′ ∂w̃′ ∂φ̃ } (17)

{d̃} = {φ̃′ (−w̃′′) ṽ′′ w̃′ φ̃ } (18)

and the vectors containing only equilibrium terms can be multiplied, obtaining:

M1∂ρ1 = {∂d̃}


GJ K GJw′

0 + Kφ0 GJv′′0 Kv′′0
0 0 0 0 0

GJw′
0 Kw′

0 w′
0(GJw′

0 + Kφ0) GJv′′0 w′
0 Kv′′0 w′

0

GJv′′0 Kv′′0 v′′0 (GJw′
0 + Kφ0) GJ(v′′0 )

2 K(v′′0 )
2

0 0 0 0 0

{d̃}T

M2∂ρ2 = {∂d̃}


0 0 0 0 0
K EI2 EI2 φ0 + Kw′

0 Kv′′0 EI2v′′0
Kφ0 EI2 φ0 φ0(EI2 φ0 + Kw′

0) Kv′′0 φ0 EI2v′′0 φ0

0 0 0 0 0
Kv′′0 EI2v′′0 v′′0 (EI2 φ0 + Kw′

0) K(v′′0 )
2 EI2(v′′0 )

2

{d̃}T

M3∂ρ3 = {∂d̃}


0 0 0 0 0
0 −EI3 φ2

0 −EI3 φ0 0 −EI3w′′
0 φ0

0 −EI3 φ0 EI3 0 EI3w′′
0

0 0 0 0 0
0 −EI3 φ0w′′

0 EI3w′′
0 0 EI3(w′′

0 )
2

{d̃}T

(19)

Equation (9) can be rewritten in the matrix form as:

∂π =
∫ L

0
{∂d̃}[C̃]{d̃}Tds = 0 (20)

The matrix [C̃] is obtained with the sum of the matrices in Equation (19):

[C̃] =


GJ K GJw′

0 + Kφ0 GJv′′0 Kv′′0
EI2 + EI3 φ2

0 EI2 φ0 + Kw′
0 − EI3 φ0 Kv′′0 EI2v′′0 − EI3w′′

0 φ0
EI3 + GJ(w′

0)
2 + Kφ0w′

0 + EI2(φ0)
2 + Kw′

0 φ0 GJv′′0 w′
0 + Kv′0 φ0 EI2v′′0 φ0 + EI3w′′

0 + Kv′′0 w′
0

GJ(v′′0 )
2 K(v′′0 )

2

EI2(v′′0 )
2 + EI3(w′′

0 )
2

 (21)

The displacement variables can be expressed as a set of space-dependent shape func-
tions [N(x)], which multiplies the time-dependent nodal degrees of freedom {q̃}. In this



Aerospace 2024, 11, 255 7 of 22

case, the shape functions used are the ones reported in Appendix A, derived in [34], and
include the bending–torsion coupling formulation:

d̃ = [N(x)]{q̃(t)}T (22)

Substituting the shape functions into Equation (20), it can be rewritten as:

∂π = ∂{q̃}
(∫ L

0
[N(x)]T [C̃][N(x)]ds

)
{q̃}T = 0 (23)

where the nonlinear stiffness matrix is expressed as:

[K̃] =
(∫ L

0
[N(x)]T [C̃][N(x)]ds

)
(24)

A known equilibrium configuration can be used to compute the nonlinear stiffness
matrix [K̃] and solve eigenvalue problem (6), computing the corresponding eigenvectors
solution of Equation (7). The mass matrix [M] can be assembled using the linear BTCE
formulation since the effect of the nonlinear terms is negligible.

u

v

w

X

Y

Z
�y

�z

�
�,i3

�,

�,i1

i2

Figure 2. Beam reference system.

3. Experimental Validation for Isotropic Beam

The models here derived have been validated through experimental modal analysis.
The tests were performed on a rectangular section aluminum 6060 beam with dimensions
L = 3000 mm, b = 40 mm, and h = 8 mm (Figure 3) and the mechanical properties
listed in Table 1. The beam was clamped in four different positions to gather data of four
cases, respectively, with useful length L1 = 1000 mm, L2 = 1500 mm, L3 = 2000 mm,
and L4 = 2500 mm (Figure 4). We defined the ratio λ = µ/L with µ equal to the tip
deflection; one of the scopes of the experimental test is to understand at which level of λ the
geometric nonlinear effects have an influence on the beam mode shapes and characteristic
frequencies, determining the need of a nonlinear modal analysis. The other objective for
the experimental testing is to verify the accuracy of the presented models in predicting
characteristic frequencies and mode shapes.

L=3000 mm b=40 mm

h
=

8
 m

m

Figure 3. Beam dimensions.
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Table 1. Aluminum 6060 mechanical properties.

Property Value

E 61,000 [MPa]
ν 0.3
ρ 2675 Kg/m3

The beam was investigated with four experimental tests with similar equipment. The
beam was clamped between two steel blocks to guarantee a rigid constraint (Figure 5) at
the first section of the beam. Ten polylactic acid (PLA) targets (Figure 5) were placed along
the beam to gather data at ten equidistant stations. The number of targets was limited
to ten units to keep the additional weight on the beam negligible. More targets can be
added to improve the acquisition resolution, but the mass and inertia must be considered
and can alter the nonlinear effects observed. Each target presented two vertical parts
for acquisition, where a squared piece of reflective tape was positioned to improve the
surface reflectiveness.

The acquisition was performed with a Polytec PSV-500 Laser Doppler Vibrometer
(LDV) system, while the excitation was obtained with an electrodynamic shaker K200xE01.
The shaker was placed at 550 mm from the constraint, perpendicular to the beam axis as
represented in Figure 5. The objective was to excite only the edgewise degree of freedom
because edgewise and torsional characteristic frequencies are the most affected by flapwise
deflection; moreover, the torsional modes should be visible only when the nonlinear
coupling effect becomes important according to [1].

The experimental validation considers the case where the coupling term K is equal to
0. This allows to reduce the number of variables and keep the interpretation of the results
straightforward. Moreover, the term K induces bending–torsion deformations, which
means that a mode shape which involves the torsional degree of freedom determines also
the flapwise displacements, which need a 3D LDV system to be detected.

(A) (B)

(C) (D)

Figure 4. Experimental setup: L = 1000 mm (A), L = 1500 mm (B), L = 2000 mm (C), L = 2500 mm (D).
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Constraint

Targets
Load Cell

Shaker

Figure 5. Experimental Setup.

Four numerical models were defined for experimental result comparison. Two models
were implemented with MATLAB and used the BTCE finite element. One used the linear
formulation derived in [34], accounting for the geometrical effect (BTCE-GE), while the
second used the nonlinear BTCE (BTCE-NL). Two additional models were defined in
PATRAN and solved in NASTRAN starting with an undeformed configuration; both used
SHELL elements to describe the beam geometry, but one was solved with SOL103 and the
second one was solved with the nonlinear solution SOL106. The linear modal analysis was
performed on the undeformed configuration to obtain linear mode shapes and frequencies
for the result comparison. The choice behind the use of SHELL finite elements is the
possibility to add bending–torsion coupling terms, which is possible for the BTCE but
not for conventional beam elements. The BTCE models were obtained by assembling
10 elements which represent the 10 segments described by the targets positioned on the
experimental beam. The first node was constrained, imposing the translations and the
rotations equal to 0. For the BTCE-GE model, the modal analysis was performed using the
linear stiffness matrix rotated with the equilibrium configuration-dependent transformation
matrix [T] described in the second section of this work. The BTCE-NL model used the
stiffness matrix derived in the second section, which depends on the equilibrium static
deformation. The mass of each element was lumped at the nodes, and a linear static analysis
determined the equilibrium deformation used to complete the element stiffness matrix
and perform the nonlinear modal analysis. Alternatively, the deformed configuration
can be obtained with a nonlinear static analysis performed with NASTRAN. The linear
static analysis for a vertical load does not present edgewise displacements or rotation,
while the nonlinear static analysis have a small in-plane component v0 and θz0, which
can be considered negligible. The SHELL elements was created with 10 mm QUAD4
elements and then solved with SOL103 for the linear modal analysis in the undeformed
configuration as reference. The model was completed with an inertial load to perform
also the nonlinear modal analysis SOL106 that accounts for the preload. The numerical
models results were compared with the experimental results in terms of mode shapes and
characteristic frequencies. The linear analysis was performed to understand at which level
of deformation it becomes unreliable and a nonlinear formulation becomes needed.
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4. Numerical Models Comparison for Composite Beam

A numerical comparison was performed for a case with bending–torsion coupling; the
reference structure is a box beam structure with a circumferentially asymmetric stiffness
(CAS) laminated composite configuration. The structure was described in [37]; the section
is represented in Figure 6. The beam was obtained with a unidirectional T700 carbon–epoxy
layer bonded onto wooden spars with fibers oriented at 24◦. The structural box had the
following dimensions: length, L = 522 mm; width, w = 20 mm; height, h = 2.8 mm; upper
and lower panel thicknesses, t = 0.2 mm; mass per unit length, m = 1.095 × 10−5 kg/mm;
and torsional unit inertia, Ip = 4.75 × 10−4 kg/mm. The mechanical properties of the
material are listed in Table 2.

.

.

Figure 6. Composite box beam section.

Table 2. Cantilever composite beam material and properties.

T700 Wood
Property Value Property Value

E11 118.4 GPa E11 16.6 GPa
E22 8.7 GPa E22 8 GPa
G12 = G13 3.4 GPa G12 = G13 3.4 GPa
ν12 = ν13 0.31 ν12 = ν13 0.31

The reference model was defined in PATRAN with SHELL elements (Figure 7), while
a beam model with the formulation presented in this work was obtained assembling
10 elements. The load condition chosen for the numerical comparison is a concentrated
tip load. The load was incremented to reach different deformation levels and observe the
limits of validity of the presented model. The deformation was evaluated with a nonlinear
static analysis, then a nonlinear modal analysis was performed for each load case, and
the numerical results were compared in terms of characteristic frequencies. The deformed
configuration used to orient and compute the nonlinear beam finite element was retrieved
from the nonlinear static analysis performed with NASTRAN. The first eight characteristic
frequencies were computed for the two FE models and normalized with the value obtained
with a linear modal analysis of the undeformed configuration. The normalized frequencies
were compared for each mode at different deformation levels.
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x

y

z

Figure 7. Composite box beam SHELL model.

5. Results and Discussion

This section presents the experimental evidences collected and compared with the
numerical models. The dynamic behavior of the nonlinear BTCE was compared in terms of
predicted natural frequencies and mode shapes. The accuracy of the natural frequencies
was evaluated in terms of relative difference. The similarity between the FE models
and the experimental mode shapes was evaluated with the Modal Assurance Criterion
(MAC). MAC is a statistical indicator used to quantifying the similarity between two sets
of mode shapes, where a value equal to 1 indicates complete similarity, while 0 indicates
no correlation between the modes investigated [39,40]. Equation (25) was applied to the
experimental and numerical mode shapes computed to obtain the MAC matrices. The
mode sets of the experimental mode shapes were compared with themselves computing
the Auto MAC, allowing to verify the existence of similarities between different mode
shapes and thus the presence of couplings between the degrees of freedom. The couplings,
if present, should show the same pattern for experimental and nonlinear numerical modes.
When the structure does not present couplings, the expected matrices for the experimental
and numerical linear and nonlinear modes should be diagonal:

MACij =
|ΦiT

A Φ
j
B|2(

ΦiT
A Φ

j
A

)(
ΦiT

B Φ
j
B

) (25)

5.1. Static Analysis Results

The nonlinear finite element derived depends on the equilibrium deformation under
static load. The deformation can be obtained through linear or nonlinear static analysis. In
this research, a linear static analysis is used to determine the initial equilibrium deformation
for the load cases considered during the experimental tests on the isotropic beam. The
results of the deflection at the tip were compared with the result of a SHELL model of the
beam solved with SOL106 and experimental results, and the accuracy was evaluated com-
puting the relative difference between numerical and experimental results. The comparison
is reported in Table 3 with the relative difference for each result.
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Table 3. Comparison of experimental deflection measured at the tip with linear and nonlinear static
analysis results. µ denotes the tip deflection, while L denotes the beam length.

Beam Length [mm] Experimental [mm] BTCE [mm] SHELL SOL106 [mm] µ/L%

1000 10 10 10 1.1%
0% 0%

1500 54 51 51 3.7%
5.5% 5.5%

2000 166 162 160 8.3%
2.4% 3.6%

2500 367 395 386 14.68%
7.6% 5.2%

5.2. Experimental Modal Analysis Results

The Frequency Response Functions (FRFs) obtained through experimental modal anal-
ysis are reported in Figure 8. The experimental and numerical results for the characteristic
frequencies are reported in Table 4. For a beam length equal to 1000 mm, the first torsional
mode was not detected, while for a length of 1500 mm, the torsional mode was detected,
but the peak was significantly smaller than the others. This confirms that the coupling
between edgewise bending and torsion is weak for deformations below 5%. On the other
hand, for bigger deformations, the excitation of the edgewise degree of freedom provoked
also the detection of the first torsional mode coupled with the edgewise bending mode.
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Figure 8. Experimental FRF.

The frequencies reported in Table 4 show good accordance with the predicted values
and the experimental results. In this case, both linear and nonlinear models can be use to
determine the characteristic frequencies of the structures. The relative difference between
the predicted and observed frequencies, reported within parentheses in Table 4, is generally
below 5% with some exception compatible with the approximations introduced with the
derivation of the BTCE models. Moreover, the difference between the BTCE-GE model and
the BTCE-NL model are minimal, confirming the findings reported in [36,41] concerning
the major contribution of the geometrical effect in this class of analysis.
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Table 4. Experimental and numerical natural frequencies results comparison for the isotropic beam.

L = 1000 mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 30.86 30.86 30.84 30.85 30.85 30.83

(0%) (0.06%) (0.03%) (0.03%) (0.03%)
2E 190.14 193.37 191.93 193.36 193.34 191.8

(1.7%) (0.94%) (1.67%) (1.68%) (0.87%)
3E 525.68 541.45 531.55 541.57 541.56 530.87

(3%) (1.12%) (3.02%) (3.02%) (0.98%)
4E 1001.56 1061.02 1025.7 1062.01 1062.00 1023.4

(5.94%) (2.41%) (6.03%) (6.03%) (2.18%)
1T / 271.34 279.95 271.67 271.71 264.02

L = 1500 mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 14.38 13.71 13.71 13.68 13.66 13.68

(4.66%) (4.66%) (4.87%) (5.01%) (4.87%)
2E 88.20 85.94 85.67 85.87 85.82 85.55

(2.56%) (2.89%) (2.64%) (2.7%) (3.0%)
3E 245.08 240.64 238.69 240.67 240.63 238.5

(1.81%) (2.61%) (1.80%) (1.82%) (2.68%)
4E 477.42 471.56 464.43 471.85 471.86 463.79

(1.23%) (2.72%) (1.16%) (1.16%) (2.85%)
1T 171.02 180.89 186.14 181.43 181.61 176.0

(5.75%) (8.84%) (6.08%) (6.19%) (2.91%)

L = 2000 mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 7.71 7.71 7.71 7.62 7.56 7.60

(0%) (0%) (1.17%) (1.95%) (1.43%)
2E 50.20 48.34 53.12 48.13 48.02 47.96

(3.71%) (5.82%) (4.12%) (4.34%) (4.46%)
3E 133.20 135.36 134.75 133.67 134.12 131.9

(1.62%) (1.15%) (0.35%) (0.69%) (0.98%)
4E 273.24 265.25 262.99 265.15 265.15 262.49

(2.92%) (3.75%) (2.96%) (2.96%) (3.93%)
1T 140.92 135.67 139.42 138.89 138.99 135.96

(3.72%) (1.06%) (1.44%) (1.37%) (3.52%)

L = 2500 mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 4.86 4.94 4.94 4.71 4.61 4.68

(1.65%) (1.65%) (3.18%) (5.42%) (3.7%)
2E 31.94 30.94 30.94 30.44 30.27 30.29

(3.13%) (3.13%) (3.33%) (5.73%) (5.44%)
3E 89.81 86.63 86.39 85.76 85.82 85.54

(3.54%) (3.81%) (4.51%) (4.44%) (4.86%)
4E 176.06 169.76 168.84 169.16 169.19 168.04

(3.58%) (4.1%) (3.92%) (3.90%) (4.56%)
1T 112.94 108.53 111.44 113.62 114.71 110.97

(3.9%) (1.33%) (0.60%) (1.57%) (1.74%)

The experimental Auto MAC matrices are reported in Figures 9A–12A. The mode
order is based on the frequency value, from the mode with the lowest frequency to the one
with the highest. With this convention, for L = 1000 mm and L = 1500 mm, the torsional
mode occupies the third position, while for the other cases, it is placed in the fourth
position. The remaining modes represent the edgewise modes. In Figure 9, it is possible to
notice the absence of the torsional mode. As already stated, when nonlinear effects are not
present, edgewise displacement and torsion are not coupled, thus exciting the edgewise
displacement; the torsional mode cannot be observed. On the other hand, the numerical
modes predict five uncoupled modes as expected.

For L = 1500 mm, the experimental Auto MAC matrix reported in Figure 10A reveals
a certain level of coupling between the torsional mode and the second and third edgewise
modes. This coupling is not detected by the linear FE models, while it is present in
the nonlinear FE model MAC matrices. The experimental and nonlinear FE model MAC
matrices present some differences in the out of the diagonal values. In this case, the torsional
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mode presents a small peak in the FRF because the nonlinear effect is present but not very
relevant, with 3.7% deflection. Moreover, the number of targets is relatively low and can
cause some discrepancies. However, it is possible to conclude that for L = 1500 mm, the
nonlinear effect is present and can be predicted with the nonlinear BTCE models, but linear
modal analysis can be a reasonable approximation for this level of deflection. The Auto
MAC matrices for L = 2000 mm and L = 2500 mm are reported in Figures 11A and 12A. The
pattern given by the experimental results is correctly predicted by the nonlinear models;
moreover, these cases highlight the lack of accuracy obtained when linear models are
considered for the modal analysis of structures with moderate deformations.

Figures 9–12 present also the comparison between the experimental modes and the
numerical modes calculated with linear and nonlinear FE models. Ideally, if the numerical
modes are coincident with the experimental modes, the MAC matrices should be identical
to the Auto MAC experimental matrices. In general, it is possible to affirm that the
mode shape predicted with the nonlinear BTCE model is in good accordance with the
experimental modes; moreover, they are confirmed by the results of the SHELL FE model
solved with NASTRAN SOL106. In the first case (L = 1000 mm), the torsional mode was not
detected, and for this reason, the comparison with numerical counterpart is not reported
in Figure 9. The MAC matrices for the beam with L = 1500 mm reveal a high similarity
with the experimental results when nonlinear modal analysis is used, while the similarity
is considerably lower when the nonlinear effects are not considered. This is even more
evident for L = 2000 mm and L = 2500 mm. The fourth case presents a relatively low
similarity for the fourth mode (Figure 12), which corresponds to the third edgewise mode
coupled with the torsional mode. This is probably connected to the resolution obtained
with the chosen number of targets and can be improved by considering more acquisition
points. However, the objective was to keep the mass of the targets negligible for all the
cases considered, and for this reason, the number of acquisition points were kept constant
throughout the experimental activity.
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Figure 9. MAC L = 1000 mm, comparison with Experimental Mode Shapes: Auto MAC (A), BTCE-GE
(B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E).
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Figure 10. MAC L = 1500 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E).
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Figure 11. MAC L = 2000 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E).
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Figure 12. MAC L = 2500 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E).

5.3. Numerical Modal Analysis Results

The results of the numerical modal analysis of the composite box beam structure
described by [37] are represented in Figures 13–16. Eight load cases were considered for a
maximum deflection λ = 28.55%; six of them correspond to a deflection below 10% and
can help to observe more precisely at which point the nonlinear effects cause the deviation
from the linear results. The results of the simulation performed with the BTCE models were
compared to the frequencies obtained with a SHELL model solved with NASTRAN SOL106.
For this comparison, the first eight modes were investigated. In this case, the comparison
was performed on the frequencies computed with the nonlinear models normalized with
their linear counterparts computed for the undeformed configuration. With this method,
the variation of the characteristic frequency is highlighted. The material orientation causes
the flapwise bending–torsion coupling, while the deflection causes the edgewise bending–
torsion coupling; for this reason, all the modes involve three degrees of freedom. However,
one component of the eigenvector has a considerably higher value than the other; for
this reason, the modes where flapwise bending is the major effect are denoted with the
letter F, while the modes where the edgewise bending component is predominant are
denoted with the letter E, and the mainly torsional modes are denoted with the letter T, as
done previously.

The results shows a good correlation between the BTCE models and the SHELL FE
model. The first, second, fifth and seventh modes present very similar results, even for
large displacements. The third, fourth, sixth and eighth modes present some discrepancies
when the deformations are bigger than 15%. A less accurate prediction of the characteristic
frequencies can be attributed to many factors. First of all, the number and the nature of the
finite element used bring approximations that are necessary to lower the computational
costs but can influence the results. Secondly, the hypothesis of inextensibility adopted for
the BTCE could be unverified for large nonlinear deformations.Moreover, the curvatures
and the rotation matrix are obtained under the hypothesis of moderate-to-large displace-
ments. This comparison shows that the BTCE models could be used for the nonlinear
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analysis of predeformed structures with deflection below 15% with results comparable to
the characteristic modes of a SHELL FE model of the same structure solved with NASTRAN
SOL106. Moreover, the results show that the differences between BTCE-GE and BTCE-NL
are minimal, up to a deflection of 15% and increase for larger deformations. The models
here presented can be further improved with an experimental test involving coupled struc-
tures to assess the performance and correctly evaluate the influence of geometrical and
stiffness effects.
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Figure 13. FE model results comparison for 1st and 2nd modes.
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Figure 14. FE model results comparison for 3rd and 4th modes.
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Figure 15. FE model results comparison for 5th and 6th modes.
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Figure 16. FE model results comparison for 7th and 8th modes.

6. Conclusions

This research work presented the derivation of two models for the dynamic analysis of
beam structures with bending–torsion coupling in the presence of geometric nonlinearities.
The first model accounts for the geometric effect through the orientation of the beam
finite element according to a known equilibrium deformation. The second model accounts
for nonlinear terms in the stiffness matrix derivation through the hypothesis of small
perturbations of an equilibrium configuration under a static load. The stiffness matrix was
derived with Hamilton’s Principle. An experimental activity was carried out with the scope
of verifying the level of deflection sufficient to have appreciable nonlinear effects and to
assess the accuracy of the nonlinear analysis with the BTCE models. The experimental
tests have been performed with a LDV system on an aluminum beam constrained at
four different length, this allowed to study the nonlinear effects with four different level
of deformation. The experiment showed that for the cases considered, the geometric
nonlinearities have minor effects on the characteristic frequencies of the structure. Linear
and nonlinear numerical models predicted frequencies generally within an error lower
than 5%. Concerning the mode shapes, this research work revealed that for a deformation
λ below 3.7%, the mode shapes present a low level of coupling, and linear numerical
models can be used to study structure under these conditions. On the other hand, for
the cases where the deformation was 8.3% or 14.7%, the presence of nonlinear couplings
determined relevant differences in the mode shapes, which were correctly predicted by the
BTCE models here derived. Some of the results presented small differences between the
observed modes and the ones predicted with the derived numerical models. These minor
discrepancies are connected to the relatively low number of scanning point, which lowered
the resolution. Moreover, the BTCE models rely on the equilibrium solution computed
with a linear static analysis, which can be less accurate for higher deformations. The
experimental activity showed that the stiffness effect plays a minor role for the analysis
considered and that the BTCE-GE model can be sufficient for characteristic modes and
frequencies prediction. The BTCE models were also tested for a composite structure
with bending–torsion coupling. A numerical comparison revealed good accordance with
the results obtained with a SHELL FE model solved with NASTRAN SOL106. The use
of the presented model can be extended to the study of the aeroelastic performance of
wing structures. Moreover, the bending–torsion coupling formulation allows to perform
optimization on the material orientation to achieve desired dynamic properties also in the
presence of geometrical nonlinearities.
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Appendix A

Table A1. Shape functions for bending–torsion coupled beam element.
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with

K1 =
12(EIyGJt − K2)
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