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Abstract  

Modern engineered structures are currently developed with advanced materials 

for improving mechanical performances or to better meet the design requirements. 

For example, the capability to withstand multiple combinations of design loads or 

the in-service solicitations in a broad frequency spectrum. To do so, lightweight 

design approaches combining the simultaneous adoption of different materials are 

typically followed. In this regard, an efficient method for coupling different 

mechanical components is performed by using adhesive joints. These materials 

have the capability to save mass, connect different shapes and ensure a smoother 

stress distribution compared to conventional joining methods (e.g., welding, 

riveting, …). 

An issue that often arises in designing adhesively bonded joints regards the 

presence of stress-singularities. These originate at the material interface as a 

consequence of discontinuities in the boundary conditions. Singular stress fields 

represent a concern during the design of mechanical connections as they could 

trigger cracks within the joint. Under severe loads plasticity can compensate the 

singularity effects, nevertheless under low-amplitude loads this feature could 

weaken the joint integrity, reducing its service life and thus generating failures. 

Appropriate design plans should therefore be implemented to produce more 

reliable apparatus. 



Moreover, structural design and analysis approaches assume mechanical 

properties in numerical codes as frequency, or load, independent for simplicity of 

calculation or due to the lack of experimental data. Such approach could lead to 

under/overestimate the structural responses, implying overdesign or failures in 

static, dynamic, thermal, or cyclic loading conditions. 

The work proposed in this manuscript investigates both the effects of singular 

and non-singular stress fields on the Very High Cycle Fatigue (VHCF) 

performance of adhesively bonded butt-joints (aluminium 7075 T6 - SikaPower®-

1277 Epoxy resin) and loading-frequency effects under conventional excitations 

(i.e., 5, 25, 50 Hz) and the ultrasonic ones (i.e., 20 kHz) adopted in VHCF. To do 

so, analytical, numerical and experimental methods have been adopted. Analytical 

models were used for both design the VHCF specimen and for achieve a stress 

singularity-free joint. Numerical techniques of Global-Local Finite Elements type 

studied the stress distributions in detail. Finally, fatigue experiments in both HCF 

and VHCF extracted S–N outcomes ad probability assessments were performed 

by using ad-hoc developed statistical models.  

The suitability of the overall approach is numerically confirmed and a 

substantial increase of the joint life is experimentally observed if the singularity is 

removed. Nonetheless, a non-singular configuration leads to higher scatter data 

compared to the original specimen configuration. 

Fatigue tests assessing the loading-frequency effects have shown an important 

impact of this phenomenon for the investigated adhesive. Indeed, test data present 

a clear separation, in the range of order of magnitudes of cycles, between low and 

high frequencies. The interpolation of fatigue strengths at N=2∙106 suggests a 

precise trend and such information is exploitable to extract values out of the 

experimental range. The experimental variability is present but has a minor impact 

on data. 
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1  Introduction 

Engineering practice makes extensive use of advanced materials for creating 

cutting-edge and market-competitive products in many technological sectors. 

Indeed, due to several factors like more stringent pollution regulations, mission 

profile constraints and the general interest for improving the product 

performances, nowadays mechanical components are specifically thought and 

developed to be light weight with distinctive requirements of strength, toughness, 

fatigue and dynamic performances. This means that a technological transition, 

from using classical configurations and materials in favour of innovative ones, is 

taking place. For example, when convenient and possible from a 

manufacturability perspective, metal components are replaced with ad-hoc 

designed carbon-fibre parts whereas connection elements, such as mechanical 

joints, are designed accordingly [1]. 

In a complex mechanical system, whatever the specific domain and application 

of interest, mechanical joints accomplish the specific purpose of connecting 

structural members for transmitting forces and moments from a member to 

another and their proper working conditions during the whole mission lifespan is 

one of the major concern for designers, analysts and test specialists. In practice, 

joints are considered as the “weakest ring” in the system chain and their failure 

could produce catastrophic collapses in the absence of specific redundancies 

properly accounted for fail-safe or safe life approaches. 

Among the several types of joints, structural adhesives represent an interesting 

alternative to conventional connection techniques [2], even though each type of 

joint presents specific advantages and disadvantages. For example, if compared 
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with welding or riveting, adhesives do not alter the mechanical or the thermal 

properties of the substrate material. Moreover, they do not introduce macroscopic 

stress concentrations introduced by a clamped threaded element or by permanent 

residual stresses [3]. The use of adhesive as a joining substance allows reducing 

the overall mass budget by removing the presence of additional elements (e.g., 

rivets, nuts,…) as well as permits a permanent connection between substrate of 

different materials (e.g., metal-composite, composite-ceramic, etc,..). 

Furthermore, complex shapes (e.g., curved, not straight or not flat) can be easily 

joined by adhesive as it is liquid in the initial state. 

There are many engineering field that exploit the interesting features of 

adhesive such as in the aerospace for improving the connection performances 

between parts of different materials [4] or as innovative method for capturing 

space debris for future space missions [5]. In this regard, many configurations can 

be distinguished as the so-called single or double-lap joint, stepped joint, butt-

joint or tubular joint, just to mention a few among all the possible shapes. Using a 

configuration instead of another one requires the adoption of suitable 

mathematical models, analytical or numerical. These should be capable of 

correctly capturing the behaviours of interest in order to have a clear picture of the 

current internal stresses, comparing them with allowable material properties, 

extracting the failure reservoir according to a failure theory and then assessing the 

margin of safety.  

As mentioned before, each joint configuration requires a specifically developed 

mathematical model and the interest in such research activities are still 

progressing since the early 50’s [6]. Most of them can describe the overall 

structural behaviours with a reasonable level of accuracy as [7–9]. Nevertheless, 

localized features, such as stress singularities, are often not predictable from both 

analytical and numerical schemes [10]. In general, a stress singularity is a point 

region in a component where the stress magnitude is infinite and the main reasons 

that trigger such features are ascribable to material and geometrical facts. Indeed, 

in an adhesive joint stress singularities arise due to the material discontinuities 

introduced by the adhesive layer itself, between two or more material substrates, 

under specific and localized angular conditions. From the mathematical 

perspective, modelling a stress singularity requires the adoption of specific 

techniques and calculation schemes as [11,12]. Analytical models accounting for it 



8 
 

are typically solved by using eigenproblems in which the problem unknow is the 

so-called singularity exponent. Numerical schemes based on Finite Elements 

implement singularity-based nodal formulations, capable of capturing both the 

stress trends far from the singular region and those very close to it [13].  

With specific emphasis on numerical aspects for studying the stress singularity, 

a major issue regards the size of the Finite Elements model. Indeed, for capturing 

the singularity, progressive mesh refinements are needed, even up to an 

approximate element size of 10-5 mm [14], which means that the model could be 

described by hundred thousand elements. Model sizes like this can significantly 

slow down the analysis procedure or even prohibit the analysis phase. To 

overcome this issue, specific Finite Element procedures as the so-called Global-

Local (or Submodelling) schemes permit to increase the detail of investigation 

while keeping the model size manageable from conventional personal computer or 

work stations [15]. 

The study of stress singularity with analytical, numerical and experimental 

methods is of particular importance for predicting the joint failure. Indeed, 

adhesive joints can be subjected to three main classes of failure modes, namely 

the cohesive (i.e., the inter-adhesive), the adhesive (i.e., the disconnection from 

the substrate) and the substrate failure. In the everyday practice, adhesive joints 

are designed to withstand the acting loads with a margin, but, if the failure cannot 

be avoided, this has to be of cohesive type. In fact, a cohesive failure is associated 

with the capability of sustaining the highest loads whereas the adhesive with the 

lowest one. In this regard, stress singularities make prone the joint to fail under an 

adhesive mode as this feature is localized at the adhesive-substrate interface thus 

reducing the joint performances. For that reason, the problem of stress singularity 

is experiencing innovative analysis techniques aiming at improving the 

mechanical design. Indeed, if in the past, the analysis of the stress singularity just 

wanted to understand the severity of the singularity under prescribed geometrical 

and mechanical conditions, recent approaches intend to figure out the conditions 

that prevent the emerging of singularity under load events [16,17]. Approaches 

like this allow to increase the capability of sustaining loads in a more effective 

and efficient manner as well as the joint endurance under fatigue actions. 
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With respect to fatigue, the conventionally explored range is up to 106 – 107 

cycles, namely the High Cycle Fatigue (HCF) range, and components that express 

run-out data within this interval are typically thought as endowed of an infinite 

fatigue life. Up to this interval, material characterizations are typically performed 

with hydraulic machines as this equipment can easily sustain related testing times. 

However, more advanced engineering products are requested to work even further 

than 107 cycles under stress magnitudes below the conventional fatigue limit. 

These conditions are associated with the so-called Very High Cycle Fatigue 

(VHCF, N>107) range [18]. In the VHCF, experimental campaigns cannot equip 

themselves with conventional machines, like in the HCF, since testing just one 

sample could take about one year (e.g., if N=109). For that reason, Ultrasonic 

Fatigue Testing Machines (UFTM) that work at 20 kHz are adopted to speed up 

the testing time [19].  

If for metal structures the cornerstone capable of describing the mechanical 

behaviour in VHCF is pretty clear, in the case of adhesive joints similar 

conclusions are still progressing [20,21]. As a general observation, the VHCF of 

metal expresses a different failure mode, namely from an external-initiating to an 

internal-initiating crack nucleation (e.g., from a defect, inclusion or a void), which 

is associated to particular geometrical patterns describing the failure surfaces. In 

the case of adhesive, even though some VHCF experiments have been performed, 

their amount is still not enough for extracting phenomenological laws and final 

conclusions. In general, the existence of possible failure modes when passing 

from HCF to VHCF in the S – N diagram requires the adoption of specific 

methods for describing experimental fatigue curves. For that purpose, advanced 

statistical models capable of taking into account both specimen failures and run-

out have been developed and applied [22].  

Another critical point for materials and components in general pertains the 

existence of strain-rate and loading-frequency effects during the in-service 

operations as a result of fluctuating loads with different frequencies or speeds of 

application [23]. Such effects are complex and potentially harmful for the safe 

working conditions. Indeed, loading-frequency effects affect both the nominal 

fatigue life and the mechanical strengths [24]. In fact, under such occurrences, 

mechanical features tend to diminish as the frequency of application increases. 

This could lead to anticipated failures or unexpected dynamic responses. Loading-
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frequency and strain-rate behaviours are complex to be properly captured and 

anticipated. For example, due to the lack of experimental findings, or due to a 

simplistic modelling approach, analysts and designers in charge of the project tend 

to assume that load and frequency are independent material properties. This 

assumption is not a-priori wrong but should be assessed case-by-case. A 

schematization like this could be valid for metallic structures but too restrictive in 

the case of  high-performance structures that are produced with engineered 

materials. 

The work presented in this thesis provides analytical, numerical and 

experimental investigations on the fatigue performances of adhesive joints. More 

specifically, adhesively bonded joint combining metal substrates with an epoxy 

resin (aluminium 7075 T6 – SikaPower® 1277) are studied under VHCF loads 

properly applied with UFTM apparatus. Two main classes of joints are of special 

interest, namely singular and non-singular, and experiments aim at understanding 

and quantifying the consequences of both the presence and the absence of the 

stress singularity on fatigue endurances. Statistical aspects of this occurrence are 

studied accordingly. To accomplish this purpose, analytical relationships for 

designing the specimen and for removing the stress singularity are applied. 

Numerical schemes, which belong to the class of Global-Local Finite Element 

procedure, precisely extract the stress distribution near the critical region of 

material interface under test loads. Once accomplished this first research step, the 

specimen in the best experimental conditions (i.e., the non-singular specimen) 

undergoes to low-frequency fatigue test in order to characterize and extract 

structural behaviours as a consequence of loading-frequency effects. 

The work is organized into three main chapters. Chapter 2 offers a literature 

and conceptual survey of theoretical aspects and methods that will be further 

exploited for the applied research. Precisely, Section 2.1 offers a description of the 

adhesive technology from historical developments, applicative perspectives and 

comparison with respect to classical joining procedures. Moreover, the 

fundamental and the most widely known mathematical models (i.e., analytical and 

numerical) assessing the stress distribution within the joint will be presented and 

reviewed in detail. Section 2.2 focuses on VHCF aspects. Specific features arising 

in this innovative fatigue regime, the mechanical testing techniques that are 

necessary to explore it, as well as the state of the art for adhesively bonded joint 
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will be illustrated. Discussing fatigue aspects, Section 2.3 outlines statistical 

aspects when dealing with S – N curve. Thus, a generalized statistical fatigue 

model capable of taking into account data from both failed specimens and run-out 

will be presented and illustrated. Section 2.4 discusses the presence of stress 

singularities in mechanical components, the mathematical models developed to 

account for it, with special emphasis on the Bogy mathematical framework, then 

the numerical strategy for removing such features from any physical specimen. 

Section 2.5 provides details regarding Finite Element techniques for both reducing 

the numerical model size and for increasing the detail of the investigation without 

blowing up the model size. Then, in Section 2.6 a quick revision of the 

mathematical equation of 1D vibrating structure is covered. Indeed, such model 

will drive the design of the VHCF specimen. 

Chapter 3 addresses the applied research. In this part, the analytical, the 

numerical and the experimental methods, previously introduced, will be applied 

for investigating the mechanical performances of the selected adhesively bonded 

butt-joints under alternated tension – compression loads. Precisely, in the VHCF 

range, the consequences of the presence and the absence of the stress singularity 

on the joint life will be the point of interest. Once understood such behaviours, the 

specimen in the best mechanical condition (i.e., without stress singularity) will 

undergo conventional low-frequency fatigue tests for assessing and quantifying 

the loading-frequency effects.  

Section 3.1 describes the preliminary activities that were performed for 

characterizing the bulk materials according to existing standards. Section 3.2 

accounts for the VHCF specimen design. In this context, analytical and numerical 

procedures will be adopted for extracting the nominal (i.e., singular) test item to 

be tested. In Section 3.3 the previously developed singular specimen is properly 

modified according to the geometrical information that were extracted from the 

Bogy inverse mathematical framework. Section 3.4 investigates the current stress 

distribution under applied loads with properly developed Global–local FE models. 

These analyses aim at confirming the goodness of the analytical approach and the 

magnitude of the stress levels sustained by the adhesive layer. Section 3.5 

provides details in the merit of the technological and the manufacturing 

procedures for producing the specimens to test. Section 3.6 exposes the 

experimental outcomes of static tests that were performed for assessing the 
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similarities in terms of static responses between singular and non-singular 

components. Section 3.7 focuses on ultrasonic VHCF testing and related 

experimental outcomes in terms of probability – stress – number of cycle (P – S – 

N) curves between singular and non-singular specimens and fracture surfaces. 

Then, Section 3.8 addresses the further experimental campaign on loading-

frequency behaviours, conducted through a conventional Instron® hydraulic 

testing machine, thus comparing such results to those from VHCF. 

Finally, Chapter 3 specifically collects and summarizes the main findings of the 

research work. 
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2  Theoretical background 

2.1  Adhesive joints 

2.1.1 Main aspects of this technology 

The adhesion technology has a long story over centuries. A full and 

comprehensive definition of the term “adhesion” is not straightforward and the 

commonly accepted one was proposed by Wu [25]: “Adhesion refers to the state 

in which two dissimilar bodies are held together by intimate interfacial contact 

such that mechanical force or work can be transferred across the interface. The 

interfacial forces holding the two phases together may arise from van der Waals 

forces, chemical bonding, or electrostatic attraction. Mechanical strength of the 

system is determined not only by the interfacial forces, but also by the mechanical 

properties of the interfacial zone and the two bulk phases.” In this context, 

adhesives are one of the most exploited possibilities to accomplish the purposes of 

the adhesion. Adhesives are materials that can guarantee a permanent joining 

between two similar or dissimilar substrates. The spreading of adhesives on both 

sides of substrates creates bonds that, after the curing process, establish the 

mechanical continuity of a single body thus transmitting and distributing stresses 

between members. 

One of the earliest discovery of adhesive bonding applications dates back to the 

Middle Pleistocene era (≈ 200 000 years ago) for joining stones with a birch-bark-

tar adhesive [26], namely a plant-based substance. Throughout the human history, 

both Neanderthal and middle-age populations used and implemented different 

types of materials such as gums, plant resins and bitumen, for the purpose of 

joining parts to make tools, or to improve waterproofing and sealing performances 

of materials [27]. Evidence of applications was also found from ancient Egyptians 
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for manufacturing papyrus as well as from ancient Greek and ancient Romans for 

the construction of Colosseum and Pantheon [28]. Moreover, according to the 

Greek myth of Dedalus and Icarus, a wax joining material was employed in the 

production of feathers wings to escape from the Minotaur labyrinth. Other 

unconventional uses of adhesive mechanisms have been also recognized in nature 

among animal and vegetable species as material for elaborating traps [29].  

Even though the first constituents of adhesives were totally composed by 

nature-based material due to the available substances, the greatest technological 

advancement in this domain is ascribable from about 1900s. From that moment, 

the development and the application of the first engineered materials was pushed 

forward. Currently, adhesives are composed by polymeric chains (e.g.,  in the 

form of epoxy, polyurethane or acrylic forms). Adhesives typologies can be 

classified in two main categories namely structural and non-structural. The class 

of structural adhesives aims at connecting materials which can be subjected to 

severe stress states. This class should provide specific mechanical performances in 

terms of strength and stiffness as well as durability and aging capabilities. Non-

structural adhesive, by contrast, are also named as holding adhesives as they are 

not required to carry intense loads. Typically, packaging and pressure-sensitive 

tapes belong to this class. 

Nowadays, adhesives of the structural class find widespread applications in 

many technological fields due to their capabilities of joining both equal and 

different materials (e.g., metals-to-metals, metals-to-composites, ceramics-to-

composites,…) without introducing damages to the substrate materials like in the 

case of conventional joining methods. Moreover, adhesives can offer a permanent 

connection while expressing almost smooth stress profiles along the bonding line. 

This aspect is of prominent importance as the key function of an adhesive 

connection is to transfer load thus creating a load path between the substrates even 

in the case of curved or not-smooth surfaces that could be not easily jointed. 

Above all, the aeronautic and aerospace make extensive use of adhesively bonded 

technologies particularly for mass saving purposes or for increasing the reliability 

of the connection. Indeed, adhesive are currently adopted for connecting both 

primary and secondary structures of airplanes [30], launch vehicle and rockets 

[31] and for repairing purposes [32]. Other non-conventional applications in this 

field regard the use of adhesive for capturing and removing space debris [5]. The 
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adoption of adhesives is not restricted to the aerospace field and it is undoubtedly 

widely applied in the automotive industry in the form of a single or a multi-

material constituent [33], for repairing purposes [34] and for reducing the system 

mass thus achieving reduced consumptions. Other remarkable applications that 

are worth mentioning are in the field of marine for bonding parts of vessels [35] 

and medical implementations [36]  

In the following, the main aspect of the adhesive joint technology compared 

with respect to classic joining methods, advantages and disadvantages of this 

technology, typical configurations and failure modes, will be presented and 

reviewed. 

▪ Conventional joining methods Vs adhesive joints 

Engineering products make extensive use of connection techniques for joining 

simple or complex shapes as well as similar and dissimilar materials to establish 

the mechanical continuity for creating a load path, toughening specific zones of a 

component or for repairs purposes. Currently, there are many possibilities for 

connecting materials such as welding or fastening but all of them have several 

drawbacks for which the use of adhesive technologies is considered an excellent 

candidate for a possible replacement. The choice of which joining technique 

should be used depends on several factor such as reliability and accessibility 

levels, mechanical performance to be achieved, environmental conditions and, last 

but not least, developing and production costs. 

Whatever the specific methodology (e.g.,TiG, MIG,…), welding structures 

offer a permanent connection among components. However, this methodology 

directly implies the alteration of the basic material thus provoking mechanical and 

thermal distortions. Performances of structures exploiting such joining technique 

are particularly sensitive in the area of the welded toe, which is the weakest ring 

of the whole connection as depicted in Figure 1. Welding defects like incomplete 

penetration, material excess and the presence of impurities in the welding toe [37] 

as well as residual stresses after the joining process [38] and the quality and the 

shape [39,40] of the welding toe, are the main root causes of failures. Especially, 

the presence of such defects affects fatigue life performances [41] and crack 

growth mechanisms [42]. Moreover, not all the materials can be welded together 

but they have to respect physical and chemical requirements. 
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Figure 1: Possible welding issues. 

When welding is not applicable or a specific disassembly requirement is 

present in the design of a component, fastening techniques such as bolted, riveted, 

screwed or threaded connections, can accomplish the joining purposes by linking 

structures through spot elements. Even though fastening has less influence in 

terms of thermal distortion than welding, this approach is anyhow critical for both 

the substrates and the spot element from the mechanical point of view. In fact, the 

substrates drilling and machining are typically required for the placement of the 

connection elements whereas the fastener is exposed to mixed loading conditions 

[43] induced by the mechanical assembly. In this latter circumstance, the use of 

such technique should be carefully assessed due to the possible loss of contact, 

especially under dynamic [44] or cyclic loads [45], or due to fatigue conditions 

[46]. Besides, critical aspects in using fastening connections are evident for non-

metallic structures like fibre-based composite materials. Such materials are 

massively exposed to fail under condition like pull-out, bearing, shear out, tear out 

and cleavage, as reported in Figure 2, in addition to delamination, fibre breakage 

and matrix damage which are caused by the creation of the access hole and the 

clamping force [47]. Furthermore, different shapes and footprints, at fixed 

fastening element typology, can significantly reduce the load-bearing capability 

under tension conditions [48]. 
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Figure 2: Example of failure mode for a composite plate with a fastener 

connection. Original from [48]. 

In this context, adhesive joints have many peculiarities that allow to overcome 

the majority of problems related to the aforementioned connections. In general, 

the joint design and the adhesive selection should be compatible to the current 

loading conditions of a specific application. Typically, adhesive joints are 

designed to avoid, or at least minimize, peeling and cleavage stresses and stress 

concentration as these last are the main driver of component failures due to the 

through the thickness strength is usually lower than the in plane one [3].  

The specific physical and chemical nature of adhesive is also suitable for 

joining different materials such as metal-composite, metal-ceramic, composite-

wood or plastics both in thick or thin configurations. Adhesives are particularly 

suitable for lightweight applications as the mass contribution provided by such 

materials is exceptionally low in terms of stiffness and strength-to mass 

characteristics. Once the joining process is completed, the stress distribution 

within the bonding area is much more regular and, in the case of a properly 

addressed design, usually free of stress concentrations compared to those achieved 

when applying fasteners of welding procedures. If some adhesive surplus is 

squeezed out from the bonding region this can be simply removed by adopting 

mechanical tools without corrupting the substrates. The proper application of 

adhesives, typically, just requires the adherend pre-treatments for increasing the 

surface roughness and this action present low criticalities with low levels of 

damages. If curved and smooth geometrical shapes are to be achieved, adhesives 

can accomplish this task easily as their initial state can adapt to several 
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configurations compared to applying fasteners which predominantly require flat 

surfaces. Similarly, the versatility of such material can be exploited for sealing or 

isolating joints of mechanical parts from highly degrading environments that can 

corrupt the structural integrity of the mechanical joint itself. Adhesives are also 

suitable as dissipative media for impacts or vibrations due to interesting 

performances of energetic absorption [49]. 

However, also adhesive bonding methods present some disadvantages and 

drawbacks. One of the main criticalities is attributed to the placement of the 

bonding material between the substrates. Indeed, the surface preparation should be 

carefully approached with mechanical tools and chemical substances to guarantee 

a uniform adhesion. Often, this procedure may introduce uncertainties in terms of 

bonding quality such as introduced defects or air bubbles, remaining particles and 

not properly connected regions, especially in the case of a manual preparation. 

Besides, reaching a uniform adhesion requires the permanent application of 

pressures over a certain timeframe through weights of mechanical fixtures. This 

aspect thus introduces the right selection or design of such devices that must 

ensure the correct application of pressure without leakage. Once the joint is 

accomplished, the bonded joint denies visual inspection possibilities to evaluate 

the level of readiness and reliability of the connection. Moreover, the mechanical 

performance of adhesively bonded joints is sensitive to the current environmental 

conditions (i.e., humidity and temperature) that are present during the joining 

process. In fact, performing the curing sequence with calm air at room 

temperature leads to mechanical characteristics that can be quite different if the 

same process is conducted in the oven with stages of warming up. Furthermore, 

the exposure of adhesive joints to the wrong chemical solvents (e.g., for cleaning 

purposes) can completely destroy the connection, as the solvent basically promote 

the degradation of the joint by erosive mechanisms. 

The knowledge of the aforementioned pros and cons led, in the last few years, 

the arising of new trends in design and manufacturing mechanical joints. The 

emerging tendency refers to the coupling of adhesives with classical techniques 

(e.g., adhesive and welding, adhesive and bolts,…). Such joint types are depicted 

in Figure 3 and are usually called “hybrid joints”. Essentially, the purpose is to 

include the specific advantages of each joining technique within a synergic design 
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in order to increase the whole joint performances thus minimizing both stress 

distribution and possibility of failures [50].   

 

Figure 3: Examples of hybrid joints. 

 

▪ Effect of environmental conditions on mechanical performances 

The analysis of environmental conditions addresses the problem of 

understanding and quantifying how loads of mechanical, thermal, hygroscopic 

nature affect the structural responses of joints at fixed or variable geometrical 

conditions. Investigating the environmental effects is of particular importance as 

adhesive joints should demonstrate a load bearing capacity even at extreme 

conditions or under variable circumstances. This kind of investigation has a 

relevant experimental background and ad-hoc tests are typically performed to 

extract parameters of specific behaviours such as stress – number of cycles curves 

in the case of fatigue characterizations, coefficients of thermal expansion or 

conductivities in the case of thermal stresses, etc… . Performing such tests is thus 

fundamental for establishing phenomenological laws based on experimental 

observations, for extracting mechanical parameters and for correlating, validating 

or even updating numerical models. Moreover, investigating environmental 

effects can help in overcoming possible scepticism and unknowns if joints have to 

demonstrate specific capabilities under aggressive environments. In fact, lack of 

knowledge could lead the lack of confidence and ability in preserving the 

structural integrity of the whole mechanical system. 

One of the earliest investigations on fatigue failures of bonded joints was 

performed by Gilmore and Shaw [51] who experimentally demonstrated the 
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importance and the level of sensitivity to environmental effects in the case of 

CFRP-epoxy adhesive components, under several combinations of temperature 

and humidity. It was observed a tendency to cohesively fail when hot and humid 

conditions were present, whereas the substrate rupture as the thermal conditions 

approached the ambient ones. The root cause of such phenomenon was attributed 

to the increased stiffness of the adhesive as the temperature decreased. 

Zhang et al. [52] experimentally examined the consequences of temperature 

and humidity on pultruded GFRP adhesively-bonded double-lap joints at constant 

magnitude fatigue loading. Overall, it was observed a severe reduction in the 

fatigue life when components were exposed to such conditions. Particularly, 

humidity had the main consequence. It was responsible of shifting the failure 

mode from adhesive to interfacial (i.e., weakening mechanism at fibre/matrix 

bond) whereas the increase of temperature mainly produced stiffness degradation. 

Fatigue and static failures of CFRPs-steel bonded unions were investigated by 

Borrie et al. [53] under mixed marine (i.e., saline at 0.5% of NaCl) and 

temperature conditions. In general, it was observed a global reduction of 10-15% 

of strength performances and the longer the exposure the higher the degradation 

of the joint. Fatigue performance has exhibited premature failures due to the 

degradation of the epoxy matrix. 

Better views of failure mechanisms, failure modes and the transition between 

static and fatigue loads were investigated by Castro Sousa et al. [54] under 

temperature and humidity conditions with coupled experimental and numerical 

methods. As already highlighted by previous studies, these conditions reduce the 

mechanical performance of joints and, in the case of explored environments, 

fatigue performances were degraded up to the times of the nominal possibility of 

the virgin materials. Moreover, the exposure to thermal and hygroscopic fields 

imposed a failure mode change from purely cohesive to mixed adhesive-cohesive. 

This particular aspect was explained numerically due to the presence of newly 

created stress concentrations during the cyclic loads. 

The effects of dynamic environments have been assessed by several studies 

and, especially, by concentrating on different aspects of this matter such as 

vibration loading and strain-rate (e.g., impacts or loading frequency) effects on 

mechanical responses as well as the coupling of dynamic with thermal fields. 
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Pang et al. [55] and Reis et al. [56] concentrated on fatigue performances under 

vibration and variable frequency loads through numerical and experimental 

methods. In Pang et al. [55] the main outcome consisted in the definition of a 

damage factor to be introduced into the numerical model to account for the 

material degradation during vibration loads whereas Reis et al. [56] 

experimentally observed that, in the case of epoxy adhesives, there is a variable 

dependency of the loading frequency when coupons are tested in shear. Indeed, 

experimental data show marginal variations when load magnitudes are high while 

greater scatters are foreseen in the case of loads of low amplitude. 

Strain-rate dependence and impact behaviours were successfully reviewed by 

Machado et al. [57] who provided a comprehensive overview on how adhesive 

and adhesive joints behave under loads of such nature. The author gave a clear 

picture regarding the typical challenges in terms of testing and modelling aspects 

when dealing with such loads. In general, the problem is particularly complex and 

demanding as material can show both degradation and enhancement on 

mechanical properties (e.g., the increase of shear and tensile strength as the strain-

rate increases whereas the fracture energy is prone to suffer degradation 

mechanisms with material embrittlement). The complexity of this matter was 

explored by Taniguci et al. [58] in the case of CFRP laminates under high strain-

rates and it was found that mechanical properties in the longitudinal direction 

were almost independent to strain-rate effects compared to those in transverse 

direction.  

Goglio et al. [23] and Goda and Sawa [59] explored the performances of epoxy 

bi-component adhesives under high strain-rates. Both studies demonstrated that 

testing bulk material under tension-compression loading conditions produced 

increasing levels of strength due to the increasing application of loading-rates.  

Fracture problems under high rates of mode I testing (i.e., peeling) were 

investigated by Blackman et al. [60] for a tough adhesive undergoing high strain 

rate. Material testing revealed a reduction of about 40% of fracture energy (i.e., ) 

compared to the static value of the virgin material. Moreover, the increase of 

applied strain rate also had consequences of testing methods. Precisely, under 

slow testing processes (i.e., quasi-static) both the DCB and the TDCB produced 

similar experimental results whereas, in the case of faster conditions, TDCB 
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induced quicker and less controllable cracks compared to the DCB coupons. The 

knowledge of this last aspect is undoubtedly fundamental for extracting reliable 

material parameters during characterization activities.  

Similar experiments were conducted by Sun et al. [61] in the view of mode II 

(i.e., shear sliding) for calibrating numerical models. For such fracture mode, ENF 

tests revealed a moderate sensitivity to strain-rate effect up to loading speeds in 

the range of 1000 mm/s. For that reason, the developed numerical model was able 

to approximate the test data with no specific efforts.  

Gupta et al. [62] investigated the influence of strain-rate on the toughening 

mechanism of Tin-glass/epoxy components and related failure modes. Essentially, 

the experimental study confirmed the trend such that mechanical performances 

proportionally increase with the strain-rate whereas failure modes suffered of 

important variations as the strain-rate increases. Precisely, in the case of Tin-

glass/epoxy coupons, strain-rate of low amplitude trigger mixed cohesive and 

adhesive failure while increasing the testing speed the failure becomes 

predominantly adhesive.  

An analogous investigation was conducted by Wang et al. [24] for assessing 

both mechanical properties and failure behaviour of single-lap adhesive CFRP and 

aluminium joints. As before, this study provided a further confirmation that 

increasing the applied rate of strain had an equivalent effect of strengthening and 

stiffening the coupon. Based on the current explored material configuration, 

failure modes were not massively affected by the increasing of strain loads and 

these were mainly of cohesive type within the adhesive and fiber-tear failure 

within the substrates. However, the increase of loading rates produced variations 

in the area proportion associated to failure modes namely the widest cohesively 

failed area was ascribable to quasi-static testing circumstances.  

The combined effect of both strain-rate and thermal and strain-rate and 

hygrothermal environments has been object of several studies for understanding 

the coupled phenomenon and thus quantifying the variation of mechanical 

responses.  

Banea et al. [63] discovered that the thermal effect has a major impact on 

mechanical features of a one-component epoxy adhesive compared to strain-rate 

effects. Precisely, both the tensile strength and the Young’ s Modulus showed a 
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decreasing trend in the explored high thermal range (i.e, 25-150 °C) while 

performing tensile tests at different speeds (i.e., 0.1, 1, 10 mm/min).  

Coupled behaviours at low temperatures (i.e., -40, -20 °C) were investigated by 

Jia et al. [64,65] for both a polymer-based and a epoxy-based adhesive. In the case 

of a polyurethane adhesive [64], the simple superposition of both thermal and 

mechanical effects for extracting the final response was not possible. Indeed, at 

fixed temperature, the adhesive demonstrated a strong dependence on the strain-

rate level and vice-versa and this means that the behaviour was fully coupled. 

Mechanical performance for the explored material, in terms of Young’s Modulus 

and strengths, showed almost comparable behaviour at fixed thermal conditions 

whilst increasing magnitudes while reducing the temperature. The epoxy case 

study [65] was tested under similar thermal and mechanical conditions as before. 

Experimental results demonstrated a significant increment in strength at both 

room and low temperature. However, at low temperature, high strain-rates 

induced stiffness degradations whereas strain to failures presented complex trends 

due to possible localized temperature increase.  

Strain rate dependence at both low and high temperatures (i.e., -20, 80 °C) 

were studied by Viana et al. [66] by comparing responses under quasi-static and 

impact testing methods for a crash resistant epoxy adhesive. In general, 

experimental results demonstrated the adhesive capability of absorbing higher 

loads for impact compared to those in quasi-static. Precisely, at room and low 

temperature impact failure were observed in the substrates whereas in quasi-static 

within the adhesive layer. At high temperatures it was observed that the amount of 

absorbed energy was higher for impacts rather than quasi-static. For the latter 

condition the energy trend presented a decreasing variation whereas for impact 

was for foreseen. 

Coupled strain-rate and hygroscopic mechanisms were investigated by Zhang 

et al. [67], on top of others, with the special purpose of understanding the 

evolution of strengths and fracture modes of a crash-toughened epoxy adhesive. 

The explored configurations revealed that the most significant consequence was 

ascribable to the hygrothermal exposure rather than strain-rate effects. However, 

such environment mostly affected the failure loads, whereas insignificant changes 
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in the joint stiffness, failure modes (i.e., mixed interfacial) and fracture surfaces 

between the virgin specimen (i.e., not exposed) and the exposed one. 

▪ Typical configuration adopted in the mechanical design 

Complex mechanical platforms are typically composed by many types of, 

systems, sub-systems and parts all of them produced with different materials and 

connected among their selves through specific elements. For studying analytically, 

numerically or experimentally the mechanical behaviour of a really implemented 

connection, is common practice to reproduce its mechanical and geometrical 

configuration through ad-hoc designed specimens when isolated from surrounding 

structural details. In the case of adhesives, this concept originates some 

geometrical configurations such as Single-Lap Joint (SLJ), Double-Lap Joint 

(DLJ), Scarf, Butt Joint (BJ) and many others as reported in Figure 3Figure 4. All 

of them are possible alternatives in the mechanical design and development of a 

joint but the final decision mainly relies on trade-off and evaluation activities that 

also consider pre-application (e.g., cost, design and production methods,…), 

application (i.e., cure factors) and post-application (e.g., loading and 

environmental constraints) factors as well as the specific features of the loading 

conditions such as intensity, direction and time-dependence nature [68]. 

 



26 
 

 

Figure 4: Configurations of adhesive joints. Original from [68]. 
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▪ Failure modes in bonded joints 

As described above, bonded joints aim at connecting parts for transferring 

loads from a member to another one. If the joint is wrongly designed or the in-

service actions exceed the design loads, over stresses or severe stress 

concentrations could originate within both the adhesive layer or the substrates, 

thus leading to the joint collapse. In this framework, there are essentially 3 main 

failure modes namely cohesive failure, adhesive failure and the substrate failure, 

as depicted in Figure 5.  

 

(a)  

 

(b)  

 

(c) 

Figure 5: Main failure modes of adhesive joints: (a) cohesive failure, (b) 

adhesive failure, (c) substrate failure. 

The cohesive failures originate and progress within the adhesive layer only. 

Once the damage occurred till the final failure, the clear presence of the adhesive 

is observable on both substrates. Such failure could be triggered by shear, peeling 

and cleavage loads, or their combination. Clearly, design of adhesive joints is 

oriented to prevent any kind of failure during the product life however, if the 

failure is impossible to prevent, this should be of the cohesive type. Cohesive 

failure is, substantially, index of having produced a good joint as the purposes of 

the adhesion between the adhesive and the substrates is accomplished. 

 The adhesive failure, also called debonding or interface failure, totally 

originates between the adhesive and the substrate thus making visible the 
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substrate interface areas. The main causes of such failure mode are attributed to 

wrong manufacturing, and contamination during the joint preparation. 

The substrate failure, as suggested by the nomenclature, uniquely involves the 

substrates and can happen everywhere in it. Basically, this failure is a symptom of 

a wrong selection, or design, of substrate materials compared to the expected load 

levels. The substrate failure mainly affects substrates made by composite 

materials that alternate layers of fibres to layers of matrix. Due to the higher 

complexity of the adopted materials [69] for triggering the substrate failure, such 

mode is typically divided based on the typology of the substrate failure as i) 

tensile fibre fracture, ii) compressive fibre fracture (i.e., fibre kinking), iii) tensile 

matrix failure, iv) compressive matrix failure and v) shear matrix failure. 

2.1.2 Fundamental models to assess the joint stress 

distribution.  

Stress and strength predictions are a fundamental part in the design process of 

adhesive joints. The knowledge of acting loads, their magnitude and distribution 

within the adhesive layer as well as the comparison to allowable strength values 

constitutes the central part in joints analysis. To do so, different mathematical 

models, close-form solutions, numerical frameworks and analysis techniques have 

been developed to reach this goal. In particular, the interest in adopting and 

developing analytical schemes is still present as they can predict the structural 

behaviours with a reasonable accuracy and this feature is suitable for a fast 

implementation in the view of a quick design answer. This is testified by the wide 

number of contributions that are currently present in the technical literature for the 

different joint configurations (e.g., single-lap, double-lap, tubular,…). However, 

even though all of them play an important role in the knowledge advancement, 

just a few are significant building blocks and steps forward in this discipline.  

There are some important aspects in discussing, presenting and, then, using a 

physical-mathematical model: i) every model is developed for a specific purpose, 

ii) all the models are wrong but some of the are more useful than others [70] and 

iii) the applicability of a model also depends from external aspects. Even though 

these concepts could appear as philosophical statements they have some practical 

consequences, very often forgotten from engineers. Firstly, a model that is 

developed under certain conditions and assumptions could fit to analyse the 
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variation of a generic quantity X along the Y direction but, perhaps, the vice-versa 

(i.e., the variation of Y along X) is not permitted. Secondly, the fact that all the 

models are intrinsically wrong relies on the impossibility of predicting behaviours 

in a deterministic sense. However, under certain conditions, hypotheses or levels 

of observation, statistical phenomena can be sufficiently captured by deterministic 

models (e.g., particles motion in fluids) and non-linear behaviours can be 

restricted and approximated by linear equations. Finally, the proficient use of a 

mathematical model also depends on the level of awareness of the end user, the 

amount of details and information that are of interest and, last but not least, the 

available amount of resources for the model implementation. A priori, there is not 

a totally good or a totally bad model but a suitable or a not suitable model for a 

specific purpose. 

The aim of this paragraph is to illustrate the fundamental models that have 

been developed for stress and strength analysis of adhesively bonded joints in 

terms of both closed-form solutions and numerical frameworks. The main 

features, advantages and disadvantages, strengths and weaknesses will be pointed 

out. Much part of models review is inspired by the works of Carpenter [71], 

daSilva et al. [72,73], Ramalho et al. [74], Tserpes et al. [75], Rodrìguez et al. 

[76], Dragoni and Goglio [77], He [78], Ramalho [79]  who provided extensive 

unified descriptions of such mathematical schemes as well as the original papers 

developed by researchers. 

The most simplistic approach to analyse a bonded joint assumes purely rigid 

adherend capable of transferring the external loads to the bonded area. In the case 

of a single-lap joint under traction loads as depicted in Figure 6, the adhesive is 

subjected to a purely constant shear. This condition is easily described by dividing 

the external load with the bonding area as reported in Eq. (2.1.1) 

 

Figure 6: Single-lap joint under traction loads. Original from [73] 
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𝜏 =
𝑃

𝑏𝑙
 Eq. (2.1.1) 

Where 𝑃  is the acting loads, 𝑏 the bonding width and 𝑙 the bonding length. 

Is it clear that this model is the crudest as it neglects many features that are 

present in the reality (e.g., peeling and transversal stresses) as well as it does not 

consider the free-edge effect. However, this model allows a fast evaluation of the 

principal stress contribution. 

Volkersen [6] introduced the so-called differential shear by removing the 

previous hypothesis of rigid adherend thus introducing the flexibility of such 

members, as reported in Figure 7. In such a way, the shear variation in the 

adhesive thickness is permitted along the loading coordinate whereas the adherend 

can deform only in tension.  

  

Figure 7: Single-lap joint model under Volkersen analysis. Original from [73] 

 

Mathematically, Volkersen found that the shear distribution was dependent by 

hyperbolic functions as reported in Eq. (2.1.2) 

𝜏 =
𝑃

𝑏𝑙

𝑤
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)
+ (
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sinh(𝑤𝑋)

cosh (
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)

 Eq. (2.1.2) 

where 𝑤 = (1 + 𝜓)𝜙, 𝜓 = 𝑡𝑡/𝑡𝑏, 𝜙 = 𝐺𝑎𝑙
2/𝐸𝑡𝑡𝑡𝑎, 𝑋 = 𝑥/𝑙, −1/2 ≤ 𝑋 ≤

1/2 and 𝑃 is the applied load, 𝑏 and 𝑙 are the bonding width and length 

respectively, 𝐺𝑎 is the adhesive shear modulus, 𝐸 the adherend elasticity modulus, 

𝑡𝑡 the upper adherend thickness, 𝑡𝑏 the lower adherend thickness and 𝑡𝑎 the 

adhesive thickness. Even if such model is slightly more advanced, the effects 

introduced by a not aligned load path is missing. This misalignment produces 

coupled bending moments and transverse forces at the joint ends when traction 
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loads are applied. As a result, the joint is prone to rotate thus introducing coupled 

shear and peeling actions within the adhesive layer. For that purpose, Goland and 

Reissener [7] quantified both the influence of bending moments and transverse 

loads by two factors namely the bending moment factor (𝑘𝐺𝑅) and the transverse 

force factor (𝑘𝐺𝑅′), reported in Eq. (2.1.3) 

𝑘𝐺𝑅 =
cosh(𝑢2𝑐)

cosh(𝑢2𝑐) + 2√2 sinh(𝑢2𝑐)
 

𝑘𝐺𝑅′ =
𝑘𝐺𝑅𝑐

𝑡
√3(1 − 𝜈2)

𝑃̃

𝑡𝐸
 

Eq. (2.1.3) 

where  

𝑢2 = √
3(1 − 𝜈2)

2

1

𝑡
 √
𝑃̃

𝑡𝐸
 Eq. (2.1.4) 

and 𝑐 is half of the bonding length, 𝑡 is the adherend thickness, 𝐸 the elasticity 

modulus of the adherends, 𝜈 is the Poisson’s ratio and 𝑃̃ is the traction load per 

unit width. These parameters were extremely useful for understanding the amount 

of bending and transversal force introduced by the misalignments and, in the case 

of small 𝑘 and 𝑘′ values, such contribution could be reasonably omitted or treated 

as parasite effects. The definition of these factors facilitated the extraction of 

peeling and shear stresses as reported in Eq. (2.1.5) and Eq. (2.1.6) respectively 
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Eq. (2.1.5) 
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)

+ 3(1 − 𝑘𝐺𝑅)

]
 
 
 
 

 Eq. (2.1.6) 
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where 𝛽 = 8
𝐺𝑎

𝐸

𝑡

𝑡𝑎
. Finally, the calculation of edge moments and transverse 

force was performed according to Eq. (2.1.7) and Eq. (2.1.8) respectively. 

𝑀 =
𝑃̃𝑡

2
𝑘𝐺𝑅 Eq. (2.1.7) 

𝑉 =
𝑃̃𝑡

𝑐
𝑘𝐺𝑅′ Eq. (2.1.8) 

The most evident limitation in the Goland and Reissener model regards the 

absence of any adhesive-related parameter in the calculation of 𝑘𝐺𝑅, 𝑘𝐺𝑅′ factors 

as well as the applicability to equal adherends only. Moreover, such model works 

well in the case of short overlap and loads of small magnitude. 

 Attempts in improving such model that are worth mentioning are the works of 

Allman [80], Renton and Vinson [81,82], Wu et al. [83], Tsai et al. [84], Ojalvo 

and Eidinoff [85], Oplinger [86],  and, more recently, Zhao et al. [87] and Jiang et 

al. [88] who basically removed the equal material hypothesis on the adherends 

and tried to include the presence of the adhesive layer within their models starting 

from the Goland and Reissener scheme. 

Hart-Smith concentrated on both single-lap  [89] and double-lap [8] joints for 

both improving the Goland and Reissener model and for exploring elastic-plastic 

behaviours. Firstly, Hart-Smith realized that the bending moment factor presented 

in Eq. (2.1.3) was too conservative, thus, a more precise definition for calculating 

the maximum acting stress was 

𝑘𝐻𝑆 =
1

1 + ζc +
𝜁2𝑐2

6

 
Eq. (2.1.9) 

where ζ2 = 𝑃̃/𝐷 . Eq. (2.1.10) leads to the alternative bending moment 

definition 

𝑀 = 𝑃̃  (
𝑡 + 𝑡𝑎

2
)𝑘𝐻𝑆  Eq. (2.1.10) 

which includes the adhesive thickness contribution. Secondly, Hart-Smith 

provided calculation models for the shear and the peel stress distributions in the 
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case of balanced adherends. In such case, under pure linear elastic behaviours, the 

shear component was modelled as  

𝜏 =  A1cosh(2λ
′𝑥) + 𝐶1 Eq. (2.1.11) 

where λ′ = √[
1+3(1−𝜈2)

4
]
2𝐺𝑎

𝑡𝑎𝐸𝑡
, 𝐴1 =  

𝐺𝑎

𝑡𝑎𝐸𝑡
[𝑃̃ +

6(1−𝜈2)𝑀

𝑡
]

1

2𝜆′ sinh(2𝜆′𝑐)
 and       

𝐶1 =
1

2𝑐
[𝑃̃ −

𝐴1

𝜆′
sinh(2𝜆′𝑐)]. Whereas the peel contribution was modelled as 

σ = A2cosh(𝜒𝑥) cos(𝜒𝑥) + 𝐵2𝑠𝑖𝑛ℎ (𝜒𝑥) sin(𝜒𝑥) Eq. (2.1.12) 

and 𝜒4 = 𝐸𝑎/2𝐷𝑡𝑎, A2 =  −
𝐸𝑎𝑀[sin(𝜒𝑐)−cos(𝜒𝑐)]

𝑡𝑎𝐷𝜒2𝑒𝜒𝑐
, A2 =  −

𝐸𝑎𝑀[sin(𝜒𝑐)+cos(𝜒𝑐)]

𝑡𝑎𝐷𝜒2𝑒𝜒𝑐
.  

Moreover, the joints shear stress response was also explored under perfectly 

elastic-plastic behaviours with a bi-linear trend while the peel stress was kept in a 

purely linear elastic condition. In Figure 8, the adopted elastic and plastic regions 

within the bondline are depicted as well as the adopted shear stress-deformation 

relationship. 

 

Figure 8: Elastic and plastic distribution within the bond line. Original from 

[72]. 
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The problem of Hart-Smith was addressed to find both the shear stress, Eq. 

(2.1.13a), and the shear deformation Eq. (2.1.13b), iteratively.  

𝜏 = 𝐴𝑐𝑜𝑠ℎ(2𝜆′𝑥) + 𝜏𝑝(1 − 𝐾) Eq. (2.1.13a) 

𝛾 = 𝛾𝑒{1 + 2𝐾[(𝜆
′𝑥′)2 + 𝜆′𝑥′ tanh(𝜆′𝑑)]} Eq. (2.1.13b) 

where 𝜏𝑝 is the plastic adhesive shear value, 𝛾𝑒 is the linear part of the shear 

deformation and 𝐴 a constant which depends on 𝜏𝑝. Precisely, the iterative scheme 

aimed to search the value of 𝐾 and 𝑑 by exploiting some auxiliary equations, until 

𝐾 reaches a convergent value. 

Additional works that are worth mentioning are Delale et al. [9] who 

introduced a non-linear material model of the adhesive while considering its 

thickness neglectable for stress post-processing purposes. Adherends were 

assumed as an elastic continuum with anisotropic properties and the material non-

linearity was managed starting from a non-linear energy function. Tong [90] 

expanded the works of Hart-Smith by considering arbitrary non-linearities 

embedded within the stress-strain equations. The adopted solution scheme was 

based on integrated functions in the case of balanced adherends. Such approach 

achieved formulas for characterizing failures in pure shear, peeling and mixed 

modes. Luo and Tong [91] expanded the analysis by developing a rather complex 

fully-coupled non-linear equations in the form of closed form solutions. To reach 

the goal, their model was based on both large deflections of adherend as well as 

peel and shear strains. Such model demonstrated useful to enrich the edge 

moment factor definition, reported in Eq. (2.1.14), and it was compared with non-

linear Finite Elements and theoretical results proving extremely satisfactory 

outcomes for a wide range of material and geometrical parameters. 

𝑘𝐿𝑇 =
1 − 𝛿𝑓

1 + 𝛽𝑘𝑐 coth(𝛽𝑘𝑙) + 𝛿𝑚
 Eq. (2.1.14) 

where 𝛽𝑘 = √𝐹/𝐷1, 𝛿𝑓 and 𝛿𝑚 are parameters depending to mechanical and 

geometrical properties and to the applied load magnitude. 

Bigwood and Crocombee [92] recognized the valuable contribution of the 

original Goland and Reissener approach, as well as the Goland and Reissener – 

based schemes, for producing design relationships going beyond the simple single 
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lap joint configuration. Bigwood and Crocombee modelled the adhesive-adherend 

union as a sandwich structure where external shear, bending and traction loads act 

at the edge of the of overlap whereas adhesive peeling and shear stresses works in 

the adhesive mid-thickness, as illustrated in Figure 9. 

 

Figure 9: Elemental diagram of the adherend-adhesive sandwich. Original from 

[92]. 

 

Such idealization, properly managed in the view of equilibrium equations, was 

exploited for extracting both the shear stress and peeling stress differential model 

as reported in Eq. (2.1.15a) and Eq. (2.1.15b) 

𝑑3𝜏𝑥𝑦

𝑑𝑥3
− 𝐾1

𝑑𝜏𝑥𝑦

𝑑𝑥
= −𝐾2𝜎𝑦 Eq. (2.1.15a) 

𝑑4𝜎𝑦

𝑑𝑥4
+ 𝐾3𝜎𝑦 = 𝐾4

𝑑𝜏𝑥𝑦

𝑑𝑥
 Eq. (2.1.15b) 

where 𝐾1 =
4𝐺𝑎

𝑡
(
1−𝜇1

2

𝐸1ℎ1
+
1−𝜇2

2

𝐸2ℎ2
), 𝐾2 =

6𝐺𝑎

𝑡
(
1−𝜇1

2

𝐸1ℎ1
−

1−𝜇2
2

𝐸2ℎ2
), 𝐾3 =

𝐸𝑎

𝑡
(
1

𝐷1
+

1

𝐷2
), 

𝐾4 =
𝐸𝑎

2𝑡
(
ℎ

𝐷1
−

ℎ

𝐷2
), 𝐷𝑖  and 𝜇𝑖  are the flexural stiffness of the adherend and the 

Poisson’s ratio respectively. It can be easily observed that Eq. (2.1.15a,b) are 

coupled among their selves through the  𝐾2, 𝐾4  factors. Further manipulations 

involving additional derivations were required to decouple Eq. (2.1.15a,b) leading 

to seventh and six order differential equations as reported in Eq. (2.1.16a) and Eq. 

(2.1.16b) 

𝑑7𝜏𝑥𝑦

𝑑𝑥7
− 𝐾1

𝑑5𝜏𝑥𝑦

𝑑𝑥5
− 𝐾3

𝑑3𝜏𝑥𝑦

𝑑𝑥3
− 𝐾5

𝑑𝜏𝑥𝑦

𝑑𝑥
= 0 

Eq. (2.2.16a) 
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𝑑6𝜎𝑦

𝑑𝑥6
− 𝐾1

𝑑4𝜎𝑦

𝑑𝑥4
+ 𝐾3

𝑑2𝜎𝑦

𝑑𝑥2
− 𝐾5𝜎𝑦 = 0 Eq. (2.2.16b) 

where 𝐾5 = (𝐾1𝐾3 − 𝐾2𝐾4). 

Solving Eq. (2.1.16a,b) required the identification of proper solutions, reported 

in Eq. (2.1.17a,b) 

𝜏𝑥𝑦 = 𝐶1 cosh(𝑚1𝑥)

+ 𝐶2 sinh(𝑚1𝑥) + 𝐶3 cosh(𝑛1𝑥) cosh( 𝑛2𝑥)

+ 𝐶4 cosh(𝑛1𝑥) sin(𝑛2𝑥)

+ 𝐶5 sinh(𝑛1𝑥) cos(𝑛2𝑥)

+ 𝐶6 sinh(𝑛1𝑥) sin(𝑛2𝑥) + 𝐶7 

Eq. (2.2.17a) 

𝜎𝑦 = 𝐷1 cosh(𝑚1𝑥)

+ 𝐷2 sinh(𝑚1𝑥) + 𝐷3 cosh(𝑛1𝑥) cos( 𝑛2𝑥)

+ 𝐶4 cosh(𝑛1𝑥) sin(𝑛2𝑥)

+ 𝐶5 sinh(𝑛1𝑥) cos(𝑛2𝑥) + 𝐶6 sinh(𝑛1𝑥) sin(𝑛2𝑥) 

Eq. (2.2.17b) 

where 𝑚1−2 and 𝑛1−2 are root functions and 𝐶1−7, 𝐷1−6 depends on the applied 

boudary conditions at the edge of the overlap, as depicted in Figure 10. Clearly, 

the edge boundary conditions are sensitive to the external loads set that are not 

reported in the picture to avoid a lack of generality. 

 

Figure 10: Some joint configurations. Original from [92] 
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The main advantage of such model relies in the capability of expanding the 

analysis configurations which is particularly useful in the view of a preliminary 

numerical verification. Moreover, such scheme considers the possibility of 

different adherend parameters when deriving the coupled shear and peeling stress 

equations. 

Goglio and Rossetto [93] adapted the Bigwood and Crocombee model for 

producing a closed-form scheme of a double-lap configuration. To do so, the 

specific symmetrical features of such geometry under traction loads were essential 

to approach the problem. The object of the analysis was addressed to a 

comparative study among closed-form solutions that were available in the 

literature for the same problem. Mathematically, Goglio and Rossetto adopted Eq. 

(2.1.17a) for their analysis whereas the peel stress was recovered in a post-

processing phase. It is important to remark that the analysis was defined in the 

mid-thickness to overcome singularity-related problems which implies to do not 

satisfy the traction-free condition. In such a way, the 𝐶1−7 constants definition 

followed the same proces as in [92] while adding a further equation for defining 

the remaining unknown namely the bending moment. Assuming Finite Elements 

results as a reference, they found that the developed analytical model was able to 

reproduce both the trend and the magnitude of numerical outcome whereas past 

analytical formulations were acceptable only in the case of a very flexible 

adhesive compared to the adhesive properties. 

The mathematical models recalled above, mostly approached the problem 

directly, namely deriving the stress differential equations, finding a generalized 

solution and thus imposing some boundary conditions for a specific geometry and 

load cases. However, other logics were developed without invalidating the 

classical formulations. For example, Luo and Tong [94] applied linear and high 

order displacement theories to better approximate the stress distributions within 

the adhesive thickness. Especially, in the case of thick adhesive, using high order 

schemes were found much more adequate than simple linear approximations. In 

fact more realistic stress patterns were extracted and verified by Finite Element 

tools. Radice and Winson [95] produced a robust, but quite complex to derive, 

analytical model based on a-priori assumed Airy stress function as in Eq. (2.1.18) 
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𝜙 = 𝐴0(𝑥) + 𝑧𝐴1(𝑥) +∑ 𝑧𝑛𝐴𝑛(𝑥)

∞

𝑛=2

 Eq. (2.1.18) 

where the functions 𝐴0(𝑥), 𝐴1(𝑥), 𝐴𝑛(𝑥) does not present a specific 

formulation in principle. However, for the effectivness of the model, 

𝐴0(𝑥), 𝐴1(𝑥), 𝐴𝑛(𝑥) functions cannot randomly select but have to show suitable 

features that satisfy the edge boundary condition in advance. In such a way, in the 

view of a generalized model, the scheme was able to deduce both the 

displacement and the stress distributions. Sawa et al. [96] adapted the 2D 

elasticity with bi-harmonic Airy stress functions for studying similar problems. 

The effects of Young moduli ratio, thickness ratio and lengths ratio of the 

adherend as well as the adhesive-to-adherend thickness ratio were investigated in 

the view of the interface stress distribution. Of particular importance, Sawa 

offered an interesting overlook about the presence of the stress-singularity at the 

material interface as the analysis of this feature was normally omitted by classical 

models. For a single-lap configuration, the evolution of the stress-singularity was 

found particularly sensitive to the explored joint parameters. Precisely, the worst-

case scenario was foreseen in the case of thin adherends with small Young’s 

modulus. Moreover, the intensity of the singularity was found inversely 

proportional to the adhesive-to-adherend thickness ratio (i.e., the lower the ratio 

the greater the intensity).  

Another class of geometries that captured attention from technical literature is 

tubular joints, whose configuration is reported in Figure 11. 

 

Figure 11: Example of tubular joint. Original from [77]  
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Even though these joints find widespread applications in mechanical products, 

the research is less expanded compared to single and double-lap configurations. 

Nonetheless, models such as Lubkin and Reissner [97], Shi and Cheng [98], 

Nayeb-Hashemi [99], Pungo and Carpintieri [100], Nemes et al. [101] and Nemes 

and Lachaud [102] can be clearly identified as milestones in tubular joints 

advancement, thus representing the baseline in the mechanical design of such 

components. Lubkin and Reissner [97] approached the problem firstly through the 

analysis of the infinitesimal structural element depicted in Figure 12. Basically, 

Lubkin and Reissner provided a re-interpretation of the work of Goland and 

Reissner [7], which was initially developed for a flat junction, by adopting the 

following assumptions: i) tubular adherends are schematized as thin shells capable 

of sustaining axial, shear and bending actions whereas the axial stress can vary 

over the thickness; ii) the adhesive is modelled as an elastic spring bed capable of 

transmitting both shear and peel stresses which are constant over the adhesive 

thickness and depend only to the axial coordinate; iii) shear circumferential stress 

is omitted in the analysis as the system is supposed to be not able to support 

torsional loads; iv) the presence of the moment factor is disregarded due to the 

specific geometrical feature. 

 

Figure 12: Infinitesimal element of a tubular joint. Original from [77] 

 

Starting from the Goland and Reissner heritage, the hypotheses i)-iv) lead to a 

fully coupled systems of differential equations where two involve fourth-order 

derivatives and one second-order derivative. Classically, such system is written in 

terms of non-dimensional functions  as reported in the following: 
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{
  
 

  
 𝑔1

𝐼𝑉 + (𝐾1
4 + 𝛾11

4 )𝑔1 − 𝛾12
4 𝑔2 −

3𝑎

𝑎1
𝑔3
𝐼𝐼 −

3Λ1𝑎

𝑎1
𝑔3 = −

3Λ1𝑎

𝑎1

𝑔1
𝐼𝑉 + (𝐾2

4 + 𝛾22
4 )𝑔2 − 𝛾12

4 𝑔1 −
3𝑎

𝑎2
𝑔3
𝐼𝐼 −

3Λ2𝑎

𝑎2
𝑔3 = −

3Λ2𝑎

𝑎2

𝑔3
𝐼𝐼 + (

𝐵2
2

𝑎2
+
𝐵1
2

𝑎1
) 𝑎𝑔3 − (𝐵2

2𝑔2
𝐼𝐼 + 𝐵1

2𝑔1
𝐼𝐼) + Λ2𝐵2𝑔2 − Λ1𝐵1𝑔1 =

𝐵2
2𝑎

𝑎2
−
𝐵1
2𝑎

𝑎1

 Eq. (2.1.19) 

where the coefficients 𝐵𝑖
2 = (1 − 𝜈𝑖

2) (
2𝑐

𝑡𝑖
)
2 𝑡𝑖𝐺𝑎

𝜂𝐸𝑖
, 𝐾𝑖 = 12(1 − 𝜈𝑖

2) (
2𝑐

𝑡𝑖
)
2
(
𝑡𝑖

𝑎𝑖
)
2
, 

Λ𝑖 = 2𝜈𝑖 (
2𝑐

𝑡𝑖
)
2 𝑡𝑖

𝑎𝑖
, 𝛾𝑖𝑗

4 =  12(1 − 𝜈𝑖
2) (

2𝑐

𝑡𝑖
)
3 2𝑐

𝑡𝑖

𝑎𝐸𝑎𝑡𝑗

𝑎𝑖𝐸𝑗𝜂
 . 

 

The system represented by Eq. (2.1.19) must be associated to boundary 

conditions, based on the external loads at the overlap ends, to find the adequate 

problem solution. It is clearly visible that the research of a closed-form solution 

appears much more complex compared to flat joints, even though authors in the 

original paper stated that “…solution is possible by standard methods” as the 

model is linear. Such difficulty relies on the impossibility of separating the stress 

behaviours in the mathematical treatment of tubular joints thus prohibiting the 

decoupling of differential equations. 

Shi and Cheng [98] described the stress distribution by adopting a cylindrical 

reference system as opposite of Lubkin and Reissner [97]. Essentially, the 

mathematical model assumed the presence of 𝜎𝑟 (i.e., radial), 𝜎𝜃 (i.e., hoop), 𝜏𝑟𝑧 

(i.e., radial-axial) and 𝜎𝑧 (i.e., normal) stress components in the adherends, 

whereas 𝜎𝑧 in the adhesive was negligible. Within the tubes, the normal stress was 

described as a linear combination of unknown functions of the  direction. That 

approach led to a set of differential equation that were solved in terms of an 

eigenvalue-eigenvector problem.  

Nayeb-Hashemi [99] found a solution for tension and torsion problems. The 

working hypotheses assumed the adherends capable of absorbing only axial 

tension while the adhesive was subjected to a radial-dependent shear stress. In the 

case of purely axial loads, such adhesive shear stress was schematized as  

𝜏𝑎 =
𝐺𝑎

ln 𝑅3 − ln 𝑅2

𝑢2 − 𝑢1

𝑟
 Eq. (2.1.20) 
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Where 𝑅2, 𝑅3  are the tube radii in contact with the adhesive and  the axial 

displacements in the respective tubes, whose explicit formulation reported in Eq. 

(2.1.21), was solution of axial differential equations. 

𝑢1(𝜁) =
1

𝐸1(𝑅2
2 − 𝑅1

2)
[𝐶1𝜁 + 𝐶2 − 𝐸2(𝑅4

2 − 𝑅3
2)𝑢2]

𝑢2(𝜁) = 𝐶3𝑒
𝜃𝑎𝜁 + 𝐶4𝑒

−𝜃𝑎𝜁 −
1

𝜃𝑎
2
𝐵(𝐶1𝜁 + 𝐶2)

 Eq. (2.1.21) 

Where 𝜁 = 𝑥/𝐿 is the normalized coordinate, 𝐶1−4 are constants deduced from 

the adopted loading conditions at the tube ends, 𝐵 is a constant function of 

mechanical and geometrical parameters and 𝜃𝑎 the solution of the associated 

eigenproblem.  

The works of Nemes et al. [101] and Nemes and Lachaud [102] approached the 

stress problem by assuming less straightforward distributions, within both the 

adhesive and adherend, as a function of the adherend-derivative. Precisely,  

𝜏𝑟𝑧
(1) =

𝑟𝑖
2− 𝑟2

2𝑟
𝑑𝜎𝑧𝑧

(1)

𝑑𝑧

𝜎𝜃𝜃
(1) =

𝑟𝑖
2− 𝑟2

2
𝑑
2
𝜎𝑧𝑧
(1)

𝑑𝑧2

 Eq. (2.1.22) 

 

𝜏𝑟𝑧
(𝑐) =

𝑟𝑖
2− 𝑟𝑖𝑐

2

2𝑟
𝑑𝜎𝑧𝑧

(1)

𝑑𝑧

𝜎𝜃𝜃
(𝑐) =

𝑟𝑖
2 − 𝑟𝑖𝑐

2

2
𝑑
2
𝜎𝑧𝑧
(1)

𝑑𝑧2

 Eq. (2.1.23) 

 

𝜏𝑟𝑧
(2) =

(𝑟𝑒2− 𝑟2)(𝑟𝑖𝑐
2 − 𝑟𝑖

2)

2𝑟(𝑟𝑒𝑐2 − 𝑟𝑒2)

𝑑𝜎𝑧𝑧
(1)

𝑑𝑧

𝜎𝜃𝜃
(2) =

(𝑟𝑒2− 𝑟2)(𝑟𝑖𝑐
2 − 𝑟𝑖

2)

2(𝑟𝑒𝑐2 − 𝑟𝑒2)

𝑑
2
𝜎𝑧𝑧
(1)

𝑑𝑧2

 Eq. (2.1.24) 

where the superscripts (1), (c), (2) are associated to the inner tube, the adhesive 

and the second tube respectively whereas  are the internal and the external radii of 

the tubular component and  are the internal and the external radii of the adhesive 
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layer. The closing equation is the one modelling the behaviour, reported in Eq. 

(2.1.25) 

𝐸
𝑑4𝜎𝑧𝑧

(1)
 

𝑑𝑧4
+ (𝐵 + 𝐶)

𝑑2𝜎𝑧𝑧
(1)
 

𝑑𝑧2
+ 𝐴𝜎𝑧𝑧

(1)
 +
𝐷

2
= 0 Eq. (2.1.25) 

Where 𝐴 − 𝐸 are constants.  

Even though not explicitly directed to the analysis of stress states, it is worth 

mentioning the work of Saito and Tani [103] who analytically explored the 

fundamental aspects of free-vibration of bonded joints, as depicted in Figure 13, 

for a viscoelastic-based adhesive. This approach relies on the Euler-Bernoulli 

beam theory and it was sufficiently effective in predicting the evolution of natural 

frequencies as the bonded overlap changes and results gave non-linear trends. 

 

Figure 13: Explored bonded structures. Original from [103]. 

 

He and Rao [104] and Rao and He [105] analytically and numerically 

investigated the coupled transverse and longitudinal vibrations of bonded-lap 

joints. From the analytical perspective, the Hamilton’s principle was followed for 

deriving the governing equations considering properly applied boundary 

conditions which led to a complex matrix system. The system solution was 

derived numerically due to the presence of both complex matrix values and non-

linear contribution of a non-linear material model. It was found that the shear 

modulus produces a non-linear increase of the mechanical system whereas the 

increase of the adhesive thickness resulted in an increase of the loss factor. 

It is evident the effort spent in describing and solving stress problems, by all 

the above-mentioned researchers, in a pure analytical manner. However, the 

introduction of numerical techniques, such as the Finite Element Method, 

completely revolutionised the analysis panorama for research and design 
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purposes. Indeed, it is a matter of fact that numerical techniques allowed the 

investigation of a wider set of both specimen configurations, no more restricted to 

the simplest geometries, and problem parameters in a easier fashion. For the 

specific case study of adhesively bonded joints, numerical techniques have been 

extensively adopted for studying multiple different problems and loading 

conditions. One of the earliest contribution was the work of Pirvics [106]. He 

investigated the bi-dimensional stress distribution of a purely homogeneous linear 

elastic bonded joint using the finite difference minimization of the internal energy. 

The work of Adams et al. [107–113]  between the ’70 and ’80 can be considered 

as real milestones for a numerical interpretation and investigation of the structural 

behaviours of such joints. The interest was especially addressed to the analysis of 

spew fillet, its contribution in mitigating the stress concentration at the joint ends 

via linear and non-linear modelling techniques, as well as the stress distribution in 

tubular and cylindrical joint configurations. Several assessments on the influence 

of mechanical and geometrical parameters to the stress distribution were also 

performed by You et al.  [114,115] who studied the impact of both the height and 

the angle of a chamfer close to the adhesive ends by elastic-plastic methods or 

Kumar and Pandey’s [116] who developed bi- and tri-dimensional non-linear 

models of bonded joints. 3D assessment was particularly helpful as they revealed 

the presence of not intuitive strain and stress distributions that were not visible 

with a simple 2D analyses. Classical Finite Element demonstrated advanced 

capabilities in assessing the environmental effects on the structural response of 

bonded connections. For example, Crocombee et al. [117] investigated the 

consequences of the ageing. To do so, a Finite Element model was properly 

calibrated based on properly defined experimental parameters. Mubashar et al. 

[118] found that, for studying the cyclic moisture concentrations with ad-hoc 

Finite Elements, a model which neglects the time-dependent features produces not 

realistic results. In da Silva and Adams [119–121] Finite element models were 

adopted for investigating the state of the adhesive stress in temperature-dependent 

problems, once the experimental adhesive parameters were extracted by means of 

specific tests. 

Numerical sensitivity analyses, based on geometrical parameters such as 

bonding length, bonding thickness and spew fillet,  were performed by Grant et al. 

[122]. Finite Element models were produced, for predicting and simulating 
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bending and shear tests, for predicting failures numerically. In the case of a single-

lap joint, the numerical study was effective in revealing an enhanced sensibility to 

the adhesive thickness. Moreover, it was also found that the joint becomes 

stronger when a specific geometrical spew fillet is applied at the joint ends. 

The importance of dynamic performances of bonded connections were also 

studied by several remarkable studies. Kaya et al. [123] investigated the effect of 

the adhesive thickness, within a single-lap joint, on the natural frequency 

distribution and the sensibility of such geometry to the adopted damping through 

response analyses and 3D Finite Element models. The main outcome of this 

investigation was the precise evolution of natural frequencies, as the thickness 

increases.  He [124] produced a numerical and experimental investigation on the 

modal and response properties of bonded beams. The Finite Element method was 

adopted for structural health monitoring purposes in the view of a reliable 

prediction for geometries with more complexities. Firstly, it was found that 

increasing the adhesive thickness produced a degradation of modal properties in 

terms of reduction of natural frequencies as the introduced mass contribution was 

higher that the stiffness contribution. Secondly, the Finite Element method was 

able to just capture the first few modes whereas those at higher values presented a 

numerical-experimental discrepancy of several hundreds of hertz. Torsional 

behaviours were explored by He [125] with a combined numerical and 

experimental approach. The numerical assessment explored the influence of both 

the elasticity modulus and the Poisson’s ratio to the torsional frequencies. In 

general, both mechanical parameters play the role of enhancing the frequency 

content (i.e., higher values of material parameters push forward the natural 

frequency spectrum) but the major impact is attributed to the elasticity modulus. 

However, the impact of both parameters is not evident in terms of modal shapes 

which are essentially equal till 10 kHz. 

One of the most recently adopted techniques to assess the structural behaviours 

of adhesive joints is the so-called Cohesive Zone Modelling (CZM). The CZM 

approach relies on the studies of Dugdale [126] and Baremblatt [127], who firstly 

postulated the idea of a cohesion and de-cohesion zone at the crack apex, and of 

Hillerborg et al. [128] who translated the theoretical studies in numerical models. 

Essentially, the CZM assumes the existence of a fracture process zone, which is 

schematized in Figure 14a, where the crack onset and progression originate. In 
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such zone cohesive forces oppose their contribution to the opening mechanism. 

Mathematically and numerically, this physical behaviour was translated into the 

concept of a cohesive surface of Figure 14b and then into cohesive elements 

which simulates the opening and closing mechanisms taking place during the 

loading cycles.  The main assumption behind the CZM framework regards the 

adopted shapes of the cohesive forces, which are technically called traction-

separation laws. 

 

(a)  

 

(b)  

Figure 14: Physical and numerical interpretation of CZM. 

 

Practically, such laws regulated the magnitude of the cohesive forces in 

opposition to the crack opening as a function of the level of separation during the 

generalized opening mechanisms, namely mode I, mode II and mode III, 

prescribed by the fracture mechanics theory. An example of mixed-mode 

behaviour is reported in Figure 15. Such trend is, essentially, the simultaneous 

combination of at least two modes contributing to the final mechanical response 

(e.g., modes I-II or I-III or II-III) and is valid for every element simulating the 

cohesive surface. The ascending part of the curves (i.e., hardening range) 

corresponds to a purely linear stress-displacement evolution till the first critical 

point (A) in which the damage onsets. The increase of the damage level is defined 

in the descending part of the curve (i.e., softening range) till the second critical 

point (B) which corresponds to the complete separation of the CZM elements. 
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Figure 15: Mixed-mode CZM. Original from [129] 

From a modelling perspective, there are two main classes of CZM elements 

namely zero-thickness elements and thickness representative [130]. The first type 

of elements, which are schematized in Figure 16, assumes the existence of a 

fictitious spring bed, with no mass contribution, between structural elements 

approximating both the adherends or the adhesive. On the contrary, the second 

type of CZM elements precisely approximate the shape, mass and inertia of a real 

layer between some media. 

 

Figure 16: Zero-thickness CZM elements. 

One of the most critical points in adopting the CZM approach regards the 

proper selection of the stress-displacement curve. Several laws exist in literature 

such as exponential, bi-linear, and trapezoidal and their influence on the 
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mechanical response has been assessed by several works, such as Alfano [131], 

who pointed out numerical problems for all the explored the stress-displacement 

shapes when the ratio of the interface toughness and the stiffness of the bulk 

material have comparable values,  Campilho et al. [132] who found that the 

smaller bonding length the more influence of the CZM shape in terms of quality 

and precision of the numerical outcomes. Such influence is even more pronounced 

in the case of ductile materials rather than brittle ones. Gustafson and Waas [133] 

and Campilho et al. [134] performed sensitivity studies mostly oriented on the 

variation of mechanical and  properties characterizing the CZM shape and it was 

found that the load bearing performances were affected by precise ratios of 

absorbable fracture energies, CZM strengths and bonding length as a geometrical 

parameter. 

2.2  Very High Cycle Fatigue  

Classical fatigue testing and material characterization typically rely on the 

hypothesis that, for many metallic materials, a horizontal fatigue limit in the S – N 

curve can exist (e.g., steel) or it can be assumed (e.g., aluminium) between 106 

and 107 cycles namely up to the High Cycle Fatigue (HCF) regime. This means 

that if the applied load is lower than a specific stress threshold (i.e., 𝜎𝐴 < 𝜎∗) the 

material specimen is supposed to be capable of sustain 𝜎𝐴 for an infinite number 

of cycles with no risks of failures or further degradations. Moreover, in the HCF 

range the component failure typically initiates from the external surface of the 

specimen and then progresses to the internal regions. 

If the previous assumption could be considered valid in the past due to the less 

severe  mechanical requirements in the systems design, less attention in 

anticipating possible catastrophic failures and a lower level of awareness in 

fatigue mechanisms beyond the boundary of 107 cycles, nowadays mechanical 

components are required to express enhanced fatigue characteristics in the range 

of the Very High Cycle Fatigue (VHCF, 𝑁 > 107) keeping the reliability and 

safety requirements satisfied. Moreover, innovative testing machines such as 

Ultrasonic Fatigue Testing Machines can easily explore the VHCF range with no 

time issues compared to classical testing devices. 
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In the case of metals, Bathias [135] and Bathias et al. [136] provided an 

extensive material testing and characterization for demonstrating the absence of 

an infinite life in such materials through accelerated testing at 20 kHz up to 𝑁 =

109. Apart recognizing that for the investigated materials such stress threshold 

does not exist, the failure was observed starting from the internal regions of the 

specimen and, more precisely, the initiation was triggered from internal inclusions 

and microstructural defects, as depicted in Figure 17, rather than plastic or slip 

band effects. In that case,  the observed pattern was conventionally called as “fish-

eye” morphology. Even though the fish-eye shape is the most popular and studied, 

other mechanisms as the sub-surface or surface initiation [137] can also exist and 

the difference between the two mechanisms basically depends on the material 

under investigation and the number of VHCF cycles. These experimental 

evidences highlighting the critical role of material internal features as root cause 

of failure initiation, pushed Murakami and Beretta [138] and Murakami and Endo 

[139] to establish a simple but effective criterion based on the  of the defect to 

assess its influence on the fatigue limit in terms of Stress Intensity Factor thus 

proposing this method as a basis for a reliable fatigue design.  

The existence of multiple failure mechanisms between, for example, HCF and 

VHCF ranges (i.e., from external to internal initiation) makes much more complex 

the data analysis and the prediction of fatigue lives. Indeed, the classic single 

slope S – N curve has been found no longer representative of test data and 

multiple slopes should be introduced to account for this [140]. Accordingly, the 

existence of such type of curve also implies the use of suitable probabilistic 

considerations for failures in the VHCF range going beyond the standardized 

approach based on Gaussian curves [18]. Several statistical models were 

developed and these are comprehensively reviewed in Tridello et al. [141]. 
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Figure 17: The fish-eye morphology in VHCF failures of metallic materials. 

Original from [136] 

  

2.2.1 State of the Art for adhesive joints.  

Investigations that have been performed on VHCF responses of adhesives are 

quite limited as this topic is relatively new and not mature in the mechanical 

engineering sector. Hence, very few works are currently available in literature 

and, from the author’s best knowledge, the works of Tridello et al. [20,21] 

represent the current state of the art in this field. 

Tridello et al. [20] addressed the problem of establishing a design and 

verification methodology for butt-joints specimens and performed experiments on 

a cyanoacrylate adhesive as well. In particular, the developed design method is a 

three-step process. Firstly, through analytical calculations performed in the 

machine resonance conditions, the whole specimen length (i.e., an 1D bar 

structure) can be identified. Secondly, the use of a numerical frequency response 

analysis with prescribed displacement input loads permitted the investigation of 

the current state of stress on the bar structure. In this context, by assuming a 

negligible contribution provided by the adhesive layer on the axial bar stress 

distribution, the adhesive is placed along the bar axis at the fixed longitudinal 

stress of interest. In such a way, the bar specimen is thus divided in two 

components. Then, a final frequency response assesses the newly achieved 

configuration to verify the quality of the stress outcomes. The specimen design 

process was also corroborated with numerical mechanical and thermal-stress 

sensitivity analyses in order to investigate the effects of an unperfect adherend-
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adhesive bonding, possible variations of material parameters (i.e., Elasticity 

modulus and loss factor) and the implications of coupled mechanical and thermal 

fields (i.e., conduction, free and forced convection) on the current stress 

distribution. For an unbonded area of 20%, the maximum stress increment was 

lower than 7.5% whereas the effects of the other quantities, in general, have  

marginal effects even lower than the incorrect bonding. 

The full procedure described above was successfully applied for approaching 

the mechanical VHCF (up to ) test of a cyanoacrylate adhesive. Testing coupons 

revealed interesting results and, to some extent, unexpected. First of all, it was 

observed a tendency to fail in both cohesive and mixed modes for adhesive with a 

higher scatter for cohesive ones. Then, the most interesting aspect regards the 

magnitude of the stress to trigger failures. Surprisingly, such values were very 

close to the current adhesive strength and the most probable explanation to 

account for these effects relies on strain-rate sensitivity of such type of adhesive. 

Tridello et al. [21] exploited the findings presented before for investigating the 

VHCF performances of a structural epoxy(i.e., Betaforce 4600G) in case of 

artificially induced bonding defects, depicted in Figure 18, and no defects. 

 

 

(a)  

 

(b)  

 

(c) 

Figure 18: Specimen with defects: (a) internal, (b) external, (c) internal and 

external. Original from [21] 

 

Experimental failures in VHCF showed that strength to failure levels were 

comparable to the tensile strength in the case of the free-of-defect specimens, as 

already observed in Tridello et al. [20], and this point reinforced the hypothesis of 

possible strain-rate effects. In the merit of specimen with defects, these last show 
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strength capabilities much lower than the free-of-defect coupon, as expected. 

Precisely, the strongest effect contributing to the decrease of fatigue performances 

was attributable to the internal damage, rather than the external one which just 

produced a light reduction. Moreover, the combined effect of internal-external 

defect was totally guided by the internal one. 

An additional experimental finding concerns the shape and the distribution of 

fracture surfaces. These have been collected in Figure 19 for the whole specimen 

set. Essentially, the crack nucleation, the steady propagation and the final fracture 

areas were fully recognizable even though these last presented different features 

between the free-of-defect and the artificially damaged specimens. 

 

(a)  

 

(b)  

 

(c)  

 

(d)  

Figure 19: Fracture surfaces for (a) original specimen and with (b) internal, (c) 

external, (d) internal and external defects. Original from [21]. 

In the case of free-of-defect  specimen, the crack nucleation region originated 

close to the free-edge and the main source was attributable to stress-singularity 

effects induced by the particular geometrical and material configuration. Indeed, 

this hypothesis was corroborated from the experimental evidence of an interfacial 
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(i.e., adhesive) failure as reported in Figure 19a. Both the steady propagation and 

the final fracture areas presented a cohesive nature. Such areas were 

distinguishable by different colours: the steady propagation zone was darker than 

the final fracture one and its size basically described the maximum area occupied 

by the fracture that guaranteed the 20 kHz resonance condition. 

Very similar to the free-of-defect specimen case, the nucleation zone starts 

propagating from the external surface, in the case of internal large defect, and 

from the external defect in the case of the mixed configuration. This event 

confirmed the stress-singularity origin of failures for all the explored cases. 

Clearly, when referring to the stress-singularity this is just the idealization of an 

extremely high stress concentration at the material interface without the 

contribution of plastic mechanisms as the acting nominal loads are of low 

magnitude. 

2.2.2 Testing machines 

Performing tests in the VHCF range could be very time-consuming due to the 

large number of cycles for concluding the experiments. In Figure 20 the time 

requested for executing such tests is reported at varying of the applied testing 

frequency and it can clearly see that systems working at low frequencies can take 

even months for finishing the experiments. For that reason, different classes of 

testing systems that operate at different working frequencies were developed in 

order to boost the testing campaign [19]. 

 

 

Figure 20: Time investment for performing VHCF test up to 107 (grey) and 108 

(green). Original from [19]. 
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Rotating bending machines are the earliest and, to some extent, the easiest way 

to perform VHCF tests. The available working range of such tools is below 200 

Hz and this constitutes an important limitation for a fast and efficient material 

characterization. The working principle consists of the application of a bending 

load due to the rotational movement of an internal member. Initially, the specimen 

is subjected to a constant flexural load. Then, after the machine is actuated, the 

load varies the amplitude based on a sinusoidal motion. Apart from the relatively 

low frequency, one main drawback relies in the nature of the applied load. 

Basically, the bending load produces a variable stress distribution on the specimen 

cross-section which could invalidate the test outcomes. 

The class of Servo-hydraulic test systems represents the most common tool that 

can be found in material testing departments. Its versatility in terms of loading 

condition, loading amplitudes and specimen shapes make it the right choice for 

multi-purpose material and metal testing. Typically, classic Servo-hydraulic 

machines can operate in the range of hundreds of Hz but, for testing in VHCF, 

advanced system were developed. These last can boost the test by adopting testing 

frequencies up to 1000 Hz. Such systems differ from classical Servo-hydraulic 

machines as they present reinforced members, shorter columns, a more powerful 

and stable control system and a reinforced base. such as random time-histories 

whereas, in the case of for VHCF testing equipment the main issue is related to 

the end of the test. In this test range, both the displacement and the strain are so 

limited and thus difficult to control with conventional measurement techniques. 

Resonance Pulsation Test Systems are equipment that can accommodate an 

extended working frequency interval for VHCF testing, namely between 100 – 

300 Hz. However, this test frequency cannot be selected freely as an independent 

parameter, but it is restricted by some technological constraints mainly determined 

by the specimen under test and this aspect is the main drawback in using such a 

technique. By contrast of testing frequencies, the range of applicable loads can 

vary consistently in the range of 5 kN to 1000 kN. Resonant machines allow 

testing in the lower VHCF range only (i.e., ∝ 107) whereas only more advanced 

equipment working up to 1000 Hz are suitable to explore ranges up to 108 in a 

easier manner.  
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The need of extending the experimental range up to 109, or even more, pushed 

forward the development of Ultrasonic Fatigue Testing Machines (UFTM). 

Historically, the interest in this type of testing systems started rising from 1950s 

from Mason [142], subsequently followed with the works of Willertz [143] and 

Rotem [144] and nowadays UFTM is the most adopted and suitable method for 

performing VHCF tests. The main feature that attracts the use of UFTM for 

VHCF experiments is the possibility of testing specimens with working 

frequencies in the range of 20 kHz, with both the specimen and the machine 

working in resonance conditions and this aspect considerably reduces the testing 

time (e.g., 14 hrs with 20 kHz for testing up to ) compared to more classical 

equipment. The UFTM systems produce the cyclic loading through a set of 

different apparatuses assembled in series along the longitudinal axis. The main 

constituents are depicted in Figure 21 namely a piezoelectric transducer produced 

with piezoceramic materials, a booster and a horn which amplify and convey the 

excitation to the specimen and, of course, the specimen itself. An important aspect 

for designing the specimen under investigation regards the correct dimensions 

once the material is selected. In fact, for a chieving the proper displacement and 

stress distribution along the longitudinal axis, the specimen has to respect a global 

size constraint which is expressed by Eq. (2.2.1) which is valid for a straight bar 

component 

 

Figure 21: Schematic description of UFTM. 

 

𝑙 =
1

2𝑓
√𝐸/𝜌  Eq. (2.2.1) 
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where 𝐸/𝜌 is the elasticity modulus to density ratio and 𝑓 is the frequency of 

the axial primary mode. Under such condition, the displacement presents a node 

in the middle of the specimen whereas stress nodes at the horn-specimen interface 

and at the end of the specimen too.  

Among the whole system equipment, specific attention should be addressed to 

the horn design. Many geometrical alternatives are present in technical literature 

such as stepped, conical, exponential, catenoidal and Fourier [145] and all of them 

have precise shapes that were mathematically deduced. Investigations in this field 

are still active as demonstrated by the work of Rosca et al. [146] who designed 

and characterized an optimised axisymmetric ultrasonic horn which shape was 

extracted by employing optimization methods, elasticity laws, variational 

approaches and such configuration permitted a better nodal point positioning. 

Costa et al. [147] developed a horn structure capable of combining both tension 

and torsion for a bi-axial characterization during a single VHCF test. The 

followed approach for designing a bi-axial horn relies mainly on Finite Element 

Models and experimental methods. Results were satisfactory apart from specific 

and localized regions where predicted stress and displacement presented partial 

differences. Lin et al. [148] performed an analytical study for investigating the 

possibility of designing an innovative longitudinal step-type horn with tuneable 

and adjustable performance. To accomplish the research purposes, the authors 

focused on the effect of the electric impedance as well as the location of 

piezoelectric materials. 

• Ultrasonic Fatigue Testing Machines developed at Politecnico di Torino 

The research group “Mechanics of materials and joints” at Politecnico di 

Torino [149] developed its own UFTM for VHCF tests [150,151] which is 

depicted in Figure 22. The Politecnico di Torino UFTM is engineered to work 

with a central frequency at 20 kHz but, in to accommodate specimens of different 

materials, types and geometrical features, an extended frequency interval namely 

20 ± 0.5 kHz was planned during the mechanical design. UFTM can perform tests 

under fully reversed tension-compression stress conditions (R= –1) . It was 

originally designed for testing metallic specimens and subsequently adapted to 

characterize adhesive butt-joints. UFTM is constituted by the following apparatus: 
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(i) the ultrasonic generator (Branson DCX 4 kW, not visible in Figure 22), which 

provides a sinusoidal signal at 20 kHz; (ii) a piezoelectric transducer that converts 

the electrical signal in a mechanical vibration; (iii) two amplifying devices (i.e., a 

booster and a horn made of Ti-6Al-4V), designed to amplify and convey the 

magnitude of vibration to the tested specimen; (iv) the specimen under 

investigation; (v) a laser-displacement sensor providing the feedback signal for the 

control system and positioned at the specimen free end; (vi) cold air vortex tubes 

that keep the specimen temperature between [20 – 24] °C.  

 

Figure 22: UFTM developed at Politecnico di Torino 

 

During the VHCF test evolution, the adhesive layer is subjected to an 

alternated stress which is kept through a closed-loop control strategy and its 

working principle assumes that the displacement at the specimen free end is used 

as a feedback signal. A Proportional-Integrative-Derivative (PID) strategy defines 

the control system scheme. In essence, the displacement amplitude is the feedback 

control signal for the PID, where P is calculated as the difference between the test 

measured displacement amplitude and the displacement set point (i.e., a 

displacement value known from FEM analysis for the selected stress level), thus 

ensuring the required applied stress amplitude. The adopted input voltage to 

actuate the system is therefore modified and corrected by considering the output 

correction of the PID. However, it must be noted that due to the limited 
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temperature variation, the PID usually applies small corrections of the voltage to 

keep the stress amplitude constant. 

A criterion based on the stiffness loss is adopted for finishing the VCHF test. In 

fact, apart from cases where the test ends following run-out (e.g., N=109), the test 

stops when the longitudinal frequency of the mechanical system falls below 19.5 

kHz. Two cases can be observed: (i) the complete separation of the specimen 

under test or (ii) the specimen is still joined but the fracture surfaces were 

progressed enough to reduce the stiffness of the specimen without the complete 

separation. In the first circumstance no additional action should be performed 

whereas in the second circumstance an extra load (manual or automatic) should 

applied to separate the members. 

2.3 Statistical methods for S-N curves 

The introduction of the VHCF testing technique, as an innovative method to 

extend the investigation range for materials and structures, revealed the presence 

of different failure mechanisms characterizing the collapse under alternating 

fatigue loadings [135]. In this context, if two distinct failure modes (e.g., internal-

initiated and external-initiated failures) can exist, the conventional fatigue limit 

represented by a plateau in the S – N curve can be assumed as a transition region 

between these latter. Moreover, two failure mechanisms can also coexist as 

demonstrated by [135,152–154]. However, the conventional statistical approach to 

describe experimental data, as suggested by international standards such as ASTM 

E739-91 [155] or ISO 12107:2003 [156], consider such failure modes one at a 

time with a linear formulation for the mean fatigue life and a constant standard 

deviation. For that reason, when dealing with multiple failure mechanisms and 

failure sources, it is important to use a generalized data analysis framework 

capable to describe the S – N fatigue data distribution regardless the number of 

failure modes and causes. 

2.3.1 Elements of Probability 

Laws of probability arose in the XVII century for studying specific 

experimental findings that were not explicable with deterministic models but only 

with a level of confidence. Nowadays, the engineering practice extensively adopts 
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laws of probability to design structures, understand and describe experimental 

outcomes and for predicting potential responses of mechanical systems (e.g., 

random vibrations). 

This Section has the purpose of briefly introducing some basic concepts of the 

theory of probability for better understanding the “language” adopted in Section 

2.3.2 where these concepts are flow down into fatigue applications. A more 

complete and a wider discussion on similar topics is addressed in specific 

probability books like [157]. 

Three fundamental rules constitute the framework of the axiomatic probability  

theory, called Kolmogorov axioms. If Ω is a generic set and A an event sub-set, 

then  is a real number expressing the probability. In such a way, the main 

axiomatic rules are: 

▪ The probability of A is a number between 0 – 1 (i.e., 0 ≤ 𝑃[𝐴] ≤ 1); 

▪ A sure event has a probability of 1 (i.e., 𝑃[Ω ≡ 𝐴] = 1); 

▪ The joined probability of two events A, B is 𝑃[𝐴⋃𝐵] = 𝑃[𝐴] + 𝑃[𝐵] if 

𝑃[𝐴⋂𝐵] = 0 

From those axioms, three theorems descend: 

▪ Probability of mutually exclusive events (i.e., 𝑃[𝐴̃] = 1 −  𝑃[𝐴]); 

▪ Total probability (i.e., 𝑃[𝐴⋃𝐵] = 𝑃[𝐴] + 𝑃[𝐵] −  𝑃[𝐴⋂𝐵]) 

▪ Conditional probability (i.e., 𝑃[𝐴|𝐵] =
𝑃[𝐴⋂𝐵]

𝑃[𝐵]
, 𝑃[𝐵] > 0) 

An event has a deterministic nature if all the measurements characterizing such 

event can be certainly predictable. A deterministic variable is the mathematical 

entity describing a deterministic event. If an event has the possibility of both 

happening or not happening under the same conditions, with no possibilities of 

knowing it certainly, this event is aleatory. An aleatory variable is the 

mathematical entity describing an aleatory event. 

Aleatory variables can be continuous of discrete. For continuous variables, it 

can be defined 𝐹𝑋(𝑥) as the cumulative distribution function, the following 

expression 
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𝐹𝑋(𝑥) = 𝑃[𝑋 ≤ 𝑥] Eq. (2.3.1) 

𝐹𝑋(𝑥) express the probability that the aleatory variable X will have values 

lower than x and it can assume values between 0 – 1. In the case of continuous 

variables,  can be expressed as follows 

𝐹𝑋(𝑥) = ∫ 𝑝𝑋(𝜌)𝑑𝜌
x

−∞

 Eq. (2.3.2) 

where 𝑝𝑋(𝑥) is a fundamental relationship in the theory of probability, called 

probability density function. 

The 𝑝𝑋(𝑥) function can be associated to different shapes (e.g., Poisson, 

geometric, 𝜒-distribution, etc…) so with both discrete and continuous variables. 

Among these the most well-known and typically adopted model in engineering is 

the Gaussian (or Normal) distribution. 

𝑝𝑋(𝑥) =
1

𝜎𝑋√2𝜋
exp [−

1

2
(
𝑥 − 𝜇𝑋

𝜎𝑋
)
2

] Eq. (2.3.3) 

where 𝜇𝑋 and 𝜎𝑋  are, respectively, the mean value and the standard deviation 

of X. Gaussian distribution is completely known from a probabilistic perspective 

by just knowing these values. Sometimes Eq. (2.3.3) is also written in terms of of 

the auxiliary variable 𝑍 =
𝑋−𝜇𝑋

𝜎𝑋
  as  

𝑝𝑋(𝑥) =
1

√2𝜋
𝑒𝑧

2/2 Eq. (2.3.4) 

Bernoulli distribution has a discrete nature and is particularly suitable for 

describing events like fatigue ruptures. In such case, 𝑝𝑋(𝑥) has the following 

definition 

𝑝𝑋𝑘(𝑥) = {
1 − 𝑝 𝑓𝑜𝑟 𝑥 = 0
𝑝 𝑓𝑜𝑟 𝑥 = 1

 Eq. (2.3.5) 

with mean value 𝜇𝑋𝑘 = 𝑝 and variance 𝜎𝑋𝑘
2 = (1 − 𝑝)𝑝. 
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2.3.2 A statistical fatigue model 

The case study for introducing a more precise statistical fatigue model is 

presented in the following for the so-called Duplex S – N curve, depicted in 

Figure 23. Such curve type is characterized by the two failure modes (i.e., surface 

nucleation and internal nucleation), a transition plateau stress between these last 

and a fatigue limit.  

 

Figure 23: Example of a Duplex S - N curve. 

In the case of a Duplex S – N curve, some working hypotheses are necessary 

for the proper model development, as stated by Paolino et al. [22]: 

▪ Both the fatigue limit and the transition stress are random variable namely  

and respectively. Both quantities are associated to a cumulative density 

function namely   and . Fatigue limit and transition stress can vary 

randomly from specimen to specimen; 

▪  and  are independent random variables; 

▪ Each failure mode is a Bernoulli random variable;  

▪  and are the fatigue life associated to an internal failure mode (M=int). 

These are conditional random variables; 

▪  and are the fatigue life associated to a surficial failure mode (M=surf). 

These are conditional random variables; 

▪ The event is sure (i.e., 𝑃[𝑋𝑙 ≤ 𝑋𝑡] = 1) 



61 
 

From such hypotheses, some probabilistic equations can be directly derived. 

Eq. (2.3.6) express the probability of having a surface-initiated failure, whereas 

Eq. (2.3.7) regulates the probability of an internal-initiated failure. 

𝑃[𝑀 = 𝑠𝑢𝑟𝑓] = 𝐹𝑋𝑡 Eq. (2.3.6) 

𝑃[𝑀 = 𝑖𝑛𝑡] = 𝐹𝑋𝑙(1 − 𝐹𝑋𝑡) Eq. (2.3.7) 

In terms of fatigue life, the probability level to have a surface-initiated failure 

of Y fatigue life smaller than a selected y value is dictated by Eq. (2.3.8) and 

similarly for the internal-initiated failure in Eq. (2.3.9) 

𝑃[𝑌 ≤ 𝑦,𝑀 = 𝑠𝑢𝑟𝑓] = 𝑃[𝑌 ≤ 𝑦| 𝑀 = 𝑠𝑢𝑟𝑓] ∙ 𝑃[ 𝑀 = 𝑠𝑢𝑟𝑓]

=  𝐹𝑌|𝑠𝑢𝑟𝑓 ∙ 𝐹𝑋𝑡 
Eq. (2.3.8) 

𝑃[𝑌 ≤ 𝑦, 𝑀 = 𝑖𝑛𝑡] = 𝑃[𝑌 ≤ 𝑦| 𝑀 = 𝑖𝑛𝑡] ∙ 𝑃[ 𝑀 = 𝑖𝑛𝑡]

= 𝐹𝑌|𝑖𝑛𝑡 ∙ 𝐹𝑋𝑙(1 − 𝐹𝑋𝑡) 
Eq. (2.3.9) 

The total probability is then achieve by using the Total Probability Theorem, as 

expressed in Eq. (2.3.10), which represents the statistical model S – N curves with 

two modes of failure 

𝐹𝑌 = 𝐹𝑌|𝑠𝑢𝑟𝑓𝐹𝑋𝑡 + 𝐹𝑌|𝑖𝑛𝑡𝐹𝑋𝑙(1 − 𝐹𝑋𝑡) Eq. (2.3.10) 

The cumulative distribution function, 𝐹𝑌, in Eq. (2.3.10) has a direct 

relationship with the cumulative distribution functions of 𝑋𝑙 , 𝑋𝑡, 𝑌|𝑖𝑛𝑡 and 𝑌|𝑠𝑢𝑟𝑓. 

Regarding 𝑋𝑙 , 𝑋𝑡, such random variables can be described by diffent probability 

models but a Gaussian type is preferred for the model development. Thus,  

𝐹𝑋𝑙 = Φ[
𝑥 − 𝜇𝑋𝑙
𝜎𝑋𝑙

] Eq. (2.3.11) 

𝐹𝑋𝑡 = Φ[
𝑥 − 𝜇𝑋𝑡
𝜎𝑋𝑡

] Eq. (2.3.12) 

where Φ[∙] stands for the Gaussian cumulative distribution function. In a 

similar fashion, also the conditional probabilities for  and  can be considered 

under a normal distribution 
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𝐹𝑌|𝑠𝑢𝑟𝑓 = Φ[
𝑦 − 𝜇𝑌|𝑠𝑢𝑟𝑓

𝜎𝑌|𝑠𝑢𝑟𝑓
] Eq. (2.3.13) 

𝐹𝑌|𝑖𝑛𝑡 = Φ[
𝑦 − 𝜇𝑌|𝑖𝑛𝑡
𝜎𝑌|𝑖𝑛𝑡

] Eq. (2.3.14) 

In Eq. (2.3.13) and Eq. (2.3.14) the model parameters 𝜇𝑌|𝑖𝑛𝑡  and 𝜎𝑌|𝑖𝑛𝑡  depend 

on the applied stress magnitude. The simplest model that can be used for 

describing the trend of the mean value (i.e., 𝜇𝑌|𝑖𝑛𝑡 , 𝜇𝑌|𝑠𝑢𝑟𝑓 , also known as location 

parameter) and of the standard deviation (i.e., 𝜎𝑌|𝑖𝑛𝑡 , 𝜎𝑌|𝑠𝑢𝑟𝑓 , also known as scale 

parameter) considers a linear decreasing distribution of the location parameter 

[155,158] with an assumed constant value of the scale parameter as follows 

𝜇𝑌|𝑖𝑛𝑡 = 𝑎𝑌|𝑖𝑛𝑡 + 𝑥 ∙ 𝑏𝑌|𝑖𝑛𝑡  Eq. (2.3.15a) 

𝜇𝑌|𝑠𝑢𝑟𝑓 = 𝑎𝑌|𝑠𝑢𝑟𝑓 + 𝑥 ∙ 𝑏𝑌|𝑠𝑢𝑟𝑓 Eq. (2.3.15b) 

where 𝑎𝑌|𝑖𝑛𝑡 , 𝑏𝑌|𝑖𝑛𝑡 , 𝑎𝑌|𝑠𝑢𝑟𝑓, 𝑏𝑌|𝑠𝑢𝑟𝑓 are constant model parameters to be 

determined.  

Finally, by introducing Eqs. (2.3.11) – (2.3.15)  in Eq. (2.3.10), the final 

expression of 𝐹𝑌 is 

𝐹𝑌 = Φ [
𝑦 − (𝑎𝑌|𝑠𝑢𝑟𝑓 + 𝑥 ∙ 𝑏𝑌|𝑠𝑢𝑟𝑓)

𝜎𝑌|𝑠𝑢𝑟𝑓
]Φ [

𝑥 − 𝜇𝑋𝑡
𝜎𝑋𝑡

]

+ Φ[
𝑦 − (𝑎𝑌|𝑖𝑛𝑡 + 𝑥 ∙ 𝑏𝑌|𝑖𝑛𝑡)

𝜎𝑌|𝑖𝑛𝑡
]Φ [

𝑥 − 𝜇𝑋𝑙
𝜎𝑋𝑙

] (1 − Φ [
𝑥 − 𝜇𝑋𝑡
𝜎𝑋𝑡

]) 

Eq. (2.3.16) 

where the number of parameters of be determined is 10 (i.e,  𝑎𝑌|𝑠𝑢𝑟𝑓, 𝑏𝑌|𝑠𝑢𝑟𝑓, 

𝜎𝑌|𝑠𝑢𝑟𝑓 , 𝑎𝑌|𝑖𝑛𝑡, 𝑏𝑌|𝑖𝑛𝑡, 𝜎𝑌|𝑖𝑛𝑡 , 𝜇𝑋𝑡, 𝜎𝑋𝑡, 𝜇𝑋𝑙, 𝜎𝑋𝑙). 

Eq. (2.3.16) is the fundamental model that accounts for Duplex S – N curves. 

Obviously, such model cannot cover and predict S – N with more than two failure 

modes (e.g., internal and external failures). However, other failure modes and 

sources can be foreseen during the in-service life of components and attributable 

to porosity, inclusions, voids, internal/external nucleation and scratches. To 

account for such modes, a generalization of Eq. (2.3.16) is necessary. For the sake 
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of brevity and without going into details, the model generalization basically 

extends the initial working hypothesis. Such generalization leads to an extended 

formulation of  in Eq. (2.3.10) as follows 

𝐹𝑌 = ∑𝐹𝑋𝑡𝑖−1
(1 − 𝐹𝑋𝑡𝑖

)

𝑚

𝑖=1

∙∑𝐹𝑌|(𝑖,𝑗)𝑝𝑗|𝑖

𝑐𝑖

𝑗=1

 Eq. (2.3.17) 

where 𝑚 is the number of failure modes,  𝑐𝑖  is number of failure causes 

generating the ith failure mode, 𝐹𝑋𝑡𝑖
 is the cumulative probability function 

associated with th ith transition stress, 𝐹𝑌|(𝑖,𝑗) is the cumulative probability 

function for the fatigue lives of the ith failure mode due to the jth failure source and 

𝑝𝑗|𝑖 the probability of having the jth failure cause within the ith failure mode.. 

By assuming the existenceof 𝑚 transition stresses and Normal distributions for 

the random variables, 𝐹𝑋𝑡𝑖−1
 and 𝐹𝑌|(𝑖,𝑗) assume the form 

𝐹𝑋𝑡𝑖−1
= Φ [

𝑥 − 𝜇𝑋𝑖−1
𝜎𝑋𝑖−1

] Eq. (2.3.18) 

𝐹𝑌|(𝑖,𝑗) = Φ [
𝑦 − (𝑎𝑌|(𝑖,𝑗) + 𝑏𝑌|(𝑖,𝑗) ∙ 𝑥)

𝜎𝑌|(𝑖,𝑗)
] Eq. (2.3.19) 

where in Eq. (2.3.18) 𝜇𝑋𝑡0
= 𝜇𝑋𝑙 and 𝜎𝑋𝑡0

= 𝜎𝑋𝑙 whereas Eq. (2.3.19) is 

directly written in terms of the linear approximation. 

Thus, the generalized statistical fatigue model valid for any possible failure 

source and modes is presented in the following  

𝐹𝑌 = ∑Φ[
𝑥 − 𝜇𝑋𝑡𝑖−1
𝜎𝑋𝑡𝑖−1

] (1 − Φ [
𝑥 − 𝜇𝑋𝑡𝑖
𝜎𝑋𝑡𝑖

])

𝑚

𝑖=1

∙ ∑Φ[
𝑦 − (𝑎𝑌|(𝑖,𝑗) + 𝑥 ∙ 𝑏𝑌|(𝑖,𝑗))

𝜎𝑌|(𝑖,𝑗)
] 𝑝𝑗|𝑖

𝑐𝑖

𝑗=1

 Eq. (2.3.20) 

For a model like this, the numbers of the involved parameters are dictated by 

𝑛𝑝𝑎𝑟 = 2𝑚 + 3∑𝑐𝑖

𝑚

𝑖=1

+∑(𝑐𝑖 − 1)

𝑚

𝑖=1

 Eq. (2.3.21) 
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For example, in the case of 2 failure modes (𝑚 = 2) and just one failure cause 

for each of them (𝑐1 = 𝑐2 = 1), which represents the case study of Duplex S – N 

curves, 𝑛𝑝𝑎𝑟 = 10 . 

Some applications of the developed generalized framework are presented for 

clarification purposes, as addressed in the original paper of Paolino et al. [22]: 

1. One failure mode due to one cause without fatigue limit (𝑚 = 1, 𝑐1 =

1, 𝐹𝑋𝑡0
= 𝐹𝑋l = 1 

𝐹𝑌 = 𝐹𝑌|(1,1) Eq. (2.3.22a) 

𝐹𝑌 = Φ [
𝑦 − (𝑎𝑌|(1,1)+ 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
] Eq. (2.3.22b) 

2. One failure mode due to one cause with fatigue limit (𝑚 = 1, 𝑐1 = 1, 

𝐹𝑋𝑡0
= 1, 𝐹𝑋l < 1). 

𝐹𝑌 = 𝐹𝑋𝑙𝐹𝑌|(1,1) Eq. (2.3.23a) 

𝐹𝑌 = Φ[
𝑥 − 𝜇𝑋l
𝜎𝑋l

]Φ [
𝑦 − (𝑎𝑌|(1,1) + 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
] Eq. (2.3.23b) 

3. Two failure modes due to one cause without plateau and fatigue limit 

(𝑚 = 2, 𝑐1 = 𝑐2 = 1, 𝐹𝑋𝑡0
= 𝐹𝑋l = 1, 𝐹𝑋𝑡2

= 0). 

𝐹𝑌 = (1 − 𝐹𝑋𝑡1
) 𝐹𝑌|(1,1)+ 𝐹𝑋𝑡1

𝐹𝑌|(2,1) Eq. (2.3.24a) 

𝐹𝑌 = (1 − Φ [
𝑥 − 𝜇𝑋𝑡1
𝜎𝑋𝑡1

])Φ [
𝑦 − (𝑎𝑌|(1,1)+ 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
]

+ Φ[
𝑥 − 𝜇𝑋𝑡1
𝜎𝑋𝑡1

]Φ [
𝑦 − (𝑎𝑌|(2,1)+ 𝑥 ∙ 𝑏𝑌|(2,1))

𝜎𝑌|(2,1)
] 

Eq. (2.3.24b) 

4. Two failure modes due to one cause without plateau and with fatigue 

limit (𝑚 = 2, 𝑐1 = 𝑐2 = 1, 𝐹𝑋l < 1). 

𝐹𝑌 = 𝐹𝑋𝑙 (1 − 𝐹𝑋𝑡1
)𝐹𝑌|(1,1)+ 𝐹𝑋𝑡1

𝐹𝑌|(2,1) Eq. (2.3.25a) 
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𝐹𝑌 = Φ [
𝑥 − 𝜇𝑋𝑙
𝜎𝑋𝑙

] (1 − Φ [
𝑥 − 𝜇𝑋𝑡1
𝜎𝑋𝑡1

])Φ [
𝑦 − (𝑎𝑌|(1,1) + 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
]

+ Φ[
𝑥 − 𝜇𝑋𝑡1
𝜎𝑋𝑡1

]Φ [
𝑦 − (𝑎𝑌|(2,1)+ 𝑥 ∙ 𝑏𝑌|(2,1))

𝜎𝑌|(2,1)
] 

Eq. (2.3.25b) 

5. Two failure modes due to one cause with plateau and without fatigue 

limit (𝑚 = 2, 𝑐1 = 𝑐2 = 1, 𝐹𝑋𝑡0
= 𝐹𝑋l = 1, 𝐹𝑋𝑡2

= 0). Such model has 

the same formulation of Eq. (2.3.23). 

6. Two failure modes due to one cause with plateau and with fatigue limit 

(𝑚 = 2, 𝑐1 = 𝑐2 = 1, 𝐹𝑋l < 1). Such model has the same formulation 

of Eq. (2.3.24). 

7. One failure mode due to two causes without fatigue limit (𝑚 = 1, 𝑐1 =

2, 𝐹𝑋l = 1, 𝐹𝑋𝑡1
= 0, 𝑝2|1 = 1 − 𝑝1|1).  

𝐹𝑌 = 𝑝1|1𝐹𝑌|(1,1)+ (1 − 𝑝1|1)𝐹𝑌|(1,2) Eq. (2.3.26a) 

𝐹𝑌 = 𝑝1|1 Φ [
𝑦 − (𝑎𝑌|(1,1) + 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
]

+ 𝑝2|1 Φ [
𝑦 − (𝑎𝑌|(1,2) + 𝑥 ∙ 𝑏𝑌|(1,2))

𝜎𝑌|(1,2)
] 

Eq. (2.3.26b) 

8. One failure mode due to two causes with fatigue limit (𝑚 = 1, 𝑐1 = 2, 

𝐹𝑋l = 1, 𝐹𝑋𝑡1
= 0, 𝑝2|1 = 1 − 𝑝1|1). 

𝐹𝑌 = 𝐹𝑋𝑙(𝑝1|1𝐹𝑌|(1,1) + (1 − 𝑝1|1)𝐹𝑌|(1,2)) Eq. (2.3.27a) 

𝐹𝑌 = Φ [
𝑥 − 𝜇𝑋𝑙
𝜎𝑋𝑙

] (𝑝1|1 Φ [
𝑦 − (𝑎𝑌|(1,1)+ 𝑥 ∙ 𝑏𝑌|(1,1))

𝜎𝑌|(1,1)
]

+ 𝑝2|1 Φ [
𝑦 − (𝑎𝑌|(1,2) + 𝑥 ∙ 𝑏𝑌|(1,2))

𝜎𝑌|(1,2)
]) 

Eq. (2.3.27b) 

 

In Eq. (2.3.16),  in the case of Duplex S – N curves, and in Eq. (2.3.20), in the 

case of a generalized statistical fatigue model, parameters were introduced as 
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quantities to be determined. In the following, the procedure for their extraction 

will be addressed. Without losing generality, the parameters extraction is 

addressed for the case of Duplex S – N curves as described in Paolino et al. 

[159,160].  

The extraction of the model parameters is typically performed starting from the 

derivative of the cumulative probability function in Eq. (2.3.28) of failed 

specimens 

𝑓𝑌 =
𝑑𝐹𝑌

𝑑𝑦
=

𝜑 [
𝑦 − (𝑎𝑌|𝑠𝑢𝑟𝑓 + 𝑥 ∙ 𝑏𝑌|𝑠𝑢𝑟𝑓)

𝜎𝑌|𝑠𝑢𝑟𝑓
]

𝜎𝑌|𝑠𝑢𝑟𝑓
Φ [
𝑥 − 𝜇𝑋𝑡
𝜎𝑋𝑡

]

+

𝜑 [
𝑦 − (𝑎𝑌|int + 𝑥 ∙ 𝑏𝑌|int)

𝜎𝑌|𝑖𝑛𝑡
]

𝜎𝑌|𝑖𝑛𝑡
Φ [
𝑥 − 𝜇𝑋𝑙
𝜎𝑋𝑙

] (1 − Φ [
𝑥 − 𝜇𝑋𝑡
𝜎𝑋𝑡

]) 

Eq. 

(2.3.28) 

Where 𝜑 denotes the Gaussian probability density function. 

The key aspect of the extraction procedure lies on the application of the 

Maximum Likelihood (ML) Principle. So, assuming the existence of (𝑥𝑖, 𝑦𝑖) with 

𝑖 = 1, … , 𝑛𝑓 a set of failed specimens and (𝑥𝑖, 𝑦𝑖
∗) with 𝑖 = 1, … , 𝑛𝑟 a set of run-

out specimens in the experimental data set, the Likelihood function has the form 

L[𝛉] =∏fY[yi; xi, 𝛉]

nf

i=1

∙∏(1 − FY[y𝑗
∗; x𝑗, 𝛉])

nr

j=1

 Eq. (2.3.29) 

In Eq. (2.3.29), 𝛉 represents the set of parameters to be determined (i.e., for 

Duplex S – N curves in number of 10:  𝑎𝑌|𝑠𝑢𝑟𝑓, 𝑏𝑌|𝑠𝑢𝑟𝑓, 𝜎𝑌|𝑠𝑢𝑟𝑓 , 𝑎𝑌|𝑖𝑛𝑡, 𝑏𝑌|𝑖𝑛𝑡, 

𝜎𝑌|𝑖𝑛𝑡 , 𝜇𝑋𝑡, 𝜎𝑋𝑡, 𝜇𝑋𝑙, 𝜎𝑋𝑙). Using the ML the research is addressed to the 𝛉 set 

which maximize Eq. (2.3.29). ML principle was chosen due to several reasons. 

First, ML as a statistical estimator has good asymptotic properties (i.e., Normality, 

unbiased, efficiency and consistency). Then, the application of ML allows take 

into account also run-out specimens for the S – N calculation and this is a 

particular advantage with respect to other methods based on, for example, the 

least square methods. 
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From a computational perspective, Eq. (2.3.29) requires the application of an 

optimization algorithm for finding parameters. To do so, the fminsearch MatLab® 

function based on the Nelder-Mead simplex algorithm was adopted. 

The adoption of Eq. (2.3.29) allows model parameters extraction for any 

probability level of failure (i.e., the  quantile). 

2.4 Stress singularity 

This section addresses the main aspects of stress singularities in terms of 

mathematical and physical features as well as the most relevant papers published 

in this field of research. An initial overview of the stress singularities and the 

fundamental results in their analysis is illustrated. Such overview is organized 

according to a global timeline (i.e., from the oldest to the newest paper) and as 

much as coherent with the discussed topic. Furthermore, with a specific focus, the 

Bogy mathematical model to investigate and predict singularities in any kind of 

bi-material joint configurations, is presented and discussed. Finally, the removal 

of the stress singularity based on the inverse Bogy model is introduced. Such 

specific separation was followed as the Bogy mathematical framework represents 

the theoretical backbone of the research topic of this manuscript which is 

discussed in Section 3 

Detection and quantification of geometrical and mechanical features that could 

endanger the mechanical performance of a component have always been an 

important topic in structural engineering. In particular, the investigations 

regarding stress-singularities, their nature and their consequences for safe working 

conditions, received special attentions from the scientific community in terms of 

analytical studies, numerical modelling and experimental assessments. 

From a physical perspective, stress-singularities are point-regions in a 

component (e.g., corners, notches, material interfaces, etc..), as schematically 

depicted in Figure 24, where stress magnitudes theoretically tend to infinite 

values. In the neighbour regions of a stress singularity, the stress profile can be 

modelled and described as suggested by the following equation, 
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Figure 24: Example of a corner between different material interfaces where a 

singular stress profile can be foreseen 

 

𝜎𝑖𝑗 = ∑𝐾𝑘𝐻𝑖𝑗
𝑘 (𝜙)𝜁−𝜆𝑘

∞

𝑘=1

+ 𝐻. 𝑂. 𝑇 Eq. (2.4.1) 

where 𝜎𝑖𝑗  is the stress tensor, 𝐾 is the generalized Stress Intensity Factor 

(gSIF),  𝐻 radial functions depending on the local angle, 𝜁 a non-dimensional 

coordinate which is function of the distance from the point of interest, 𝜆𝑘  is the kth 

singularity exponent and  is the smooth non-singular part of the stress. The use of 

gSIF is justified as the classical formulation of the SIF accounts for cracks. In the 

case of bonded unions, which is the main topic discussed in this manuscript, a 

stress singularity is also expected at the material interfaces, if local conditions are 

suitable to trigger this feature, or as a consequence of a free-edge effect. In 

particular, in the case of multi-material joints, stress singularities arise as a 

consequence of material discontinuity in presence of free-edge. 

From Eq. (2.4.1) the mathematical condition that foresees the presence of a set 

of stress-singularities can be easily identified namely 0 < 𝜆𝑘 < 1 ∀𝑘 but nothing 

can be stated regarding the final “shape” of the stress profile (i.e., monotonic or 

oscillating. 

Even though the concept of stress-singularity presents some contradictions 

with respect to the linear elasticity [161] as i) they violate the basic assumptions 
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of this subject and ii) locally the material should not respond as an elastic solid 

due to the exceedance of the elastic limit, the study of such characteristic still 

progresses from 1950.  

One of the earliest contributions in this discipline was the one of Williams 

[162] who studied the problem of stress singularities resulting from different 

boundary conditions (i.e., free – free, clamped – clamped, clamped – free) in the 

case of homogeneous mono-material plates. According to Williams [162], the 

presence and the intensity of a singular feature could have been described by a set 

of eigenproblems in terms of harmonic functions, whose formulation strongly 

depends on the adopted boundary conditions (see Table 1). As normal practice in 

detecting singularities, the interest was addressed in finding one or more values of 

the singularity exponent (𝜆𝑘) such as 0 < 𝜆𝑘 < 1. Analytically, Williams 

demonstrated that among the explored configurations, only the clamped – free 

plate may present the singular feature at the vertex for angles 𝜃1 + 𝜃2 < 180° 

whereas, between 180° – 360°, all the configurations could exhibit the same 

property.  

The before mentioned problem was also extended by Williams to cracks within 

an homogeneous mono-material component [163] as well as to crack in dissimilar 

media [164]. 

Similar conclusions were found by England [165] through eigenvalue-based 

analyses with much more mathematical efforts and complexity. Essentially, the 

Author remarked the strong dependence of the type of the stress singularity on the 

applied boundary conditions whereas the magnitude of the singularity was a direct 

consequence of the wedge angle. Dunn et al. [166] concentrated the efforts on 

singularities induced by notches. To do so, both analytical and numerical methods 

were employed and it was demonstrated that an increase of the notch angle 

produced increasing values in the singularity-dominated region but the strength of 

such singularity decreased.  
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Case 
Applied 

BCs 

Eigenfunction 

(𝑧 = 𝜆𝛼) 

Load 

condition 
Constants 

1 Free–Free sin(𝑧) = 𝐶1𝑧 

Bending 𝐶1 =  ±
1 − 𝜈

3 + 𝜈
 
sin(𝛼)

𝛼
 

Extension 𝐶1 =  ±  
sin(𝛼)

𝛼
 

2 
Clamped– 

Clamped 
sin(𝑧) = 𝐶2𝑧 

Bending 𝐶1 =  ±  
sin(𝛼)

𝛼
 

Extension 𝐶1 =  ±
1 + 𝜈

3 − 𝜈
 
sin(𝛼)

𝛼
 

3 
Clamped–

Free 

sin2(𝑧)

= 𝐾1
2 − 𝐾2𝑧

2 

Bending 

𝐾1 =  ± [
4

(3 + 𝜈)(1 − 𝜈)
]

1
2
 

𝐾2 =  ± [
1 − 𝜈

3 + 𝜈
]

1
2 sin(𝛼)

𝛼
 

Extension 

𝐾1
2 = ± [

4

(3 − 𝜈)(1 + 𝜈)
]

1
2
 

𝐾2 =  ± [
1 + 𝜈

3 − 𝜈
]

1
2 sin(𝛼)

𝛼
 

Table 1: Williams results from [162] 

 

Even though the problem of stress singularities in mono-material components 

is still valuable and an actual problem as demonstrated by the remarkable 

literature surveys of Sinclair [167,168] regarding mathematical, modelling and 

physical aspects of stress-singularities as well as the continuous research spent in 

this direction as Lazzarin et al. [169] in the case of V-shaped notches under mixed 

loading conditions, Ciavarella and Meneghetti [170] regarding the fatigue limit 

when notches are present, de Moiras [171] concerning the calculation of SIF 

through Finite Element Models and the force method, Berto et al. [172] in the 
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merit of out-of-plane singular stress fields for V-notches under in-plane shear load 

conditions, Zhu et al. [173] regarding mathematical and physical aspects of stress 

singularities at a crack tip, Shen et al. [174] for U-shapes and V-shaped notches 

with simplified methods and Radaj [175] who extensively reviewed the concepts 

of SIF in the case of 2D and 3D components as well as on notches, welded 

components etc…, modern structures are much more complex. Indeed, these latter 

are typically constituted by bi, tri or multi-material unions of different constituents 

such as composite, metals, ceramics, resins etc… thus, presenting the interaction 

between dissimilar properties (i.e., Modulus of Elasticity, Poisson’s ratio, strain, 

strength) along a bondline.  

Bogy [176] firstly approached the problem of bi-material connections under the 

assumption of classical, isotropic, homogeneous and electrostatic cylindrical 

bodies with orthogonal wedges. The Author manipulated the Airy stress function 

through the Mellin transform for passing from the physical plane to an auxiliary 

plane where the space of problem solutions was defined and accessible. Two 

parameters were employed to describe and approach the problem in the new 

domain namely  (i.e., the Poisson’s ratio) and  (i.e., the Shear Modulus) in the 

framework of an eigenvalue analysis. Surprisingly, in the new domain,  and  

where sufficient to investigate the configurations of interest and results clearly 

prescribed the type and the severity of the singular field. In particular, the most 

severe condition was found in the case of one theoretically rigid material (i.e., 

𝜇′/𝜇′′ = 0) and the other constituent as elastic and incompressible (i.e., 𝜈′ = 1/

2). 

Such description was furthermore refined and extended through the use of the 

so-called Dundurs parameters [177] that are reported in the following 

𝛼 =
𝐸1̅̅ ̅ − 𝐸2̅̅ ̅

𝐸1̅̅ ̅ + 𝐸2̅̅ ̅
 Eq. (2.4.2a) 

𝛽 =
𝜇1(1 − 2𝑘2) − 𝜇2(1 − 2𝑘1)

2[𝜇1(1 − 𝑘2) + 𝜇2(1 − 𝑘1)]
 Eq. (2.4.2b) 

where 𝐸𝑗̅ and 𝑘𝑗  are respectively the Elasticity modulus and the kolosoff 

parameter in both plane stress and plane strain conditions as reported in the 

following 
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𝐸𝑗̅ = {

𝐸𝑗 in plane stress

𝐸𝑗

1 − 𝜈𝑗
in plane strain

 Eq. (2.4.3a) 

𝑘𝑗 = {

3 − 𝜈𝑗

1 + 𝜈𝑗
in plane stress

3 − 4𝜈𝑗 in plane strain

 Eq. (2.4.3b) 

The availability of Dundurs parameters permitted to Bogy to reformulate its 

previous works. A more compact and effective formulation of his mathematical 

framework for investigating edge-singularity problems was postulated. Such 

framework is commonly known under the general term of “Bogy determinant” 

and its expression is reported in the following 

𝑫(𝑎, 𝑏, 𝛼, 𝛽, 𝑝) = 𝐴𝛽2 + 2𝐵𝛼𝛽 + 𝐶𝛼2 + 2𝐷𝛽 + 2𝐸𝛼 + 𝐹 Eq. (2.4.4) 

Where 𝑎, 𝑏 are the local material angles, 𝛼, 𝛽 the Dundurs parameters, 𝑝 the 

complex variable and the 𝐴 − 𝐹 functions that depend on the previous 

mathematical entities.  

In particular, in [11] Bogy reformulated the problem of bonded edges in the 

case of  𝑎 + 𝑏 = 360° (i.e., a fully bonded body) whereas in [178] a further 

improvement removed the equality condition thus 𝑎 + 𝑏 < 360° (i.e., a non-

completely bonded body). In both cases, Bogy described the singularity 

conditions in terms of intensity of the singularity exponent for several bi-material 

specimens. 

Kelly et al. [12] proposed similar investigations like in Bogy [178] but they 

extended the observation to non-conventional configurations of scarf joins (i.e., 

𝜃 + 𝜙 = 180°, 𝜃,𝜙 are the local angle adopted in the paper) as well other 

possible geometries such as 𝜃 = 90° and 0° ≤ 𝜙 ≤ 90°. The aim was oriented to 

the identification of possible non-singular geometries and the Authors were 

successful in term of design maps. However, such approach was limited in the 

sense that the results were extracted at fixed geometrical conditions aiming at 

understanding the mechanical properties of the joint constituents to be adopted to 

achieve a non-singular component. Even though the Authors achieved remarkable 

outcomes, the intrinsic limitation was attributed to the fact that there was not the 

possibility to understand the geometrical non-singularity conditions at fixed 
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material properties. Hein and Erdogan [179] also assessed the effect of material 

properties, in term of elastic ratio, to the singularity exponent but the main 

achievement was the development of a method for predicting both displacement 

and stress near the singularity of a bi-material wedge. 

The remarkable works before mentioned were commonly based on 2D plane-

stress and plane strain assumption as valid for describing a wide range of 

components and internal load conditions but almost nothing approached more 

complex physical situations. Such lack of knowledge was filled to some extent by 

the work of Liu et al. [180] who focused on stress-singularities around 

axisymmetric by-material interfaces like material inclusions. Their investigation 

was mainly analytically oriented and based on a Bogy-like approach with a 

considerable mathematical effort. The Authors found similar closed forms 

relationships in the path of the Bogy determinant with additional terms that 

characterize the axisymmetric nature of the problem under analysis. In addition, 

they also defined analytical relationships for capturing the stress distribution near 

the singularity apex that were compared with numerical outcomes. Numerical 

stress results were in satisfactory agreement with analytical extraction but 

presented some deviations. 

The even more powerful capabilities of Finite Element Analysis tools made 

available even wider ranges of geometrical complexity, investigation capabilities 

going beyond linear elastic analysis as well as comparison with respect to 

analytical or experimental outcomes. In fact, Groth [181] exploited the 

capabilities of both Finite Element Methods and Bogy analytical relationships for 

investigating similar edge bonded problems. Especially, the Author concentrated 

on fully elastic single lap joints and his attention was focused on the research of 

multiple roots for the singularity exponent. Stress results in the neighbour regions 

of the singularity were well approximated by a two-term expansion in Eq. (2.4.1) 

and this evidence requested the necessity of establishing a fracture criterion for 

predicting the damage initiation (i.e., 𝐾𝑦 > 𝐾𝑐𝑟𝑖𝑡𝑖𝑐 of one or more gSIF). Indeed, it 

was understood that a sufficient characterization of a singular stress region, rather 

than a single point, could have been fully described in terms of the exponent and 

gSIF . 
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Quarter plane geometries were analysed by Reedy [182,183] under transverse 

tension, uniform temperature change and shear. In all the cases a singularity type 

in the form of Eq.(2.4.5) was found. Reedy provided some useful analytical 

expression of  in terms of the mechanical and geometrical properties of the 

specimen and acting loads. In particular, transverse tension case was described by 

Eq.(2.4.6) where  are the Elasticity modulus and Poisson’s ratio respectively,  is 

the applied displacement for the calculation and  the specimen thickness, the 

thermal case by Eq.(2.4.7) where  is the thermal expansion coefficient and  is the 

thermal variation, the shear case by Eq.(2.4.8) where  is the Shear modulus and  is 

the applied displacement for the calculation in this specific loading condition. 

𝐾 = 𝜎∗ℎ1−𝜆𝐴(𝜈) Eq. (2.4.5) 

𝜎∗ = −
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)

𝑈∗

ℎ
 Eq. (2.4.6) 

𝜎∗ = −
𝐸𝛼Δ𝑇

(1 − 𝜈)
 Eq. (2.4.7) 

𝜎∗ = −
𝐺𝑈∗

ℎ
 Eq. (2.4.8) 

In the general expression of 𝐾 of Eq.(2.4.5), 𝐴(𝜈) is a dimensionless function 

that depends on the Poisson’s ratio only. Such function was identified numerically 

by Reedy through curve fitting and discrete extraction methods. 

The work of Wang and Rose [184] was a consistent step forward with respect 

to the works by Reedy. After emphasizing the importance of compact analytical 

solution to estimate  easily, the Authors illustrated more precise results and 

investigations in this direction. In particular the SIF could be described as a linear 

combination of peel and shear modes properly multiplied by a Poisson’s 

dependent function as reported in Eq. (2.4.9) 

𝐾 = [𝜎𝐴,𝑚𝑎𝑥𝐴(𝜈) + 𝜏𝐴,𝑚𝑎𝑥𝐵(𝜈)]ℎ
𝛼 Eq. (2.4.9) 

Where 𝜎𝐴,𝑚𝑎𝑥, 𝜏𝐴,𝑚𝑎𝑥 are provided by bonded joint theories and 𝐴(𝜈), 𝐵(𝜈) 

the two dimensionless Poisson’s functions. The trend of such functions was 

dictated by the joint configurations and their extraction was purely numerical with 

a curve-fitting approach. For example, for a squared edge 
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𝐴(𝜈) = 0.836 − 2.23𝜈 + 6.29𝜈2 − 9.64𝜈3

𝐵(𝜈) = 3.12 − 15.8𝜈 + 40.1𝜈2 − 37.6𝜈3
 Eq. (2.4.10) 

and for a spew fillet 

𝐴1(𝜈) = 0.226 + 0.284𝜈 − 3.48𝜈2 + 13.1𝜈3 − 16.9𝜈4

𝐵1(𝜈) = −0.4

𝐴2(𝜈) = 0.31 − 0.08𝜈 − 1.85𝜈2 + 20.8𝜈3 − 81.7𝜈4 + 91.3𝜈5

𝐵2(𝜈) = 0.603 − 1.95𝜈 + 22.8𝜈2 + 81.3𝜈3 + 107𝜈4

 Eq. (2.4.11) 

The paramount importance of a more clear investigation and definition of the 

gSIF, K, was also recognized by Akisawa and Fleck [185]. To do so, the Authors 

studied the problem of bi-material unions with and without cracks via both 

analytical relationships and Finite Element Models. Precisely, Finite Element 

Models investigated the stress distribution around the singular point and analytical 

techniques based on contour integrals studied both region of dominance of the 

free-edge singularity and the intensity of K. Such region extended along a radial 

direction at 𝜃 ≈ 45° for about 0.1w (w the width of the specimen) whereas at the 

interface, 𝜃 ≈ 0°, it extends for 0.03w. Akisawa and Meng [186] refined the 

analyses published in [185] by considering the effects of plasticity with respect to 

the use of  𝐾 = 𝐾𝑐  as a failure criterion for the crack onset. They found that such 

criterion is still valid under precise conditions such as ℎ > 𝐵 (
𝐾𝑐

𝜎𝑌
)

1

1−𝜆
 where  is the 

thickness of the adhesive layer, B a non-dimensional parameter,  𝜎𝑌 the uniaxial 

yield stress and 𝜆 the singularity exponent. The work of Lefebvre and Dillard 

[187] lies in the same path for investigating the gSIF as a failure initiation for 

fatigue application. Under the assumed geometrical specimens, the Authors found 

that a stress-singularity approach, for establishing a failure criterion, was 

accessible only if the singular zone was larger than the fracture process zone. 

Goglio and Rossetto [10] exploited structural solutions (i.e., adherends 

schematized as beam-like or plate-like structures and adhesive like a spring bed) 

to develop an analytical framework, solved numerically with ad-hoc routines, in 

the path of [184] for extracting SIF, displacements and radial functions. Their 

proposed approach was thus compared with Finite Element Models over a wide 

set of geometrical parameters. Numerical extractions confirmed the results 

accuracy of their framework. However, the specific influence of the joint 
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geometry was systematically assessed by Goglio and Rossetto [14] in a complete 

numerical fashion Finite Element Models, for a single-lap joint configuration. 

They discovered that the edge angle is the parameter which plays the most 

important role to the stress exponent and stress field as well (i.e., the decrease of 

edge angle implies a steep decrease in for the stress exponent and stress field) 

whereas the edge shape contributes much less. The increase of the bond length 

produces a more uniform singular stress field whereas it is augmented in 

magnitude when the adhesive thickness increases. The Author also remarked the 

non-significance of comparing the SIFs when such parameters are attributed to 

different  values. 

Lazzarin et al. [188] spent efforts in pushing forward the analytical prediction 

capabilities of singular stress fields in bonded joints. Under the assumption of 

variable separable two-term stress expansion, the Authors developed a framework 

for predicting both the stress state and the angular functions taking into account 

the joint boundary conditions and the material properties only. Such framework 

was solved numerically with ad-hoc designed routines as the problem equations 

were of partial differential type. The Authors compared the analytical predictions 

with Finite Element results in the case of various geometries gaining confirmation 

of accuracy and robustness of their mathematical framework. A similar approach 

was followed by Quaresimin and Ricotta [189] for investigating the gSIF and the 

Strain Energy Release Rate (SERR) of joints. The Authors performed extensive 

numerical studies for predicting the gSIFs through linear analyses whereas the 

SERR was assessed completely in a non-linear fashion. Such studies were 

fundamental for establishing a life prediction method to be adopted. 

The concept of the Intensity of Singular Stress Field (ISSF) [190] (i.e., ISSF: 

𝐾𝜎 = lim
𝑟→0

[𝑟1−𝜆 ∙ 𝜎𝜃(𝑟)| 𝜃=𝜋
2
]) was exploited by Li et al. [191] for investigating 

better shear test conditions of lap joint configurations. Indeed, the research was 

addressed to minimize the contributions of bending to the ISSF when executing 

similar experiments. Minimum values of ISSF were found by increasing the 

substrate thickness and, in such case, strength predictions between single-lap and 

double-lap configurations were almost equal. ISSF was also exploited by Noda et 

al. [192] for investigating the change of such parameters over the bondline 

thickness of particular components such as plate butt joints and cylindrical butt 
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joints through mesh-independent strategies. In the case of plate butt joints, under 

the assumption of semi-infinite plate if ℎ/𝑊 < 0.01 (ℎ is the bondline thickness 

and 𝑊 is the plate width), the normalized ISSF has uniform values. A similar 

constant tendency is foreseen in the case of cylindrical butt-joint if ℎ/𝐷 < 0.01 (ℎ 

is the bondline thickness and 𝐷 is the joint diameter).  

Even though the work of Lang and Mallick [193] was not explicitly developed 

in the field of stress singularity rather than stress concentration, they explored the 

effects of spew geometries placed in single lap joint at the edge interface. They 

found that the precise injection of an amount of extra adhesive was beneficial for 

some configurations in terms of stress distribution thus removing, of at least 

mitigating, the severity of a possible stress-singularity. However, to guarantee the 

achievement of higher stress performances, spews should have a precise geometry 

that could be difficult to manufacture. 

The advancement in the research of even more performant adhesive joints lead 

to the development of mixed adhesive joints namely joints which adopt two, or 

more, bonding material along the bondline thickness for improving strength 

characteristics and stresses in sensible locations. In this context The singularity 

features in tri-material joints have been exploited by Breto et al. [194] for 

designing a tailored single-lap component which alleviates the singularity effects. 

The Authors proposed some material selection methodologies based on pure 

analytical approaches to accomplish such purpose. Similar configurations were 

also studied by Galvez et al. [195] for investigating the effects of the Young 

modulus on the ISSF. Numerical results showed that ISSF in the case of mixed 

adhesive joints is sensible to the mixed material selection. For instance, safety 

values of ISSF can be achieved if the central adhesive is much more rigid that the 

outer. 

In the field of collapses induced by stress-singularities it is worth mentioning 

the work of Barroso et al. [196]. Under fully experimental conditions the Authors 

found that the presence of a stress singularity induces premature failures in 

components and such collapses prohibits proper strength characterizations. This 

issue was overcome by inserting some slight geometrical modifications at the 

material interfaces and tested specimens failed correctly thus presenting enhanced 

and more realistic load-bearing capabilities. 
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The last aspect in the field of stress-singularities that is worth mentioning 

pertains the specific use of numerical techniques such as Finite Element Methods 

for both modelling and identification purposes. Indeed, even though the above-

mentioned closed form solutions and analytical relationships contained in 

handbooks, tables and manuals are extremely useful for a stress identification in a 

simple geometry, current engineering products are much more complex than 

simple coupons and suitable numerical tools could simplify, or make accessible, 

the analysis of complex shapes. To the purpose of stress singularity analysis, both 

classical and advanced Finite Element formulations have been used and 

developed. In this context, the term “classical” refers to the standard definition of 

the elemental displacement formulation [197], reported in Eq. (2.4.12), which is 

derived based on the Principle of Virtual Displacements 

𝑢 =∑𝑁𝑖𝑢𝑖

𝑁𝑛

𝑖=1

 Eq. (2.4.12) 

where 𝑁𝑖  is the ith element shape function, 𝑢𝑖  the nodal displacement of the ith 

node and 𝑁𝑛 is the number of nodes within an element. Essentially, Eq. (2.4.12) 

states that every point within an element can be described as a linear combination 

of 𝑁𝑖𝑢𝑖  over 𝑁𝑛. Standard formulation were adopted by Sinclair et al. [198,199] 

and Sinclair [200] to numerically estimate the singularity exponent through 

reliable criteria based on mesh progressive refinements in the view of protecting 

the structural integrity of components. Denoting m as the mth mesh refinement 

stage, ℎ𝑚 the element size at the mth refinement such as ℎ𝑚 = ℎ𝑚−1/𝑆𝐹, where 

SF is a constant mesh scaling factor for 𝑚 ≥ 2, Δ𝜎𝑚 = 𝜎𝑚 − 𝜎𝑚−1 the stress 

variation between recursive mesh refinements, after several mathematical 

arrangements the absolute-relative error can be defined as follows 

𝜀̂ =
| Δ𝜎𝑚|

|𝜎𝑚| (
 Δ𝜎𝑚−1
 Δ𝜎𝑚

− 1)
 

Eq. (2.4.13) 

Conventionally, the stress outcome is thus classified according to three 

accuracy levels: i)  satisfactory stress results; ii)  good stress results; iii)  excellent 

stress results. Values higher that 5% are automatically treated as unsatisfactory. 

Eq. (2.4.13) informs about the quality of mesh refined applied to the original set 
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of discretization for producing reliable stress results. However, nothing is stated 

regarding the “shape” of the stress-singularity. Numerically, as suggested by 

Sinclair et al. [199], the so-called power and logarithmic signature can be found 

by observing the evolution of stresses over the mesh refinements. Particularly, in 

the case of power singularities trends are ascribable to  

Δ𝜎𝑚 ~ 𝑆𝐹
𝜆Δ𝜎𝑚−1 Eq. (2.4.14) 

whereas, in the case of logarithmic singularities  

Δ𝜎𝑚 ~ Δ𝜎𝑚−1 Eq. (2.4.15) 

as the m increases. 

Eq. (2.4.14) and Eq. (2.4.15) are theoretical relationships even if numerically-

based. Indeed, as example, 𝜆 is unknown at this stage and additional formulas are 

required for its research. In particular, for power singularities, the approximate 

value of 𝜆 (i.e., 𝜆̂𝑚 at the mth refinement) is 

𝜆̂𝑚 =
ln(𝜎𝑚/𝜎𝑚−1)

ln(𝑆𝐹) 
 Eq. (2.4.16) 

and, accordingly, the percentage change of this quantity is 

𝛿𝜆̂𝑚 =
|𝜆̂𝑚 − 𝜆̂𝑚−1|

𝜆𝑚̅̅ ̅̅
 ∙ 100 Eq. (2.4.17) 

where 𝜆𝑚̅̅ ̅̅ = 1/2(𝜆̂𝑚 + 𝜆̂𝑚−1). Numerically, the presence of a power 

singularity results in 𝜆̂𝑚 ~ 𝜆 and 𝛿𝜆̂𝑚 → 0 as the m increases. Conventionally, a 

power singularity if observed in a model if 𝛿𝜆̂𝑚 < 5% and 𝛿𝜆̂𝑚+1 < 5%.  

A similar work logic is thus applied in the case of logarithmic singularities 

even though such stress shape is uniquely described in terms of stress variation 

only. In this case, the percentage change of this quantity is 

𝛿Δ𝜎𝑚 =
|Δ𝜎𝑚 −  Δ𝜎𝑚−1|

Δσm̅̅ ̅̅ ̅̅
 ∙ 100 Eq. (2.4.18) 



80 
 

Where Δσm̅̅ ̅̅ ̅̅ =  1/2(Δ𝜎𝑚 +  Δ𝜎𝑚−1). Logarithmic singularities in a model 

imply that 𝛿Δ𝜎𝑚 → 0 as m increases. Thus, the criterion for a logarithmic 

singularity identification involves𝛿Δ𝜎𝑚 < 2% and 𝛿Δ𝜎𝑚+1 < 2%. 

As demonstrated, Eqs. (2.4.13) - (2.4.18) are relatively simple and allow an 

easy detection and determination of both the mesh quality and the stress shape 

through spreadsheet for practical engineering applications.  

Another class of Finite Element Methods belongs to the advanced 

formulations. Such formulations assume the presence of additional singular terms, 

within the definition of the elemental displacement, that enrich such field as 

illustrated in Eq. (2.4.19) [201]. 

𝑢 =∑𝑁𝑖𝑢𝑖

𝑁𝑛

𝑖=1

+∑𝑘𝑗 (𝑄𝑗(𝑟, 𝜃) −∑𝑁𝑖𝑄̅𝑗𝑖(𝑟, 𝜃)

𝑁𝑛

𝑖=1

)

𝑁𝑗

𝑗

 Eq. (2.4.19) 

where 𝑁𝑖𝑢𝑖  is the standard part of Finite Element formulations, 𝑘𝑗  is the 

generalized stress intensity factor due to an a-priori assumed displacement field 

𝑄𝑗(𝑟, 𝜃) (e.g., 𝑄𝑗(𝑟, 𝜃) = 𝑟𝜆𝑓(𝜃)) and 𝑄̅𝑗𝑖(𝑟, 𝜃) is the asymptotic displacement 

field at the ith node. 

Finite Elements crated based on Eq. (2.4.19) work adequately in a region 

where a stress-singularity exists, or is supposed to be present, but they could be 

not useful out of the critical region where standard formulations are good enough 

for representing the stress field. To connect both areas (i.e., the refined with 

enriched models and the one discretized with standard schemes) a transition 

region is thus required to guarantee the displacements compatibility as depicted in 

Figure 25. Such region is typically approached with elements presenting a so-

called “zeroing” function 𝑅(𝜁, 𝛿) [13] pre-multiplying the enriched part for the 

model as reported in equation Eq. (2.4.20). 

𝑢 =∑𝑁𝑖𝑢𝑖

𝑁𝑛

𝑖=1

+ 𝑅(𝜁, 𝛿)∑𝑘𝑗 (𝑄𝑗(𝑟, 𝜃) −∑𝑁𝑖𝑄̅𝑗𝑖(𝑟, 𝜃)

𝑁𝑛

𝑖=1

)

𝑁𝑗

𝑗

 Eq. (2.4.20) 

The shape of 𝑅(𝜁, 𝛿) can present different form but, in general, 𝑅(𝜁, 𝛿) = 0 

along boundaries with standard Finite Elements and 𝑅(𝜁, 𝛿) = 1 along those 

boundaries with enriched ones. 
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Figure 25: Modelling a singular corned with enriched, transition and standard 

Finite Elements 

 

In this context, Pageau and Biggers [201] demonstrated that the size of the 

adopted enriched region strongly affects the convergence aspects of the stress 

intensity factor solution and a proper size is problem-dependent. In fact, the use of 

a too small refined zone make slowly converge the solution and, in some cases, it 

could produce a divergent outcome compared to an analytical result. Conversely, a 

wide enriched area can assure the convergency but requires longer calculation 

time.   

2.4.1  Bogy mathematical framework 

In this Section, the Bogy mathematical framework [178] for studying stress 

singularities between bi-material joints will be reviewed and explained in detail as 

well as the fundamental results associated with such model. The knowledge of 

such framework is fundamental to further approach the removal of stress 

singularities from a specimen as addressed in Section 2.4.2 

Let us assume a 2D bi-material wedge as in Figure 26. Such structural detail is 

composed of two separated material regions (𝐷′, 𝐷′′) of linear elastic, isotropic 

and homogenous properties namely the Shear modulus (𝜇′, 𝜇′′) and Poisson’s ratio 

(𝜈′, 𝜈′′) and thus characterized by the two opening angles 𝑎, 𝑏 (𝑎 + 𝑏 ≤ 2𝜋). Let 

𝐵 the bonding line and 𝐵′,𝐵′′ the bonding-free surfaces. Both a cylindrical 

coordinate system (𝑟, 𝜃) and a cartesian coordinate system (𝑥1, 𝑥2) are located at 
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the material interface apex. The traction (𝑛′(𝑟),𝑛′′(𝑟)) and the shear 

(𝑡′(𝑟), 𝑡′′(𝑟)) components compose the stress vector (𝝉) which, coupled with the 

displacement field (𝒖), are the unknown of a boundary value problem. 

 

Figure 26: Bonded wedges under normal and shear loading. Original from 

[178]. 

By assuming the existence of the Airy stress function (𝜙), Eq. (2.4.21) is valid 

on 𝐷′, 𝐷′′ 

∇4𝜙 = 0 Eq. (2.4.21) 

In polar coordinates can be defined the following set of equations 

𝜏𝑟𝑟 =
1

𝑟

𝜕𝜙

𝜕𝑟
+
1

𝑟2
𝜕2𝜙

𝜕𝜃2

𝜏𝜃𝜃 =
𝜕2𝜙

𝜕𝑟2

𝜏𝑟𝜃 = −
1

𝑟

𝜕2𝜙

𝜕𝑟𝜕𝜃
+
1

𝑟2
𝜕𝜙

𝜕𝜃

 Eq. (2.4.22) 

 

𝜕𝑢𝑟

𝜕𝑟
=
1

2𝜇
[
1

𝑟

𝜕𝜙

𝜕𝑟
+
1

𝑟2
𝜕2𝜙

𝜕𝜃2
− (1 −

𝑚

4
) ∇2𝜙]

𝜕𝑢𝜃

𝜕𝑟
−
𝑢𝜃

𝑟
+
1

𝑟

𝜕𝑢𝑟

𝜕𝜃
=
1

𝜇
(−

1

𝑟

𝜕2𝜙

𝜕𝑟𝜕𝜃
+
1

𝑟2
𝜕𝜙

𝜕𝜃
)

 Eq. (2.4.23) 

Where 𝑚 is a coefficient such as  
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𝑚 = {
4(1 − 𝜈) 𝑖𝑛 𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

4

1 + 𝜈
𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

 Eq. (2.4.24) 

Eq. (2.4.22), (2.4.23) must satisfy the following boundary conditions 

𝜏𝜃𝜃
′ (𝑟,−𝑏) = 𝑛′(𝑟) 𝜏𝜃𝜃

′′ (𝑟, 𝑎) = 𝑛′′(𝑟)

𝜏𝑟𝜃
′ (𝑟,−𝑏) = 𝑡′(𝑟) 𝜏𝑟𝜃

′′ (𝑟, 𝑎) = 𝑡′′(𝑟)
 Eq. (2.4.25) 

𝜏𝜃𝜃
′ (𝑟, 0) = 𝜏𝜃𝜃

′′ (𝑟, 0) 𝜏𝑟𝜃
′ (𝑟, 0) = 𝜏𝑟𝜃

′′ (𝑟, 0)

𝑢𝑟
′ (𝑟, 0) = 𝑢𝑟

′′(𝑟, 0) 𝑢𝜃
′ (𝑟, 0) = 𝑢𝜃

′′(𝑟, 0)
 Eq. (2.4.26) 

 

Particularly, Eq. (2.4.25) prescribes the magnitude of acting loads at the 

bonding-free surfaces whereas Eq. (2.4.26) imposes the continuity of stresses and 

displacements along the bonding line. 

The adopted approach followed by Bogy relies on the application of the Mellin 

transform which formulation for a generic function 𝑓(𝑟) (0 < 𝑟 < ∞) is 

represented by 

𝐹{𝑓; 𝑠} = ∫ 𝑓(𝑟)𝑟𝑠−1𝑑𝑟 
∞

0

 Eq. (2.4.27) 

  The application of Eq. (2.4.27) to Eqs. (2.4.21) - (2.4.26) leads to a 

mathematical system in the variables 𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝑎′′, 𝑏′′, 𝑐′′, 𝑑′′ as reported in Eq. 

(2.4.28) 

− sin(𝑏𝑠)𝑎′ + cos(𝑏𝑠) 𝑏′ − sin(𝑏𝑠 + 2𝑠)𝑐′ + cos(𝑏𝑠 + 2𝑠)𝑑′ =
𝑛̂′(𝑠)

𝑠
(𝑠 + 1)

𝑠 cos(𝑏𝑠)𝑎′ + 𝑠 sin(𝑏𝑠)𝑏′ + (𝑠 + 2) cos(𝑏𝑠 + 2𝑠)𝑐′ + (𝑠 + 2) sin(𝑏𝑠 + 2𝑠)𝑑′ = 
𝑡̂′(𝑠)

𝑠
+ 1

sin(𝑎𝑠)𝑎′′ + cos(𝑎𝑠)𝑏′′ + sin(𝑎𝑠 + 2𝑠)𝑐′′ + cos(𝑎𝑠 + 2𝑠)𝑑′′ = 
𝑛̂′′(𝑠)

𝑠
(𝑠 + 1)

𝑠 cos(𝑎𝑠)𝑎′′ − 𝑠 sin(𝑎𝑠)𝑏′′ +(𝑠 + 2) cos(𝑎𝑠 + 2𝑠)𝑐′′ − (𝑠 + 2) sin(𝑎𝑠 + 2𝑠)𝑑′′ =
𝑡̂′′(𝑠)

𝑠
+ 1

𝑏′ + 𝑑′ − 𝑏′′ − 𝑑′′ = 0
𝑠𝑎′ + (𝑠 + 2)𝑐′ − 𝑠𝑎′′ − (𝑠 + 2)𝑐′′ = 0

𝜇′′𝑠𝑏′ + 𝜇′′(𝑠 + 𝑚′)𝑑′ − 𝜇′𝑠𝑏′′ − 𝜇′(𝑠 + 𝑚′′)𝑑′′ = 0

𝜇′′𝑠𝑎′ + 𝜇′′(𝑠 + 2 −𝑚′)𝑐′ − 𝜇′𝑠𝑎′′ − 𝜇′(𝑠 + 2 −𝑚′′)𝑐′′ = 0

 Eq. (2.4.28) 
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where 𝑛̂′, 𝑛̂′′, 𝑡̂′, 𝑡̂′′ are the traction and shear loads in the transformed domain. 

In a more compact formulation, Eq. (2.4.28) can be rewritten as in the following 

[∆]{𝑧} = {𝑔} Eq. (2.4.29) 

where 

∆=

[
 
 
 
 
 
 
 
 
− sin(𝑏𝑠) cos(𝑏𝑠) − sin(𝑏𝑠 + 2𝑠) cos(𝑏𝑠 + 2𝑠) 0 0 0 0

𝑠 cos(𝑏𝑠) 𝑠 sin(𝑏𝑠) (𝑠 + 2) cos(𝑏𝑠 + 2𝑠) (𝑠 + 2) sin(𝑏𝑠 + 2𝑠) 0 0 0 0
sin(𝑎𝑠) cos(𝑎𝑠) sin(𝑎𝑠 + 2𝑠) cos(𝑎𝑠 + 2𝑠) 0 0 0 0
𝑠 cos(𝑎𝑠) −𝑠 sin(𝑎𝑠) (𝑠 + 2) cos(𝑏𝑠 + 2𝑠) −(𝑠 + 2) sin(𝑎𝑠 + 2𝑠) 0 0 0 0

0 1 0 1 0 −1 0 −1
𝑠 0 (𝑠 + 2) 0 −𝑠 0 −(𝑠 + 2) 0

0 𝜇′′𝑠 0 𝜇′′(𝑠 +𝑚′) 0 −𝜇′𝑠 0 −𝜇′(𝑠 +𝑚′′)
𝜇′′𝑠 0 𝜇′′(𝑠 + 2 − 𝑚′) 0 −𝜇′𝑠 0 −𝜇′(𝑠 + 2 −𝑚′′) 0 ]

 
 
 
 
 
 
 
 

 

 

Is the matrix of coefficients, 

{𝑧} = {𝑎′ 𝑏′ 𝑐′ 𝑑′ 𝑎′′ 𝑏′′ 𝑐′′ 𝑑′′}
𝑡 

the vector of unknowns and 

{𝑔} = {
𝑛̂′(𝑠)

𝑠
(𝑠 + 1)

𝑡̂′(𝑠)

𝑠
+ 1

𝑛̂′′(𝑠)

𝑠
(𝑠 + 1)

𝑡̂′′(𝑠)

𝑠
+ 1 0 0 0 0}

𝑡

 

the loading vector. 

Moreover, the introduction of Dundurs parameters expressed in Eq. (2.4.2) 

permitted to Bogy to further concisely express the determinant of  as  

𝑫(𝑎, 𝑏, 𝛼, 𝛽;  𝑝) = 𝐴𝛽2 + 2𝐵𝛼𝛽 + 𝐶𝛼2 + 2𝐷𝛽 + 2𝐸𝛼 + 𝐹 Eq. (2.4.30)  

where the  functions depend on the  and  is the complex variable such as . In 

Eq. (2.4.31) the expression of  functions is recalled. 

𝐴 = 4𝐾(𝑝, 𝑎)𝐾(𝑝, 𝑏)

𝐵 = 2𝑝2 sin2(𝑎)𝐾(𝑝, 𝑏) + 2𝑝2 sin2(𝑏)𝐾(𝑝, 𝑎)

𝐶 = 4𝑝2(𝑝2 − 1) sin2(𝑎) sin2(𝑏) + 𝐾[𝑝, (𝑎 − 𝑏)]

𝐷 = 2𝑝2[sin2(𝑎) sin2(𝑝, 𝑏) − sin2(𝑏) sin2(𝑝, 𝑎)]

𝐸 = −𝐷(𝑎, 𝑏; 𝑝) + 𝐾(𝑝, 𝑏) − 𝐾(𝑝, 𝑎)

𝐹 = 𝐾[𝑝, (𝑎 + 𝑏)]

 Eq. (2.4.31) 

and 𝐾(𝑝, 𝑥) an auxiliary function such as 
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𝐾(𝑝, 𝑥) = sin2(𝑝𝑥) − 𝑝2 sin2(𝑥) Eq. (2.4.32) 

 

Bogy demonstrated that, based on the solution of Eq. (2.4.30), the stress field 

in both material regions could have been described as  

𝛔 =

{
  
 

  
 

𝑂(𝑟𝑝−1) 𝑖𝑓 𝑝 = 𝑝𝑅
𝑂[𝑟𝑝𝑅−1 cos(𝑝𝐼 log 𝑟)  𝑜𝑟 𝑟

𝑝𝑅−1 sin(𝑝𝐼 log 𝑟)] 𝑖𝑓 𝑝 = 𝑝𝑅 + 𝑖𝑝𝐼

𝑂(log 𝑟) 𝑖𝑓 𝐷 ≠ 0 𝑓𝑜𝑟 𝑝𝑅 ∈ ]0 ÷ 1[,
𝑑𝐷

𝑑𝑝
= 0 𝑎𝑡 𝑝 = 1

𝑂(1) 𝑖𝑓 𝐷 ≠ 0 𝑓𝑜𝑟 𝑝𝑅 ∈ ]0 ÷ 1[,
𝑑𝐷

𝑑𝑝
≠ 0 𝑎𝑡 𝑝 = 1

 Eq. (2.4.33) 

In essence, the stress “shape” near a singular point was fully dependent on the 

typology of the mathematical solution found from Eq. (2.4.30) namely a power 

singularity, an oscillating singularity constituted by a real and a complex term, a 

logarithmic stress field or an almost constant distribution. 

Some important features that are worth mentioning, in the view of singularity 

analysis, regarding the before mentioned Dundurs parameters, are graphically 

summarized in Figure 27. Let us define the 2D space where all the possible 

combinations in terms of Shear modulus and Poisson ratio could be identified 

respecting the formulation of Eq. (2.4.2a). In such open space, the introduction of 

some physical-based restrictions namely and further diminish the allowable space 

in the plane. 

 

Figure 27: Parallelograms of physically relevant material combination. Origin 

from [178]. 
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The introduction such of physical restrictions limits the allowable space to a 

particular parallelogram which is sensible to the adopted plane strain or 

generalized plane stress conditions as visible in Figure 27. Precisely, plane strain 

conditions occupy more allowable space and this means that the much more 

phenomena can be described within. Such plane strain parallelogram presents 

some lateral boundaries namely 𝜇′/𝜇′′ = 0 on the left side (i.e., 𝛼 → −1), 

𝜇′/𝜇′′ = ∞ on the right side (i.e., 𝛼 → +1) whereas 𝑘-values from Eq. (2.4.3b) 

equal to 𝑘1 = 3, 𝑘2 = 1 in the upper diagonal edge and 𝑘1 = 2, 𝑘2 = 3. Moreover, 

assuming to work with finite and positive values of 𝜇′/𝜇′′ (i.e., 𝛼 = 𝛽), the 

allowable polygon is further reduced as demonstrated by the example in Figure 27 

in the case of 𝜇′/𝜇′′ = 1/3. Furthermore, parallelograms collapse in a straight 

line for 𝜇′/𝜇′′ = 1 namely in the case of identical Shear moduli but, theoretically, 

different Poisson ratios.  The case of identical materials arises when 𝛼 = 𝛽 = 0 

and thus the formulation of the Bogy determinant degenerates as 

𝑫(𝑎, 𝑏, 0, 0;  𝑝) = sin2[𝑝(𝑎 + 𝑏)] − 𝑝2 sin2(𝑎 + 𝑏) Eq. (2.4.34) 

that is the reformulation of the Williams [162] case for free-free conditions. 

The characteristic of such diagram in Figure 27 allows the study of singularity 

explicitly and graphically as suggested by Dundurs [177]. Bogy implemented the 

insights of Dundurs for performing singularity evaluation based on 

𝑫(𝑎, 𝑏, 𝛼, 𝛽;  𝑝) = 0 in the framework of 𝛼 − 𝛽 plane. 

Some useful results can be found by considering the limiting case 𝜇′/𝜇′′ → 0 

(i.e., 𝜇′ → 0 or 𝜇′′ → ∞) which leads to 𝛼 → −1 and 𝛽 → (2 − 𝑚′)/𝑚′. In that 

circumstance the 𝑫 operator becomes factorable as reported  

𝑫(𝑎, 𝑏, −1, β;  𝑝) =

= 4[sin2(𝑝𝑎) − 𝑝2 sin2(𝑎)]{[sin2(𝑝𝑏) − 𝑝2 sin2(𝑏)]𝛽2

− 2𝑝2 sin2(𝑏)𝛽 + cos2(𝑝𝑏) − 𝑝2 sin2(𝑏)} 

Eq. (2.4.35) 

The graphical outcome of Eq. (2.4.35) is represented in Figure 28. S 

Specifically, the trend of the first factor (i.e.,  sin2(𝑝𝑎) − 𝑝2 sin2(𝑎)) is reported 

in Figure 28(a) whereas the trend of the second factor (i.e., {[sin2(𝑝𝑏) −

𝑝2 sin2(𝑏)]𝛽2 − 2𝑝2 sin2(𝑏)𝛽 + cos2(𝑝𝑏) − 𝑝2 sin2(𝑏)}  is depicted in Figure 
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28(b). In both cases, the wedge angle interval  0° – 360°  is of interest. In 

particular, the study of the first factor is associated with the research of 

mathematical roots in the case of free-free configuration of an angle with opening 

𝑎, whereas the second factor leads to the solution of a fixed-free single wedge 

angle of opening 𝑏. It is also interesting to observe that for a wedge angle of 360° 

𝑝1=0.5 which represents the case of a crack for linear elastic fracture mechanics. 

 

(a) Tractions on both faces 

 

(b) One face fixed and tractions on the other 

Figure 28: Roots  for single material wedges. Original from [178] 

The main outcome of Figure 28(a) pertains the existence of real solutions only 

for the first factor of 𝑫(𝑎, 𝑏,−1, β;  𝑝). such result could be particularly helpful 

for the analysis of 𝑎 + 𝑏 wedge angle angles to determine curves passing through 

the 𝛼 = 𝛽 = 0 point. From Figure 28(b), the solution curves are defined for the 

second factor of 𝑫(𝑎, 𝑏, −1, β;  𝑝) and these can assume both real of complex 

values depending on the mechanical and geometrical properties. In particular, 
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complex values are foreseen in the case of −0.5 ≤ 𝛽 ≤ 0 for the 0° – 360° 

interval. In addition, Figure 28(b) suggests design-oriented solution, in terms of 

equation roots, as the 𝑏-value relies on different intervals. In particular, 𝑝-roots 

are not foreseen in the case of 𝑏 ≤ 𝜋/4; 𝛽-dependent real 𝑝-roots can exist in the 

range 𝜋/4 ≤ 𝑏 ≤ 𝜋/2; 𝛽-dependent real or complex 𝑝-roots can exist in the range 

𝜋/2 ≤ 𝑏 ≤  𝜋. In correspondance of 𝑏 = 𝜋 the following equation summarizes 

the roots of the second factor of 𝑫(𝑎, 𝑏,−1, β;  𝑝) 

sin2(𝑝𝜋)𝛽2 + cos2(𝑝𝜋) = 0 Eq. (2.4.36) 

whose solution is 

𝑝 =
1

2
±
𝑖

𝜋
tanh−1(𝛽) Eq. (2.4.37) 

The last 𝑏 interval is 𝜋 < 𝑏 < 2𝜋. In this case also the 𝑝-roots can be both real 

and complex based on the assumed 𝛽 value. 

The joined use of Figure 28(a) and Figure 28(b) is particularly helpful in the 

research of solutions for 𝑫(𝑎, 𝑏, 𝛼, 𝛽;  𝑝) = 0 for any wedge and material 

combinations. In particular, Figure 28(a) applied to a wedge 𝑎 + 𝑏 determines 

solutions passing through the point 𝛼 = 𝛽 = 0, whereas, Figure 28(a) for a wedge 

of opening  and Figure 28(b) for a wedge of opening are employed in the research 

of p-curves that intercept 𝛼 = −1. 

One important problem remains: the transition from power singularities and 

logarithmic singularities. Such transition requires that no real roots exist in the 

range ]0, 1[ and, mathematically, it is defined by the 
𝑑𝑫

𝑑𝑝
|
𝑝=1

= 0. In general, such 

problem is complex and demanding. Anyhow, real to complex transitions should 

satisfy both the following conditions 

𝑫(𝑎, 𝑏, 𝛼, 𝛽; 𝑝∗) = 0,
𝑑𝑫

𝑑𝑝
(𝑎, 𝑏, 𝛼, 𝛽;  𝑝)|

𝑝=𝑝∗
= 0 Eq. (2.4.38) 

In the following, the three cases explored in the Bogy original paper namely 

“Equal Angle wedges”, “Composite half plane”, and “Composite full planes” are 

presented.  
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1. Equal Angle wedges, 𝑎 = 𝑏 

This case is the most straightforward and based on a one-parameter approach. 

Among all the possible combinations, particular examples are 𝑎 = 𝑏 = 𝜋/2 or 

𝑎 = 𝑏 = 𝜋.   

In the case of equal angles case 𝐴 − 𝐹 functions of the Body determinant 

become 𝐴 = 4𝐾2(𝑝, 𝑎), 𝐵 = 4𝑝2 sin2(𝑎)𝐾(𝑝, 𝑎), 𝐶 = 4𝑝2(𝑝2 − 1) sin4(𝑎), 𝐷 =

𝐸 = 0, 𝐹 = 𝐾(𝑝, 2𝑎) which simplify 𝑫 such as 

𝑫(𝑎, 𝑏, 𝛼, 𝛽;  𝑝) = 𝐴𝛽2 + 2𝐵𝛼𝛽 + 𝐶𝛼2 + 𝐹 = 0 Eq. (2.4.39) 

Moreover, due to the special geometrical symmetry exhibited by this condition 

so that 𝑫(𝑎, 𝑏, 𝛼, 𝛽;  𝑝) = 𝑫(𝑎, 𝑎,−𝛼,−𝛽;  𝑝), the solutions can be computed only 

in half of the parallelograms in the 𝛼-𝛽 plane. 

Classically, the analysis was conducted by observing that 𝐵2 − 𝐴𝐶 > 0 thus 

Eq. (2.4.39) describes hyperbolic curves of solutions in the 𝛼 − 𝛽 plane. Such 

curves degenerate in a straight line passing through the origin when the 𝐹 term 

disappear. In Figure 29 the p-hyperbola are depicted in the case of 2𝑎 < 𝜋 , which 

produces real eigenvalues only, whereas in Figure 30 the case 2𝑎 > 𝜋 associated 

to complex eigenvalues. 

 

(a)  
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(b)  

 

(c)  

Figure 29: Real solutions for 𝑫(𝑎, 𝑏, 𝛼, 𝛽; 𝑝) = 0 . Equal wedge case. Original 

form [178]. 
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(a)  

 

(b)  

 

(c) 

Figure 30: Complex solutions for 𝑫(𝑎, 𝑏, 𝛼, 𝛽; 𝑝) = 0 . Equal wedge case. 

Original form [178]. 
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In such cases, the limit condition of 𝑝 → 1 so that curves pass from the origin 

appears when 2𝑎 = 𝜋, namely in the case of 𝐹 = 0. Assuming a guess value of 

𝑝 = 𝑝∗ such as the 𝐹 term disappear, the straight lines described by Eq. (2.4.34) 

can be described as  

𝛽 =
sin2(𝑎)𝑝∗

𝑝∗2 sin2(𝑎) − sin2(𝑝∗𝑎)
(𝑝∗ ± 1)𝛼 Eq. (2.4.40) 

In the case 2𝑎 → 𝜋, 𝑝∗ → 1 thus Eq. (2.4.36) defines the two lines at 𝛼 = 0 

and 𝛽 = 𝛼/2 . Moreover, if 2𝑎 → 2𝜋, 𝑝∗ → 0.5 thus lines collapse into a unique 

line 𝛽 = 0. Tthe limit condition for 𝑝 → 1 establishes at 
𝑑𝑫

𝑑𝑝
|
𝑝=1

= 0 and explicitly  

𝛼2 −
2 sin2(𝑎) − 𝑎 sin(2𝑎)

sin2(𝑎)
𝛼𝛽 =

sin2(2𝑎) − 𝑎 sin(4𝑎)

4 sin4(𝑎)
 Eq. (2.4.41) 

 If  𝛼 = −1 Eq. (2.4.37) reduces to 

𝛽 =
cos (2𝑎)

2 sin2(𝑎)
 Eq. (2.4.42) 

That corresponds to Eq. (2.4.36) for 𝑝1 → 1 when angles are defined between 

𝜋/4 and 𝜋/2 

2. Composite half plane, 𝑎 + 𝑏 = 𝜋 

This class of wedges is expressed by the angular condition 𝜋/2 ≤ 𝑎 ≤ 𝜋 and 

𝑏 = 𝜋 − 𝑎 that satisfies 𝜋/2 ≥ 𝑏 > 0. The analysis of 𝑎 + 𝑏 = 𝜋 in the 

framework of Figure 28(a) suggests that solutions are of transition type (i.e., 𝑝 →

1) and these can lie on the 𝛼 = 𝛽 = 0 point. From Figure 28(b), at varying of the  

value, different solutions could be foreseen as graphically illustrated in Figure 31. 

For example, if  𝜋/4 < 𝑏 ≤ 𝜋/2 as for Figure 31(a) only real roots can be 

extracted till an adequate 𝛽 value trigger complex solutions. 
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(a)  

 

(b)  

 

(c)  

Figure 31: Solutions for 𝑫(𝑎, 𝑏, 𝛼, 𝛽; 𝑝) = 0. Composite Half Plane. Original 

form [178] 
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In the case of 𝑏 = 𝜋 − 𝑎, the Bogy determinat in Eq. (2.4.30) provides the 

root-locus of limit 𝑝 → 1 as the two straigth lines that intersect each other, namely 

𝛼 =
𝜋 sin(2𝑎)

(2𝑎 − 𝜋) sin(2𝑎) − 4 sin2(𝑎)

𝛽 =  −
cos(2𝑎)

2 sin2(𝑎)

 Eq. (2.4.43) 

The line associated with the 𝛼 term is vertical in the plane. It assumes values 

between 0 and 1 for 𝑎 = 𝜋/2 and 𝑎 = 𝜋. The line associated with the 𝛽 term 

intercepts the origin with a slope between 1/2 and 0 at 𝜋/2 and 3𝜋/4, 

respectively. Such curves, in addition, represent the transition between real to 

complex eigenequations as demonstrated in the associated pictures in Figure 31. 

3. Composite full planes, 𝑎 + 𝑏 = 2𝜋 

This case refers to a cracked bi-material configuration where the crack evolves 

along the material interface and root finding is much more complex that in the 

previous cases as illustrated in Figure 32. As executed for the before investigated 

configurations (i.e., Equal Angle wedges and Composite half plane) is worth to 

observe outcomes of Figure 28. In particular, Figure 28(a) highlights that the bi-

material configuration  𝑎 + 𝑏 = 2𝜋 can originate only 𝑝 = 0.5 passing through 

the point 𝛼 = 𝛽 = 0. In this circumstance the characteristic equation Eq. (2.4.30) 

becomes 

sin4(𝑎/2)[sin2(𝑎/2)𝛽 + cos2(𝑎/2)𝛼]2 = 0  Eq. (2.4.44) 

And thus 

𝛽 = −cot2(𝑎/2)𝛼 Eq. (2.4.45) 

Particularly, the term −cot2(𝑎/2) is the curve slope and it varies based on the 

𝑎 value in input between 0, in correspondence of 𝑎 = 𝜋, and −∞ for 𝑎 = 2𝜋. 

Furthermore, along the strip defined by Eq. (2.4.45), 𝑝 = 0.5 is a double root, the 

analysis of Eq. (2.4.38) suggests that on 𝑝 = 0.5 the real-to-complex transition 

could occur. 
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(a)  

 

(b)  

 

(c)  

Figure 32: Solutions for 𝑫(𝑎, 𝑏, 𝛼, 𝛽; 𝑝) = 0. Composite Full Plane. Original 

form [178] 
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 2.4.2  Removal of the stress-singularity 

Analyses performed to quantify the intensity of the singularity exponent are 

surely fundamental in the mechanical design of components. However, this 

procedure intrinsically assumes that such component is already available or 

cannot be further modified by manufacturing processes. In this framework, 

appears much more interesting to anticipate the possible geometrical and material 

configurations capable of excluding the presence of a singular feature, or at least 

of smoothing severe concentrations, thus originating a singularity-free component. 

Such modifications can be thought both as a-priori design change of the original 

component, by using suitable mathematical techniques for shaping the coupon, or 

a-posteriori mechanical workmanships that remove the stress-singularity with 

proper mechanical tools. 

The relevant impact connected to the removal of such features for material 

testing purposes is testified by different works. For example, Xia et al. [202] 

adapted the standard geometry of an aluminium-Epoxy circular specimen to 

achieve results from tensile tests which were free of parasite edge effects 

introduced by the stress-singularity.  

From a numerical interpretation, the works of  Wu [16] for 2D and by Wu [17] 

for 3D linear elastic bi-material configurations, the removal of the singularity has 

a huge impact on the global stress distribution. Particularly, the stress trends 

resulted smoother along the material discontinuity. 

Barroso et al. [203] produced and tested a composite-epoxy specimen with and 

without a suitable notch for removing the singularity. With such configurations it 

was demonstrated, both numerically  and experimentally, that the removal of the 

singularity could lighten the edge load in correspondence of the material 

discontinuity. Indeed, the notched specimen could withstand more severe loads, 

up to two times higher than the nominal flat configuration. 

Fedorov and Matveenko [204] performed an optimization study for removing 

the singularity from planar bi-material coupon. Their work was oriented in 

defining both geometric (i.e., local angles) and mechanical (i.e., material 

parameters) which avoid such features. Their approach essentially provided 

design maps for producing specimens based on the specific need of working at 

fixed geometrical or mechanical conditions. 
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From a mathematical perspective, removing the stress-singularity requires the 

manipulation of the Bogy framework (i.e., the Bogy determinant) reported in Eq. 

(2.4.30) where α,β are the dimensionless Dundurs parameters [177] in plane stress 

and plane strain conditions, as summarized in Eq. (2.4.46) 

𝛼 =  
𝐸1̅̅ ̅ −  𝐸2̅̅ ̅

𝐸1̅̅ ̅ +  𝐸2̅̅ ̅
 , 𝛽 =

𝜇1(1 − 2𝑘2) −  𝜇2(1 − 2𝑘1)

2[𝜇1(1 − 𝑘2) +  𝜇2(1 − 𝑘1)]
 Eq. (2.4.46) 

with  

𝐸𝑗̅ = {

𝐸𝑗 in plane stress

𝐸𝑗

1 − 𝜈𝑗
in plane strain

 Eq. (2.4.47a) 

𝑘𝑗 = {

3 − 𝜈𝑗

1 + 𝜈𝑗
in plane stress

3 − 4𝜈𝑗 in plane strain

 Eq. (2.4.47b) 

Performing such investigations requires to impose an a-priori assumed positive 

value of the singularity exponent in its real part (i.e., 𝑝𝑅 ≥ 1) as well as the 

mechanical and the geometrical parameters. Essentially, the Dundurs parameters 

of the bi-material joint, one of the wedge angles  and the value of  must be 

provided as input for the problem. Wu [16] illustrated that the solution should be 

found numerically, by employing iterative methods (e.g., Newton-Raphson), due 

to the presence of sinusoidal functions. A reasonably acceptable value for to 

obtain a convergent solution is 1+10-4. Hence, the mathematical problem is solved 

in terms of the remaining angle . Different outcomes could exist in but the 

designer should consider the smallest one only. Assuming to work at fixed 

mechanical conditions, computing local condition preventing stress-singularities 

requires the use of a non-linear solver as the Bogy framework involves 

trigonometric functions in the  equations. In such a way, the upper bound angular 

condition preventing the singularity is the outcome of the study. Clearly, one can 

extend such study by changing the initial angular condition provided as input in 

order to explore a wider configuration set thus deducing real design maps. 
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2.5 Strategies to reduce the numerical model size 

Preparation of Finite Element Models (FEMs) assessing multi-physical 

problems (e.g., mechanical-thermal, fluid-structure interactions, etc…) is 

nowadays a fundamental part in design activities of industries and research 

groups. The possibilities made available from the use of FEM tools, since the 

early stages of their development [197,205,206], have permitted the detailed 

design of many engineering products such as space vehicles, rockets and satellites 

as well as lightweight components for the automotive industry or wind turbines 

for energy production. FEM tools such as NASTRAN® or ANSYS®, just to 

mention two among a plethora of software, implement many analyses technique, 

solution capabilities and routines for solving partial differential equations to find 

approximate solutions. Among the current capabilities of modern FEM software, 

it is worth mentioning strategies from the most classic static analysis to the 

advanced optimization techniques passing through the management of non-

linearities (i.e., material, geometrical, contact) and dynamic behaviours (i.e., 

steady-state, transient, shocks, random, spectrum). However, the fundamental and 

the mandatory step within the analysis process of a component, a structure or a 

mechanical assembly, is the model preparation. Tasks such as geometrical 

cleaning (i.e., defeaturing) and simplifications are the preliminary part of the 

analysis process. The core phase consists of meshing the component, application 

of material properties and Boundary Conditions and setting up the analysis 

parameters. Indeed, at the end of this process, a FEM could be constituted by 

several hundred thousand, or even millions, of elements. In general, the size of a 

FEM depends on the specific purpose of the model, the field of application, the 

modelling skills of the analyst in charge of preparing the mathematical description 

and the available computer capabilities. Moreover, although the computer 

performances are even more advanced and normal personal computers can 

perform thousands of operations per second, it is unfeasible, and to some extends 

impossible, to require that a personal computer, or a cluster, can perform a 

complex analysis in a short time then save the outputs of a large FEM without 

paying the price in terms of computational cost (e.g., open the outcomes file, 

process outcomes for multi-step solutions, etc…). To by-pass this issue, specific 

mathematical and numerical techniques called Component Mode Synthesis 
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(CMS), Super elements or Condensation, Sub-modelling or Global-Local have 

been developed and implemented in commercial codes thus applied since the ’70-

’80s. 

The idea behind all of these methodologies is to manage the model size by 

considering an alternative description that is representative of its physical 

characteristics without a lack of mathematical and mechanical properties. In the 

case of CMS, Super elements and Condensation this is usually accomplished by 

reducing the model size passing from tens of millions of elements to just a few 

thousand whereas, in the case of Sub-modelling, this concept permit to focus on a 

smaller part of the original FEM description where mesh refinements or 

hierarchical formulation can be applied to the localised detail. For the sake of 

completeness, CMS methods and Condensation techniques are usually grouped 

within the whole set of Global-Local methods. However, for the purposes of a 

clear and structured classification this overlap is here neglected. 

In the following, only Sub-modelling method will be illustrated as it represents 

the adopted approach for the research activity. Thus, its main features, limitations 

and typical applications will be highlighted. In general, this chapter provides an 

overview regarding this technique instead of detailed and systematic literature 

review on this topic. 

 2.5.1 Sub-Modelling  

The sub-modelling technique, also called Global-Local (GL) method, is a 

popular strategy in the area of computational mechanics aiming at increasing the 

level of detail in the analysis of components with complex geometric 

configurations, critical regions (e.g., holes, cutouts, fillets…) from that stress 

concentration could arise or that require a specific modelling strategy as their 

investigation is important for the proper accomplishment of a design. Although 

the even more enhanced capabilities of personal computers, this technique 

remains still valid as its potentialities and the smart features go beyond the brute-

force of calculation of the new generation hardware. The term Global-Local could 

have different meanings within a design program and for the analysts in charge of 

performing the structural studies, as interestingly highlighted by Ransom and 

Knight [207]. By focusing, for example, on the half-wing of an aircraft, such 

component could be considered as a local element for the whole aircraft 
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configuration whereas the same part could be the global architecture where 

localized characteristics such as stringers, ribs, or stiffened panels are 

incorporated. The fundamental concept of this technique is clearly summarized by 

Reddy [208] “The phrase global-local analysis is understood to be an analysis in 

which some parts of the domain or structure are identified, for reasons of accurate 

determination of stresses and displacements or for more refined analysis than in 

the remaining parts. The parts of refined analysis are termed local, and the 

remaining parts are called global. Typically, local regions are small in size 

compared to global regions, while the computational effort can be larger in local 

regions that in global regions”. 

In the following, the term global model will refer to the FEM of a structure or a 

component as depicted in Figure 33. Such description should present enough 

details to represent and capture the overall system behaviour. Conversely, the term 

local model will refer to the FEM of a specific structural detail which could be 

present, or not, within the global description.  

 

 

Figure 33: Global-local models of a structure [207] 
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An effective GL analysis requires four main ingredients, as depicted in Figure 

34 for a surrogate of a half-wing structure: 

1. An  appropriate global analysis. This task is accomplished by the 

realization of a FEM capable of capturing the overall structural behaviour 

with a coarse discretization.  

2. The capability to identify regions that require further investigations. The 

presence and the importance of a critical region, incorporated within the 

global model could be known a-priori or defined by iterative techniques. 

3. A suitable strategy to select interpolation regions within the global model to 

define boundary conditions between global and local models. 

4. An appropriate FEM local model for the accurate determination of the 

displacement, strain, stress or thermal fields. Such model is typically more, 

or much more, refined, compared to the global description. 

The most challenging part in GL analyses belongs to point 3 of the previous 

list. Indeed, the proper definition of the boundary interface between both 

descriptions as well as the selected interpolation procedure for passing from 

global outcomes to local applied boundary conditions are the key step of this 

procedure.  

Regarding the boundary interface definition, this step is problem dependent, in 

terms of geometry under analysis and magnitude of stress concentrations within 

the model. The commonly accepted criterion is based on the observation of the 

stress variation along a specific direction. A suitable boundary should be chosen 

where  is has a very low influence so that the boundary should be far enough from 

the high stress gradients and stress concentrations. Other approaches are based on 

the use of the strain energy or the strain energy density as a method for selecting 

the right boundary. 
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Figure 34: Terminology and main steps of the global-local methodology [207] 

 

The interpolation procedure is the mathematical task that permits of passing the 

displacement information from a model to another. Assuming a one-way-coupling 

GL procedure (i.e., the displacements are just passed from the global model to the 

local one, and not vice-versa) there are many interpolation methods in literature 

[209] such as those based on polynomial function, least-square, Lagrangian 

methods, etc… . From a mathematical point of view, the problem is stated as 

reported in Eq. (2.5.1) 

[𝐒(xi, yi)] {

𝐚1
𝐚2
⋮
𝐚n

} = {

𝐟1
𝐟2
⋮
𝐟n

} 
Eq. (2.5.1) 

where 𝐒(xi, yi) is the system matrix of interpolated function at (xi, yi) 

coordinates, the 𝐚 vector contains the system unknowns whereas the 𝐟 vector 

storages known field values (e.g., displacements). The definition of 𝐒(xi, yi) 

depends on the strategy adopted for the interpolation. Nevertheless, the best 
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choice to populate adopts the use of spline functions. Splines are polynomial 

relationships of 𝑚𝑡ℎ order, having 𝑚 − 1 continous derivatives, and are the most 

suitable local fit on a set of points.  

In Figure 35 a possible scheme for GL analyses that implements the before 

mentioned steps is presented.  

 

Figure 35: Scheme for global-local procedure [207] 

 

As effectively revised by Noor [15] there are, essentially, four strategies 

ascribable to GL schemes namely i) the zooming technique, ii) the simultaneous 

application of two discretization methods, iii) the reduction methods, iv) the 

hierarchical mathematical models and/or numerical approximation techniques. 

Among these, attention will be given to the zooming technique and hierarchical 

mathematical models since they are the most adopted in practical applications. 

Among the four possibilities before mentioned, the zooming technique and the 

use of hierarchical mathematical models and/or numerical approximation 

techniques are the most popular.  

This zooming technique is the most intuitive. It allows the extraction of 

detailed structural outcomes by producing FE models by using an incremental 
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focus, as illustrated in Figure 36. Practically, after performing a suitable global 

investigation, the region of interest is extracted from such model, which is 

coarsely discretized, then, likewise an ocular zoom, this zone is refined with a 

higher number of elements or with higher order elements. There is not a 

restriction regarding the number of zooming levels to apply by this technique. 

Indeed, as depicted in Figure 36, between the original global model and the final 

local one, multiple stages of refinement could be exploited depending on the 

purpose of the analysis. 

 

Figure 36: Schematic representation of the zooming technique [15] 

In the application of this technique, prominent important is devoted to the 

treatment and management of the interfaces between models since this aspect 

affect the quality of the final outcomes. In principle, intuitive criteria and 

evaluations based on the engineering judgment were adopted to select the right 

boundary distance from the structural detail under investigation. More recently 

criteria based on strain energy function, strain energy density function, 

displacement and stress matching improved the decision-making process. 

Conversely, the use of hierarchical models allows a differentiate modelling 

strategy of the whole structure. Indeed, the analyst can select the suitable 

mathematical model to apply to a specific part of a component based on available 

test data or structural modelling assumptions. For example, the stiffened paned 

with a circular hole depicted in Figure 37 shows different types of modelling of 

the structural element (i.e., panel or stiffener) under analysis with respect to the 

distance from the cut out. In particular, very far from the hole a classical beam and 
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panel theory is sufficient as higher accuracies are not mandatory and useful. The 

precision of the applied structural theory increases as the distance from the cut out 

reduces. In fact, a medium distance a higher deformable model is applied namely 

the thin-walled theory for the stiffener and the shear deformation theory for the 

panel. Finally, in the very proximity of the hole both the plate theory and the 

boundary layer theory are applied. 

 

Figure 37: Schematic representation of different hierarchical mathematical 

models. Original from [15] 
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2.6 1D Axial vibrations 

Performing numerical and experimental investigations on VHCF with UFTM 

requires the design of specimens working in resonance with the testing machine 

and, typically, the specimen under investigation is a bar-like structure (i.e., 1D 

coupon). For that reason, the main aspect of 1D vibrations will be reviewed in the 

following [210]. 

Vibration of 1D structures needs the introduction of some working assumptions 

for deducing the fundamental equations. Essentially:  

1. After deformations, the cross-section is plane and perpendicular to the 

axis which remains straight 

2. Material properties such as density and modulus of elasticity can vary 

with x but they are constant at a given cross-section 

3. Material is linear elastic 

These hypotheses allow extracting the strain-displacement equation and the 

constitutive equations. The specific nature of 1D vibrations gives the possibility of 

establishing such relationships in a easy manner as reported in Eq. (2.6.1) 

𝜀(𝑥, 𝑡) =
𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 Eq. (2.6.1a) 

𝜎 = 𝐸𝜀 Eq. (2.6.1b) 

The axial force acting on the cross area (A) can be simply calculated as in Eq. 

(2.6.2) 

𝑃(𝑥, 𝑡) = ∬𝜎 𝑑𝐴
 

𝐴

= 𝐴𝜎 Eq. (2.6.2) 

Thus, the coupling of Eq Eq. (2.6.1) and Eq. Eq. (2.6.2) allow defining the 

direct relation between the strain and the applied load as  

𝜕𝑢

𝜕𝑥
=
𝑃

𝐴𝐸
 Eq. (2.6.3) 
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The application of the 2nd Newton law allows deriving the axial equation of 

motion of the 1D configuration reported in Figure 38. 

 

Figure 38: Vibrations of 1D structures [210]. 

Assuming the presence of an external load distribution , the equation of motion 

becomes  

𝜕𝑃

∂𝑥
+ 𝑝𝑥 = 𝜌𝐴Δ𝑥

𝜕2𝑢

𝜕𝑡2
 Eq. (2.6.4) 

Then, substituting Eq. (2.6.3) in Eq. (2.6.4) leads to the differential equation of 

motion for 1D structures 

𝜕

∂𝑥
(𝐴𝐸

𝜕𝑢

∂𝑥
) + 𝑝𝑥 = 𝜌𝐴Δ𝑥

𝜕2𝑢

𝜕𝑡2
0 < 𝑥 < 𝐿 Eq. (2.6.5) 

The standard procedure for extracting the mode shapes and the natural 

frequencies of a vibrating bar described by Eq. (2.6.5)  is the modal analysis. 

Performing such analysis requires the removal of removing the external load from 

the mathematical model then the introduction of a supposed harmonic motion for 

studying the modal properties of the system (i.e., natural frequencies and mode 

shapes). To further simply the calculation, the geometrical and mechanical 

quantities are supposed as constant. In such a way the equation of motion can be 

written as  

𝑑2𝑈

𝑑𝑥2
+ 𝜆2𝑈 = 0 Eq. (2.6.6) 

where  

 (x, t) 

px(x, t) 
 (x, t)  (x+   x, t) 

px(x, t)  x 

 x x 

 

Y

A(x ) A(x   x )
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𝜆 = 𝜔√
𝜌

𝐸
 Eq. (2.6.7) 

Express the eigenvalue of the system. 

Mathematically, solving Eq. (2.6.6) requires the use of a general solution in the 

form of  

𝑈(𝑥) = 𝐴1 cos(𝜆𝑥) + 𝐴2 sin(𝜆𝑥) Eq. (2.6.8) 

 

where the 𝐴1, 𝐴2 coefficients are determined based on boundary conditions.  

For the sake of brevity, in Table 2 are recalled the fundamental mathematical 

aspect when considering the Fixed-Free and Free-Free conditions for solving Eq. 

(2.6.8). 

Boundary condition 

(Physical) 
Fixed – Free conditions Free – Free conditions 

Applied Boundary 

Conditions (Mathematical) 
{
𝑈 = 0 𝑥 = 0
𝑑𝑈

𝑑𝑥
= 0 𝑥 = 𝐿

 {

𝑑𝑈

𝑑𝑥
= 0 𝑥 = 0

𝑑𝑈

𝑑𝑥
= 0 𝑥 = 𝐿

 

𝐴1 , 𝐴2 determination {
𝐴1 = 0

𝐴2𝜆 cos(𝜆𝐿) = 0
 {

𝐴2 = 0

𝐴1𝜆 sin(𝜆𝐿) = 0
 

Set of solutions 𝜆𝐿 =
𝜋

2
,
3𝜋

2
, … , (𝑟 −

1

2
) 𝜋 𝜆𝐿 = 0, 𝜋, 2𝜋, … , 𝑘𝜋 

Natural frequency 

distribution 
𝑓𝑟 =

(2𝑟 − 1)

4𝐿
(
𝐸

𝜌
)
1/2

 𝑓𝑟 =
𝑘

2𝐿
(
𝐸

𝜌
)
1/2

 

Modal shape 𝜙𝑟(𝑥) = 𝑠𝑖𝑛 (
2𝑟 − 1

2

𝜋𝑥

𝐿
) 𝜙𝑟(𝑥) = 𝑐𝑜𝑠 (

𝑘𝜋𝑥

𝐿
) 

Table 2: Mathematical features for Fixed-Free and Free-Free configurations 
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3 A combined analytical, numerical and 

experimental technique for investigating 

stress-singularity effects on VHCF of 

adhesive joints 

This chapter illustrates in detail the analytical, numerical and experimental 

activities that were performed to investigate the adhesively bonded cylindrical 

butt-joint behaviours. Attention will be given to the steps performed to properly 

design, analyse and test butt-joints for capturing the most significant effects due to 

the presence/absence of the stress singularity and to the loading frequency.  

A special attention is provided for designing the VHCF specimens, both 

singular and non-singular, by means of analytical and numerical techniques. 

Indeed, the numerical investigation and anticipation of mechanical responses of 

both specimens was performed with high precision and accuracy by using the 

Global-Local Finite Element Method. The knowledge of mechanical behaviours 

under the simulated working condition has permitted to further manufacture and 

test the coupons in the range of VHCF. 

Quantifying the influence of the stress singularity to the joint life, through 

suitable probability-stress-number of cycles curves, gave space for investigating 

possible loading-frequency effects that occur when coupons in the best 

experimental conditions (i.e., without singularity) are loaded with different 

frequency excitations.  

3.1 Preparatory activities: mechanical tests of the bulk 

adhesive and aluminium specimens 

The bulk material parameters extraction is a fundamental step for the proper 

design and analysis of mechanical parts. In this context, the bulk materials of 

interest refer to the aluminium 7075 T6, which will be employed as substrate 

material of the joint, and the epoxy resin SikaPower® 1277, which will be 

employed as adhesive joining material. SikaPower® 1277 is a bi-component 

structural adhesive filled with glass spheres of 0.3 mm nominal diameter. It has 

enhanced features of mechanical toughness and impact strength. As declared by 
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the adhesive supplier, SikaPower® 1277 is particularly indicated for joining 

metallic, laminates and composite parts, especially for impact-sensitive 

applications. Possible fields of application can include the transportation and the 

general industrial engineering. SikaPower® 1277 is also suitable for the combined 

application with more classical joining procedures such as riveting and spot 

welding [211]. 

Testing of Aluminium and adhesive was performed in compliance with proper 

standards such as “ASTM E8/8M – 21, Standard Test Methods for Tension 

Testing of Metallic Material” [212] and BS EN ISO 527 – 2, Plastics -  

Determination of tensile properties [213]. On this basis, the two material 

specimens were designed with proper sizes and shapes as reported in Figure 39 

and Figure 40. 

 

Figure 39: Shape of the aluminium specimen (A= 70mm, B=55mm, C=20mm , 

G=50mm, L=200, R=15mm, T=5mm, W=12.5mm). 

 

 

Figure 40: Shape of the bulk adhesive specimen (= 4mm, = 12.5, = 50mm, = 

20, = 12mm,  75mm (75), = 8mm, =12.5, = 2) 

 

From a manufacturing perspective, the production of the aluminium specimen 

was executed by an external supplier through material plates. Conversely, the 
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SikaPower® 1277 specimen was performed in-house in the Politecnico di Torino 

laboratories. Since the original state of such material is liquid and highly viscid, 

an ad-hoc Teflon stamp was designed. Essentially, the liquid adhesive was 

squeezed into the stamp and then dried for 48 hr. The adhesive specimens 

achieved at the end of the process are illustrated in Figure 41. 

 

Figure 41: Produced adhesive specimens. 

 

Five specimens for each material were adopted for the material 

characterization. This amount of specimens was chosen for, essentially, two 

reasons: i) aluminium 7075 T6 is a very well-known and popular material and 

testing such coupon was just performed as a “quality check” of the supplier 

goodness; ii) material properties of SikaPower® 1277 where already available 

from data sheet so testing such material was useful for confirmation purposes.  

Tensile tests were performed by using an Instron® hydraulic testing machine at 

5 mm/min for both materials, see Figure 42. An extensometer was installed on 

both specimens for the strain measurement. In order to avoid damage of this 

instrument, especially in the case of the adhesive, the data acquisition was stopped 

once the load dropped below the threshold of 98% of the recorded maximum load 
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value for each single specimen. Such decision was followed after a preliminary 

tensile test, without extensometer,  which showed a sudden failure of the 

specimen. In Figure 43 the stress-strain curves of the bulk adhesive material are 

showed whereas in Table 3 the extracted material properties are summarised Here, 

properties of Ti-6Al-4V refer to those of the horn equipment for VHCF test that 

were already available from the work [20] whereas the loss factor of aluminium 

7075 T6 was assumed as valid from the work of Mevada and Patel [214]. 

 

 

(a)  

 

(b)  

Figure 42: Tensile testing phase. 
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Figure 43: Stress-strain curves of the bulk adhesive. 

 

Quantity Symbol Units Materials 

   Ti-6Al-4V Al. 7075 T6 Sika Power® 1277 

Modulus of Elasticity E [MPa] 115000 71955 ± 224 2280 ± 533 

Poisson’s ratio 𝜈 [\] 0.34 0.3 0.33 

Max tensile stress 𝜎𝑚𝑎𝑥 [MPa] 950 610 ± 15 35.7 ± 1.4 

Density 𝜌 [g/cc] 4.39 2.80 1.1 

Loss Factor LF [\] 2.96∙10-4 3.5∙10-3 2.∙10-2 

Table 3: Material properties extracted by tensile test or referenced by literature 
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3.2 VHCF specimen design and analysis 

The system mechanical design has been performed with the purpose of creating 

a component capable of imposing a well-defined stress level, within the adhesive 

layer, in the UFTM resonance conditions. The geometry under investigation is 

part of the butt-joint class with a cylindrical configuration. Such geometry was 

selected for a few reasons: i) it fits well when coupled with the UFTM without 

creating interferences or joining issues and ii) there was a pre-existent technical 

heritage in dealing with cylindrical butt-joints [21]. 

To reach the goal of an effective design, the procedure proposed by Tridello et 

al. [20]  has been followed and the key passages are summarized in Figure 44. As 

a general aspect, the whole design and verification process have been performed 

within the Ansys APDL simulation tool by adopting 4-node 2D axisymmetric 

elements. Choosing axisymmetric elements has permitted an easier model 

development, replacing a complex and demanding 3D analysis of a solid structure 

with just a 2D investigation. Thus, the exploitation of the joint characteristic has 

permitted to keep the total number of elements low. 

 

Figure 44: The work-flow to achieve a VHCF specimen. Original from [215] 

 

In Step 1 of Figure 44, the horn design was performed. This mechanical 

component has a great importance in testing specimens under VHCF as it conveys 

the excitation from the UFTM booster to the coupon. It must satisfy the 20 ± 0.5 

kHz frequency requirement to work in the UFTM resonance conditions. To do so, 

a horn made of Ti-6Al-4V was designed and the final configuration is presented in 
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Figure 45. The correct size and dimensions were found by Tridello et al. [20] and 

here reported: W1 = 20 mm, W2= 7.3 mm; L1=20 mm, L2=67.52 mm, L3= 32.5 

mm, R= 185.84 mm. 

 

Figure 45: Axisymmetric horn configuration. 

The goodness of the design was confirmed through an FE modal analysis in 

free-free boundary conditions (block Lanczos solver scheme). Such boundary 

conditions have been found as the closest approximation to the test reality. As a 

common practice in dealing with normal modes analysis of a component, it is 

useful to investigate a broader set of natural frequencies going beyond the specific 

interest of a frequency requirement. Indeed, in Table 4 (column two) the first 10 

natural frequencies are reported. 

Apart from the 1st fundamental mode that is a rigid body motion along the Y-

coordinate, the 1st elastic mode has a frequency of 20195 Hz. This outcome 

guarantees that the design is compliant to the frequency requirement of 20 ± 0.5 

kHz. Regarding the higher frequencies that characterize the horn behaviour, is 

interesting to observe that the difference between two successive frequencies (i.e., 

𝑓𝑗  and 𝑓𝑗−1) becomes even smaller as the fundamental mode number increases and 

this means an increase of the modal density. However, there is a very close 

similarity between the 5th and the 6th fundamental modes. 
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Fundamental 

mode 
System frequencies [Hz] 

 Horn 
Coupled system, 

no adhesive 

Coupled system,  

with adhesive, 

90°-90° interface 

Coupled system,  with 

adhesive, 43.5°-90° 

interface 

1 0.000 0.000 0.000 0.0000 

2 20195 8502.7 8506.8 8529.1 

3 43050 20192 20165 20250 

4 61538 31511 31337 31369 

5 74955 42068 41813 41772 

6 77645 51042 50307 50304 

7 91941 61062 60310 60332 

8 104330 69832 68319 68289 

9 111430 75044 74993 74985 

10 119280 78360 77237 77326 

Table 4: Extracted natural frequencies. 

 

In Step 2, the total length of the aluminium substrate is analytically calculated 

by exploiting the solution of the 1D equation of motion, in the case of free-free 

vibrations, that has been illustrated in Section 2.6. A simple arrangement of the 

natural frequency distribution presented in Table 2 permits to impose the system 

frequency and to calculate the bar length that satisfies the requirement 

𝐿𝑡𝑜𝑡 =
𝑘

2𝑓𝑛
√𝐸/𝜌  Eq. (3.2.1) 

where, 𝑘 = 1 to consider the 1st elastic mode, 𝑓𝑛 is the horn 1st elastic mode 

and 𝐸, 𝜌 the aluminium elasticity and density. Doing so, 𝐿𝑡𝑜𝑡 = 125.5097 𝑚𝑚. 
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For an easier modelling, 𝐿𝑡𝑜𝑡 = 125.5 𝑚𝑚 is the nominal length that has been 

considered.  

The knowledge of the suitable bar length that has to be adopted for VHCF 

testing permitted the development of a specific FE model approximating the 

geometrical features of the whole assembly. The FE model has elements close to 

2500 units. The numerical modal solution provided by the FE model is reported in 

Table 4 (column three) for the 10 fundamental modes. With respect to the 

frequency requirement, the natural frequency coincides perfectly and the deviation 

of 3 Hz is totally negligible. Moreover, it is interesting to observe that the 

coupling of the two components (i.e., the horn and the aluminium bar) produces a 

lower frequency in the range of 8.5 kHz that plays the role of the 1st elastic mode. 

In Step 3, a Frequency Response Analysis (FRA) was performed aiming at 

simulating the test conditions thus observing the stress distribution along the bar 

axis. To do so, two levels of displacement namely 2.2 μm and 18 μm, that 

characterize the upper and the lower displacement limit values applicable by the 

UFTM machine, were applied at the horn base, as illustrated in Figure 46. In this 

case, the coupled system was excited in order to produce a response in resonance, 

so at 20192 Hz. 

 

Figure 46: Simulated testing condition with properly applied displacements 

 

The longitudinal stress (𝜎𝑌) distribution for the highest displacement value 

(i.e., 18 μm) is reported in Figure 47. The interface line connecting the Titanium 

horn and the aluminium bar behaves as a stress node. Thus, there is a zero-stress 

value at the interface dividing the specimen in two well-separated stress regions: 

total compression on the horn and total tension on the bar, or vice-versa during the 

wave propagation. 
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Figure 47: Current longitudinal stress distribution for the 18 μm displacement 

case 

 

In Step 4, the thin adhesive layer of 0.3 mm was placed at a defined stress 

range, thus separating the aluminium substrate into two separated units as 

depicted in Figure 48. 

 

Figure 48: Singular VHCF adhesive joint. 

Precisely, the proper definition of the adhesive positioning derives from the 

knowledge of the  distribution with the FRA of Step 3, recovered along the axis, 

for both the applied displacement values as presented in Figure 49. Since the 

adhesive maximum stress is 35 MPa, the stress range is appropriate for 

investigating the VHCF response of the tested adhesive. Thus, the 𝐿𝑡𝑜𝑡 is divided 

in 𝐿𝑡𝑜𝑡 = 𝐿1 + 𝐿2 where 𝐿1 = 114.35 𝑚𝑚 and 𝐿2 = 11.15 𝑚𝑚 as presented in 

Figure 48. 
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Figure 49: Longitudinal stress distribution for the selected level of external 

displacements. Original from [215] 

 

In Step 5, the final step, a further modal analysis and an FRA were performed 

for verification purposes. The modal analysis, whose results are presented in Table 

4 (column four), showed that the introduction of the adhesive layer between two 

substrates produces frequency variations in the frequency spectrum.  

Especially,  the 1st elastic mode dropped from 20192 Hz to 20165 Hz. Even if 

the resulting frequency still remains compliant with the frequency range 

exploitable from the UFTM, this observation has important design consequences 

that a designer should keep in mind when dealing with adhesive bonding. In fact, 

in spite of the approximately 30 Hz of reduction could be negligible compared to 

the reference of 20 kHz, FE analyses of large-scale structures tend to exclude 

from the model such thin layered contributions for different reasons, such as the 

purpose of the analysis, difficulties in modelling adhesive, etc… . However, it has 

been shown that the elasticity (and the mass) of a very thin layer could play an 

important role by changing and modifying the system mechanical response. 

For the purpose of completeness, the 10 extracted modal shapes are reported in 

Figure 50. The coloured pattern refers to longitudinal displacements even if the 
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numerical scale is fictitious.  The modal shape of interest is the 3rd (Figure 50 (c)) 

where the minimum and the maximum displacements are defined at the specimen 

stress node and at the specimen right end, respectively. Apart from the 1st mode 

which is a rigid body motion and the 9th mode which is prominently local, all the 

remaining  modes are global modes (i.e., the specimen is globally in movement). 

 

(a) Mode 1: Rigid body motion 

 

(b) Mode 2: 1st Elastic mode, Global mode 

 

(c) Mode 3: 2nd  Elastic mode, Global mode 

 

(d) Mode 4:  3rd Elastic mode, Global mode 



121 
 

 

(e) Mode 5:  4th  Elastic mode, Global mode 

 

(f) Mode 6:  5th  Elastic mode, Global mode 

 

(g) Mode 7:  6th  Elastic mode, Global mode 

 

(h) Mode 8:  7th  Elastic mode, Global mode 

 

(i) Mode 9:  8th  Elastic mode, Local mode 
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(j) Mode 10:  9th  Elastic mode, Global mode 

Figure 50: VHCF adhesive joint modal shapes. 

The FRA was performed at the new fundamental frequency (i.e., 20165 Hz). In 

general, no relevant variations were appreciated and the stress results presented in 

Figure 49 as well as the stress interval [5.5 – 46] MPa remain confirmed. 

3.3 Removal of the stress-singularity and model 

analysis 

In the previous paragraph, a specimen capable of imposing a defined stress 

level that fits well with the testing machine was designed without any further 

requirements. That configuration presented a 90°- 90° interface, between the 

adhesive and the substrates, which originates a stress singularity. The aim is to 

design a specimen without the singular feature. 

To reach this goal, an approach based on the Bogy determinant reformulation 

was followed. If, in principle, the Bogy determinant was used to study the order of 

the singularity (i.e., the λ exponent), at a defined plane stress or plane strain 

conditions, the inverse approach illustrated in Section 2.4.2 aims at determining 

the geometrical (local angles at fixed mechanical properties) or mechanical (at 

fixed geometrical terms)  condition that remove the stress-singularity (i.e., λ=0). 

Geometrical conditions refer to the local wedge angles at the junction whereas 

mechanical conditions refer to the modulus of elasticity and, eventually, the 

Poisson ratio of one, or both, materials. In these terms, the mathematical problem 

is bi-dimensional at fixed mechanical conditions (θ1 and θ2 are the unknowns) or 

forth-dimensional at fixed geometrical conditions (𝐸1 , 𝜇1 , 𝐸2, 𝜇2 are the 

unknowns). 

The strategy that was followed in this work is based on the accurate knowledge 

of the adherend-adhesive mechanical properties. Indeed, these were known from 
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experimental tests, a datasheet reference or found in the literature. Then, working 

at fixed mechanical conditions. 

Mathematically, the Bogy inverse problem was solved numerically by using 

the MATLAB tool. In this ambient, ad-hoc written non-linear routines, based on 

the Newton-Raphson scheme can find the correct solution. Precisely, a non-linear 

scheme was necessary due to the presence of sinusoidal and quadratic 

expressions. Moreover, to better approach the numerical implementation, a 

symbolic declaration of  the 𝐴 − 𝐹 terms of Eq. (2.4.22) presented was chosen. In 

details, the general complex root "𝑝"  was considered in its real part only, since 

𝑝𝑅 ≥  1 is the necessary mathematical condition to avoid the singularity. Wu [16] 

illustrated that the numerical problem admits a reasonably convergent solution if 

𝑝𝑅 = 1+ 10−4.  

The MATLAB codes consider the mechanical properties of the adopted 

materials, the plane stress/strain conditions and, more important, a defined 

adhesive angle at the edge as input data for the calculation. Thus, the bi-

dimensional problem is restricted to a mono-dimensional one where the current 

unknown is the substrate angle that, coupled with the imposed adhesive angle, 

avoids the stress singularity. 

From an operative point of view, the adhesive angles that were considered for 

the investigation are in the range , with a step angle of 10°, in order to study a 

broad range of possible configurations. The extracted solutions are collected in 

Table 5 and graphically represented in Figure 51. 
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Adhesive angle 

Substrate angle 

Plane stress Plane strain 

10 179.6 179.6 

20 179.3 179.2 

30 178.8 178.7 

40 177.9 177.5 

50 175.5 171.8 

60 121.2 70.28 

70 61.35 51.09 

80 51.68 45.7 

90 48.17 43.5 

100 46.97 42.64 

110 47.78 42.65 

120 60.60 44.83 

Table 5: Local geometrical conditions that avoid the stress-singularity. 
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Figure 51: Design maps defining the presence/absence of the stress-singularity. 

Original from [216] 

 

From a physical perspective, the red and the black curve in the map are the 

upper-bound conditions that ensure the absence of the singularity for the selected 

plane strain or plane stress conditions. Indeed, at fixed plane strain/stress 

condition and fixed adhesive angle, choosing a substrate angle below the critical 

angle reported in Table 5 assures the absence of stress singularity. Precisely, there 

are three well separated regions that can be highlighted. In Region I, all the 

adherend-adhesive angular combinations ensure the absence of the singularity 

regardless the mechanical plane strain/stress condition. In Region II, the area 

between the two curves is the most problematic. The designer should choose 

accurately the modelling strategy since the selection of plane strain or plane stress 

severely affects the final results. Conversely, in Region III all the angles exceed 

both limit conditions thus the presence of the singularity is certain. 

For the purposes of completeness, in Figure 52 and Figure 53 the Bogy 

determinant curve in both plane strain and plane stress, respectively, are 

presented. The solution should be found in the range [0 − 180]° and, if multiple 

roots were present, the designer should consider the smaller only. In this particular 

case no multiple roots were observed. Is interesting to observe that, for both plane 
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strain/stress, when the explored adhesive angle is bounded between 10° and 50° 

(10° ≤ θ1 ≤ 50°) the Bogy determinant remains negative and intercepts a zero 

value in the range [171.8 − 179.6]°, with a very small variation with respect to 

the variation of the adhesive angle. At θ1 = 60° there is a significant variation. 

Indeed, the substrate solution falls at [171.8 − 179.6]° for plane strain whereas 

the plane stress solution falls at θ2 = 121.2°. Qualitatively, θ1 = 60° behaves like 

drift point characteristic for this type of joint. Beyond 70° (θ1 ≥ 70°) the 

solutions acquire their own values by assuming a curved pattern. 

 

 

Figure 52: Angular evolution of the Bogy determinant, Plane strain solutions. 
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Figure 53: Angular evolution of the Bogy determinant, Plane stress solutions. 

 

Once the angular solutions were known, a counter analysis was performed 

aiming at verifying that such numerical results were not a “lucky extraction” or 

affected by errors included in the MATLAB routines development. To do so, the 

original expression of the Bogy determinant (i.e., the direct solution) was 

considered. Essentially, the material properties, the substrate and the adhesive 

angles as well as the plane strain or stress condition were provided as input data. 

In this case, 𝑝 − 𝑟𝑜𝑜𝑡, should not be cointained in the ]0 − 1[  interval.  

In Figure 54 and Figure 55 the plane strain and plane stress Bogy trends are 

reported, respectively. The observations of these two plots and, especially, the 

close-up view near the 0 and 1 edges, ascertain the goodness of the approach that 

has been followed since no 𝑝 − 𝑟𝑜𝑜𝑡 can be defined. 
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Figure 54: Bogy determinant for each explored adhesive angle, Plane strain 

conditions. 

 

Figure 55: Bogy determinant for each explored adhesive angle, Plane stress 

conditions. 
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At this stage, from the broad set of non-singular solutions, just one 

configuration must be chosen for the FE modelling and, most important, for 

VHCF tests. The criterion that was adopted for selecting the most suitable 

configuration relies on the best similarity compared to the original singular 

specimen, described in the previous paragraph. Thus, the 𝜃1 = 90° configuration 

on the adhesive side was selected. Such setup should present a straight external 

adhesive surface that can be physically obtained at the end of the manufacturing 

process. This hypothesis was considered valid and reasonable as, how will be 

clarified in the following, a dedicated manufacturing procedure was established to 

achieve this result. Regarding the substrate angle that satisfies the singularity 

absence, the one in plane strain condition was selected (i.e., 𝜃2 = 43.5°) in order 

to work in the safety conditions without the uncertainty introduced in Region II. 

In fact, the butt-joint under analysis is a middle-way between plane strain and 

plane stress conditions due to the axisymmetric configuration. Moreover, is 

usually preferred in FE analysis of joints to work in plane strain rather than in 

plane stress. 

To sum-up the selected non-singular configuration consists of 𝜃1 = 90°, 𝜃2 =

43.5° in plane strain conditions. This information was included within the FE 

model as presented in Figure 56. At the adhesive-adherend interface a suitable 

geometrical modification capable of guarantee the 𝜃2 substrate angle. Regarding 

the modelling aspects involved during such modification, a minimal mesh 

refinement was applied to the non-singular specimen in the region of interest to 

avoid the element corruption, element distortions or too high aspect ratio that 

could have been introduced by coarser meshes.  

 

Figure 56: Singularity-free VHCF specimen, FE description. Original from 

[215] 
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A further FE modal analysis was performed aiming at verifying if the 

introduction of the geometrical modification still satisfies the frequency 

requirement of 20±0.5 kHz. In Table 4 (last column) the numerical outcomes have 

been reported whereas in Figure 57 the frequency results for all the specimens 

analysed are graphically collected. 

It is interesting to observe that the introduction of the geometrical modification 

pushes up the frequency related to the mode of interest (i.e., 3 rd fundamental 

mode) of 85 Hz with respect to the 90°-90° interface specimen and of 58 Hz with 

respect to the specimen without adhesive whilst it behaves like a sort of 

“attenuation device” for the remaining frequencies. In fact, for such frequencies, 

the specimen without adhesive presents the highest frequency values (apart for the 

horn) whereas, macroscopically, the introduction of both the adhesive and the 

geometrical modification does not produce sensible variations.  

The knowledge of the actual working frequency for the specimen with 

adhesive and 90°-43.5° interface is essential to confirm the design since the 

frequency requirement 20±0.5 kHz is still satisfied. Then, the total specimen 

length (𝐿𝑡𝑜𝑡), found for the singular specimen, was maintained as valid. 

 

 

Figure 57: Trends of extracted elastic natural frequencies. 
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3.4 Development of Global-Local FE models: 

approaches and results 

FE models of singular and non-singular coupons have a number of elements in 

the range of 5000 units that, for the current computer capability, represent an 

easily manageable size from the calculation time and analysis robustness point of 

view. Such models were built with the unique purpose of investigating the general 

structural behaviour thus verifying the overall design. To do so, a Global model 

philosophy was followed. Indeed, as an example, the stress recovery was 

performed along the bar axis without investigating a local detail or, more 

important, the adhesive was meshed with just two elements in the thickness 

direction, which is considerably not enough to simulate sufficiently its stress 

performances. 

To overcome this issue, a Global-Local strategy was followed to better 

investigate the coupon and the stress details. Indeed, as described in Section 2.5, a 

Global-Local approach is a suitable technique to investigate structural details 

(e.g., fillet, edges, etc...). 

To accomplish a reliable and effective Global-Local model, the modelling 

strategy consists of the identification of the right interface between the Global and 

the Local models, the identification of an interpolation region and the verification 

between Global and Local FE outcomes to evaluate the quality of the Local 

model. 

The Ansys APDL Submodelling features were exploited to just identify the 

model boundaries where the region of interpolation was restricted to the line of 

interface between the two FE descriptions. A manual iterative procedure aiming at 

identifying the correct Local FE size, was performed. Indeed, a multi-purpose, or 

generalized size, is not available and the model boundary distances depend on 

both the physical phenomenon under analysis and the structural characteristics of 

the component.  

The Local model boundary condition originates from the Global model 

displacements resulting from the FRA at 2.2 μm and 18 μm in the specimen 

resonance condition. Since the singular and the non-singular specimens present 

different natural frequencies, the analysis frequency should be considered 
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accordingly. The loading frequency is 20165 Hz in the case of a singular specimen 

and 20250 Hz for the non-singular coupon. The use of this frequency is legitimate 

not only because these are the specimen frequencies that satisfy the UFTM 

frequency requirement, but also because the testing machine is able to tune its 

loading frequency in order to keep the specimen resonance. 

Structured meshes characterized the singular specimens as its geometry is 

predominantly straight whereas the non-singular model was approached with free-

meshes in the curve region in order to better capture the geometrical peculiarities. 

The minimum element size for both models is proportional to 10−5 mm whilst the 

number of elements is in the range of  350 000.  

The iterative process ended with the identification of the Local models, as 

presented in Figure 58 and Figure 59 for singular and non-singular geometries 

respectively, whose longitudinal dimensions are 11.35 mm from the adhesive 

midline on the left and on the right.  

From the modelling point of view, the applied local boundary conditions arise 

from spline interpolation of global displacements along the model boundaries. 

 

Figure 58: Sub-model for the singular specimen. Original from [215] 
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Figure 59: Sub-model for the non-singular specimen. Original from [215] 

An important step during the model size research pertains to the displacement, 

deformations and stresses verification at the edges. Spline interpolation, even 

though it is a robust method, remains an approximation. Then, is a good practice 

in dealing with Global-Local techniques their check and the quantification of 

discrepancies between Global and Local quantities in order to be aware of 

possible modelling errors and further FE improvements. 

In the following pictures related to the Global-Local approach, numerical 

results are presented for the 18 µm loading case, without losing generality and, 

most important for the selected final Local configuration.  

In Figure 60 and Figure 61 the longitudinal (𝑢𝑦) displacements recovered at 

the left interface are presented as this direction is the most important for the 

problem under analysis.  In general, is clearly visible that the interpolation 

procedure correctly reproduces the global displacements at the local interface for 

both model edges. Regarding the displacement magnitude, it was expected that 

transversal behaviours were much lower than longitudinal ones as the relevant 

part of the structural excitation lies along the axis. 
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This observation was just a preliminary, but important, information: the correct 

displacement interpolation is the necessary condition to approach the research of 

the model interface in the correct way.  

 

Figure 60: Longitudinal displacements, left interface. 

 

Figure 61: Longitudinal displacements, right interface. 

 

After confirming the correctness of the interpolation, the real verification of 

Local models, in terms of size and boundaries, is based on the strain and stress 
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observation. In general, to the author's best knowledge, there is not a univocal 

criterion to accept or reject a specific strain and stress distribution that 

characterizes a Local model. Essentially, the Local strain and stress distribution, 

recovered at the Local model interface, should coincide (or to be reasonably close 

enough) with respect to the Global quantities defined in the same location. From a 

pragmatic perspective, the decision if these trends coincide or these are reasonably 

close enough, depends on the structural analysts, their experience, their feeling 

with the problem under analysis and, most importantly, the required level of 

accuracy. In any case, a price should be paid: an easy-to-reach Local model could 

present strain/stress distribution not very in line compared with the Global 

quantities but, on the contrary, the best closeness achievable among trends could 

imply an hard-to-obtain model. This remark emphasizes that, also in the case of 

Submodelling techniques that were developed for the specific purpose of refining 

investigations of local structural details, a balance between the model complexity 

and the result accuracy should be still maintained. 

As similarly extracted for displacements, Figure 62 and Figure 63 illustrate the 

longitudinal deformations (𝜀𝑦) and the longitudinal stress (𝜎𝑦) for the left 

interface. Similar quantities are showed in Figure 64 and Figure 65 for the right 

interface. 

 

Figure 62: Longitudinal deformations, left interface. 
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Figure 63: Longitudinal stress, left interface. 

 

Figure 64: Longitudinal deformations, right interface. 
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Figure 65: Longitudinal stress, right interface. 

 

Strains are very well captured and reproduced by Local models and the number 

of discrepancies is negligible. On the contrary, even if discrepancies are present, 

the axial stress distribution shows an amount of difference between Global-and 

Local trend in the order 1% along the axis that is anyhow considerably low. 

Recovered stress, especially, present trend discrepancies that are mostly 

attributable to the fact that, at the edges, Local models showed a small difference 

in terms of mesh size compared to the Global descriptions. Such difference, 

combined to the stress recovery at the Gauss points with a copy procedure for 

passing to nodal values, is the main source responsible for stress deviations. It is 

also important to remember that, dealing with classical FEM implementation, the 

displacement is the master field thus strain and stress are derived quantities 

(strains are extracted by the derivation of the Lagrange polynomial whereas stress 

are extracted by multiplication for the material matrix). This procedure can 

accumulate, small, numerical errors that affect the final results. 

However, the Global and Local trends are very similar and this means that the 

local model is adequate to study localized features. 
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Once the proper model boundaries for interpolating the global displacement 

distribution into a local description are identified, a refined FRA assessed the 

precise stress distribution near the critical model regions.  

In Figure 66 and Figure 67, the 𝜎𝑦 distribution is presented for both singular 

and non-singular adherends-adhesive assembly, respectively. Both descriptions 

present a stress distribution that correctly decreases, in agreement to Figure 49, 

leading to a 𝜎𝑦 = 0 in correspondence of the right edge. 

 

 

Figure 66: Longitudinal stress distribution, singular model. Original from [215] 
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Figure 67: Longitudinal stress distribution, non-singular model. Original from 

[215] 

 

In Figure 66 (close-up view) the stress field in correspondence to the singular 

region is presented by using a fictitious threshold of 100 MPa to highlight the 

structural region where the stress is supposed to grow without control. 

Furthermore, the grey region indicates that stress results go beyond the 100 MPa 

threshold. Even if such stress distribution could be unrealistic in the singular 

region, especially in the adhesive areas where the predicted stress exceeds the 

maximum stress (i.e., 35 MPa) and  plasticity should compensate singularity 

effects, it can be observed that the local maximum stress should arise at the 

surficial adhesive-adherend interface, as expected.  

In the merit of the non-singular specimen in Figure 67 such geometry presents 

the maximum stress value in the circular throat region whereas, at the material 

interface, the unbounded stress distribution was correctly avoided and removed.  

An additional numerical assessment, focused on the verification of the 

singularity exponent, was performed as a side aspect of the main assessment. 
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Precisely, at fixed geometrical and mechanical conditions, the direct Bogy 

analysis can study the magnitude of the singularity with closed-form mathematical 

relations. In this context, the aim is to numerically verify the theoretical value 

along the material interface. 

To do so, the FE stress results were extracted along a path of  mm from the 

singular point. In order to perform such exponent extraction, as suggested by 

Goglio and Rossetto [14] for this type of investigation, a cylindrical coordinate 

reference system  was preferred and centred on the nodal external interface.   

The numerical stress values 𝜎𝑅 (radial stress), 𝜎𝜃 (peeling or cleavage stress) 

and  𝜎𝑅𝜃 (shear stress) were analysed and post processed with an ad-hoc written 

MATLAB code that implements the numerical regression through the curve fitting 

toolbox and, especially by exploiting the power1 function. Such function adopts 

the mathematical model  

𝑦 = 𝐴𝑥𝑏 Eq. (3.4.1) 

where 𝑦 is the stress component of interest (𝜎𝑅 , 𝜎𝜃, 𝜎𝑅𝜃), 𝐴 the stress intensity 

factor (H) for the ith stress component , 𝑥 the distance from the singular point and 

𝑏 the singularity exponent (λ). The numerical algorithm operates a calculation in 

order to find the 𝐻 and λ values that best fit the numerical data. 

Extracted FE stress outcomes were not totally used: as suggested by Goglio 

and Rossetto [14], the outcomes of the first two, or three, elements should be 

disregarded from the mathematical regression.  Indeed, in the singular region and 

on these fists elements nearby, the FE tool tries to find a convergent solution to an 

un-convergent problem. The knowledge of this issues required the exclusion of 

the first four data for all the stress components. 

In Figure 68 and Figure 69 the stress components (coloured points 

representative of FEM outcomes) and the associated mathematical regression 

(coloured lines) are illustrated in bi-logarithm plots for the left and the right 

adhesive-adherend interface.   

Mathematically, the regression algorithm was able to interpolate the radial and 

the peeling stress components as 𝑅2 ≥ 0.999 in both directions whereas a lower 

precision was achievable for the shear stress the presented an 𝑅2 = 0.95. Indeed, 
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as visible in both plots, such shear component presents unexpected oscillation 

with respect to the 𝜎𝑅 and 𝜎𝜃. Such distribution was weird since the mesh was 

structured, regular with an aspect ratio ≈ 1. 

 

 

Figure 68: SIF investigations, left interface. 

 

Figure 69: SIF investigations, right  interface. 
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Regarding the research of SIF and λ, in Table 6 the numerical values are 

reported for all the stress components along both material interfaces (𝜃 = 0°). If  

𝜆𝐵 is the Bogy analytical value, the closest approximation is achieved by the 

peeling component only. Such assessment has shown the good accuracy in 

predicting the singularity exponent by numerical evaluations and, most important, 

the number of discrepancies introduced by these last.  

 

 
Stress 

component 

𝜆 

(𝜆𝐵 = −0.275) 

H 

𝑀𝑃𝑎 ∙ 𝑚𝑚𝜆 

Left Interface 

𝜎𝑅 𝜆𝑅 = −0.246 20 

𝜎𝜃 𝜆𝜃 = −0.285 14 

𝜎𝑅𝜃 𝜆𝑅𝜃 = −0.260 5 

Right interface 

𝜎𝜃 𝜆𝑅 = −0.245 19 

𝜎𝑅𝜃 𝜆𝜃 = −0.284 14 

𝜎𝑅 𝜆𝑅𝜃 = −0.260 5 

Table 6: SIF and singularity exponent investigations 

 

FE outcomes reported in Figure 66 and Figure 67 provide the entire stress map 

for the Local specimens under the external acting loads. If, in the case of the 

singular specimen, the numerical model coincides with the specimen under test, 

for the non-singular specimen the working assumption of considering just one 

possible configuration among all the possibilities summarized in Table 5 was 

followed. The selected 43.5°- 90° configuration represents the upper-bound bi-

material configuration to remove the singularity and, essentially, such geometry 

could be problematic for testing coupons since manufacturing inaccuracies could 

introduce uncontrollable deviation between the mathematical model and the 

physical coupon. So, a sensitivity analysis based on the manual reduction of the 

substrate angle, was performed. Two main aspects were considered while 

executing this study: i) a suitable bi-material configuration to be adopted during 
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testing and ii) the current workshop technological capabilities. Thus, the nominal 

43.5°- 90° configuration was progressively modified within the FE tool on the 

aluminium substrate side. Doing so, a wider range of bi-material interfaces was 

arbitrarily considered and numerically explored: [43.5, 40, 35, 30, 25]° - 90°. 

At this stage, five possible configurations are theoretically available as the 

range of solution was extended. The final decision on the adopted testing 

configuration will be based on the i) and ii) before-mentioned hypothesis through 

FE analyses. Essentially, in addition to the 43.5°- 90° FE model, other four 

mathematical descriptions (i.e., [40, 35, 30, 25]° - 90°) were produced by 

introducing a local geometrical modification at the bi-material interface. Clearly, 

the geometrical reduction of the substrate angle would have produced a 

modification of the fundamental frequency, but this aspect was neglected since 

this aspect was considered a second-order effect. 

To better visualize the localized stress trends, is useful to collect stress data 

along the two directions, reported in Figure 70 (for the non-singular case, as an 

example), namely “T” (i.e., the external part of the thickness) and “ ” (i.e., the 

adhesive midline) from the specimen axis to the external surface. Along these two 

directions the acting stresses have been extracted in a 2D cartesian reference 

system (X, Y). In the following plots, the numerical solutions are associated to the 

18 µm condition whereas these are depicted with a non-dimensional scale. 

 

Figure 70: Directions for stress recovery. Original from [215] 

 

Y
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In Figure 71 the longitudinal (𝜎𝑦) stress recovered on the “T” direction are 

reported for both singular and non-singular mathematical models.  

A first important aspect pertains the substantial difference between the through 

the thickness singular (black dots in 43.5°- 90°) and non-singular (coloured lines 

for [40, 35, 30, 25]° - 90°) stress fields. Indeed, even though the singularity is a 

theoretical point where the stress is infinite as correctly reproduced by the 

numerical distribution, its effects affect the stress results in the whole adhesive 

extension. In fact, singular stress results are the highest along the whole adhesive 

extension. By contrast, the removal of the stress singularity globally mitigates the 

intensity of the mechanical stresses on the specimen surface. Moreover, localized 

stress concentrations progressively extinguished by reducing the substrate angle 

and a more uniform stress distribution is expected in the adhesive central regions.  

 

Figure 71: Longitudinal stress on the T-direction. Original from [215] 

 

Figure 72, Figure 73 and Figure 74 illustrate the longitudinal, the transversal 

and the shear stresses that were recovered on the “ ” direction as presented in 

Figure 70. There are, essentially, some important observations that can be deduced 

from these three stress components. From Figure 72 and Figure 73 can be easily 

quantified the stress increase on the specimen axis that results from the 

introduction of the geometrical modification. Indeed, by focusing on the 
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prominent stress component  at the specimen axis, from nearly 𝜎𝑦 = 46 MPa 

resulting from the design of the singular specimen, all the non-singular 

configurations stand at 𝜎𝑦 = 48 MPa. Even if the difference is not excessive, the 

detailed knowledge of such “stress jump” is fundamental for the correct test setup. 

Furthermore, the removal of the stress singularity significantly modifies the stress 

trend along the radius. If in the case of the singular specimen there is a substantial 

constant 𝜎𝑥 , 𝜎𝑦 distribution up to 85% and 95% respectively, a non-singular edge 

produces a stress increment that makes more sensible the upper part of the joint. 

However, even present, such stress increment is limited and smaller than 9% for 

𝜎𝑦 that is the most important component. Finally, regarding the shear stress, there 

are not severe consequences for this component. The stress profile, even if slightly 

modified, from a macroscopic point of view, remains controlled in magnitude and 

not critical. 

 

Figure 72: Longitudinal stress on the R-direction. Original from [215] 
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Figure 73: Transversal stress on the R-direction. 

 

Figure 74: Shear stress on the R-direction. 

The analysed profiles, with a special interest in the behaviour among non-

singular coupons, were particularly helpful for selecting the most suitable 

specimen to use during the test phase. All the explored configurations are, 

potentially, good candidates since there are not spurious stress effects introduced 

by the further geometrical modification to reach the [40, 35, 30, 25]° - 90° 
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alternatives. Such observation satisfies the necessary condition of producing a 

suitable stress pattern. 

The other important aspect relies on the manufacturability of the joint. As 

previously mentioned, the 43.5°- 90° could be problematic due to possible 

uncontrollable manufacturing issues that are always present. Similarly, it is not 

obvious that a mechanical workshop could produce any kind of joint. The best 

compromise was identified in the 35°- 90° configuration that, simultaneously, 

assures the fulfilment of the test objective and a reasonable manufacturing 

challenge for a mechanical workshop. 

 

 

3.5 The joint manufacturing 

The analyses performed in the previous paragraph have assisted the right 

choice, the mechanical design and the stress verification of singular and non-

singular coupons. During manufacturing, many elements could jeopardize the 

final results implying differences between the mathematical models and the 

physical specimens such as the specimen misalignment, a different adhesive 

thickness, a not straight adhesive surface that characterizes the 35°- 90° 

configuration, etc… . To approach in the best way possible the manufacturing, a 

specific procedure has been implemented for the specific case of cylindrical butt-

joints.  In general, the joint realization was assisted by the 3D CAD tool 

SOLIDWORKS® where the specimen shapes were visualized and designed. In 

Figure 75 and Figure 76 the produced singular and non-singular adherends, 

respectively. 
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Figure 75: Set of singular specimens. 

 

Figure 76: Set of non-singular specimens. 

 

The joint manufacturing was performed by implementing the following steps : 

1. Application of abrasive paper (class P800, 22.8 ± 1.5 ) on both free 

areas of the aluminium substrates to increase the surface roughness and 

thus the adhesion properties; 

2. Cleaning the surfaces with acetone to remove impurities and aluminium 

powder residual; 

3. Application of the adhesive on both sides of the joints, Figure 77(a);  

4. Joint alignment through specific devices that were designed for this 

purpose (red blocks in Figure 77(b)); 
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5. Application of a weight on top of the joint to maintain a permanent load 

during the curing time of 1 day at room temperature , as suggested by 

the adhesive supplier; 

6. Removal of the surplus material out of the joint with a cutter, without 

compromise the edge integrity. 

  

(a) (b) 

Figure 77: Manufacturing and joining process: (a) application of the adhesive 

in a liquid phase; (b) alignment of the joint 

The illustrated procedure has a general validity. In fact, for VHCF tests 

(Section 3.7) the joined elements were the long and the small bars (Figure 77) as 

required by the design procedure to obtain an effective specimen working in 

resonance conditions, whereas, in the case of static tests (Section 3.6) and classic 

fatigue tests (Section 3.8), the elements involved were the two long bars only. In 

these last cases, the use of the longer members can avoid stress interferences 

produced by the grip mechanisms to the adhesive layer. 
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3.6 Preliminary static tests 

Before performing VHCF experiments, preliminary static tests have been 

carried out aiming at comparing and verifying the mechanical performance 

between singular and non-singular joints. To do so, 12 specimens (6 singulars and 

6 non-singular) were tested on an Instron® hydraulic testing machine at 2.5 

mm/min of the crosshead speed. In Figure 78 the experimental load-displacement 

curves are reported. There is a substantial good agreement in the whole range of 

response. This is especially valid where the joint behaviour is linear (≈ max. 4000 

N). After such load level, responses start differing among their selves but the 

resulting scatter is acceptable since it is in line with the pure mechanical 

behaviour of the bulk adhesive only. From a macroscopic perspective, the 

important aspect relies on the traceability of the curves slopes and the well 

captured maximum load. 

The comparable behaviour, under purely static loads, for such different joints, 

is attributed to the presence of plasticity. Essentially, this effect produces a stress 

redistribution thus compensating the singularity effects at the edges. 

 

 

Figure 78: Singular and non-singular load-displacement curves. 
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3.7 VHCF tests  

Testing specimens in the range of VHCF has been performed by using the 

Ultrasonic Fatigue Testing Machine (UFTM) that was designed at Politecnico di 

Torino (Section 2.2 , Figure 22) for this specific purpose.  

The prepared adhesive joint was mechanically attached to the horn device 

which transmits the vibration excitation from the UFTM to the specimen under 

testing. 

Twenty-eight coupons were tested in the stress range [10 – 19] MPa, with an  

R= – 1 tension-compression loading ratio, aiming at comparing the mechanical 

performances among singular and non-singular joints. The selected stress range 

can produce only linear mechanical responses, as verified from testing the bulk 

adhesive material and coupons through preliminary static experiments, thus the 

effects of plasticity do not influence the final test outcomes. 

The UFTM equipment requires specific input calibrations/verification before 

performing each single test such as, temperature verification interval, correct 

spacing between the coupon and the vortex tubes, definition of the run-out 

number of cycles (109) and, most important, the correct definition of the input 

displacement at the horn base to reach the desired stress level. A simple linear 

model was adopted to correlate the stress level to be adopted during test (known 

from FE modelling) and the input displacement to adopt.  

In Figure 79 (a), (b) the singular and the non-singular specimen are depicted. 
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(a) (b) 

Figure 79: Singular (a) and non-singular (b) setups during VHCF tests. 

Original from [215] 

Testing coupons permitted to populate the stress – number of cycle (S-N) 

curve. Experimental S-N outcomes are reported in Figure 80 where adhesive-

mixed-cohesive (i.e., yellow dots), cohesive failures (i.e., blue dots), and run-out 

(i.e., blue diamonds) have been observed for non-singular coupons. Conversely, 

singular joints have not experienced significant adhesive contribution to final 

failures but almost fully cohesive failures (i.e., red dots), and run-out (i.e., red 

diamonds) only. 

In order to select effective failures among adhesive-mixed-cohesive ruptures 

for non-singular joints, a heuristic criterion based on the occupied area was 

adopted. It has been experimentally observed that adhesive-mixed-cohesive 

failures with about (or less) the 20% of adhesive detachments presented a fatigue 

life close to the one associated to a purely failed cohesive specimen. Moreover, at 

fixed applied load, the visual inspection of the S-N plot suggests that fatigue 

performances reduce as the adhesive area increases. Thus, the threshold of 20% 

was adopted as a separation criterion. Essentially, failures presenting up to the 

20% of adhesive detachments were considered as valid and comparable to the 

Infrared sensor

Tes ted butt joint

 aser displacement

sensor

 ortex tubes
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fully cohesive ruptures. Conversely, specimens with higher adhesive separations 

were treated as fully adhesive. To the sake of precision, the yellow dots in Figure 

80 are associated to higher to 15% adhesive separations thus considered as totally 

adhesive.  

Non-singular joints exhibited much higher fatigue performances, especially in 

the range [13 – 15] MPa where run-out (𝑁 = 109) have been collected, with 

respect to singular coupon that failed in the range of  107 cycles at the same stress 

level. Even if a sufficient run-out population was collected between [14 – 15] 

MPa, to approach a possible VHCF limit carefully, 13 MPa was considered the 

worst-case scenario. 

Regarding the singular coupons, these started showing run-out in the range of 

11 MPa, thus with a significantly reduced capability of sustain loads .  

 

Figure 80: S-N raw data after failures or run-out. Original from [215] 

 

The fracture surfaces of the non-singular specimens that failed cohesively are 

illustrated in Figure 81 where 𝜎𝑎 is the applied stress. Particularly, two separated 

regions can be identified and observed from failed coupons of Figure 81(a-c): 

1. Steady propagation: in this area the adhesive undergoes to progressive 

cohesive detachments. Typically, this region can be recognized as the 

darker and its extension is related to the specimen cross area that 
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guarantees the fulfilment of the UFTM frequency requirement (i.e., the 

fundamental frequency is higher than 19500 Hz). 

2. Final fracture: in this area the fracture progresses in an un-stable way and 

it can be recognized as it presents lighter colours. 

From a visual inspection, it was impossible to recognize a crack nucleation 

region/point (as opposite of other materials) but, surely, the external edges were 

not affected by nucleation mechanisms since these last were not mechanically 

corrupted with degradations or partial adhesive detachments that could have 

suggested the presence of a trigger point. Thus, wherever present, the initial 

damage mechanism is included in the internal parts of the steady propagation. 

The absence of a clear and well-defined crack nucleation region was probably 

induced by the presence of glass spheres that were adopted to guarantee the 

uniform thickness of 0.3 mm. In fact, the steady propagation region looks like a 

uniformly distributed damaged area.   

The final fracture region also presents interesting aspects. Precisely, the size 

remains almost constant even if the load increases. Nonetheless, it becomes less 

recognisable as the applied load decreases.  

 

(a) 𝜎𝑎 = 19 𝑀𝑃𝑎 
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(b) 𝜎𝑎 = 17 𝑀𝑃𝑎 

      

(c) 𝜎𝑎 = 15 𝑀𝑃𝑎 

       

(d) 𝜎𝑎 = 13 𝑀𝑃𝑎 (run-out), 𝜎𝑎 = 18 𝑀𝑃𝑎 

      

(e)  𝜎𝑎 = 14 𝑀𝑃𝑎 (run-out), 𝜎𝑎 = 16 𝑀𝑃𝑎 

 

      

(f) 𝜎𝑎 = 15 𝑀𝑃𝑎 (run-out), 𝜎𝑎 = 17 𝑀𝑃𝑎 
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(g) 𝜎𝑎 = 15 𝑀𝑃𝑎 (run-out), 𝜎𝑎 = 16 𝑀𝑃𝑎 

Figure 81: Fracture surfaces of non-singular specimens. 

 

Conversely, fracture surfaces in Figure 81 (d-f) were tested under the 13 – 15 

MPa stress levels, respectively, which were non-critical for the joint. Then, since 

the specimens have shown a run-out (theoretically, an infinite life at that stress 

level), it was re-tested to a higher stress level, 16 – 18 MPa respectively, without 

removing the adhesive layer. Highly likely, specimens without a previous test 

history (i.e., the new one for each applied stress level) that fail till a finite N-cycles 

(Figure 81(a-c)), are prone to show a clear distinction between the steady 

propagation and the final fracture regions compared to those that are re-tested 

after run-out.  

Fracture surfaces of singular specimens (the clearest that have been observed), 

are reported in Figure 82. These specimens, despite the presence of the singularity, 

do not present a distinguishable steady propagation region with respect to the final 

fracture area and the nucleation area/point. However, they show the highest 

damages/degradations in correspondence to the specimen edge, as expected as the 

outer region is the most critical and the weakest. 

 

      

(a) 𝜎𝑎 = 18.5 𝑀𝑃𝑎 
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(b) 𝜎𝑎 = 17 𝑀𝑃𝑎 

       

(c)  𝜎𝑎 = 11 𝑀𝑃𝑎 (run-out), 𝜎𝑎 = 13 𝑀𝑃𝑎 

        

(d) 𝜎𝑎 = 10 𝑀𝑃𝑎 (run-out) 𝜎𝑎 = 12 𝑀𝑃𝑎 

Figure 82: Fracture surfaces of singular specimens. 

 

The final investigation related to the VHCF outcomes pertains the estimation 

of probability-stress-number of cycles (P-S-N) curves. The use of a probabilistic 

approach permitted to take into account the statistical distribution of the 

experimental data aiming at quantifying the contribution of the data scattering to 

the fatigue curve.  To do so, the statistical approach based on the Maximum 

Likelihood Principle, described in Section 2.3 and recalled in short in the 

following, was adopted. The methodology requires the maximization of the 

Likelihood function reported in Eq.(3.7.1). 

L[𝛉] =∏fY|X=x[yi; xi, 𝛉]

nf

i=1

∙∏(1 − FY|X=x[yi; xi, 𝛉])

nr

j=1

 Eq.(3.7.1) 
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where 𝛉 is a set of parameters to be estimated, nf the number of failures, nr the 

number of run-out data, fY|X=x the probability density function of the fatigue life, 

FY|X=x the cumulative distribution function and yi the fatigue life of the i-th 

specimen. The mathematical framework also assumes that the logarithm of the 

fatigue life follows a Gaussian distribution with a constant standard deviation and 

the mean dependent on the logarithmic applied stress amplitude as reported in 

Eq.(3.7.2) 

𝜇𝑌(𝑥) = 𝑐𝑌 +𝑚𝑌 ∙ 𝑥 Eq.(3.7.2) 

where x is the logarithm of the applied stress amplitude, 𝜇𝑌(𝑥) the logarithm of 

the fatigue life, 𝑐𝑌 and 𝑚𝑌 are constant coefficients that must be determined case 

by case. 

Numerically, the optimization Nelder–Mead simplex algorithm was adopted to 

maximize L[𝛉]  thus identifying the parameters of interest. 

In Figure 83 the S-N curves have been extracted for three probability levels 

namely P=10%, P=50% (i.e., the average) and P=90%. The calculation considered 

only the specimens that failed cohesively as well as the run-out.  

 

Figure 83: P-S-N curves for singular and non-singular cohesive failures. 

Original from [215] 
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Referring to the average S-N curve, non-singular specimens showed enhanced 

mechanical performance with respect to singular specimens, as expected. This 

was confirmed by an upwards shifted curve and is much more evident for the 90% 

probability curve. Conversely, at 10% of probability, there is an unexpected and 

unforeseen reduced performance that leads to the intersection between the non-

singular curve and those related to the singular specimens. This phenomenon is 

clearly induced by the wide scatter band of non-singular failures. However, it has 

been quite difficult to identify the fundamental source, or a reasonably possible 

cause, of this distribution. Especially, when it is compared to the one of singular 

specimens that is very tidy with a narrow scatter. The two different distributions 

could have been affected by the following reason: non-singular joint is, 

potentially, much more sensitive compared to the singular ones. Manufacturing 

imperfections could jeopardize the adhesion properties at the specimen edge, thus 

provoking localized adhesive detachments, as visible in Figure 81(d-f). This can 

lead to the loss of the appropriate local adhesion properties and, in general, the 

joint load-bearing capability. Even though this aspect could be perceived as a 

weakness for non-singular joint technology, it should be seen in the framework of 

a manual-executed manufacturing. In fact, as an example, during the joint 

preparation, some passages of abrasive paper should be performed in order to 

increase the substrate adhesion characteristics. However, no control was possible 

to adopt on the applied manual force or, similarly, if some regions of the specimen 

would have been more subjected to the abrasion, the experimentalist was not 

aware of this. Indeed, the production phase was totally carried out based on the 

experimentalist manual skills and experience. Moreover, manufacturing effects 

are more pronounced on non-singular coupons due to the absence of the stress-

singularity itself that is the most visible and the principal source of failures. In 

other words, manufacturing effects could be present in both classes of specimens, 

nevertheless they have a much lower importance for singular joints where the 

failure is totally governed by the presence of the singularity that, in terms of 

statistical distribution, produced narrower bands. Conversely, since non-singular 

joints can express the real material behaviour due to the absence of the stress-

singularity, the uncontrollability of the manufacturing can introduce localized 

defects randomly, or surficial issues, that are expressed in wider scatter bands in 

terms of fatigue life and S-N curves. 



160 
 

From a practical perspective, the use of automatized and controlled machines, 

suitably developed for this scope, should be able to guarantee a common level of 

repeatability among specimens and bonded structures thus reducing the data 

variability introduced by manual operations. 

3.8 Assessing loading-frequency behaviours 

Assessing loading-frequency behaviours of cylindrical adhesive butt-joints was 

performed under the joint best conditions (i.e., non-singular specimens) as this 

configuration demonstrated the absence of features that can affect the correct 

material properties extraction. For doing this the full specimen re-design was not 

necessary. However, since the boundary conditions imposed by the adopted 

testing machine for conventional fatigue experiments (i.e., Instron® 8801 servo-

hydraulic) differ from the boundary conditions applied by the UFTM for VHCF 

test, it was anyhow necessary to perform the FRA investigations with respect to 

the application of quasi-static loads to ascertain the current stress field. Indeed, the 

use of static analysis is justified by the fact that the frequency content of the load 

is negligible compared to the first natural frequency of the specimen. 

Essentially, the same passages for producing the numerical model for the 

VHCF specimens were executed: from a representative Global model which 

accounts for the global structural behaviours under current boundary conditions 

(see Figure 86), to a refined Local description for assessing detailed stress 

features. For accelerating the modelling and the analysis phases, the Local non-

singular model developed for the VHCF prediction, reported in Figure 59, was 

refurbished while changing the magnitude of applied local displacements. The 

numerical assessments have been performed by considering a quasi-static 

approach: since the natural frequencies of the specimen are in the range of 

thousands of Hz and traditional fatigue tests are executed in the range of tens of 

Hz, it seems reasonable to adopt such working hypothesis. Moreover, as 

illustrated in the following, fatigue tests will be performed at 5, 25, 50 Hz for 

assessing loading-frequency effects, thus very far from the first model resonance. 

As a result, in Figure 84 the extracted stress maps in the local model resulting 

from the application of current boundary conditions. An almost constant stress 

field of approximately 13 MPa was defined in most of the area of the specimen. 
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As the observation is closer to the adhesive-adherend external interface, there is a 

stress concentration. Even though the map was limited at 20 MPa for visibility, 

the grey region in the curved throat stands for higher stresses as in the VHCF 

case. 

 

Figure 84: Longitudinal stress map resulting from a quasi-static loading 

condition. Original from [216] 

 

The use of such quasi-static hypothesis requires the verification of stress 

distribution along the T-R directions of Figure 70. This comparison is fundamental 

for testing purposes in order to impose the correct loading levels during the low-

frequency fatigue experiments. Thus, referring to the  HCF case as “dynamic 

case” and to the current investigation as “static case”, in Figure 85 (a)-(b) the 

longitudinal stress recovered along the T and R paths are depicted. Both case 

studies consider a nominal 15 MPa stress level in correspondence of the specimen 

axis for comparison purposes. It is evident that both loading conditions, if 

properly tuned in terms of external loads, can produce exactly equal internal stress 

components. 
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(a)  

 
(b)  

Figure 85: Recovered stress for the static and dynamic case. Original from 

[216] 

 

Testing specimens required the joint manufacturing. This task was 

accomplished by exploiting the same manufacturing methodology developed in 

the case of VHCF samples but, in this case, by using the longer adherends only. 

Thirty-five specimens were produced and tested under 5, 25, 50 Hz produced via 
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the Instron® 8801 servo-hydraulic testing machine, depicted in Figure 86, with 

load control capabilities. 

 

 

Figure 86: Boundary conditions derived from the testing configuration. 

 

Experiments were performed between 10 – 17 MPa with a run-out threshold of 

2∙106 cycles as greater ranges would have been difficult to test in a reasonable 

time frame. In case of low-frequency fatigue tests the arrest criterion to stop the 

test was based on a load condition. Essentially, if the load magnitude during the 

sinusoidal wave dropped below the 50% of the initial external load, the coupon 

was considered failed and the test stopped. Such criterion was adopted to not 

damage the testing machine during the loading phase. 

Performing such tests allowed the extracting S-N diagram as depicted in Figure 

87. According to the comparative result with respect to VHCF data, the 

frequency-rate effect exists and is clearly highlighted. In fact, coupons under 

common fatigue tests failed in the High Cycle Fatigue (HCF) range, much before 

the VHCF data. HCF run outs were observed for the 25 and 50 Hz testing cases.  
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Figure 87: Loading-frequency S-N raw data after failures or run-out. 

The precise evolution of the failure according to the increase of the applied 

testing frequency was assessed and explored through P – S – N curves already 

adopted in the case of VHCF test. Precisely, Eq.(3.7.1) was applied for the three 

applied loading frequencies and such results are illustrated in Figure 88 at P=50% 

in order to represent the averaged behaviours of tested specimens. P – S – N 

curves demonstrate the progressive enhancement of the joint endurance as the 

loading-frequency increases and this effect testifies the existence of a loading-rate 

effect for the specific case of SikaPower® 1277 adhesive. 

Data scattering was associated with the analysis of the standard deviation (SD), 

which is reported in Table 7 for each applied frequency, both low-frequency and 

ultrasonic. In general, conventional fatigue tests are characterized by a lower 

variability as demonstrated by the maximum value of SD ≈0.58 at 25 Hz. This 

quantity increases up to ≈0.77 for VHCF. For completeness, even though the 

statistical variability is present and should be considered for real design 

applications, it has a very low impact on experimental results. 
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Figure 88: P-S-N curves at P=50% assessing loading-frequency effects 

between VHCF and conventional fatigue tests. Original from [216] 

 Failures at 5 Hz 
Failures at 25 

Hz 

Failures at 50 

Hz 

Failures at 20 

kHz 

Standard 

Deviation (SD) 
0.3038 0.5763 0.4687 0.7691 

Table 7: Standard deviation form processed data with ML and optimization. 

 

The HCF threshold (i.e., N=2∙106) was adopted for investigating the strength 

distribution at the investigated frequencies for the adopted probability levels 10%, 

50% and 90%. Fatigue data of both HCF and VHCF were interpolated by using a 

power-law model as in Eq. (3.8.1) 

𝜎 = 𝐴 ∙ 𝑓𝑏  Eq. (3.8.1) 

where 𝜎 is the experimental fatigue strength,  the applied test frequency 

whereas A and b are the model parameters to be determined in the regression 

scheme. Precisely, the regression adopted the least-square method and such 

calculation was accomplished in a simple Excel® spreadsheet. Raw and 

interpolated data are presented in Figure 89. The power-law reasonably 
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approximates the data set with an R2 factor higher than 0.995 for all the cases. 

This observation that combines both experimental data and analytical calculations 

would be particularly useful for extracting material parameters out of the available 

experimental range. In fact, the analytical model of a power-low is a good 

approximation of data in the selected frequency range. Moreover, it was evident 

that, at fixed applied external load, the sustainable number of cycles to reach the 

final failure increased linearly in a bi-logarithmic chart and this effect confirmed 

the presence of frequency-rate effects. Obviously, a more robust interpolation 

should consider more data, especially in the missing frequency region between 

≈100 Hz and ≈10000. However, this assessment had the potential to extrapolate 

the strength trend to be adopted for adhesive applications. 

 

Figure 89: Strength distribution for 10%, 50%, 90% probability levels at 

N=2∙106 cycles. Original from [216] 
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4 Conclusions  

The work performed in this thesis explored the adhesive joint performances 

under fatigue loading conditions. Two main aspects were the research object: i) 

the understanding and quantifying of the influence of the stress singularity in Very 

High Cycle Fatigue (VHCF) range originating between aluminium 7075 T6 

substrates and thin layers of SikaPower® 1277 epoxy resin; ii) the quantifying of 

the presence of loading-frequency effects when specimens subjected to low and 

very high frequency excitations. 

To do so, combined analytical, numerical and experimental techniques were 

adopted to reach the research purposes. Precisely, analytical models based on 1D 

vibrating structures have been successfully employed for designing the VCHF 

specimen whereas the inverse Bogy approach defined the geometrical conditions 

to remove the stress-singularity. Numerical methods based on the Finite Element 

(FE) Submodelling technique investigated the stress responses of designed 

specimens in a precise and detailed manner. Experimental fatigue testing 

techniques, such as the use of Ultrasonic Fatigue Testing Machine (UFTM) and 

conventional hydraulic testing machines (i.e., Instron®), explored the VHCF and 

the HCF fatigue responses.  

The following general analytical conclusions can be drawn: 

▪ The use of the inverse Bogy approach was successfully implemented in 

the workflow to investigate geometrical modifications (or mechanical, if 

necessary) that remove the stress singularity. For the specific problem of 

interest, two adhesive-adherend boundary configurations have been 

identified as possible ideal candidate namely 43.5°-90° in plane strain and 

48.2°-90° in plane stress; 

▪ The extended use of such approach allows the definition of real design 

maps and this aspect is particularly useful for real design applications; 

▪ Attention should be given to modelling aspects when dealing with such 

maps. Three well separated region could be foreseen with specific 

safety/non-safety design consequences. 
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Numerical considerations: 

▪ The use of Global-Local FE models permitted both the achievement of 

a suitable specimen for ultrasonic and low frequency fatigue testing and 

the detailed stress investigation as well; 

▪ The application of the Global-Local technique allowed ad-hoc and 

precise mesh developments capable of capturing the correct behaviour 

of structural features of interest such as the singular and the non-

singular stress trends; 

▪ A manual FE optimization of the edge angle that interfaces with the 

adhesive layer guided the selection of the most suitable test 

configuration starting from the reference configuration arising from the 

inverse Bogy approach. A testing configuration of 35°-90° was thus 

selected as optimal to reach the design capabilities and the experimental 

purposes. 

 

Experimental considerations: 

▪ UFTM working at 20 kHz can easily assess the VHCF range with a 

reasonable time frame thus permitting an extensive test campaign 

which can explore failure up to N=109 cycles; 

▪ Tested joints in VHCF presented cohesive, adhesive and mixed failure 

for both singular and non-singular and the type of failure mostly 

depended on the quality of the manufacturing as this process was 

entirely performed manually; 

▪ Only cohesive and mixed failures, with less than 20% of adhesive 

detachments, were considered as valid for estimating the S-N curves. 

Raw failure data showed that removing the stress singularity can 

produce enhanced fatigue lives compared to original singular 

specimens. In fact, at a fixed applied load, non-singular joints exhibited 

run-out data or much more life cycles; 

▪ Statistical aspects were investigated through a specific fatigue model, 

whose parameters have been estimated by applying the maximum 

likelihood method. The application of this model permitted the proper 
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identification of Probability – Stress – Number of cycles (P – S – N) 

curves. These last revealed a wider scatter band for non-singular 

specimens compared to the original one. The reason behind this 

phenomenon relies on the major influence of manufacturing effects on 

non-singular joints with respect to singulars. Indeed, the tidy 

distribution of singular joints in the S-N plot comes from the presence 

of the singularity that is the first-order failure mode for such joint type;  

▪ Loading-frequency effects were explored by using non-singular 

specimens without a re-design. An Instron® hydraulic testing machine 

was employed to assess this behaviour and joints were tested at 5, 25 

and 50 Hz. Raw data clearly highlighted the presence of a loading-rate 

effect for the adhesive under analysis. In fact, a fixed applied alternated 

load, up to 5 orders of magnitude separates the fatigue life obtained at 

conventional frequencies and at ultrasonic frequencies;  

▪ P – S – N curves depicted for a probability level of 50% highlighted the 

progressive increment of the averaged S-N curve as the frequency 

increases. Deviations from the data average were investigated through 

the Standard Deviation (SD). In general, this parameter has a low value 

namely SD max. ≈0.58 for a low-frequency testing method and SD 

≈0.77 for an ultrasonic testing one.  

▪ A power-law model defined for strengths at N=2∙106 was exploited to 

extract a stress trend across the adopted testing frequencies. This model 

satisfactorily approximated the stress data with an R2=0.995.  
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