
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Benchmarking Different Strategies for Offloading ROS2 Computation to the Edge / Cacciabue, Daniele; Marino, Jacopo;
Aglieco, Francesco; Levorato, Marco; Perroni, Domenico; Risso, Fulvio. - (2024), pp. 49-54. (Intervento presentato al
convegno 2024 IEEE 10th International Conference on Network Softwarization (NetSoft) tenutosi a St. Louis, MO (USA)
nel 24-28 June 2024) [10.1109/NetSoft60951.2024.10588914].

Original

Benchmarking Different Strategies for Offloading ROS2 Computation to the Edge

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NetSoft60951.2024.10588914

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988320 since: 2024-09-12T11:33:45Z

IEEE

Benchmarking Different Strategies for Offloading
ROS2 Computation to the Edge

Daniele Cacciabue∗†, Jacopo Marino∗†§, Francesco Aglieco¶,
Marco Levorato§, Domenico Perroni‡, and Fulvio Risso†

†Dept. of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
§Dept. of Computer Science, University of California, Irvine, CA, USA

¶Links Foundation, Torino, Italy
‡Italdesign, Torino, Italy

Abstract—Mobile robots suffer from inherent limitations due
to the tradeoff in the amount of energy consumed by their on-
board processing components, and the need to increase their
operational time. On the communication side, the volatility of
communication links severely hinders the ability of a mobile
device to rely on computation offloading. The challenge addressed
by this paper is the development of a methodology and frame-
work to effectively migrate the location of a service from a system
to another, minimizing downtime and striving to reduce any side-
effects that may be perceived by the system. Solving this challenge
will pave the way for more effective computation offloading
solutions that can cope with the unpredictability of the edge
systems. Four different approaches are compared, analyzing their
performance via an empirical approach. The insights gathered
from data allow the identification of the most promising solution
to address the aforementioned challenge.

Index Terms—kubernetes, ros2, liqo, cloud offloading, service
switching

I. INTRODUCTION

Today’s robots (such as rovers, drones and more) are
equipped with on-board computing hardware to execute per-
ception tasks that allow them to interact with their surround-
ings, for instance by identifying obstacles and performing
autonomous navigation. However, some Machine Learning
(ML) tasks for perception such as object detection, can re-
quire a considerable amount of computing power. Properly
dimensioning the hardware is highly non-trivial. In fact, one
must account for the tasks the robot will need to perform and
their requirements, for the expected mission duration and cost.

A very promising approach is to let the robot delegate a
subset of its tasks to a separate – less-constrained – sys-
tem. Offloading computation may, depending on the scenario,
effectively grant many advantages, including providing the
robot with extended computational capacity, an increased
operational time or an improved context awareness. The key
challenge to tackle to enable robots with extended computing
capabilities is to develop novel methodologies for the robot
to communicate with the cloud, and seamlessly integrate
its functionalities with it, which is one of the core tenets
Mobile Edge Computing (MEC) [1], [2]. Practically speaking,
a successful integration of the MEC paradigm in robotics and

∗Daniele Cacciabue and Jacopo Marino are co-first authors.

Internet of Things (IoT) in general can allow for smaller robots
to use complex, resource-intensive algorithms such as ML
and autonomy algorithms even if their system specifications
are severely undersized, resulting in cheaper, simpler robots
outperforming their more expensive counterparts.

The main objective of this paper is to develop an effec-
tive methodology to offload the execution of stateless ROS2
modules to edge clouds. The main requirement is to guarantee
service continuity and transparency, that is, if a ROS2 system
is completely or partially moved to the cloud (or vice versa),
it must be able to continue working correctly, minimizing
service disruption. We performed a preliminary exploration
this paradigm in a previous paper [3] and in this paper we
analyze four core concepts to implement it. Through the
analysis of their performance, we aim to identify the most
suitable technology or approach to reach such goal.

We define switching as the process of transitioning the active
logic of a component from one location to another. The ideal
switching is fast and is undetectable by any other entity in
the system that interacts with the migrated component. This
capability is central to the solutions discussed in this paper, the
four approaches will be analyzed according to their distance
from ideal switching. In switching, computation moves from
one location to another. However, the process whose function
has changed location may not have moved as well. Especially
in mission-critical settings, the old copy of the function might
be kept running in the original location, but prevented from
communicating with the rest of the system. This can be done to
deploy a fallback-mechanism that allows the system to rapidly
re-enable the old instance if the remote become unreachable.
In cases in which such redundant local copy is not needed,
the solution is to add a re-deployment step to the switching
procedure. In this case, after having moved the computation,
the old logic component is terminated, turning the switching
operation into a full-fledged migration. Of the four solutions
studied in this paper, two will include a re-deployment step.

The structure of this paper is outlined as follows. Section II
introduces the current state of the art, while Section III
goes into the technologies employed. The architectures of
the solutions proposed are discussed in Section IV, with
their corresponding implementations described in Section V.

The methodology for experimental evaluation and the results
obtained are presented in Section VI. The paper concludes
with Section VII, outlining possible future directions.

II. STATE OF THE ART

Chen et al. [4] introduced FogROS, a tool for easily de-
ploying robot software components to the cloud via the Robot
Operating System (ROS), enhancing computing resources like
GPUs with minimal setup. Building on this, Ichnowski et al.
[5] presented FogROS2 for ROS2, enabling simple cloud and
fog computing integration for robots. This platform allows
for shifting heavy computations to the cloud with few script
changes, without altering the robot’s code, focusing on Virtual
Machines (VMs) rather than Kubernetes (K8s) for cloud
interactions. Expanding on these concepts, Chen et al. [6] later
developed FogROS2-SGC, furthering FogROS2’s capabilities
to connect robots across different locations securely and effi-
ciently, without requiring code changes. Similarly, Anand et
al. [7] introduced an algorithm designed to mitigate the con-
straints of serverless computing, such as communication and
bandwidth issues, employing various work-sharing strategies
to enhance cost efficiency and reduce execution time.

Doan et al. [8] proposed a framework that separates MEC
application design into processing and state management,
using a distributed key-value store to ensure seamless service
continuity. This design enables state synchronization across
MEC servers and anticipates user handovers between MEC
nodes. Its modular, containerized approach enhances its prac-
tical applicability in MEC settings.

Machen et al. [9] tackled the challenge of minimizing
service downtime and overall migration time in mobile edge
clouds. They developed a layered framework that breaks
down cloud applications into multiple layers, allowing for the
transfer of only the missing layers to the destination. This
framework is applicable to both VMs and containers and can
be implemented with existing tools.

Chebaane et al. [10] introduced a method for offloading
time-sensitive tasks from the initiating application to nearby
Fog nodes using Docker containers and Checkpointing. This
approach results in a layer-oriented framework that limits of-
floading to essential steps within just two message exchanges.
The strategy assumes that offloading occurs solely from the
vehicle hosting the application to an adjacent Fog node.

Some researches have concentrated on the live migration
of VMs [9], [11], transferring all VM data during runtime.
Conversely, other research has explored the live migration of
containers [9], [12], emphasizing the movement of container-
ized applications without interrupting their operation.

Our approach differentiates from the above solutions be-
cause it does not handle the case of stateful migration,
moreover, it analyzes specifically the migration of ROS2-
based services, during execution. Unlike Machen et al. [9], our
approach does not tackle primarily a client-server communi-
cation paradigm, but mainly focuses on a client-subscribe one,
which ROS2’s middleware is based on. This study differenti-
ates from FogROS2 [5] due to the selection of Kubernetes and

containers instead of VMs, which allows for a lower resource
footprint, easier management and the ability of bringing the the
benefits and practices of cloud-native development to robotics.

III. TECHNOLOGIES

This section explores four technologies, each of which
contributes distinctive capabilities to our solution.

A. ROS2

The Robot Operating System (ROS) [13] includes an exten-
sive array of software libraries and tools aimed at streamlining
the creation of robotic applications. It provides a wide range
of features, from fundamental drivers to state-of-the-art algo-
rithms, alongside sophisticated tools for developers. In ROS,
every Node is designed to fulfill a specific function, such the
wheel motors management or sensor data transmission from a
laser range-finder. ROS uses publisher/subscriber messaging
between Nodes, using the standard called Data Distributed
Services (DDS). Nodes could be placed in the same device
or they could be distributed across different machines, if the
latter are able to communicate using multicast.

B. Zenoh

Zenoh introduces a Pub/Sub/Query protocol, offering uni-
fied abstractions for managing data in motion, data at rest, and
computations on an Internet scale. It is optimized for perfor-
mance across a wide range of hardware and network condi-
tions, from server-grade environments to microcontrollers and
networks with limited resources. Moreover, Zenoh supports
peer-to-peer, routed, and brokered interactions [14].

C. Kubernetes

Kubernetes is an open-source platform that automates the
deployment, scaling, and management of containerized appli-
cations. It is designed to be portable and extensible, facili-
tating the orchestration of containerized workloads and ser-
vices through both declarative configuration and automation.
Complementing it, the Container Network Interface (CNI)
serves as a framework for dynamically configuring networking
resources. The CNI defines an interface for network configu-
ration and IP address provisioning, essential for maintaining
connectivity in Kubernetes environments.

D. Liqo

Liqo is an open-source tool that enhances Kubernetes by
enabling dynamic multi-cluster configurations across varied
infrastructures like on-premise, cloud, and edge. It introduces
a virtual node after connecting clusters, representing shared
resources from the remote cluster. This process seamlessly
expands the local cluster’s resource pool, allowing Kubernetes’
scheduler to efficiently allocate workloads. Liqo maintains
compatibility with standard Kubernetes APIs, ensuring of-
floaded pods are managed as if they were local [15].

IV. SWITCHING ARCHITECTURES

Within the scope of implementing switching capabilities
using ROS2, we identify four potential approaches. Solutions
are presented side by side, highlighting that the effectiveness
of a strategy varies with the scenario, making it impossible to
choose a one-size-fits-all option in advance. A key difference
in the solutions proposed stands on the fact that two of them
switch computation by redeploying the Pod, the other two
rely on preemptively deploying multiple copies of the Pod in
different locations and only keeping one of them active at the
same time. In our discussion we will refer to two Kubernetes
clusters: one designated as robot and the other as cloud.

A. Switching with Redeployment (SwR)

In addressing the challenge of efficiently allocating ROS2
Nodes within switching architectures, the pivotal issue be-
comes their placement. This dilemma can be reframed as a
scheduling challenge, focusing on identifying the most appro-
priate Kubernetes node and cluster for hosting the ROS2 Node.
The SwR architecture emerges from this concept, entrusting
a scheduler with the task of initially deploying the ROS2
Node and subsequently executing a rollout to relocate it to
another location as required. Initially, the scheduler operates in
a basic capacity, merely transferring the ROS2 Node between
locations without incorporating any metrics or contextual
analysis. The responsibility for managing the Pod lifecycle is
transferred to Kubernetes. Therefore, once the scheduler has
assigned the ROS2 Node to a specific cluster node, Kubernetes
assumes control over all further processes, adhering to its
standard operational procedures.

B. Switching with Redeployment and Network Policies
(SwRNP)

Building upon the SwR model, the SwRNP architecture
introduces an additional step following the scheduling phase.
After a new ROS2 Node instance is scheduled, enters the
Running state, and the previous node transitions to Terminat-
ing, the scheduler deploys a Network Policy (NetPol). This
policy blocks all outgoing traffic from the old ROS2 Node,
minimizing the overlap of DDS messages between the old
and new Nodes. The introduction of NetPol ensures that the
outgoing messages from the terminating ROS2 Node do not
affect the newly configured Node. After deleting the old ROS2
Node, the NetPol is removed, as it is no longer necessary.

C. Switching with Network Policy (SwNP)

This solution is not based on redeployment. It starts from
the condition in which more than one copy is active at the
same time, one in the robot cluster and one in the cloud
cluster. By default, only one of the two instances is active
at the same time. This is implemented using a NetPol to
block any outgoing communication from the disabled instance,
preventing it from communicating. When the switch needs to
be performed, the inactive Pod needs to be enabled and the
disabled Pod enabled, which allows for effectively switch the
active logic from one location to another. Since this solution

does not leverage the existence of the Kubernetes scheduler,
enabling and disabling of a Pod needs to be performed by
a custom-built orchestrator, which communicates with the
Kubernetes API server to enforce the NetPol.

D. ROS2 Lifecycle Node (LCN)

This solution, still not based on redeployment, is based
on a ROS2 feature called Lifecycle Nodes. The latter are a
special type of Node in ROS that can be managed through
four primary states.

• Unconfigured: initial state of the Node after instantiation;
the node is ready for configuration but not yet operational.

• Inactive: state of a Node that is not performing any
processing; its main purpose is to provide a state where a
Node’s behaviour can be changed (re-configured) without
requiring it to be in active state.

• Active: once ready to be fully functional, the Node
transitions to the active state; at this point, it has all the
behaviors of a standard ROS Node – it responds to service
requests, reads and processes data, and produces output.

• Finalized: terminal state; the only transition from here is
to be destroyed, which frees up the Node’s memory.

A node can be asked to change state using proper service-
based interfaces exposed by every Lifecycle Node. A custom-
built orchestrator can implement the switching algorithm us-
ing such services, suitably activating or deactivating node
instances. A deactivated node executes less code, which results
in a lower battery consumption compared to the the solutions
based on NetPol. This approach can only be used with ROS2
Lifecycle Nodes, making it a less portable solution that relies
on ROS2-specific features instead of Kubernetes.

V. IMPLEMENTATION

The experimental setup was designed to fully utilize the
capabilities of Zenoh, Kubernetes, and Liqo. This architecture
encompasses two VMs hosting Kubernetes clusters, labeled
as the Robot and the Cloud, and it is depicted in Figure 1.
Each VM is configured with 4 CPU cores and 8 GB of RAM,
and shares a common virtualized Ethernet network. Within
this setup, ROS2 Nodes communicates using DDS middle-
ware, which relies on UDP multicast traffic to implement
peer-discovery. Both clusters were configured using K3s, a
lightweight Kubernetes distribution, with Cilium serving as
the Container Network Interface (CNI). This configuration
was specifically chosen due to K3s’ default CNI (Flannel)
supporting multicast within the cluster. In case of managed
Kubernetes, the choice of CNI is up to the cloud provider and
not to the single tenant. By taking the most restrictive option,
this study ensures that the solution is always applicable,
independently of the chosen CNI supporting multicast or not.

The robot cluster presents the same architecture as the
cloud cluster, it employs the same CNI and the same Pod
organization. This mirrored architecture across both clusters
allows for deployment transparency, since the redeployed Pod
does not need to be modified depending on the nature of the
CNI where it is running. This simplification allowed for the

LaSC

Talker
Robot

Talker
Cloud

Cloud

Zenoh bridge

Zenoh router

ROS2 Node

ClusterIP service

Fig. 1: Architecture interconnecting cloud and robot cluster.

use of a simpler redeployment logic, which does not need to
take into account details such as the CNI installed in each
cluster. The challenge of integrating the presented solutions in
clusters with heterogeneous CNIs is left for future works.

To circumvent the absence of multicast, a Zenoh-based
overlay network was devised, which allows discovery traffic to
be forwarded to any other ROS2 Node, bypassing limitations
due to the CNI. Our approach integrates the Zenoh Plugin
ROS2DDS, functioning as a bridge within a sidecar container
in each Pod, alongside the main container running the ROS2
Node These bridges connect to the central Zenoh Router
within the cluster, facilitating seamless DDS communication
between ROS2 Nodes across different clusters.

Liqo was installed and used to establish a peering from
the robot towards the cloud cluster. Liqo enables the robot
cluster to easily use resources from the cloud cluster: it
creates a namespace on the cloud cluster and it is managed
transparently, as if it was local. This greatly simplifies the
management of multiple clusters, eliminating the need for
exposing Zenoh routers through a Load Balancer, managing IP
address changes, and instead relying on using a Fully-Qualified
Domain Name (FQDN) for the service in the remote cluster.

A. Test environment

The basic structure of the test environment consisted of two
ROS2 Nodes, namely talker and listener. The talker publishes
a message every 100ms on a topic, in the form of location:
counter, where location is the Kubernetes cluster on which
the Pod is currently scheduled (e.g., robot) and counter is an
increasing number, so each message will have the counter of
the previous message increased by 1. The listener subscribes
to the same topic of the talker and waits for messages. When
it receives a message, this is written to a InfluxDB instance
which records it together with the relative timestamp.

The Switch Controller (SC) is a component responsible for
triggering or enacting the switch transition. When the system
starts, the SC sets the active talker to be on the robot and
it listens on the talker topic to ensure that there is only one
instance of talker active at the given time. When such condition
is met, it triggers the switching procedure, recording the
event in the InfluxDB instance. One important implementation
decision regarding this component was to decide a convention
regarding the order in which a Node is enabled or disabled.
This choice matters for the SwNP and LCN case, because they

do not rely on the Kubernetes scheduler to execute their logic.
Since the default behaviour used by Kubernetes to migrate a
container is to first start a new copy on another cluster node,
then to terminate the old copy, the choice was to implement
the SC to first enable the currently disabled node, and only
afterwards to disable the previously active one. The SC is
also able to monitor the state of the Pod, checking when it
transitions to Running or when the Pod is effectively deleted.
The actual implementation resulted in the merging of the
listener and the SC into the same ROS2 Node, which we will
now refer to as Listener and Switch Controller (LaSC). Such
Nodes were deployed on the architecture in Figure 1.

VI. EXPERIMENTAL EVALUATION

To assess the duration needed for the architectures to
accomplish the switching, we identified three distinct intervals
that offer insights into the swiftness of the switching proce-
dure. These intervals illustrate each architecture’s capability to
either switch ROS2 Nodes or to activate/deactivate them. The
intervals are characterized as follows.

• Time t1: measured from the moment the switch request is
initiated to the point where the new ROS2 talker begins to
transmit data. This encompasses the period from issuing
the switch command to the instance the listener detects
the initial message from the new talker (Figure 2a).

• Time t2: defined as the duration from the first message
sent by the new talker to the moment the listener ceases to
obtain data from the previous talker. It can assume either
a positive value (Figure 2b) or negative (Figure 2c).

• Time t3: time interval from the last message sent by the
old talker to the time when the latter is fully deleted.

A. Metrics collection

The relevant metrics have been collected using an InfluxDB
instance. InfluxDB has been selected as the database of choice
because of its time-series structure which allows not only to
register events, but also the time at which they have occurred.
The gathered data has then be processed offline, which allowed
for decoupling the data collection from the data analysis phase.

The LaSC inserts into InfluxDB the events related to (i) the
arrival of a new message, (ii) the time at which the switching
procedure is started, (iii) the time at which the talker Pods
change their state to Running or are effectively deleted.

Data was gathered through 200 measurements and it has
been organized in two InfluxDB buckets. The listener met-
rics bucket stores information regarding the direction of the
switching (i.e. robot-to-cloud or cloud-to-robot), the messages
sent by each talker, and the measurement iteration (e.g., 0, 1,
2, etc.). The switch controller metrics bucket is dedicated to
track the other metrics we need to compute the final times
t1, t2, and t3. These metrics are the timestamps related to
the switching issued commands, when the new ROS2 Node is
running and when the old ROS2 Node has been deleted.

After the metrics have been collected, the data was pro-
cessed to compute the times t1, t2, and t3 for all of the
four architectures. Such data was gathered with the intent of

allowing to easily compare the differences in switching time
for each solution. The computed times t1, t2, and t3 have
been drawn on boxplot graphs, to easily compare them.

B. Time t1

The results regarding the time t1 for the robot-to-cloud and
cloud-to-robot case are shown in Figure 3a and Figure 3b
respectively. The data shows some slight differences between
the two transitions, but the results show similar performance
independently of the messages direction.

Unsurprisingly, the two cases with redeployment (SwR and
SwRNP) perform worse as far as time t1 is concerned, this is
due to them requiring time to deploy the new talker Node on
the other cluster. On the other hand, the two solutions with re-
deployment (SwR and SwRNP) and the one with only NetPol
(SwNP) show how the LCN solution performs dramatically
better, showing a clear downside of using NetPol when the
need is to quickly restore the network traffic. Considering t1,
the most performing solution is the LCN, which, considering
the average values, allows for a sensibly faster switching time
reduced of at least 85% compared to the other solutions.

C. Time t2

Given that both the default behaviour of the Kubernetes
scheduler and the implementation of the SC prioritize the
activation of a new node over disabling an old one, it was
natural to assume that the new talker would be able to send
a message before the old talker was terminated, resulting in
strictly-positive samples of t2 signalling an overlap condition.

The results depict a different picture and only the SwR case
conformed to the expectations. Both overlap and silence have
been measured in the SwRNP. In the SwNP case, only one
sample of overlap was measured out of 400 measurements
comprising both the robot-to-cloud and cloud-to-robot direc-
tions, effectively showing how, the previous hypothesis does
not apply to this type of switching. The LCN case showed
both overlap and silence as well, but in this case, since the
activation and deactivation of the Lifecycle Nodes was made
asynchronously, some kind of silence was expected, due to the
not deterministic nature of such kind of RPC calls.

Due to the presence of both positive and negative values,
the time t2 was split into two subcategories respectively called
t2overlap and t2silence. The boxplot graphs in Figure 3, show
the relevant silence and overlap statistics. The SwR overlap
case (there was no silence in for SwR) has been excluded from
the graph as it showed a median value of (29.9084±0.5541)s
for the Robot to Cloud and (29.412± 0.6144)s for the Cloud
to Robot. Being this value significantly higher than all the ones
from the other solutions, it was not included in Figure 3 with
the purpose of better showing the difference in performance
among the remaining solutions. The SwNP Overlap boxplot
is missing because it consisted of only one event (outlier).

Another unexpected result shown by this graph is the disap-
pointing performance of the SwNP case which was expected
to perform similarly to SwRNP. One possible explanation for
this result is that Kubernetes takes significantly less time to

apply a NetPol than to remove it, thus the SwRNP, which
relies on NetPol only to disable the node that is scheduled for
termination, is not affected by the time required to remove it.

This hypothesis also explains why, in our measurements, the
SwNP case does not show any t2overlap, further investigation
on this topic will be left for future works, from the graphs
shown, the LCN case clearly resulted in being the most
performant also with respect to the t2 parameter.

D. Time t3

Since t3 is the time interval between the last message of a
talker to its actual deletion, it is a measure that bears meaning
only for the switching cases that include a redeployment
step, i.e. SwR and SwRNP. Since LCN and SwNP never
delete the old talker but only disable it, they will not be
considered further in this subsection. The main result derived
by this interval consists in quantifying how, the application
of a NetPol on the old talker, allows for a reduction in the
amount of unnecessary messages sent on the DDS multicast
network. In our metrics, we saw a time of (1.2455±0.3043)s
Robot to Cloud and (1.2315 ± 0.2734)s Cloud to Robot
for the SwR, and (31.3253 ± 0.3622)s Robot to Cloud and
(31.2824 ± 0.3457)s Cloud to Robot for the SwRNP. This
difference is due to the fact that in the SwR case, the Pod is
deleted practically immediately after the last message arrives.
In the SwNRP case the Pod is first silenced by the NetPol and
then deleted afterwards, thus the time t3 increases.

E. Discussion of results

The results show that the Lifecycle Node architecture out-
performs all other options evaluated, which makes it the most
promising solution to enable a swift and efficient transition
of a ROS2 Node from one cluster to another. In hindsight,
given the reached performance, further tests may be required
in order to test the maximum publishing frequency that can
be supported by the Lifecycle Nodes solution while keeping
the t1 and t2 metrics as low as possible.

As far as the solutions which incorporate a redeployment
phase, we hypothesize that the optimal switching with rede-
ployment solution would closely resemble SwRNP, but would
utilize Lifecycle Nodes to disable the old instance instead of
NetPol. This kind of solution would be able to leverage the
Kubernetes scheduler to move the deployment from cluster
to cluster and would leverage the very good Lifecycle Nodes
performance to minimize any problems regarding the presence
of either overlap or silence.

VII. CONCLUSIONS

Our study has made significant strides in evaluating the
performance of different methods for switching stateless,
ROS2 computation from one Kubernetes cluster to another
using a reference architecture based on Liqo, Zenoh and
Kubernetes. We also shown how integrating a method to
halt communication from the old Pod can be employed in
ROS2 use cases to mitigate the issue of duplicate messages,
allowing a stateless workload to be effectively redeployed

Talker
(Robot)

LaSC
(Robot)

Talker
(Cloud)

t1
Switch

(a) t1 example.

t2_overlap

Switch

Talker
(Robot)

LaSC
(Robot)

Talker
(Cloud)

(b) t2overlap example.

Talker
(Robot)

LaSC
(Robot)

Talker
(Cloud)

t2_silenceSwitch

(c) t2silence example.

Fig. 2: Definition of t1 and t2; t2 can be positive (t2overlap) or negative (t2silence).

0,0s
1,0s
2,0s
3,0s
4,0s
5,0s
6,0s
7,0s

SwR SwRNP
SwNP LCN

(a) t1 Robot to Cloud.

0,0s
1,0s
2,0s
3,0s
4,0s
5,0s
6,0s
7,0s

SwR SwRNP
SwNP LCN

(b) t1 Cloud to Robot.

0,0s
0,5s
1,0s
1,5s
2,0s
2,5s
3,0s

SwRNP Silence SwRNP Overlap
SwNP Silence LCN Silence
LCN Overlap

(c) t2 Robot to Cloud.

0,0s
0,5s
1,0s
1,5s
2,0s
2,5s
3,0s

SwRNP Silence SwRNP Overlap
SwNP Silence LCN Silence
LCN Overlap

(d) t2 Cloud to Robot.

Fig. 3: Time t1 and t2.

without sacrificing business continuity. Our findings provide a
measure of switching speed of ROS2 Nodes from one cluster
to another using various technologies.

However, several topics warrant further investigation. These
include quantifying the time needed by Kubernetes to enforce
a NetPol once created and to delete it. By understanding what
makes the solution based on NetPol less efficient, it may be
possible to make it a suitable competitor to the LCN solution,
as it allows for the switching algorithm to be applied to other
applications other than ROS2-based ones. The four solutions
analyzed in this paper are not meant to be exhaustive and there
may be other suitable technologies and ideas to implement
the switching operation. The identification and the analysis of
them is another research path that deserves to be taken.

ACKNOLEDGEMENTS

This work was partly supported by European Union’s
Horizon Europe research and innovation programme under
grant agreement No 101070473, project FLUIDOS (Flexible,
scaLable, secUre, and decentralIseD Operating System).

This research was conducted as part of Daniele Cacciabue
and Jacopo Marino Ph.D. programmes, under the financing of
the Piano Nazionale di Ripresa e Resilienza (PNRR) and the
NextGenerationEU initiative.

REFERENCES

[1] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration
in mobile edge computing,” IEEE Access, vol. 6, Apr 2018.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, Aug.
2012, p. 13–16.

[3] D. Cacciabue, F. Aglieco, D. Perroni, and F. Risso, “Stateless job of-
floading for mobile robots in kubernetes,” in 1st International Workshop
on MetaOS for the Cloud-Edge-IoT Continuum (MECC 2024), Athens,
Greece, Apr. 2024.

[4] Kaiyuan, Chen, Y. Liang, N. Jha, J. Ichnowski, M. Danielczuk, J. Gonza-
lez, J. Kubiatowicz, and K. Goldberg, “Fogros: An adaptive framework
for automating fog robotics deployment,” in 2021 IEEE 17th Inter-
national Conference on Automation Science and Engineering (CASE),
Lyon, France, Aug. 2021, p. 2035–2042.

[5] J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk,
V. Mayoral-Vilches, N. Jha, H. Zhan, E. LLontop, D. Xu, C. Buscaron,
J. Kubiatowicz, I. Stoica, J. Gonzalez, and K. Goldberg, “Fogros2: An
adaptive platform for cloud and fog robotics using ros 2,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), London,
UK, Jul. 2023, pp. 5493–5500.

[6] K. Chen, R. Hoque, K. Dharmarajan, E. LLontopl, S. Adebola, J. Ich-
nowski, J. Kubiatowicz, and K. Goldberg, “Fogros2-sgc: A ros2 cloud
robotics platform for secure global connectivity,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Detroit, MI, USA, Dec. 2023.

[7] R. Anand, J. Ichnowski, C. Wu, J. M. Hellerstein, J. E. Gonzalez, and
K. Goldberg, “Serverless multi-query motion planning for fog robotics,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xi’an, China, May-Jun. 2021, pp. 7457–7463.

[8] T. V. Doan, Z. Fan, G. T. Nguyen, H. Salah, D. You, and F. H. P.
Fitzek, “Follow me, if you can: A framework for seamless migration in
mobile edge cloud,” in IEEE Conference on Computer Communications
(INFOCOM), Toronto, ON, Canada, Jul. 2020, pp. 1178–1183.

[9] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live ser-
vice migration in mobile edge clouds,” IEEE Wireless Communications,
vol. 25, no. 1, pp. 140–147, Feb. 2018.

[10] A. Chebaane, S. Spornraft, and A. Khelil, “Container-based task offload-
ing for time-critical fog computing,” in 2020 IEEE 3rd 5G World Forum
(5GWF), Bangalore, India, Sept. 2020, pp. 205–211.

[11] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in IEEE International
Conference on Cluster Computing, ICCC, Aug.-Sept. 2009, pp. 1–10.

[12] S. Kakakhel, L. Mukkala, T. Westerlund, and J. Plosila, “Virtualiza-
tion at the network edge: A technology perspective,” in 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC),
Barcelona, Spain, Apr. 2018, pp. 87–92.

[13] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, 2022.

[14] A. Corsaro et al., “Zenoh: Unifying communication, storage and com-
putation from the cloud to the microcontroller,” in 2023 26th Euromicro
Conference on Digital System Design (DSD), Sep. 2023, pp. 422–428.

[15] M. Iorio, F. Risso, A. Palesandro, L. Camiciotti, and A. Manzalini,
“Computing without borders: The way towards liquid computing,” IEEE
Transactions on Cloud Computing, pp. 1–18, 2022.

