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Özetçe —Bu bildiri, derin sinir ağı (DNN) yardımıyla Güç
kuvvetlendirici (PA) modellenmesi için optimizasyon metodolo-
jisini sunmaktadır. Bu yazıda, uzun kısa süreli bellek (LSTM)
DNN’nin kullanıldığı PA’nın frekans tepkilerini tahmin etmeye
yol açan etkileyici bir yaklaşım öneriyoruz. Sunulan yöntem,
PA’yı saçılma parametreleri, kazanç, çıkış gücü ve verimlilik
açısından doğru bir şekilde modeller. Bu yaklaşım, mühendis
deneyimine bağımlılık sorununu ele alır ve geniş frekans bandı
elde etmedeki zorlukları azaltır. Tüm modelleme süreci elektronik
tasarım otomasyon aracı ve sayısal analizör kombinasyonu ile
gerçekleştirilir ve otomatik ortam oluşturulur. Önerilen yöntemi
doğrulamak için, bir PA tasarlanmış ve 1 ila 2,3 GHz frekans
aralığı için modellenmiştir. DNN ilk önce bant genişliğinin yarısı
için eğitilir ve daha sonra modellenen PA, genişletilmiş frekans
bandını tahmin etmek için kullanılır.

Anahtar Kelimeler—Derin sinir ağı (DNN), genişletilmiş fre-
kans yanıtı, uzun kısa süreli bellek (LSTM), Güç kuvvetlendirici
(PA), tahmin.

Abstract—This paper presents the optimization methodology
for modeling the power amplifier (PA) with the aid of deep neural
network (DNN). In this paper we propose an impressive approach
leading to extrapolate frequency responses of the PA, where
the long short-term memory (LSTM) DNN is employed. The
presented method models the PA accurately in terms of scattering
parameters, gain, output power and efficiency. This approach
tackles the problem of dependency to the engineer experience
and reduces the challenges in achieving large frequency band.
All the modeling process is performed with the combination of
electronic design automation tool and numerical analyzer where
automated environment is created. For validating the proposed
method, one PA is designed and modelled for the range frequency
of 1 to 2.3 GHz. The DNN is firstly trained for the half of the
bandwidth and later, the modeled PA is used for predicting the
extended frequency band.

Keywords—Deep neural network (DNN), extended frequency
response, long short-term memory (LSTM), power amplifier (PA),
predict.

I. INTRODUCTION

For the next generation networks, the overall performance
of power amplifiers (PAs) plays an important role [1]. For
these future high data-rate wireless systems, wideband, high-
efficient and linear PAs are required [2], [3]. Hence, effectively
modeling and sizing the adopted radio frequency (RF) devices
require reliable methodologies [4]–[10].

Various methodologies are presented in the recently pub-
lished studies based on the optimization. In [11], a linearity
optimization is employed for enhancing the input third-order
intercept point of amplifier. The bayesian optimization (BO)
is used in [12] for designing a Doherty power amplifier where
this method results in reduced design time consumption. From
another point of view, the BO method is used with dynamic
feasible region shrinkage technique [13] to enhance conver-
gence speed of the PA design from circuit and electromagnetic
(EM) viewpoint. Source/load pull impedance modeling is used
in [14] to select suitable transistors, resulting in optimal gain
and power-added efficiency. In [15] a systematic optimiza-
tion approach is employed to identify the optimal impedance
and design the matching networks from Smith chart. The
coarse model is used in [16] leading to representing matching
networks through rational polynomials. The particle swarm
optimization method is employed in [17], [18] for designing
complex designs such as Doherty amplifier.

In the recently published literature, artificial neural ne-
tworks prove their effectiveness in modeling PA designs
characterized by multiple concurrent parameters and design
constrains [19]–[21]. Among various neural networks, deep
neural networks (DNN) show the most successful results
due to their reliable accuracy, paving the way of modeling
through ANNs [22], [23]. This paper devotes to present the
methodology for predicting the extended frequency responses
of PA in terms of S11, power gain (Gp), output power (Pout),
and drain efficiency (ηD). For this case, an accurate DNN
is trained for half of the targeted bandwidth. Afterwards, the
constructed DNN is employed for predicting the remained half
of bandwidth. The trained DNN is powerful enough in predic-
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Figure 1: Flowchart of proposed method.

ting the larger frequency band; hence simulating/measuring the
whole large frequency bandwidth will not be required. In our
approach, long short-term memory (LSTM)-based DNN results
in reducing the engineer’s effort importantly. Figure 1 presents
the general flowchart of proposed method. All the modeling
is performed within the created co-simulation environment
between keysight ADS and MATLAB as the electronic design
automation (EDA) tool and numerical analyzer, respectively.
The paper is organized as follows: Section II provides the
descriptions around of presented methodology where Sec.
III describes the practical implementation of proposed DNN.
Section IV presents the achieved outcomes from the employed
approach for the PA modeling. Finally, Sec. V concludes this
study.

II. PROPOSED METHODOLOGY

Next-generation networks require wide-band design, cha-
racterized by multiple active and passive devices. Achieving
modelling and design capability for the whole frequency band
is not straightforward and requires additional effort, time, and
memory. From another point of view, predicting the various
design performances on a wider bandwidth can lead into
better security. Recently, DNNs proved their reliability and
feasibility in modeling microwave designs [24]. The model
validity is based on the accuracy specification achieved from
the constructed DNN. Fig. 2 presents the proposed long short
term memory (LSTM)-based DNN for modeling the PAs
leading to predict an extended frequency band.

For training the LSTM-based DNN, suitable amount of
data can be achieved using parametric sweep where the design
parameters of PA can be iterated randomly [22]. The employed
DNN in this study is the regression DNN and the rule of thumb
method is used for achieving the optimal hyperparameters
of network such as number of hidden layers and number of
neurons in each layer. As shown in Fig. 2, the DNN input layer
specifications are S11, Gp, Pout, and ηD for the frequency from
f1 to fn. The output layer predicts the specification of input
layer for the adjacent frequency band (from fn to fm). After
training the DNN, the ’predictAndUpdateState’ is employed
in the MATLAB environment for predicting the extended
frequency band. In the trained DNN, the rectified linear unit
(ReLU) function is employed as the activation function and
also the normalized root mean square error (RMSE) is used
for determining the convergence. Algorithm 1 presents the
summary of proposed methodology.
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Figure 2: Proposed DNN for predicting the extended frequency
of modeled PA.

Algorithm 1 Summary of proposed methodology through
the LSTM-based DNN for extrapolating frequency responses
of PA over the large frequency band

1: Arrange the co-simulation environment between ADS and
MATLAB;

2: Prepare dataset leading to train the DNN;

3: Achieve S11, and one-tone results of PA in a large frequency
band using ADS environment;

4: Construct input layer, hidden layers, and output layer of
LSTM-based DNN following by the fully connected Layer;

5: Apply the rule of thumb for achieving the optimal hyper-
parameters;

6: Train the network in MATLAB;

7: Predict the future performances of PA through ’predictAn-
dUpdateState’ in MATLAB.

III. PRACTICAL IMPLEMENTATION OF DNN

The DNN implementation is executed in Intel Core i7-
4790 CPU @ 3.60 GHz equipped with 32.0 GB RAM. For
validating the proposed method, the PA presented in Fig. 3
is designed within the range frequency of 1-2.3 GHz using
Rogers RO4350B substrate with εr=3.66 and a thickness of
0.508 mm. The presented design parameters in TLs are iterated
within the range of [∓5%-∓25%] and the step size of ∓5%.
In each iteration, output data in terms of S11, Gp, Pout, and
ηD are gathered. In total, 5000 multi-segment sequences are
extracted and through these data, the DNN is constructed
for half of the determined bandwidth. The accuracy of the
trained DNN is around 0.10 where it results in precise future
performance prediction.
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Figure 3: Designed PA for modeling through DNN; Unit of capacitors is pF and dimensions of TLs (Width/Length) are in mm
unit.
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Figure 4: S parameter performances of modeled PA.

IV. SIMULATION RESULTS

This section devotes to present the achieved various outco-
mes through the designed and modeled PA through LSTM-
based DNN. The executed transistor model is Wolfspeed
CG2H40010F Gallium Nitride (GaN) high-electron mobility
transistor (HEMT) where the drain-source voltage and quies-
cent drain-source current are 50 V and 40 mA, respectively.

Figure 4 presents the S-parameter performances in terms
of S11, S21, and S22 for the bandwidth of 1-2.3 GHz. As
presented in the previous section, firstly the PA is modeled for
the frequency band of 1GHz to 1.7 GHz and afterwards the
trained DNN is employed results in predicting the S-parameter
specifications from the 1.7 GHz to 2.3 GHz (see Fig. 4).
The one-tone results depicted in Fig. 5 demonstrate that the
gain Gp is higher than 15 dB and ηD is more than 55% in
the operational frequency band. Additionally, the Gp with ηD
specifications over the output power for various frequencies
are presented in Fig. 6.

V. CONCLUSION

This paper presents an effective method in modeling the
PAs through the DNN to predict the output outcomes of the
PA in an extended bandwidth. The proposed approach suggests
reliable PA model which reduces the designer’s efforts in
simulating or measuring on a large frequency band. At the
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Figure 5: One-tone simulation results of PA at 3-dBm gain
compression.
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Figure 6: Gp and ηD performances through output power for
various frequencies.

first phase, the LSTM-based DNN for half of the bandwidth
is trained in terms of one-tone and S-parameter results. Afte-
rwards, the constructed DNN is employed for predicting the
extended frequency responses. The validation of the proposed
method is confirmed by designing a PA at 1-2.3 GHz where



this methodology leads to reduce designer’s effort importantly
in achieving large frequency band.

The presented methodology can be regarded as a primarily
demonstration of the DNN capability. The numerical advantage
of this method becomes increasingly competitive with other
modelling approaches once the DNN can extrapolate the model
validity over even wider bandwidth with respect to the extrac-
tion frequencies. As a future work, advanced multi-objective
algorithms will be employed for performing optimization in a
wideband operational frequency band and to test the model
validity on complex PA topology, e.g. requiring harmonic
tuning in the matching networks. Furthermore, electromagnetic
simulations of the passives are also extremely demanding in
terms of numerical effort, hence the model advantages will be
bench-marked against EM simulations.
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