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ABSTRACT Behavioral factors play a crucial role in the emergence, spread, and containment of human
diseases, significantly influencing the effectiveness of intervention measures. However, the integration
of such factors into epidemic models is still limited, hindering the possibility of understanding how to
optimally design interventions to mitigate epidemic outbreaks in real life. This paper aims to fill in this
gap. In particular, we propose a parsimonious model that couples an epidemic compartmental model with a
population game that captures the behavioral response, obtaining a nonlinear system of ordinary differential
equations. Grounded on prevalence-elastic behavior—the empirically proven assumption that the disease
prevalence affects the adherence to self-protective behavior—we consider a nontrivial negative feedback
between contagions and adoption of self-protective behavior. We characterize the asymptotic behavior of the
system, establishing conditions under which the disease is quickly eradicated or a global convergence to an
endemic equilibrium is attained. In addition, we elucidate how the behavioral response affects the endemic
equilibrium. Then, we formulate and solve an optimal control problem to plan cost-effective interventions
for the model, accounting for their healthcare and social-economical implications. Numerical simulations on
a case study calibrated on sexually transmitted diseases demonstrate and validate our findings.

INDEX TERMS Epidemics, game-theory, nonlinear control systems, optimal control.

I. INTRODUCTION
The spread of epidemic diseases has always been one of the
most severe threats to mankind. Hence, the design of effi-
cient plans and interventions for the containment of epidemic
diseases is a task of paramount importance in our societies.
However, designing such plans is extremely challenging from
several perspectives, ranging from healthcare to the social and
economic impact of the interventions. In particular, in most
cases, only a set limited amount of resources is available to
plan interventions. Hence, the study and design of optimal
policies is a crucial aspect. In recent decades, the development
of mathematical models of epidemic spreading has provided
new tools to predict the evolution of epidemic outbreaks and
test what/if scenarios [1], [2], [3], [4], [5]. In particular, the
growing interest in epidemic modeling within the systems and
controls community has triggered the development of novel
model-informed control strategies [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], to help assist public health

authorities in their complex decisions concerning the planning
of intervention policies.

Recent epidemic outbreaks, such as Ebola in West Africa
and the global COVID-19 pandemic, have highlighted hu-
man behavior and individual responses as fundamental factors
in shaping the course of an outbreak. Understanding human
behavior is also crucial for designing effective strategies to
control infectious diseases [18]. In fact, especially when phar-
maceutical interventions and treatments are insufficient or
impractical, the collective adoption of self-protective behav-
iors becomes essential for controlling outbreaks [19].

In this context, there is an urgent need for epidemic models
that integrate social and behavioral dynamics, capturing the
complex interplay between disease evolution and population
behavior [19]. In recent years, the integration of behav-
ioral responses into mathematical models for epidemics has
gained considerable attraction within the scientific commu-
nity [20], [21], addressing the issue from various perspectives.
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Awareness-based models examine the spread of the disease in
conjunction with information and concern about it [22], [23],
[24], [25]. Other approaches explicitly model human behavior
through additional states [26], or use co-evolving dynamics
based on opinion dynamics [27]. Game-theoretic frameworks
consider factors like social influence, perceived infection risk,
accumulating fatigue, social and economic costs, bounded ra-
tionality, and government-mandated interventions [28], [29],
[30], [31], [32], [33]. Based on these approaches, some control
methods have been developed to design intervention policies
with the final goal of reducing the number of infections [34],
[35]. Despite these efforts, many key questions related to the
control of such mathematical frameworks remain mostly un-
explored, in particular concerning the design of intervention
policies that seek to optimize both the healthcare and social-
economical impact of the control.

Here, our objective is to advance the growing body of re-
search in epidemic–behavioral models [28], [29], [30], [31],
[32], [33], [34], [35], by providing insights into optimal
control policies for these types of models. Given the lim-
ited knowledge and lack of consensus on the mechanisms
governing human behavior, we develop a parsimonious, yet
general, model that captures the feedback loop between the
disease spreading and individual choices. In particular, we
pair a susceptible–infected–susceptible (SIS) compartmental
epidemic model [3] with a game-theoretic mechanism [36].
The former emulates the diffusion of the pathogen within the
population, while the latter captures the behavioral responses
to the spreading of the epidemic.

The game-theoretic approach effectively captures the com-
plexity of collective human behavior considering that indi-
viduals make decisions to maximize their utility function.
We based such a utility function on the idea of “prevalence
elastic behavior” [37], where disease prevalence influences
adherence to self-protective behavior. Simply put, higher
infection rates make self-protection more appealing, while
lower rates reduce the incentive. For instance, during the
AIDS outbreak in the US, an increased demand for condoms
was registered [38]. The coupling between epidemic and be-
havioral creates a feedback between contagion and adoption
of self-protective behavior. This feedback can make the im-
plementation of policies nontrivial: favoring the adoption of
self-protective behavior leads to less new infections, which,
in turn, decreases the incentives for adopting self-protective
behavior, increasing new infections.

Technically, we formulate the model as a planar system
of coupled nonlinear ordinary differential equations (ODEs).
Then, our main contribution is threefold. First, through the
analysis of such a system, we characterize its asymptotic
behavior. In particular, we establish an epidemic threshold:
if the contagion rate is below such a threshold, the system
converges to a disease-free equilibrium, i.e., the epidemic
disease is quickly eradicated. Above such a threshold, the sys-
tem converges to an endemic equilibrium. Different endemic
equilibria are possible, and the model parameters determine
which of these is globally asymptotically stable. Second, we

incorporate in the model an explicit control action in terms
of an input that represents the incentives (or disincentives)
implemented by public health authorities to favor the adop-
tion of self-protective behavior. For instance, for STIs, such
a term can capture free condom distributions [39] or the
implementation of awareness campaigns [40]. We use the
model to design the control input to optimally trade-off be-
tween the healthcare impact of the disease and the social
and economical impact of the interventions while steering
the system to a desired state. We establish a method to de-
sign such an optimal policy by leveraging the Pontryagin’s
Maximum Principle [41], [42]. Third, using the developed
framework, we validate our approach in a case study inspired
by the spread of sexually transmitted infections (STIs). In
summary, our method provide novel control-theoretic insight
into the spread of epidemic disease and the possibility to steer
a population’s behavioral response to mitigate the outbreak. In
particular it demonstrates that, even in parsimonious models,
nontrivial strategies may emerge as optimal, when considering
the interdependence between epidemic spreading and human
behavioral response.

We organize the rest of the article as follows. Section II
introduces the epidemic–behavioral model, which is studied
in Section III. In Section IV, we formulate and analyze the
optimal control of the model. In Section V, we discuss a case
study on STIs. Section VI concludes the paper and outlines
avenues for future research.

II. MODEL
We consider the spread of an infectious disease in a popu-
lation of constant size. At each time t ≥ 0, the state of the
population is described by the fraction of infected individu-
als, denoted by I (t ) ∈ [0, 1], and the fraction of individuals
who adopt self-protective behavior, denoted by P(t ) ∈ [0, 1]
—the fractions of susceptible individuals and individuals who
do not adopt self-protective behavior are equal to 1 − I (t )
and 1 − P(t ), respectively. We define an epidemic–behavioral
model by coupling the dynamics of the two state variables I (t )
and P(t ). Specifically, the adoption of self-protective behavior
influences the disease progression by affecting the infection
rate; while, following the assumption of prevalence-elastic be-
havior [37], the adoption of self-protective behavior depends
on the fraction of infected individuals.

A. EPIDEMIC DYNAMICS
We build our dynamics on a deterministic population SIS
model [3], which describes the evolution of the fraction of
infected individuals I (t ) as governed by the following ODE:

İ = δ(1 − I )I − γ I, (1)

where δ ≥ 0 is the infection rate and γ > 0 is the recovery
rate. Briefly, the rate of change of the fraction of infected
individuals in (1) comprises two terms. The first one is a
positive contribution that accounts for new infections and
is proportional to the infection rate δ and to the interaction
rate between susceptible individuals and infected ones, which
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is given by the product (1 − I )I . The second term, which
accounts for recovered individuals, is negative and is pro-
portional to the fraction of infected individuals who recover,
according to the recovery rate. More details of the formulation
of the SIS model can be found in recent survey papers [3],
[5]. Without any loss in generality, we can re-scale the time
variable to set γ = 1, thus reducing the parameters of the
epidemic model to just the (normalized) infection rate β > 0
(obtained as β = δ/γ ), which coincides with the well-known
concept of the basic reproduction number of the disease [5].

We model the adoption of self-protective behavior through
a modification of the infection rate. Hence, we rewrite β as
a time-varying function that depends on time through the
fraction of adopters of self-protective behavior, i.e., β(t ) =
β(P(t )), obtaining the following dynamics:

İ = β(P)(1 − I )I − γ I. (2)

B. BEHAVIORAL DYNAMICS
We formulate the individuals’ choice on whether to adopt self-
protective behavior or not as a population game [36]. Such a
game is characterized by two strategies, S = {p, u}, where p
and u represent the choice of adopting self-protective behavior
and not adopting them, respectively.

Each strategy is associated with a utility function πp(t ) and
πu(t ), respectively, which represents the reward that a generic
individual would receive by choosing strategy p or u at time
t , respectively. Here, we assume that these utility functions
depend on the current number of infected individuals in the
population, i.e., πp(t ) = πp(I (t )) and πu(t ) = πu(I (t )). Note
that, unlike classical population games, here we are assuming
that the utility functions depend on the state of the population
through an external variable (I (t )), rather than through the
behavioral variable P(t ).

As time unfolds, individuals have the opportunity to revise
their strategies to adhere to more successful ones imple-
mented by some of their peers. Notably, each individual
compares their utility functions with the one of other indi-
viduals, selected uniformly at random within the population.
If the randomly selected individual has a higher utility, the
individual switches to the superior strategy with probability
proportional to the difference between the two utility func-
tions. This revision protocol is usually referred to as pairwise
proportional imitation [36], [43].

For large-scale populations, such an individual-level re-
vision protocol can be captured by letting the overall rate
at which individuals change their strategy from u to p to
be proportional to the product of i) the fraction of adopters
of u, ii) the fraction of adopters of p, and iii) the positive
part of the difference between the two utility functions, i.e.,
max{πp − πu, 0}. Similar, the overall rate of strategy change
from p to u is proportional to the product of p, u, and the
positive part of the opposite difference between the two utility
functions, i.e., max{πu − πp, 0}. Assuming that the revision
process occurs at a constant rate ε > 0, which captures the
relative velocity of the behavioral evolution with respect to the

epidemic spreading, then through a mean-field approximation
we obtain the well-known replicator equation [36], which can
be written as the following ODE:

Ṗ = ε(πp(I ) − πu(I ))P(1 − P) = εα(I )P(1 − P), (3)

where we denote α(I ) := πp(I ) − πu(I ) as the difference be-
tween the two utility functions associated with strategy u and
p, which captures the advantage that an individual perceives
for adopting self-protections when the fraction of infected
population is equal to I . We term such a function as the
perceived advantage of self-protective behavior.

Remark 1: In this model, the behavior of individuals is not
affected by their health state. This assumption is reasonable
for many endemic infectious diseases such as many STIs,
where infected individuals are actually unaware of being in-
fected for most of the time of infection, and as soon as they
get aware of their health status, the recovery is extremely
fast compared to the time needed to discover the disease.
For this reason, we can assume that infected individuals and
susceptible individuals have the same behavior.

C. COUPLED EPIDEMIC–BEHAVIORAL SYSTEM
By coupling the epidemic dynamics in (2) and the behavioral
dynamics in (3), we obtain the following planar system of
autonomous nonlinear ODEs:{

İ = β(P)(1 − I )I − I

Ṗ = εα(I )P(1 − P).
(4)

As stated in the introduction, the most interesting and re-
alistic setting contemplates the coupling of the disease and
behavioral dynamics through a negative feedback, whereby
β(P) is a decreasing function of P and α(I ) is an increasing
function of I . Before discussing this assumption in detail (in
the next section), we conclude this section by presenting an
explanatory example of the coupled dynamical system.

Example 1 (Linear scenario): Linear functions are an easy
choice for setting α(I ) and β(P). In fact, in many scenarios
it is plausible to assume that self-protective behavior reduce
the probability of contracting the disease for those who adopt
them. Let β0 ≥ 0 be the basic reproduction number of the
disease (i.e the infection rate in the absence of self-protective
behavior), and a ∈ [0, 1] the efficacy of self-protective behav-
ior, we can write the infection rate at the population level as
a linear combination of β0 and aβ0, respectively weighted by
the fraction of population that does not adopt self-protective
behavior and the fraction that does not make such an adoption,
obtaining the following linear expression for the infection
rate:

β(P) = β0 ((1 − P) + (1 − a)P) . (5)

Similarly, one can hypothesize that the utility function asso-
ciated with the adoption of self-protective behavior (up(I ))
increases linearly with the number of infected individuals as a
response to an increasing concern about the epidemic spread-
ing, according to a prevalence elastic behavior [37]. This has
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been observed, e.g., in the context of measles vaccination [44].
We can adopt a proportionality coefficient w ≥ 0 that cap-
tures the reactivity of the population’s behavioral response.
The utility function associated with a lack of adoption of
self-protective behavior remains constant and equal to c > 0.
This captures, e.g., the costs associated with the adoption of
self-protective behavior (e.g., the economic costs of medical
devices). Hence, we obtain

πp = wI, πu = c, α(I ) = wI − c. (6)

that is, the difference in the utility functions α(I ) increases
linearly with the number of infected individuals as a response
to increasing concern about the epidemic spreading.

Combining (5) and (6), the dynamical system with linear
infection rate and perceived advantage of self-protective be-
havior takes the form:{

İ = β0 ((1 − P) + (1 − a)P) (1 − I )I − I

Ṗ = ε̃(I − d )P(1 − P),
(7)

where without any loss in generality, we have re-scaled
the parameters in the second equation by introducing a pa-
rameter d = c/w that captures the “difficulty” in adopting
self-protective behavior as a trade-off between costs and per-
ceived risks, and re-scaling ε̃ = wε.

III. ANALYSIS
We analyze the general dynamical system described in (4),
focusing on the realistic scenario of a negative feedback
described in the previous section. However, before making
this assumption, we will first present some general proper-
ties of the coupled systems, which hold for any choice of
the functions α and β that satisfies some minimal regularity
assumptions, summarized in the following.

Assumption 1: The functions α and β are continuously dif-
ferentiable in [0,1] and take real and nonnegative real values,
respectively, i.e., α : C1([0, 1]) → R and β : C1([0, 1]) →
R+.

Under this regularity assumption, we prove that the coupled
system is biologically well-posed, i.e., that the trajectories of
the system are confined in the region [0, 1] × [0, 1]. More-
over, we rule out the existence of limit cycles. These results
are formally summarized in the following lemmas.

Lemma 1: The domain [0, 1] × [0, 1] is positively invariant
for the system in (4) under Assumption 1.

Proof: The domain [0, 1] × [0, 1] is compact and convex
and the vector field in (4) is Lipschitz-continuous, since
both α(I ) and β(P) are continuously differentiable functions.
Hence, Nagumo’s Theorem can be applied [45]. We need to
ascertain the direction of the vector field at the boundaries
of the domain. We observe that Ṗ = 0 for P = 0 and P = 1,
while İ = 0 for I = 0 and İ = −1 for I = 1. This imply
that any trajectory such that (P(0), I (0)) ∈ [0, 1] × [0, 1] has
(P(t ), I (t )) ∈ [0, 1] × [0, 1] for any t ≥ 0. �

Lemma 2: Under Assumption 1, the system in (4) does not
admit any nonconstant periodic solutions in [0, 1] × [0, 1].

Proof: Using the Bendixson–Dulac criterion [46], we
introduce the differentiable Dulac function ϕ(I, P) =

1
I (1−I )P(1−P) , and we verify that

∂ (ϕİ )

∂I
+ ∂ (ϕṖ)

∂P
= − 1

(1 − I )2(1 − P)P
+ 0 �= 0 (8)

almost everywhere in the domain [0, 1] × [0, 1]. Hence, by
the Bendixson-Dulac criterion, we conclude that there is no
closed orbit for the system in (4). �

In the rest of this section, we study the equilibrium points
of (4) and derive a global convergence result for the coupled
system. As previously stated, we focus on a realistic scenario
by making some assumptions on the perceived advantage of
self-protective behavior α(I ) and on the infection rate β(P). In
particular, we will assume that α(I ) is an increasing function
of the fraction of infected individuals, reflecting the fact that
an increase in the number of infected makes more appealing to
adopt self-protective behavior. We will further enforce that not
to adopt self-protective behavior is the preferred strategy in
the absence of any disease, while the adoption is felt as advan-
tageous when the entire population is infected. Finally, we will
assume that the infection rate β(P) is a decreasing function of
the fraction of individuals who use self-protective behavior P,
which intuitively captures the effectiveness in adopting self-
protections in preventing contagion. We formally summarize
these conditions in the following assumption, which is stricter
than Assumption 1.

Assumption 2: The function α : C1([0, 1]) → R is such
that α′(I ) > 0 for all I ∈ [0, 1], α(0) < 0, and α(1) > 0. The
function β : C1([0, 1]) → R+ is such that β ′(P) < 0 for all
P ∈ [0, 1].

Under these assumptions, we can perform a complete anal-
ysis of the system. We start with a classification of all the
equilibria of the coupled system and their local stability. To
present our results, we first introduce some notation.

Definition 1: Given an equilibrium point of the system in
(4) x∗ = (I∗, P∗), we say that x∗ is a disease-free equilibrium
(DFE) if I∗ = 0; otherwise, if I∗ > 0, we refer to it as an
endemic equilibrium (EE).

The classification of all the equilibria of (4) is summarized
in the following statement.

Proposition 1: Under Assumption 2, the system in (4)
has at most five equilibria, denoted as x(i) = (I (i), P(i) ), i ∈
{1, 2, 3, 4, 5}. Specifically,

1) x(1) = (0, 0), which is a DFE with no adoption of self-
protective behavior. This equilibrium is (locally) stable
if β(0) < 1 and an (unstable) saddle point if β(0) > 1.

2) x(2) = (0, 1), which is a DFE where the entire popula-
tion adopts self-protective behavior. This equilibrium is
always unstable (it is a saddle point if β(1) < 1 or a
fully unstable point if β(1) > 1).

3) x(3) = (1 − 1
β(0) , 0), which is an EE with no adoption

of self-protective behavior. This equilibrium exists if
and only if (iff) β(0) > 1; it is stable if β(0) < (1 −
α−1(0))−1 and a saddle point otherwise.
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4) x(4) = (1 − 1
β(1) , 1), which is an EE where the entire

population adopts self-protective behavior. This equi-
librium exists iff β(1) > 1; it is stable if β(1) > (1 −
α−1(0))−1, and a saddle point otherwise.

5) x(5) = (α−1(0), β−1( 1
1−α−1(0)

), which is an EE with
partial adoption of self-protective behavior. This equi-
librium exists if β(1) < (1 − α−1(0))−1 < β(0); when
it exists, it is always stable.

Proof: We compute the equilibria by setting the two ODEs
in (4) to zero. From the first equation in (4), we obtain that the
equation is equal to zero if either I = 0 or β(P)(1 − I ) = 1.
Imposing I = 0 in the second equation of (4), since α(0) < 0,
we observe that the equation is equal to zero iff either P = 0
or P = 1, yielding the equilibria x(1) and x(2). To study their
stability, we compute the Jacobian matrix at a generic point,
obtaining

Jh(I, P) =
[
β(P)(1 − 2I ) − 1 β ′(P)I (1 − I )

εα′(I )P(1 − P) εα(I )(1 − 2P)

]
. (9)

In x(1), the matrix in (9) reduces to a diagonal matrix with
eigenvalues α(0) < 0 and β(0) − 1, which yields stability
condition β(0) < 1. In x(2), the Jacobian matrix in (9) re-
duces to a diagonal matrix with eigenvalues −α(0) > 0 and
β(1) − 1. Hence, the equilibrium is always unstable.

We now look for equilibria with I > 0. The second equation
in (4) is equal to zero if one of the following conditions is
verified: 1) P = 0, 2) P = 1, or 3) α(I ) = 0.

1) For P = 0, from the condition for the first equation,
β(P)(1 − I ) = 1, we obtain β(0)(1 − I ) = 1, i.e., I =
1 − 1

β(0) , yielding equilibrium x(3). Such a point be-
longs to the domain iff β(0) > 1. From (9), we observe
that the Jacobian of the system evaluated in the equilib-
rium point has a negative eigenvalue equal to 1 − β(0),
and an eigenvalue equal to εα(1 − 1

β(0) ), which is neg-

ative iff β(0) < (1 − α−1(0))−1.
2) For P = 1, from the condition for the first equation,

β(P)(1 − I ) = 1, we obtain β(1)(1 − I ) = 1, i.e., I =
1 − 1

β(1) , yielding equilibrium x(4). Such a point be-
longs to the domain iff β(1) > 1. From (9), we observe
that the Jacobian of the system evaluated at the equilib-
rium has a negative eigenvalue equal to 1 − β(1) and an
eigenvalue equal to −εα(1 − 1

β(1) ), which is negative iff

β(1) > (1 − α−1(0))−1.
3) From the condition α(I ) = 0, we obtain the condition

I = α−1(0), which exists and is unique due to Assump-
tion 2. By plugging this condition in the first equation,
we obtain β(P)(1 − α−1(0)) = 1, which yields the con-
dition P = β−1(1/(1 − α−1(0))). Notice that such a
condition can be satisfied by P ∈ (0, 1) iff β(1) < (1 −
α−1(0))−1 < β(0). This equilibrium point coincides
with x(5). We can check that, such an equilibrium exists,
then it is always stable. In fact, from (9), we observe that
the product of the off-diagonal terms is always negative,
due to the properties of α′ and β ′. Hence, the eigenvalue

equation for the Jacobian evaluated in x(5) reduces to

λ

(
λ + α−1(0)

1 − α−1(0)

)
= −A, (10)

where A is a strictly positive quantity, equal to the prod-
uct of the off-diagonal terms of (9), with a negative sign.
It is straightforward to observe that the solutions of (10),
and thus the eigenvalues of the Jacobian evaluated in
the equilibrium point, are necessarily negative. Hence,
when it exists, the equilibrium point is always stable. �

Based on these local stability results and on Lemma 2, we
formulate the main result of this section that characterizes the
asymptotic behavior of the system in (4).

Theorem 1: Consider the coupled system in (4) under As-
sumption 2. Then, for almost every initial condition x(0) =
(I (0), P(0)), the following four mutually exclusive and ex-
haustive scenarios can occur:

1) if β(0) < 1, then the dynamics converges to the DFE
x(1);

2) if 1 < β(0) < (1 − α−1(0))−1, then the dynamics con-
verges almost everywhere (a.e.) to the EE x(3);

3) if β(0) > (1 − α−1(0))−1 and β(1) < (1 − α−1(0))−1,
then the dynamics converges a.e. to the EE x(5);

4) if β(1) > (1 − α−1(0)−1, then the dynamics converges
a.e. to the EE x(4),

where the equilibria x(1), x(3), x(4) and x(5) are defined in
Proposition 1.

Proof: To prove the convergence we use the Poincaré–
Bendixson Theorem [46] and the result of Lemma 2, where
we have ruled out the existence of periodic orbits in the region
[0, 1] × [0, 1]. We consider the four different cases in the
statement:

1) If β(0) < 1, Lemma 1 guarantees that (4) has only
two equilibria: x(1), which is locally asymptotically
stable, and x(2), which is fully unstable. The Poincaré–
Bendixson theorem ensures that the ω-limit set reduces
to the unique locally stable equilibrium x(1).

2) We split the case 1 < β(0) < (1 − α−1(0))−1 in two
sub-cases:

a) If β(1) < 1, Lemma 1 concludes that (4) has three equi-
librium points: the locally asymptotically stable x(3),
and two saddle points x(1) and x(2). The stable manifold
of the two saddle points x(1) and x(2) is given by I = 0
and P = 1, respectively. Hence, for any initial condition
in the region (0, 1] × [0, 1), the Poincaré–Bendixson
Theorem guarantees global asymptotic stability of x(3).
This yields global convergence for almost every initial
condition.

b) If β(1) > 1, Lemma 1 guarantees that (4) has four equi-
libria: the locally asymptotically stable x(3), two saddle
points x(1) and x(4) with stable manifolds I = 0 and
P = 1, respectively, and the fully unstable equilibrium
x(2). The same argument used in the above applies also
to this scenario, guaranteeing global convergence for
almost every initial condition.
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FIGURE 1. Equilibria in the linear case. In (a), we illustrate the equilibria in the space (I, P) by varying d for β0 > 1 and αβ0 < 1 (blue) or αβ0 > 1 (orange).
Steady state value of I and P for different values of d for αβ0 < 1 are reported in (b,c), respectively; and for αβ0 > 1 in (d,e), respectively.

3) If β(0) > (1 − α−1(0))−1 and β(1) < (1 − α−1(0))−1,
then from Lemma 1 we observe that x(5) is the only
locally asymptotically stable equilibrium point, while
the others fixed points are either fully unstable equilibria
or saddle points. Specifically, the stable manifolds of
such saddle points are the regions P = 0, P = 1 and
I = 0. Hence, using the Poincaré–Bendixson Theorem
we guarantee convergence to x(5) from any initial con-
dition in (0, 1] × (0, 1), and thus for almost every initial
condition in the domain.

4) If β(1) > (1 − α−1(0)−1), then from Lemma 1 the
system has four equilibria: x(4), which is locally asymp-
totically stable, x(1) and x(3), which are saddle points,
and x(2), which is unstable. The stable manifolds of the
saddle points are P = 1 and I = 0. Again, Poincaré–
Bendixson Theorem yields convergence. �

Remark 2: As a consequence of Theorem 1, the sole quan-
tity β(0) determines the epidemic threshold of the model. In
fact, for β(0) < 1, the DFE is globally asymptotically stable;
for β(0) > 1, the system converges a.e. to an EE. The func-
tions α and β, instead, determines which EEs is reached above
the epidemic threshold.

A. LINEAR CASE
We consider a specialization of our model to illustrate the
findings presented in Theorem 1. Specifically, we focus on
the case introduced in Example 1, where β(P) and α(I ) are
linear functions, and the system reduces to (7). Focusing
on the equilibria of the system and following the results of

Section III, we obtain the following corollary, which pro-
vides an explicit expression for all the equilibria of the
system.

Corollary 1: The system in (7) has at most the following
five equilibria:

1) the DFE x(1) = (0, 0), which is (locally) stable if β0 < 1
and an (unstable) saddle point if β0 > 1;

2) the DFE x(2) = (0, 1), which is always unstable;
3) the EE x(3) = (1 − 1

β0
, 0), which exists iff β0 > 1 and

is stable iff d > d (3) = 1 − 1
β0

;

4) the EE x(4) = (1 − 1
(1−a)β0

, 1), which exists iff β0 >

1/(1 − a) and it is stable iff d < d (4) = 1 − 1
(1−a)β0

;

5) the EE x(5) = (d,
β0(d−1)−1
aβ0(d−1) ), which exists and is stable

iff β0 > 1 and either (a) (1 − a)β0 ≤ 1 and d < d (3), or
(b) (1 − a)β0 ≥ 1 and d (4) < d < d (3).

Then, we can apply Theorem 1, which guarantees that the
dynamics converges a.e. to a stable equilibrium point. Specifi-
cally, we observe that the difficulty of adopting self-protective
behavior d is a key parameter to determine which equilibrium
is stable, together with the basic reproduction number β0 and
the efficacy of self-protective behavior a, as summarized in the
following corollary. A graphic representation of the equilibria
by varying d is depicted in Fig. 1.

Corollary 2: The following four asymptotic behaviors are
possible for the system in (7):

1) If β0 < 1, then the system converges to the DFE x(1).
2) If β0 > 1 and d > d (3) the system converges to the EE

x(3), i.e., the difficulty of the behavior prevents from its
adoption.

3) If β0 > 1 and d < d (3), then
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a) if (1 − a)β0 < 1 or (1 − a)β0 > 1 and d > d (4), the
system converges to the EE x(5), in which part of the
population adopts self-protective behavior;

b) if (1 − a)β0 > 1 and d < d (4), then the system con-
verges to the EE x(4) where the whole population adopts
self-protective behavior.

Remark 3: From Corollary 2, we observe that d has a
key role. In fact, when above the epidemic threshold β0 > 1,
decreasing the difficulty of adopting self-protective behavior
allows to switch from the EE x(3) to x(5), in which there
are less infected individuals. Moreover, if aβ0 > 1, a further
decrease of d could lead to the EE x(3), in which the fraction
of infected individuals is further decreased.

IV. CONTROL
We study the problem of designing optimal policies to control
our epidemic–behavioral model. In particular, we focus on
the linear scenario in Example 1. We consider policies that
promote safe practices by reducing the difficulty of adopting
self-protective behavior, captured by the parameter d . These
policies include increasing the availability of protection de-
vices, reducing their costs, or raising awareness. To model
such interventions, we modify the term α in (7) by splitting
the term d into two contributions, i.e., d = dN − u, where dN

is a baseline difficulty to adopting self-protective behavior in
the absence of any interventions, and u captures instead the
effect of containment regulations and should be interpreted as
a control parameter. Hence, we obtain

α(I ) = I − (dN − u). (11)

We observe that the control parameter u can theoretically
take both positive and negative values (greater than −dN ),
which corresponds to incentives or disincentives to engage in
self-protective behavior. Hence, the controlled system under
investigation ultimately reads as{

İ = β0 ((1 − P) + (1 − a)P) (1 − I )I − I

Ṗ = ε̃(I − dN + u)P(1 − P).
(12)

From Theorem 1, we observe that the control input u does
not affect the stability of the DFE, which is fully determined
by the infection rate β. However, as we shall see, it yields
a change in the EE to which the system converges to, when
above the epidemic threshold. Hence, a proper choice of u
may lead to effective containment policies to contrast the
spreading of the epidemic. For this reason, in the rest of this
paper we will focus on scenarios in which β0 > 1, and the
system converges to an EE. Since the stable EE is unique and
fully determined by the model parameters, in our setting it
will be function of the control input, and we will refer to it as
x∗(u) = (I (u), P(u)), for which an explicit expression can be
found using Corollaries 1 and 2.

In order to formalize the optimal control problem, we start
by defining a cost function. The purpose of epidemic man-
agement is to design interventions to reduce the number of

infected individuals while balancing the social and economi-
cal impact of the interventions implemented. In particular, to
a control input u, we associate a cost function that accounts
for these two critical factors by taking a convex combination
of two quadratic terms: one in the number of infected individ-
uals, the other in the effort placed in interventions. Hence, we
obtain the following cost function:

Jh(u) = hI (u)2 + (1 − h)u2, (13)

where the two summands are weighted by the parameter h ∈
[0, 1], which captures the relative weight given to reducing
the healthcare impact with respect to the economic cost asso-
ciated with the implementation of the interventions. The use
of quadratic terms in (13) is the simplest and most common
choice in mathematical epidemiology [47], since it captures
the nonlinear increase of the burden for the healthcare system
associated with the number of infections [48], and the fact that
interventions are often characterized by diminishing marginal
returns [49].

A. STATIC INTERVENTION POLICIES
We start by investigating optimal static intervention policies.
Given a certain cost function Jh(u) (defined by the trade-off
parameter h), our aim is to determine the optimal intervention
strategy u∗ and the associated steady state that minimize this
cost x∗. Intuitively, placing more emphasis on the healthcare
impact by increasing h would result in an increase in the con-
trol effort u∗ and less infections at the steady state. However,
as demonstrated below, due to threshold effects, the impact of
these interventions may not always yield the desired outcome.

We evaluate Jh at the EE, which we know to be either x(3),
x(4), or x(5) (see Corollary 2). Evaluating the cost function
at such stable equilibrium by varying u result in a piecewise
continuous function composed by three pieces:

Jh(u) =

⎧⎪⎪⎨
⎪⎪⎩

h
(

β0−1
β0

)2 + (1 − h)u2 if u < dN − d (3),

h
(

(1−a)β0−1
(1−a)β0

)2+(1 − h)u2 if u > dN − d (4),

u2 − 2hdN u + hd2
N otherwise.

(14)

In the case of of static intervention policies, our goal is to iden-
tify the optimal control input that minimizes the cost function
in (13), i.e., u∗ := argminuJh(u). To analytically solve this
problem, we compare the local minima of the cost function in
each of the three pieces. This comparison results in different
scenarios depending on the system equilibrium without inter-
ventions (i.e., u = 0), as summarized in the following result.

Theorem 2: The optimal control policy for the system in
(12) with the cost function in (13) is attained with control
input equal to

u∗ =
⎧⎨
⎩

dN h if �1 holds,
dN − d (4) if �2 holds,
0 otherwise,

(15)
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FIGURE 2. Examples of cost functions. In (a), the steady state x(5) is stable without interventions. In (b) and (c), in the absence of control, the equilibrium
point is x(3). In (b), the optimal cost is located in the convex part of the function, while, in (c), it is û = 0.

where �1 := {d (3) < dN <
(d (3) )2

d (4) and 1 − ( d (3)

dN
)2 ≤ h ≤

1 − d (4)

dN
; or d (4) ≤ dN ≤ d (3) and h ≤ 1 − d (4)

dN
} and �2 :=

{d (3) < dN <
(d (3) )2

d (4) and h > 1 − d (4)

dN
; or dN >

(d (3) )2

d (4) and

h ≥ (dN −d (4) )2

(d (3) )2+d2
N −2dN d (4) ; or d (4) ≤ dN ≤ d (3) and h >

1 − d (4)

dN
}, yielding the controlled epidemic–behavioral

system in (7) to converge to the EE:

x∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(3) if dN > d (3) and h ≤ 1 −
(

d (3)

dN

)2
,

x̃ if d (3) < dN <
(d (3) )2

d (4)

and 1 −
(

d (3)

dN

)2 ≤ h ≤ 1 − d (4)

dN
,

or d (4) ≤ dN ≤ d (3) and h ≤ 1 − d (4)

dN
,

x(4) otherwise,

(16)

where x(3) and x(4) are defined in Corollary 1 and

x̃ =
(

(1 − h)dN ,
β0 − 1 − β0(1 − h)dN

β0((1 − h)dN − 1)(a − 1)

)
. (17)

Proof: First, we observe some properties of the cost func-
tion in (13). In the first and last open intervals, the cost is a
quadratic function in u, thus increasing in the absolute value
of u. In addition we observe that these two open intervals
correspond to the conditions for stability of x(3) and x(4), re-
spectively. In the compact interval u ∈ [dN − d (3), dN − d (4)],
the cost is instead a convex function, and this interval corre-
sponds to the conditions for stability of x(5).

We focus now on the local minima of the cost function.
Since the function is convex in u ∈ [dN − d (3), dN − d (4)],
then it has a unique local minimum in that compact set. This
minimum is either at û = dN h, if û ∈ [dN − d (3), dN − d (4)],
or at one of its boundaries. Whether the function has other
local minima in the two unbounded intervals depends on
the interval to which u = 0 belongs. If 0 ∈ [dN − d (3), dN −
d (4)], i.e., dN ∈ [d (4), d (3)], then the function is monotonically
increasing with |u| in both regions, yielding that the infimum
is attained in the limits u → dN − d (3) and u → dN − d (4).
Continuity of the function guarantees that the function has its

unique local minimum in the compact set [dN − d (3), dN −
d (4)], which is thus global (see Fig. 2(a)).

In the following, we will thus consider three scenarios
depending on the interval u = 0 belongs to. If dN > d (3),
then the function has a local minimum at u = 0, which is
in the first region of the piecewise function in (13) (see
Fig. 2(b) and (c)). Then, we observe that in the compact
interval [dN − d (3), dN − d (4)], the candidate local minimum
û = dN h belongs to the interval iff

dN − d (3) ≤ hdN ≤ dN − d (4) ⇐⇒ 1 − d (3)

dN
≤ h

≤ 1 − d (4)

dN
. (18)

Being d (4) < d (3) < dN , the region in (18) is always well
defined. If h < 1 − d (3)

dN
, then the local minimum is attained at

the boundary point ũ1 = dN − d (3); if h > 1 − d (4)

dN
, the local

minimum is attained at the boundary point ũ2 = dN − d (4).
The global minimum is determined by comparing the cost

at u = 0, which is equal to Jh(0) = h(d (3))2 with the cost
at the other local minimum. For h < 1 − d (3)

dN
, it is straight-

forward to observe that, due to the continuity of the cost
function, Jh(0) < Jh(ũ1). For 1 − d (3)

dN
≤ h ≤ 1 − d (4)

dN
, we ob-

tain Jh(û) = h(1 − h)d2
N , obtaining the condition

Jh(û) ≤ Jh(0) ⇐⇒ h ≥ 1 −
(

d (3)

dN

)2

, (19)

which yields a nonempty set when coupled with h ≤ 1 − d (4)

dN

iff dN <
(d (3) )2

d (4) . If h > 1 − d (4)

dN
, the other local minimum is

ũ2 = dN − d (4), and the associated cost is equal to Jh(ũ2) =
h(d (4))2 + (1 − h)(dN − d (4))2, obtaining the condition

Jh(ũ) ≤ Jh(0) ⇐⇒ h ≥ (dN − d (4))2

(d (3))2 + d2
N − 2dN d (4)

. (20)
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We observe that such a condition is more restrictive than h >

1 − d (4)

dN
iff dN > d (3)

d (4) .

If dN ∈ [d (4), d (3)], then the global minimum is the unique
minimum in the compact interval [dN − d (3), dN − d (4)],
which is u∗ if such a candidate belongs to the interval, i.e.,
if hdN < dN − d (4) ⇒ h < 1 − d (4)/dN , and is equal to ũ =
dN − d (4), otherwise.

If dN < d (4), then the function has another local minimum
at u = 0, which is in the third region of (13). In this scenario,
the global minimum is determined by comparing the cost at
u = 0, which is equal to Jh(0) = h( (1−a)β0−1

(1−a)β0
)2, and the cost

at the local minimum in the compact set, which is always
attained at ũ = dN − d (4). From the comparison, it is straight-
forward that Jh(0) < Jh(ũ).

Finally, we complete the proof by computing, for each
control, the corresponding EE, obtaining (16). �

Theorem 2 provides an insightful characterization of the
optimal control input, depending on the model parameters and
on the cost trade-off h, as discussed in the following.

Remark 4: The baseline difficulty of adopting self-
protective behavior dN has a key role. In fact, if dN is larger
than d (3), the population would not adopt self-protection in the
absence of any control, yielding the EE x(3). In the controlled
system, the trade-off parameter h yields a threshold behavior.
Namely, if h is small, the optimal solution would be to not
apply any control, remaining in x(3); if h is sufficiently large,
the optimal control is not null and reaches an EE with less
infected individuals with respect to the uncontrolled case. The
value of the threshold is a function of the model parameters.
As dN decreases,an intermediate regime is reached, where in
the application of a nonzero control input to decrease the num-
ber of infections is always optimal. Finally, unsurprisingly, if
dN is even smaller, then the entire population would adopt
self-protection even in the absence of any control, making the
control input unnecessary.

To conclude, in the first scenario described of self-
protections difficult to adopt (large dN ), it is worth noticing
from Fig. 2(b) that starting from u = 0 there is an initial
increase in the cost, due to nonconvexity of the cost function,
discouraging intervention implementation, before notice the
advantage of the interventions, highlighting the nontriviality
of the results in Theorem 2.

B. DYNAMIC INTERVENTION POLICIES
In the previous section, we have analyzed the problem of
determining an optimal control input to trade-off the health-
care impact and economic cost of an endemic disease in a
steady-state scenario. We now focus on a different problem,
i.e., to determine the optimal, possibly varying, intervention
policy u(t ) in a dynamically-evolving environment, i.e., when
the system is in a transient phase.

Specifically, in the previous section we showed how, given
the cost function Jh(u) in (13), we can calculate the optimal
(static) intervention policy û and the corresponding steady
state x∗. Here, we consider a system with initial conditions at

t = t0 that are not optimal with respect to such cost function,
namely x0 �= x∗. Our goal is to steer the system to the desired
optimal final steady state x∗ within a time-horizon of dura-
tion T , while minimizing the cost function along the entire
system trajectory. To this aim, we naturally extend the defi-
nition of the cost function in (13) to a dynamically-evolving
setting, with quadratic cost at time t equal to Jh(x(t ), u(t )) =
hI2(t ) + (1 − h)u2(t ), where x(t ) = (I (t ), P(t )) is the state
of the epidemic-behavioral system at time t , which evolves
according to the following nonautonomous, nonlinear system:

{
İ = β0 ((1 − P) + (1 − a)P) (1 − I )I − I

Ṗ = ε̃(I − dN + u(t ))P(1 − P).
(21)

We can now define an optimal control problem, which takes
the form of the nonlinear quadratic regulator

min
u(t )

∫ T

t0

Jh(x(t ), u(t ))dt + φ(x(T )),

subject to (21)

x(t0) = x0,

ul ≤ u(t ) ≤ uu. (22)

Notably, we seek for a control function u(t ), bounded between
a lower and an upper bound [ul , uu] ⊆ R, which minimizes
the integrated cost function along the entire trajectory plus an
terminal cost φ(x(T )) computed at the final time T . Since our
primary goal is to control the transient behavior of the system
while steering it toward the desired state x∗ at the time T , we
use a terminal cost to penalize control inputs that result in the
system being far from the desired state at the final time, i.e.,

φ(x(T )) = ϕ
∥∥x(T ) − x∗∥∥

2 . (23)

The parameter ϕ ≥ 0 is a constant that weights the contribu-
tion of the terminal cost and should be set to obtain a trajectory
that ends close enough to x∗ [50]. We observe that we do not
enforce a hard constraint on the final system state. Therefore,
the optimal control policy does not guarantee that the sys-
tem reaches the equilibrium point precisely at time T , but it
guarantees that the system approaches its target by penalizing
deviations, avoiding issues related to infeasibility. Then, if one
wants to enforce convergence to the desired target state, one
can leverage Corollary 1 and (if feasible) set u(t ) = dN − I∗
for all t ≥ T , ensuring convergence of the epidemic preva-
lence to I∗ by Corollary 2.

The control problem in (22) can be solved using the Pon-
tryagin’s Maximum Principle (PMP) [41], whose result is
summarized in the following proposition.

Proposition 2: The optimal control for the problem in (22)
satisfies the following necessary condition:

u(t ) = min

{
ul , max

{
uu,−λ2(t )(P(t ) − 1)P(t )ε

2(h − 1)

}}
, (24)
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where λ(t ) := [λ1(t ), λ2(t )]� is the two co-state variable that
evolves according to

λ̇ = −∇x (H (t, x, u,λ)) , (25)

with

H (t, x, u,λ) = Jh(x(t ), u(t )) + λ1(t )İ (t ) + λ2(t )Ṗ(t ). (26)

Proof: According to PMP, the necessary condition for a
control u(t ) to be optimal is that the Hamiltonian function
in (26) attains its minimum value. The co-state variables
vector λ(t ) evolves alongside the state variable defining a
two-point boundary value problem that couples (21) and (25),
with boundary conditions x(t0) = x0 and λ(T ) = ∇x(T )φ(xT ).
The optimal control u(t ) can be obtained by solving u(t ) =
arg minu H (t, x, u, λ), which is equivalent to solve the equa-
tion ∂H (t,x,u,λ)

∂u = 0, which inserted in the Hamiltonian in

(26), yields u∗(t ) = −λ2(t )(P(t )−1)P(t )ε
2(h−1) . Since the control is

bounded, the unconstrained minimizer of the Hamiltonian
u∗(t ) may fall out of the constant u(t ) ∈ [uu, ul ]. Following
the derivation in [42], we saturate it to the value of the lower
and upper bound, finally obtaining the expression in (24). �

From a practical point of view, the two-point boundary
value problem that couples (21) and (25), is solved numeri-
cally over the time horizon [t0, T ] and the solution is inserted
into (24). The time-horizon T may be imposed by public
authorities, or obtained by solving an optimization problem,
which can be either independent, or solved jointly with the
optimal control problem. For more details, see [42].

While our approach employs established techniques from
optimal control theory, interesting insights are gained in the
next section when applying this framework to a case study.

V. CASE STUDY: APPLICATION TO STI
We demonstrate our approach by applying it to a case study
based on STIs—a class of diseases that are endemic in the
population, whose spread is significantly influenced by human
behavior. Despite the fact that STIs are typically not fatal,
they constitute a serious threat to healthcare and the econ-
omy worldwide. Remarkably, the WHO estimated 374 million
people got infected with an STI in 2020, and the 19.7 million
cases in 2008 in the US had an estimated direct medical cost of
roughly $15.6 billion. These figures highlight the importance
of the design of an optimal control strategy to incentivize the
adoption of self-protective behavior.

A. EPIDEMIC PARAMETERS
We calibrate our model to gonorrhea, for which condoms
are the most widely used equipment for self protection, with
an estimated average efficacy of a = 0.87, considering also
usage errors [51]. From a survey study conducted in 1999 in
the US, condoms were used in 62% of occurrences between
casual partners [52]. Lower fractions were reported in a more
recent study (37%) [53]. Here, we set an intermediate values
of P0 = 0.5. In an epidemiological study carried out in the
US in 2018, it was estimated that the prevalence of gonorrhea

infections is of 190 infections per 100,000 population [54].
Based on this data, we set the initial fraction of infections at
I0 = 0.0019. From these parameters, assuming that the dis-
ease is at steady state, we use the explicit expression of x(5)

in Corollary 1 to derive d = 0.019 and β0 = 1.77. Note that
our estimation of the basic reproduction number is consistent
with estimations based on clinical data, available in the litera-
ture [55].

As the data we use for this calibration refer to a system in
which some intervention policies (e.g., awareness campaigns)
are already implemented, to reduce our setting to the one
in Section IV-A we split d in the sum of a baseline value
dN and initial control input u(0). To this aim, we assume
that in absence of control policies (u = 0) the cost of using
protection and the risk perceived by individuals is such that
only a negligible fraction of the population would adopt self-
protective behavior, i.e., we assume that dN = d (3) and the
system steady state in the absence of control settles at x(3).
This further assumption yields dN = β0−1

β0
= 0.436074 and

u(0) = d − dN = 0.434174.

B. OPTIMAL INTERVENTIONS
We consider the scenario in which public health authorities
need to reevaluate their interventions reflecting, e.g., a change
in the price associated with protection devices, or in the
healthcare, social, and economical cost associated with in-
fected individuals. Formally, at t = 0, we consider the system
in its current steady state x∗

0, with respect to a given cost
function Jh0 . Then, we introduce a new cost function Jh1 , with
its associated steady state x∗

1. The goal is to find the optimal
intervention u(t ) to transition to the new optimal steady state
x∗

1. We notice that x∗
1 and x∗

0 are related to the optimal steady
interventions u∗

1 and u∗
0, respectively, which define the initial

and final values for the control variable. The case h1 > h0 rep-
resents an increase of the relative cost of infected individuals
with the consequent increase in the containment policies to
reduce the number of infected. On the other hand, h1 < h0

reflects uplifting some containment measures. We use as x∗
0,

h0, and u∗
0 the values of the calibrated model obtained in

Section V. We test six scenarios where x∗
1 has ±10%,±20%,

and ±50% fraction of infected individuals. The value of ul

and uu are such that u(t ) can exceed the initial and final
control u0 and u1 by 50% of the total variation |u∗

0 − u∗
1|.

Following [42], the time-horizon T is selected as the min-
imum time that allows the controlled system to reach the
desired final state x∗

1 with a certain tolerance (set to 10−5),
and is computed numerically by solving the problem for in-
creasing values of T , until one that satisfies the constraint is
obtained.

The optimal policies u(t ) are found using Proposition 2 and
plotted in Fig. 3. Our simulations suggest that the optimal
interventions are piecewise constant. An initial period entails
implementing strong interventions in case u∗

1 > u∗
0, or relax-

ing them if u∗
1 < u∗

0. Then, the opposite action is taken and,
finally, at t = T , it is set u(T ) = u∗

1, so that the desired ending
point becomes an equilibrium. From a practical point of view,

492 VOLUME 3, 2024



IEEE Open Journal of

Control Systems

FIGURE 3. Simulation results of the STIs case study. In (a), the optimal trajectory for different desired end points x∗
1 are illustrated; the black dot is the

starting point of the system x∗
0. In (b, c), the optimal control inputs for the corresponding scenarios in panel (a) are reported. In (d, e), the temporal

evolutions of the state variables I(t ) and P(t ) are reported, respectively.

the devised optimal strategy is straightforward to implement,
as only two actions with constant effort must be implemented.
Proposition 2 is key to understand the right time of switching
between the two actions. From Fig. 3, we observe that the
timing and trajectories are not symmetric between increasing
or decreasing the policy of intervention.

Finally, we explore the effect of the parameter ε̃ using the
case study from the previous example, which involves a 50%
reduction in disease prevalence. The parameter ε̃ measures
the population’s reactivity in changing behavior and is de-
fined as ε̃ = wε, where ε represents the rate at which the
revision process occurs (see (3)), and w is a proportional coef-
ficient capturing the reactivity of the population’s behavioral
response (see (6)). Small values of ε̃ characterize a population
that changes the behavior slowly in response to the spread-
ing of the disease, while large values indicate fast-reacting
populations. In Fig. 4, we compute the optimal control policy
for different values of ε̃. In all cases, the number of infected
individuals remains between the initial and final states during
the whole transient, and the optimal strategy is a two-action

piecewise constant strategy as previously discussed. However,
we observe that, for larger values of ε̃, the system is faster in
reaching the desired final state, but larger oscillations in the
transient are observed.

VI. CONCLUSION
We presented an epidemic-behavioral model aimed at devis-
ing optimal intervention strategies that encourage the adoption
of self-protecting behaviors. Our model takes into account
both healthcare and socio-economic factors to ensure com-
prehensive control measures. Specifically, we employed an
SIS-like epidemic dynamics and a population game dynamics,
and we coupled them in a feedback scheme that captures i) the
impact of the epidemic spreading on the risk perception that
pushes people to adopt self-protective behavior, and ii) the
impact of human behavior on the infection rate. We formal-
ized our model as a planar nonlinear system of ODEs, which
can match a variety of scenarios by conveniently selecting the
shape of the two feedback functions. Under reasonable as-
sumptions, we performed a theoretical analysis of the model,
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FIGURE 4. Simulation results of the STIs case study, exploring the impact of parameter ε̃. In (a), we illustrate the optimal trajectory for different values of
ε̃. In (b, c), we report the temporal evolution of the state variables I(t ) and P(t ) for different values of ε̃, respectively.

characterizing all its five steady states and proving global con-
vergence to one equilibrium, which depends on the model pa-
rameters. Interestingly, the system exhibits a double-threshold
behavior. Whether the system converges to the DFE is deter-
mined by an epidemic threshold that is independent of human
behavior. However, above such a threshold, a second threshold
determines the EE reached, depending on the difficulty of
adopting self-protective behavior. This phenomenon relates
to many typical epidemiological phenomena, where the onset
of the epidemic depends on intrinsic epidemiological parame-
ters, and the spontaneous adoption of self-protective behavior
cannot fully eradicate the disease, but it can mitigate it.

Further, we used the model to investigate the control of
epidemic diseases. Specifically, we focused on the scenario
where the feedback functions are linear, which is amenable
to thorough analytical treatment. After having introduced a
control input, we formalized the problem of designing optimal
interventions by defining an objective function that trades-off
the healthcare and social-economical costs. The study of the
objective function at the equilibrium provided insight into
the characterization of the steady-state optimal control in-
put, while the Pontryagin maximum principle was used to
design optimal control strategies. Through the analysis of
a real-world case study inspired by STIs, we observed that
the optimal solutions are piecewise constant, suggesting that
our tool can be used to determine the optimal switching
time between different policies. The optimality of piecewise
control inputs is consistent with what has been observed in
the literature on optimal interventions in epidemic processes,
e.g., in SIS and SIR models with isolation of infected or
health/vaccination campaigns [56], [57], [58].

Our work is not exempt from limitations. First, we proposed
our framework in the scenario of a homogeneous fully-mixed
population. Extending this work to heterogeneous and struc-
tured scenarios is a key extension. In particular, considering
meta-population structures is relevant for the study of sub-
population at high risk of infection, called core population in
the STI literature [59]. Technically, such extension can be per-
formed by embedding the model onto a network, for which,
e.g., monotonicity properties may be used [60]. Second, we
built our framework using epidemic and behavioral models.
The epidemic model can be readily tailored to more complex
progression dynamics by simply adding some equations to the
system, which are not directly in feedback with the behavioral
dynamics (see, e.g., the models used for COVID-19 [15], [61]
or Ebola [62]). Third, the main results related to epidemic
control are limited to cases where the basic reproduction
number and the perceived advantage of self-protective behav-
ior are linear functions of the state variables. Extending our
theoretical results to nonlinear scenarios is nontrivial, as the
proofs of Theorem 2 and Proposition 2 rely on the explicit
form of these functions. Addressing this challenge is a key
objective for future research. Finally, the approach and results
proposed in this paper can serve as a foundation for improved
models that incorporate more complex behavioral dynamics,
such as delays in behavioral response, biased risk perceptions,
and imperfect information on epidemic prevalence. Addition-
ally, more realistic settings can be explored by integrating
online data into the control algorithm. These enhancements
may enable our paradigm to provide optimal control solutions
for real-world epidemic outbreaks, thereby supporting public
health authorities in planning effective interventions.
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