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A B S T R A C T   

Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical 
compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes 
has been the subject of several machine learning studies for classification purposes. While previous studies have 
provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching 
the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the 
development and testing of several machine learning strategies coupled with the novel SHapley Additive ex-
Planations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical 
descriptors of interest by allowing a more informed approach toward the rational design and screening of 
sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models 
publicly available and present an easy-to-use code for bitter-sweet taste prediction.   

1. Introduction 

Bitter and sweet tastes along with umami, saltiness, and acidity 
represent the fundamental taste senses (Besnard et al., 2016), which are 
linked to specific biological and survival needs. For example, the bitter 
taste has evolved to protect organisms from the consumption of poten-
tially poisonous substances, whereas the sweet taste is normally asso-
ciated with the energetic and caloric content of foods. Both sweet and 
bitter molecules are recognized by G-protein coupled receptors (GPCR), 
but while taste receptors type 2 (TAS2Rs) are primarily responsible for 
detecting bitter tastants, the TAS1R2/TAS1R3 heterodimer belonging to 
class-C GPCR is known to be involved in the sensation of sweetness (Li 
et al., 2002). These receptors are located on apical membranes of taste 
receptor cells located in the taste buds. Human gustatory systems are 
characterized by the dichotomy between sweet and bitter tastes with an 
innate preference for sweet tastes and an aversion to bitter tastes. The 
sensation of bitter-sweet taste is an emerging property arising from 
complex molecular interactions of a compound with these receptors. 
Besides the oral cavity, taste receptors are also present in other body 

parts such as the urethra (Deckmann et al., 2014), skin (Ho et al., 2021; 
Shaw et al., 2018), brain (Singh et al., 2011), heart (Foster et al., 2013, 
2014), and pancreas (Kyriazis et al., 2012, 2014). As well as their pri-
mary role in taste perception (in the oral cavity), such receptors are also 
implicated in diabetes and obesity by virtue of their roles in nutrient 
perception, glucose level maintenance, appetite regulation, as well as 
hormone release (Behrens and Lang, 2022). 

As a food additive for a long time, sweeteners have been widely used 
in the food industry (Carocho et al., 2017). There are lots of contro-
versies and challenges relating to the sweetener industry in recent years, 
though improvements in technologies have greatly accelerated its 
development. When developing sweeteners, not only do they need to 
taste sweet, but they also need to have no harmful side effects, which 
increased the demand for the development of new sweeteners in the 
food industry. Within this framework, finding compounds with a 
pleasant gradient of bitter-sweet flavor may lead to the development of 
low-calorie sweeteners and bitter masking molecules. 

The design and development pipeline of sweeteners usually follows 
the following pathway: extraction, separation, and identification of 
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potential molecules from natural plants and synthesis. The previously- 
mentioned procedures are highly expensive and require complex 
chemical or biological characterization of the samples. Within this view, 
it is clear that computational prediction and simulation of potential 
compounds in the early stage could accelerate the design and develop-
ment process of sweetener molecules (Bouysset et al., 2020). 

In silico methodological approaches for the bitterant prediction 
include structure-based, ligand-based and machine-learning methods 
(Bahia et al., 2018; Malavolta et al., 2022); of particular interest for the 
present study are these latter approaches. Naive Bayes approach and 
circular fingerprint have been carried out in literature to classify 
bitterness by using a dataset of about 600 bitterants taken from a pro-
prietary database and more than 10,000 non-bitterants randomly 
selected from the MDL Drug Data Repository (MDDR) (Rodgers et al., 
2006). The model was characterized by accuracy, precision, specificity, 
and sensitivity of 88, 24, 89, and 72% respectively in the five-fold 
cross-validation. Although the previously mentioned study reports the 
first bitterant prediction algorithm based on a quite large dataset, the 
work didn’t provide a prediction tool that can be used by users to test 
their molecules. Huang et al. addressed this issue by developing the first 
online toolkit of bitterness prediction called “BitterX”. The web appli-
cation uses a Support Vector Machine (SVM) approach (Vapnik, 1995) 
on physicochemical descriptors (Huang et al., 2016). In their study, the 
dataset is composed of 539 publicly available bitterants and 539 
non-bitterants taken from the Available Chemicals Directory (ACD) 
database. The computational model offers remarkable accuracy and 
precision of more than 91% and sensitivity within the range of 91–94% 
on the test set. However, several small molecules considered as the 
non-bitterants are still not experimentally tested. The adaptive ensemble 
machine-learning method “Adaptive Boosting” (AdaBoost) was applied 
in another study to build a bitterness classifier called “BitterPredict” 
(Dagan-Wiener et al., 2017). The model was trained on 12 basic physi-
cochemical descriptors and 47 Schrödinger QikProp descriptors (Dag-
an-Wiener et al., 2017). The BitterDB (Dagan-Wiener et al., 2019; 
Wiener et al., 2012), in combination with the data from Rojas et al. 
(2016) was used to identify bitterants, while most of the non-bitterants 
(1360 non-bitter flavours) were still hypothetical (Zheng et al., 2018). 
The prediction model gives the accuracy (83%), precision (66%), spec-
ificity (86%), and sensitivity (77%) on the test set. Recently, the 
consensus voting strategy based on multiple ML models has been used in 
literature to perform the bitterant classification task considering a 
dataset of experimentally confirmed bitterants and non-bitterants 
(Zheng et al., 2018). 

Regarding the bitter/sweet dichotomy and the in-silico taste pre-
diction, three major examples have been recently published, i.e., Bit-
terSweetForest (Banerjee and Preissner, 2018), BitterSweet (Tuwani 
et al., 2019) and VirtualTaste (Fritz et al., 2021). BitterSweetForest and 
VirtualTaste are based on the random forest classification algorithm and 
Morgan molecular fingerprints, whereas BitterSweet is based on Dragon 
molecular descriptors and relies on the Adaboost method. BitterSweet-
Forest was able to reach incredibly high predictive performance (e.g., 
AUROC of 0.98 both in cross-validation and external validation), but 
with a relatively low number of compounds in the dataset (517 artificial 
and natural sweet compounds and 685 bitter molecules). On the other 
hand, BitterSweet remarkably enlarged the bitter/sweet dataset col-
lecting positive sets of 813 bitter and 1139 sweet molecules but 
achieving lower performance compared to BitterSweetForest. Virtual 
Taste extends the previous work of the same authors, BitterSweet Forest, 
with a richer dataset and develops three models based on the random 
forest algorithm, Morgan molecular fingerprints and different data 
sampling methods for bitter/non-bitter prediction (VirtualBitter model 
achieving AUROC values of cross-validation and external validation of 
0.97 and 0.96, respectively), sweet/non-sweet prediction (VirtualSweet 
model achieving AUROC values of cross-validation and external vali-
dation of 0.97 and 0.96, respectively) and sour/non-sour prediction 
(VirtualSour model achieving AUROC values of cross-validation and 

external validation of 0.97 and 0.99, respectively). In VirtualTaste and 
BitterSweetForest the authors train different models on different fam-
ilies of descriptors so that the final subset of features is the one that 
provides the best performing model. Finally, to understand which fea-
tures contribute the most to the change in the expected class a 
Bayesian-based feature analysis was employed in which the relative 
frequency of important features for each class was calculated taking the 
feature position and occurrence within the class and the relative feature 
frequency of that particular feature with respect to the other classes. In 
BitterSweet, on the other hand, a feature selection method and a feature 
compression method were compared, in the first relevant features for 
bitter-sweet prediction were identified using the Boruta algorithm 
(Kursa et al., 2010), in the second Principal Component Analysis (PCA) 
was used to reduce the dimensionality of the feature space. Finally, to 
explain the most impacting features of the model, a global feature 
ranking based on random forest relative feature importance with a mean 
decrease in Gini impurity was used. 

The present study focuses on the development and testing of several 
machine learning strategies for sweetness/bitterness classification 
starting from the collection of compounds from several datasets avail-
able in the literature. Compound features were computed by using 
molecular descriptors from open-source libraries starting from the 
SMILES representations. The main contributions lie in the methods used 
for the feature selection and the interpretation of the resulting models. 
Previously discussed model explanation approaches based on random 
forest impurity-based feature importance provide only global in-
terpretations in the form of feature relevance ranking for the model, 
furthermore they suffer from known disadvantages such as underesti-
mation of the relative importance of features due to multicollinearity, 
and bias towards high cardinality features (Strobl et al., 2007). In this 
work, in order to improve the interpretability of the final model, we 
propose a method of sequential selection of relevant and uncorrelated or 
weakly correlated features based on hierarchical clustering on the fea-
ture’s Spearman rank-order and two-sample Kolmogorov - Smirnov test. 
As a method of explanation, we propose to use the novel SHapley Ad-
ditive exPlanations (SHAP) (Lundberg and Lee, 2017) approach which, 
in addition to having a solid mathematical background, provides a wider 
range of both global interpretation tools, such as feature importance 
graphs, summary and partial dependence plots, and local interpretation 
tools such as visualizations of the contribution of each single features in 
the bitter/sweet prediction of a single molecule in the dataset. This al-
lows the identification of the chemical descriptors of interest by allow-
ing a more informed approach to the design and screening of 
sweeteners/bitterants. 

2. Materials and methods 

2.1. Database and data curation 

The employed dataset collects compounds from several previous 
pieces of literature. In particular, we gathered compounds from (i) 
Biochemical Targets of Plant Bioactive Compounds by Gideon Polya 
(2003), (ii) BitterDB (Wiener et al., 2012), (iii) Fenaroli Handbook of 
Flavor Ingredient (Burdock, 2016), (iv) DB by Rodgers et al. (2006), (v) 
DB by Rojas et al. (2017), (vi) SuperSweet (Ahmed et al., 2011), (vii) The 
Good Scents Company Database (http://www.thegoodscentscompany. 
com/), (vii) DB by Wiener et al. (Dagan-Wiener et al., 2017), (ix) 
SweetenersDB (Chéron et al., 2017). The resulted starting database 
collected a total of 3130 compounds (1764 sweet and 1366 bitter) with 
their SMILES description. We then checked all the SMILES using the 
RDKit library (http://www.rdkit.org), removing compounds with 
incorrect SMILES, searching for the relative correct SMILES in the 
PubChem database and removing duplicates. Then, the SMILES were 
processed with the ChEMBL Structure Pipeline (Bento et al., 2020) (htt 
ps://github.com/chembl/ChEMBL_Structure_Pipeline) to highlight 
possible issues in the retrieved molecular structure and to standardize 
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the SMILES representation for the entire dataset. The latter protocol runs 
a molecule checker on the compound structure, standardizes chemical 
structures and generates the parent molecule representation based on a 
set of predefined rules. At the end of this preprocessing pipeline, we 
obtain a final dataset of 2686 compounds (1415 sweet and 1271 bitter). 
A summary of the final collected compounds from each of the 
above-mentioned databases is reported in Table S1. It is worth 
mentioning that a similar approach to dataset creation was adopted in 
previous literature (Tuwani et al., 2019). We added some new com-
pounds from new sources or updated version of the selected DBs. 
compared to the previous work, we increased the total number of 
compounds by 500, adding 168 sweet compounds and 355 bitter 
compounds. 

2.2. Molecular descriptors 

Starting from the SMILES representations, compound features were 
computed by using molecular descriptors from open-source libraries, i.e. 
RDkit (http://www.rdkit.org), pybel (O’Boyle et al., 2008) and Mordred 
(Moriwaki et al., 2018). In detail, we decided to focus on 2D molecular 
descriptors, using 208 descriptors from RDKit, 25 from pybel and 1826 
from Mordred, obtaining a total of 2059 molecular features per mole-
cule. We focused our attention only on the 2D molecular descriptors to 
avoid the impact of compound optimization and parameters related to 
the three-dimensional properties of molecules. The 2D descriptors pro-
vide fundamental chemical information in terms of molecular weight, 
number of individual types of atoms, types of bonds, degree of hybrid-
ization, spectral diameter, detour index, number of hydrogen donors 
and acceptors, molecular distance edge between different types of 
atoms, the polarizability of atoms and bonds, and topological polar 
surface. Moreover, other features derived from a symbolic representa-
tion were also considered such as the Zagreb index, adjacency matrix 
descriptors, Moreau–Mroto descriptors, Moran coefficients, Geary co-
efficients, and descriptors describing the Burden matrix and Barysz 
matrix (Czub et al., 2021). It is worth mentioning that other previous 
works successfully obtained good results in the field of taste prediction 
using only 2D molecular descriptors (Bouysset et al., 2020; Tuwani 
et al., 2019): this represents a great step forward since 2D molecular 
descriptors are less expensive from a computational point of view and 
not affected by variations in the three-dimensional molecular structures. 
However, 2D descriptors are not able to catch variations in the molec-
ular three-dimensional arrangements of investigated molecules. This 
could be potentially important in the bitter/sweet taste prediction field, 
since some compounds can elicit both taste sensations depending on 
modifications in their 3D structural properties, including isomerism 
(Bachmanov et al., 2016; DuBois, 2016; Kawai et al., 2012; Naim et al., 
1982; Schiffman et al., 1982; Shin et al., 1995; Temussi, 2012). Never-
theless, to avoid any possible misclassification for the above-mentioned 
type of compounds and employ only the 2D molecular descriptors, as 
also mentioned in the Data Cleaning section, we have not considered 70 
compounds with identical 2D descriptors but different tastes. The in-
clusion of also 3D descriptors might be considered in the future to 
include compounds able to trigger sweet or bitter taste depending on 
their three-dimensional rearrangements. 

2.3. Data cleaning 

The resulting raw dataset, consisting of 2686 samples and 2060 
columns (2059 features + 1 target column) was cleaned with the 
following procedures. First, 713 duplicate rows (or groups of more than 
2 identical rows) were identified. 643 of them had the target variable 
duplicated, while the remaining 70 had a different target variable. Of the 
former, only one sample per group of duplicate rows was kept in the 
dataset, while the latter were entirely removed from the dataset to avoid 
ambiguity. Afterwards, all columns with a percentage of missing values 
greater than or equal to 95% have been removed from the dataset along 

with all columns with zero or almost zero variance, i.e., constant or near- 
constant columns such that for 99% or more of the samples the same 
numerical value is present in the dataset. Finally, all the columns with 
duplicate values (or groups with more than 2 identical columns) have 
been collapsed into a single column to avoid redundancy. Bitter and 
sweet classes have been replaced with the numeric values of 0 and 1, 
respectively. The cleaned dataset was thus reduced to 2195 samples and 
1403 columns (1402 numerical features + 1 binary target column). 

2.4. Validation strategies and evaluation criteria 

Stratified 5-fold cross-validation was used for training and hyper- 
parameter tuning. Stratification allows for the preservation of the clas-
ses’ proportion in the created folds. Repeated 10-times 10-fold stratified 
cross-validation using different randomization of the data at each 
repetition was used for statistical comparison of modelling results and 
model selection. Models were evaluated using as primary evaluation 
criteria threshold-independent metrics such as Area Under Receiver 
Operating Characteristic Curve (AUROC) and Area Under Precision- 
Recall Curve (AUPRC), along with F1-score, Precision, and Recall. 

2.5. Modelling 

2.5.1. We tested 

⋅ Two conventional statistical approaches, namely, a parametric lo-
gistic regression model and a non-parametric k-nearest neighbours 
algorithm;  

⋅ Two tree-based machine learning models, namely a random forest 
and a gradient boosting machine (LightGBM implementation);  

⋅ A deep learning model, i.e., multilayer perceptron (MLP). 

A brief description of each model is provided in the following. 
Logistic regression provides the probability of a certain class, where 

the log-odd is a linear combination of the input features. As a conse-
quence, the class decision boundary is a linear function of the inputs. 
Linearity makes the estimation procedure simple and the results easy to 
understand and interpret. However, the correctness of the model de-
pends on strong assumptions about the data including normality, inde-
pendence, linearity and homoscedasticity. In a k-nearest neighbours 
classification algorithm, a new sample is assigned to the most common 
class among its k nearest neighbours. In random forest and gradient 
boosting machines, the prediction of the target variable is given as the 
result of an ensemble of weak models which are typically decision trees. 
A random forest fits several decision tree classifiers on various sub- 
samples of the dataset in parallel and then combines the trained classi-
fiers to improve predictive accuracy and control over-fitting. In a 
Gradient Boosting model, decision trees are trained consecutively in a 
forward stage-wise fashion, where each new tree is fitted to the pre-
decessor’s (pseudo) residual error, allowing sequential optimization of 
an arbitrary differentiable cost function through gradient descent. 
Artificial neural networks (ANNs) are computing systems characterized 
by elementary units (called neurons) interconnected through edges with 
adjustable weights. Such neurons are organized in layers that perform 
different types of mathematical transformations at their inputs. Typi-
cally, the weights of a neural network are adjusted through variants of 
the gradient descent algorithm, with gradients computed using the 
backpropagation algorithm. A multi-layer perceptron (MLP) is an ANN 
with multiple layers between the input and output layers. The MLP used 
in the study has a basic architecture of 2 fully connected layers with 100 
neurons and ReLu activation functions. Adam optimizer (Kingma and 
Ba, 2014) was used to optimize the weight parameters. 

Training of all the models mentioned above was implemented in 
Python 3.9.7, with scikit-learn 1.0.1 and LightGBM 3.3.1 libraries. 
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2.6. Statistical analysis 

To evaluate statistically significant differences between the perfor-
mance of the models, we compared their AUROC scores by running a 
statistical test. To statistically compare the performance of a pair of 
models, we used the Nadeau and Bengio’s corrected t-test (Nadeau, 
2003). This test takes into account the non-independence of the 100 
AUROC scores of the individual models, obtained by evaluating the 
models on the same folds with repeated 10-times 10-fold stratified 
cross-validation. Finally, for pairwise comparison of all models, we ran 
the same statistical test multiple times by applying a Bonferroni 
correction to the computation of the p-values. The significance level was 
set to p < 0.05. 

2.7. Feature selection 

Initially, the models are trained using all the 1402 input features, and 
the best learning algorithm is selected for further analysis. Indeed, the 
overall objective of this work is to build a model as accurate and 
interpretable as possible. Thus, it was necessary to select a small subset 
of features sufficiently informative to have an accuracy comparable to 
the one achieved by using all the 1402 input features. Furthermore, in 
order to increase interpretability and prevent underestimation of the 
relative importance of features due to multicollinearity (Gregorutti 
et al., 2013) the selected features should be ideally uncorrelated or 
weakly correlated to each other. To achieve this, we used sequential 
feature selection combined with hierarchical clustering (Murtagh and 
Contreras, 2012) on some features’ correlation index. In this work, we 
used the Spearman rank-order index to take into account non-linear 
relationships between pairs of features. This allowed us to construct a 
small subset of uncorrelated or weakly correlated features by choosing a 
given number of clusters and keeping a single feature from each cluster. 

Different strategies can be used to select one representative feature 
from a particular cluster, either through automated methods or domain 
expert knowledge. In this work, we used an automated strategy. For 
each cluster, features have been ranked according to their univariate 
predictivity of the target variable and the most predictive one was 
picked. The predictivity of a feature was estimated with a two-sample 
Kolmogorov – Smirnov test (Justel et al., 1997) which empirically 
measures the distance between the two distribution functions of the 
considered feature, one referring to sweet and the other referring to 
bitter instances. The greater the distance between these two empirical 
distributions, the greater the probability that the sweet and bitter sam-
ples are drawn from different distributions, and the greater the univar-
iate capability of the considered feature in predicting the target variable. 

2.8. Feature importance analysis 

To measure and rank the importance of each variable and explain 
their contribution to the individual predictions of the best performing 
model, we used SHAP (SHapley Additive exPlanations) values (Lund-
berg and Lee, 2017), a recent model-agnostic explanation methodology 
with a solid theoretical foundation and desirable properties. The SHAP 
explanation method computes Shapley values from the coalitional game 
theory conceptualized by the economist Lloyd Shapley, hence the name. 
The feature values of a sample act as players in a coalition and Shapley 
values tell us how to fairly distribute the resulted prediction among the 
features. An important feature is that the Shapley values are calculated 
as an addictive feature attribution method. For machine learning 
models, this means that SHAP values of all the input features will always 
sum up to the difference between baseline (expected) model output and 
the current model output for the prediction being explained. Further-
more, SHAP values are consistent, which means that features that are 
unambiguously more important are guaranteed to have a higher SHAP 
value. Operationally, for a single instance x, given a model f that outputs 
a prediction value ŷ, SHAP decomposes this prediction into the sum of a 

baseline value with the contributions that each feature has to the pre-
diction, that is: 

ŷ = ybase +φ(x1)+φ(x2)+φ(x3) + … (1)  

where ybase = E[f(X)] is the expected value of the predictions of all the 
training data X and φ(xj) is the SHAP value corresponding to the j-th 
feature. In our study, positive SHAP values φ(xj) > 0 implies a positive 
contribution to the sweetness of the molecule, while negative SHAP 
values imply a positive contribution to the bitterness of the molecule. 
⃒
⃒φ(xj)

⃒
⃒ gives the magnitude of the contribution. The specific formula for 

the calculation of φ(xj) is given by the following expression: 

φ
(
xj
)
=

∑

S⊂N\{j}

|S|!(M − |S| − 1)!
M!

[fx(S∪{j}) − fx(S)] (2)  

where N is the set of all input features with M its dimension, S is a subset 
of N of dimension |S|, fx(S) = E[f(X)

⃒
⃒XS = xS] is the expected value of the 

predictions conditioned on the subset S of input features with known 
values xS and fx(S∪{j}) is the same but with feature j added to subset S. 
Finally, the SHAP value for feature j is computed as a weighted average 
over all possible feature subsets S that don’t include feature j already. 

A comparison between the different models investigating the bitter/ 
sweet dichotomy is reported in Table S2, highlighting the sources used 
for the construction of the dataset, the employed molecular descriptors 
for features computing, and the methods/approaches used for features 
selection, model building and model interpretation. 

2.9. Applicability domain 

In the current work, we developed an applicability domain (AD) to 
provide additional information about prediction reliability. An average- 
similarity approach already employed in previous recent literature in 
the taste prediction field (Zheng et al., 2018, 2019) was considered. The 
AD was created considering a random 90:10 dataset partitioning into 
training and validation sets according to the 10-fold cross-validation 
employed in the model development. (i) the Morgan Fingerprints 
(1024 bits, radius 2) were calculated using RDKit for all the compounds 
in the dataset set; (ii) a similarity score was then evaluated between each 
molecule in the training and validation sets and the previously-defined 
fingerprints using the Tanimoto similarity index from RDKit; (iii) then 
the average similarity score was computed by averaging the similarity 
scores of the 5 most similar couple of compounds. The distribution of the 
average similarity scores for the training and validation sets was used to 
identify a similarity threshold to discriminate between query com-
pounds inside or outside the domain of applicability. 

3. Results and discussion 

3.1. Data preprocessing and missing values handling 

Different strategies for data preprocessing and imputation of missing 
values were used according to the different learning models employed. 
For logistic regression, k-nearest neighbours and multi-layer perceptron 
the outliers were treated with 90% winsorization, i.e., each variable was 
clipped at its 5th and 95th percentile, then each feature was scaled with 
min-max normalization. For gradient boosting and random forest, only 
90% of winsorization was applied. The missing values were particularly 
severe for the molecular distance edge descriptors and the atom type e- 
state descriptors, respectively 60.8% and 40.4% of missing values on 
average between the descriptors. These were generated due to chemical 
or structural characteristics of the molecule that makes the computation 
of a particular descriptor not possible, thus resulting in missing not at 
random (MNAR) values. For this reason, missing values have been 
imputed with a constant out-of-distribution value, namely: 1 for logistic 
regression, k-nearest neighbours and multi-layer perceptron; and 
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-99999 for the random forest. For gradient boosting the missing values 
were automatically handled by the LightGBM implementation. 

3.2. Model performances 

The complete performances of the tested models, computed with 
repeated 10-times 10-fold stratified cross-validation and averaged on 
the folds, are summarized in Fig. 1A–B, and the receiver operating char-
acteristic (ROC) curve and precision-recall (PR) curve are shown in 
Fig. 1C–D. Gradient boosting achieved an AUROC of 0.950 (95% CI 
[0.930, 0.970]); random forest achieved an AUROC of 0.942 (95% CI 
[0.916, 0.968]); MPL achieved an AUROC of 0.934 (95% CI [0.906, 

0.962]); logistic regression and k-nearest neighbours classifier achieved 
an AUROC of 0.924 (95% CI [0.894, 0.954]) and (95% CI [0.880, 
0.944]), respectively. 

A direct comparison between our approach and the literature in this 
field is not completely fair, as performance evaluation is not performed 
on the same testing data. However, we provide in the following useful 
overview to contextualize the results achieved by our approach 
compared to the ones available in the literature and to give an indication 
of the performance achievable for this type of classification problem. 
BitterSweetForest (Banerjee and Preissner, 2018) achieved higher met-
rics (AUROC = 0.98, F1 = 0.92–0.95, ACC = 0.97), but with a 
remarkably lower number of samples in the database (517 artificial and 

Fig. 1. (A) Average model performance. (B) Pairwise comparison of all model performance with Nadeau and Bengio’s corrected t-test and Bonferroni correction. (C) 
Solid lines and shaded areas represent the average receiver operating characteristics curves and their 95% confidence intervals. (D) Solid lines and shaded areas 
represent the average precision-recall curves and their 95% confidence intervals. Abbreviations: GB, gradient boosting, RF, random forest, LR, logistic regression, 
MLP, multi-layer perceptron, K-NN, k-nearest neighbours. 
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natural sweet compounds and 685 bitter molecules), limiting the 
exploration of the bitter/sweet chemical space. BitterSweet (Tuwani 
et al., 2019) obtained different performances for the sweet/non-sweet 
and the bitter/non-bitter predictions. In particular, for the 
sweet/non-sweet prediction, BitterSweet achieved AUPRC of 0.93, 
AUROC of 0.85, F1 score of 0.77 and regarding the bitter/non-bitter 
prediction AUPRC of 0.93, AUROC of 0.88, F1 score of 0.86. 

3.3. Feature selection 

In order to select a small subset of uncorrelated or weakly correlated 
informative features, we used sequential feature selection combined 
with hierarchical clustering on the feature’s Spearman rank-order cor-
relations, as described in the following steps.  

i. First, the feature correlation matrix was constructed using 
Spearman rank-order correlations and, for each feature, the 
predictive capacity of the target variable was estimated through a 

Fig. 2. (A) Kernel density estimation of the sweet vs bitter molecules empirical distributions for features with high Kolmogorov – Smirnov statistic (first row) and low 
Kolmogorov – Smirnov statistic (last row). (B) Feature selection algorithm results. Average AUROC values (blue left y-axis) and average absolute intra-cluster 
correlation (red right y-axis) as the number of clusters increases. The zoom represents the progress of the algorithm until the first 50 clusters are reached. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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two-sample Kolmogorov – Smirnov test. In Fig. 2A (first line), the 
variables piPC4 (conventional bond order ID number of order 4), 
GATS1d (Geary autocorrelation coefficient of lag 1 weighted by 
sigma electrons) and MPC5 (molecular path count of order 5) are 
shown, characterized by high values of the Kolmogorov – Smir-
nov statistic and high separation between the empirical distri-
butions of samples with sweet target and samples with the bitter 
target. The second line of the same figure shows the variables 
CIC1 (1-ordered complementary information content), MAT-
S7are (Moran autocorrelation coefficient of lag 7 weighted), and 
AATSC7s (Broto autocorrelation of lag 7 weighted by intrinsic 
state) characterized by low Kolmogorov – Smirnov statistic 
values and high overlap between the empirical distributions of 
sweet and bitter samples. The variable with the highest estimated 
predictive capacity (piPC4) was selected and used to train a 
LightGBM model. The resulting performances were computed 
with 5-fold cross-validation and stored. 

ii. After converting the correlation matrix to a distance matrix, hi-
erarchical clustering using Ward’s linkage was performed and 
two clusters were selected. From these, the 2 most representative 
features were picked based on their estimated predictive capacity 
and used to train a LightGBM model and compute cross- 
validation performances, together with the intra-cluster mean 
absolute correlation of the features.  

iii. The process described in step (ii) is repeated for 3, 4 clusters, until 
each cluster is atomic i.e., it contained a single feature. 

The results of this procedure are shown in Fig. 2B, where we can 
observe that with a limited number of features it is still possible to 
approach the performance of the reference model trained with the entire 
set of features, which reinforces the fact that groups of features are 
redundant. 

Finally, we have arbitrarily chosen 29 features as a good compromise 

between model performance (AUROC = 0.944), simplicity and inter-
pretability. Fig. S3 shows the correlation matrix of the selected features 
and the absolute values of the feature’s Spearman rank-order correla-
tions with an average absolute correlation between the variables of 0.19. 
This shows that the implemented procedure allowed us to develop a 
model with weakly correlated features as inputs. 

3.4. Global interpretation 

The SHAP explanation method aims to explain the prediction of a 
single instance by estimating, for each feature, its contribution to the 
prediction, called SHAP value (in this study the prediction associated 
with a molecule corresponds to the probability predicted by the model 
that molecule is sweet). By combining SHAP values computed for each 
sample of the dataset, we obtain a matrix with one row per sample and 
one column per feature. From the analysis of this matrix, it is possible to 
obtain global explanations of the entire model. The SHAP feature 
importance bar plot shown in Fig. 3A reports the features in descending 
order of importance computed as the average across the data of the 
absolute SHAP values. BCUTi-1h (first highest eigenvalue of Burden 
matrix weighted by ionization potential) and MINdO (the minimum 
value of the atom type E-state descriptor (Hall and Kier, 1995) linked to 
the presence of the atom group double bonded with Oxygen) have been 
identified as the most impacting features, followed by ATSC5c (centred 
Moreau-Broto autocorrelation of lag 5 weighted by gasteiger charge), 
MATS2s (Moran autocorrelation coefficient of lag 2 weighted by 
intrinsic state), MINssO (the minimum value of the atom type E-state 
descriptor (Hall and Kier, 1995) linked to the presence of the -O- atom 
group, MDEC- 13 (molecular distance edge between all primary and 
tertiary carbons), MPC5 (molecular path count of order 5), GATS2v 
(Geary autocorrelation of lag 2 weighted by van der Waals volumes) and 
GATS1d (Geary autocorrelation coefficient of lag 1 weighted by sigma 
electrons). All other features were considered less impacting on 

Fig. 3. SHAP feature importance plots. (A) The left bar plot represents a ranking of the importance of the variables with their average impact on model prediction. 
(B) The right dot plot represents each data point with the signed contribution of each variable to the model prediction: blue colour indicates low values for a variable 
whereas red colour indicates high values. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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predictions. In the SHAP summary plot of Fig. 3B, in which each sample 
is depicted as a point where the position on the x-axis represents the 
impact on the prediction in the form of SHAP value and the colour 
represents the intensity (blue for low values to red for high values) of the 
value assumed by a feature, feature importance is combined with the 
directional relationship between values assumed by a feature and 
impact on predictions. Among the most impacting variables, ATSC5c, 
MATS2s and GATS2v are positively correlated with the sweetness of a 
molecule, while BCUTi-1h and MINdO are positively correlated with the 
bitterness of a molecule. 

The empirical form of the relationship between feature values and 
impact on model predictions can be studied for each feature with the 
SHAP dependence plots, where each data instance is represented by a 
point with a position on the x-axis the value assumed by the feature and 
the position on the y-axis the corresponding Shapley value. The SHAP 
dependence plots for the 4 most representative features are presented in 
Fig. 4. 

3.5. Local interpretation 

Finally, in this paragraph, we report a local interpretative analysis of 
the final model using as case studies six representative molecules (Fig. 5 
and Fig. S5):  

• Three sweet molecules, i.e., Sucrose, Glucose, and Aspartame;  
• Three bitter molecules, i.e., Propanolol, Caffein, and Denatonium. 

Fig. 5A shows the out-of-sample predictions of the entire dataset 
obtained in cross-validation and ordered according to the prediction 
ranking. The considered six reference molecules are highlighted in the 
plot with their sweet/bitter target correctly predicted by the model. 

The SHAP profiles of the representative molecules are shown in the 
left panel of Fig. 5B–C and Figs. S5A–D. The most impacting features for 
the prediction are shown on the y-axis and the corresponding SHAP 
values are displayed through coloured arrows with their cumulative 
value reported on the x-axis. Positive SHAP values, represented with red 

Fig. 4. SHAP dependence plots of the 4 most representative features. (A) BCUTi-1h, (B) MINdO, (C) ATSC5c, (D) MATS2s. For discrete and mixed variables, values 
are plotted with a scatter plot and box plots with whiskers enclosing points belonging to different levels (A). For continuous variables, values are plotted with a 
scatter plot and an orange regression line with shaded 95% confidence intervals (B, C, D). A red diamond marks a cut-off point of the feature. Empirical distributions 
of feature and SHAP values are represented with histograms on the top and right of each plot. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 5. Prediction rank for the molecules of the entire dataset (x-axis) vs out-of-sample predicted sweetness probability (y-axis). Reference molecule prediction are 
highlighted. SHAP profiles of two representative molecules: Sucrose (B) and Propanolol (C). For each figure, SHAP values are shown in the left panel and impacting 
feature distributions in the right panel, with values assumed by the features highlighted with solid red lines. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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arrows, indicate a positive contribution to the predicted sweetness of the 
molecule, while negative SHAP values, represented with blue arrows, 
indicate a positive contribution to the predicted bitterness of the 
molecule. Empirical distributions of the most impacting features are 
reported in the right panels of Fig. 5B–C and Figs. S5A–D. The orange 
colour distributions correspond to the sweet molecules in the dataset, 
while the blue ones correspond to the bitter molecules. The vertical solid 
red lines highlight the value assumed by the feature in the corresponding 
molecule. If the value is missing, the feature is skipped. For these mol-
ecules, the most impacting features contribute with the same sign to the 
prediction. Moreover, the most impacting feature is unanimously 
BCUTi-1h (first highest eigenvalue of Burden matrix weighted by ioni-
zation potential). For bitter molecules, other common impacting fea-
tures are MINdO (the minimum value of the atom type E-state descriptor 
(Hall and Kier, 1995) linked to the presence of the atom group double 
bonded with Oxygen) and MPC5 (molecular path count of order 5), 
while for sweet molecules they are GATS2v (Geary autocorrelation of 
lag 2 weighted by van der Waals volumes) and GATS1d (Geary auto-
correlation coefficient of lag 1 weighted by sigma electrons). 

4. conclusion 

The sweet-bitter dichotomy is an extremely fascinating aspect of 
taste perception: while the sweet taste is commonly associated with a 
pleasant sensation linked to the energetic content of foods, bitter is a 
complex control system normally related to the ability to avoid toxic or 
possibly harmful substances. In this work, we have further investigated 
this attractive mechanism to shed light on the molecular features 
determining the taste of a specific molecule. Therefore, we developed a 
machine-learning-based classifier able to discriminate between the 
bitter and sweet tastes of a query compound based on its molecular 
structure. The implemented tool is based on the widely used SMILES 
representation and employs open-source molecular descriptors to 
calculate the features on which the model relies. Thanks to statistical 
analysis methods, feature selection and analysis techniques, we were 
able to pinpoint a reduced number of molecular features determining 
the bitter or sweet taste and, together with the SHAP explainability 
method, we underlined the impact of the selected features, providing an 
informed and interpretable classification. In the process of designing 
new molecules, it is difficult to make use of the selected features as they 
are not intuitive. This issue, however, is not related to the selection of 
features, but rather to the use of molecular features in 2D. This point 
could be adequately addressed not only by simplifying the input mo-
lecular features, which will inevitably reduce algorithm performance, 
but also by taking advantage of a number of scientific studies focused on 
machine learning decoders able to reconstruct the chemical information 
starting from the 2D features of the molecule. Additionally, a generative 
model could be added to the computational pipeline to suggest appro-
priate chemical changes to achieve the desired taste. Addressing the 
previously-mentioned challenges represent the future development of 
this work, and we hope that our study will provide a starting point for 
potential studies in this field. The developed model will therefore pave 
the way toward the rational design and screening of sweet/bitter mol-
ecules through the molecular understanding of the physical and chem-
ical characteristics underlying the perception of these tastes. To ensure 
the reproducibility of the results and to allow the usage of the developed 
model, we publicly release the Python scripts, along with the employed 
datasets and supplementary material on GitHub (https://github.com/g 
abribg88/VirtuousSweetBitter). The sweet/bitter classifier will be also 
implemented into a user-friendly webserver to allow its usage even to 
non-expert or technical users. In a broader view, this tool will be inte-
grated into the framework of an EU-funded project, named VIRTUOUS 
(64), which aims at creating an intelligent computational platform by 
integrating molecular modelling methods, drug discovery techniques, 
machine learning classifiers, algorithms for big data, cloud computing, 
and experimental data to predict the organoleptic profile of selected 

types of food based on their chemical composition. In conclusion, the 
present work represents a crucial starting point in the definition of a 
virtual tongue able to predict the taste of specific ingredients and general 
compounds with the ultimate goal of shedding light on the mechanisms 
and hidden relationships at the basis of the taste perception process. 
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