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Editorial
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Abstract: This editorial aims to summarize some representative research efforts provided by the
authors who contributed to the Polymer Analysis and Characterization section of the Polymers journal
in the year 2024. The numerous and high-quality research outputs provided so far clearly indicate that
the Polymer Analysis and Characterization section of the Polymers journal is rapidly and continuously
growing, stimulating more and more researchers to publish their research outcomes here.
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Dear colleagues and friends,
As 2024 draws to a close, our Polymer Analysis and Characterization section has en-

joyed another fruitful year of high-quality Special Issues and scientific papers (192 published
articles to date) on various topics in polymer analysis and characterization. In particular,
four main subtopics were considered by the section contributors, namely: the investigation
of polymeric nanocomposites, the assessment of the flame-retardant behavior of polymer
systems, the design, production, and characterization of polymer composites for advanced
applications, and the development of numerical models.

As far as some examples of polymer nanocomposites are considered, Alsoud and co-
workers [1] investigated the direct current breakdown characteristics of both unfilled epoxy
and epoxy nonconductive nanocomposites (filled with silica, MgO, or alumina). Then, solu-
tion casting was selected as a valuable processing method for preparing polyvinyl alcohol-
based nanocomposite films incorporating SrTiO3 and carbon nanotubes. The obtained
systems were found to be suitable for optoelectronic applications [2]. Elhmali and co-
workers demonstrated the potential of hybrid nanoparticles made of SrTiO3 and MnO2 for
reinforcing dental poly(methyl methacrylate) [3]; Wang et al. [4] exploited Dynamic Me-
chanical Analysis for assessing the thermo-mechanical behavior of carbon nanotube/epoxy
nanocomposite films. Further, Wu and co-workers [5] succeeded in producing highly ther-
mally conductive, triple-level, ordered, nanofibrous films made of poly(vinyl alcohol) and
multi-walled carbon nanotubes, suitable for thermal management applications. The same
polymer matrix was investigated by Shui et al. [6], who employed carboxy-functionalized
graphene as an effective nanofiller for providing poly(vinyl alcohol) with multifunctional
features (namely, with enhanced mechanical, barrier, electrical, and antibacterial properties).
Within the current demanding sustainability goals, Uşurelu and co-workers [7] investigated
the effect of the incorporation of silanized cellulose nanofibers into Poly(3-hydroxybutyrate)
nanocomposites. Cordoba and co-workers [8] exploited an in situ sol–gel synthesis method
for obtaining poly(dimethylsiloxane)/silica nanocomposites with tunable properties. Liu
and co-workers [9] thoroughly investigated the anti-icing and hydrophobicity performance
of nanoparticle/epoxy formulations developed using three types of nanoparticles (namely,
ZnO, SiO2, and TiO2), modified with stearic acid. Nugraha et al. [10] studied the effect
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of the incorporation of nano-graphite at different loadings on additively manufactured
polymer systems obtained through stereolithography and highlighted interesting rela-
tionships between the composition of the resin formulations and the properties of the
resulting nanocomposites.

As far as the flame-retardant behavior of polymer systems is concerned, Wei and
co-workers [11] synthesized a bio-based flame retardant based on phytic acid and chitosan
derived from biomass. Then, the so-obtained flame retardant was employed, together
with melamine and polyvinyl alcohol, for the design of flame-retardant, intumescent
urea/formaldehyde resins, using ammonium polyphosphate and ammonium chloride as
curing agents. In a further research effort, Zhang et al. [12] demonstrated that the synergistic
combination of ammonium polyphosphate and nickel phytate (synthesized on purpose)
was effective in providing enhanced flame-retardant features to rigid polyurethane foams.
Alosime and Basfar [13] studied the effect (on both the mechanical behavior and flame
retardancy) of the incorporation of carbon nanotubes and carbon black into linear low-
density polyethylene/ethylene–vinyl acetate blends containing magnesium hydroxide
and huntite hydromagnesite, used as flame retardants. Lu and co-workers [14] exploited
a complexation reaction to obtain a self-extinguishing urea-formaldehyde–guanidazole–
phytate–copper coating. Boztoprak [15] employed beechwood flour in combination with
tetrabromobisphenol-A and antimony trioxide to provide polypropylene with enhanced
flame-retardant features, notwithstanding an improvement of such mechanical properties as
hardness, impact strength, and wear resistance. Shivakumar and co-workers [16] succeeded
in designing and producing fly ash/polyurethane composites with enhanced mechanical,
flame-retardant, and dielectric properties.

The Polymer Analysis and Characterization section also benefited from interesting con-
tributions dealing with the design, preparation, and characterization of polymer composites
for advanced applications. Some interesting examples are summarized below.

Van Thiem and co-workers [17] incorporated coconut sawdust powder into polypropy-
lene, assessing the effect of the employed compatibilizer (i.e., oleamide) content, the wood
powder loading, and the injection molding parameters on the overall mechanical behavior
of the resulting composites. Messmer et al. [18] investigated the micro-mechanical behavior
of a polyimine-based vitrimer reinforced with basalt fibers as a sustainable alternative
to standard composite materials. Song and co-workers [19] studied the effects of three
kinds of epoxy resins and their formulating compositions and three ionic types of siz-
ing agents on the interlaminar shear strength and compressive strength of epoxy/carbon
fiber composites. Further, a good review paper [20] provided a comprehensive analysis
of multiscale defects in fiber-reinforced thermoplastic composites produced via fused fil-
ament fabrication, emphasizing the impact of process parameters and the complexities
involved in managing these defects. Cheng and co-workers [21] performed low-velocity
impact tests and finite element simulation on glass fiber-reinforced polymer hollow-ribbed
emergency pipes; the tests were carried out at different impact heights, and the impact
response and damage characteristics during impact were evaluated to shed light on the
optimal design of these types of structural components. Iquilio et al. [22] explored the
mechanical behavior of a vinyl ester polymer matrix reinforced with jute fibers with two
different orientations, exploiting tensile tests, digital image correlation techniques, and
morphological analyses (i.e., SEM measurements). Shams et al. [23] studied the frontal
polymerization of a Bisphenol-A epoxy resin reinforced with either short or continuous
carbon fibers. More specifically, the effects of the presence and loading of the reinforcements
on the temperature profiles of the exothermic reaction, polymerization frontal velocities,
degree of cure, microstructures, and thermal and mechanical properties of the resulting
composites were thoroughly investigated. Wang et al. [24] evaluated the durability of
two kinds of E-glass fiber-reinforced composites based on an epoxy vinyl ester and an
unsaturated polyester matrix and subjected them to hygrothermal aging. Monitoring the
mechanical performance during the aging process allowed for comprehensively analyzing
the cause of the deterioration of the composites.
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Regarding the modeling and simulation research outcomes, Jiang et al. [25] estab-
lished a 3D helix geometry unit cell to simulate the complex spatial configuration of 3D
four-direction carbon/epoxy braided composites. This model allowed for the use of the
multiphase finite element method to predict the impacts of environmental temperature on
the thermophysical properties of the composites. Verde et al. [26] proposed a numerical
model derived from the Tool–Narayanaswamy–Mohynian model to predict the evolution
of epoxy’s mechanical properties during the curing process. In addition, the model was
implemented in an Ansys APDL environment, assuming a linear viscoelastic behavior.
Pursuing this research, the proposed model was then applied to numerically estimate
the internal stresses that develop within an epoxy cylinder subjected to a generic thermal
history, aiming to evaluate the internal stresses without using experimental techniques
and understand the factors influencing them [27]. Tang et al. [28] exploited molecular
dynamics simulations to track the network formation and predict the performance of
methyl hexahydrophthalic anhydride-cured epoxidized soybean oil/diglycidyl ether of
bisphenol-A blends. For this purpose, the composition of the blends (in terms of epoxidized
soybean oil content) was successfully correlated with volumetric shrinkage, glass transition
temperature, coefficient of thermal expansion, and overall mechanical behavior. Based
on the theory of strain energy function, Liu and co-workers [29] proposed a constitutive
model considering density and strain rate effects to describe the stress–strain behavior of
polyurethane elastomers under various densities and strain rates. The model was found
to be in good agreement with the experimental data. Li et al. [30] exploited a method
based on the concept of fracture fatigue entropy to simulate the impact of load history on
the premature fatigue failure of the viscoelastic polymer matrix in carbon-fiber-reinforced
plastics. Compared with the Palmgren–Miner rule, the elaborated model was more reliable
and practical for predicting fatigue life under complex loading conditions. Sabol and
Murčinková [31] analyzed the stress wave propagation generated by an impulsive unit
load in a 2D representative unit cell of a polymer composite embedding circular particles
that represent spherical particles, elliptical particles, and short fibers. To this aim, finite
element analysis was successfully utilized for the micro-scale numerical simulation.

All the aforementioned research outcomes witness the remarkable research activities
carried out in the Polymer Analysis and Characterization section of Polymers.

Further, I would like to remind you that 39 Special Issues and three Topic Collections
are still open and ready to receive your valuable manuscripts.

Finally, I hope that, in 2025, the Polymer Analysis and Characterization section will
continue to grow and expand with the help of the Editorial Board, the Editorial Staff, and,
last but not least, all the esteemed readers and authors!

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained in the articles cited in the references.

Conflicts of Interest: The author declares no conflicts of interest.
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