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Abstract

This work proposes an autonomous navigation software stack to allow robotic rovers in open-field environments
to reach given target coordinates in a safe, reliable, and efficient manner. The primary objective of this project is to
train a Reinforcement Learning (RL) agent to acquire effective strategies for safely traversing its sorroundings until
the desired destination is reached. The rover receives target coordinates from the user and point cloud data from
dedicated  sensors  such  as  stereocameras  or  LIDARs,  providing information about  the  surrounding  environment
morphology. Assuming the robotic rover has a reliable method to localize its position and orientation in the field and
track its movements during operations, as well as a robust controller to reach a target pose in its immediate proximity
within a few meters from its current position, we introduce DIANA-Gym, a simulation environment to train the agent
on  a  virtual  rover.  Next,  a  state-of-the-art  algorithm is  selected  to  train  and  test  an  RL agent  on  the  virtual
environment. Although designed for planetary navigation and exploration purposes, we believe that the proposed
framework could be adapted with minimal modifications to other similar open-field navigation tasks. By combining
Reinforcement  Learning with point  cloud data,  our proposed autonomous navigation software stack provides an
efficient, reliable, and safe solution for autonomous exploration and navigation in challenging environments. The
entire project is being developed within DIANA from Politecnico di Torino, a student team competing in the Rover
Challenge Series, which challenges students from all the engineering areas to design and develop a prototype for an
astronaut assistance rover platform.

Keywords: Autonomous Navigation, Reinforcement Learning, Machine Learning, Point Cloud, Rover.

IAC-23-D1.2.9                  Page 1 of 6

mailto:raffello.camoriano@polito.it
mailto:fabrizio.stesina@polito.it
mailto:leonardo.festa@teamdiana.it
mailto:federico.mustich@teamdiana.it


74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023. 
Copyright ©2023 by the International Astronautical Federation (IAF). All rights reserved.

1. Introduction
 Autonomous  navigation  is  a  challenging  task,
especially in open-field environments characterized by
intricate  and rugged morphologies,  oftentimes  lacking
structured  visual  references  and  exhibiting  dynamical
lighting  conditions.  This  challenge  is  further
accentuated in the context of robotic rovers operating on
planetary  surfaces,  where  environmental
unpredictability  and  hazards  are  heightened.  The
imperative for such rovers is twofold: they must execute
cautious maneuvers to avert potentially mission-ending
hazards,  while  simultaneously  achieving  efficient
traversal  speeds  to  optimize  their  operational  and
scientific yield over their operational lifespans.

 While  numerous  methodologies  for  autonomous
navigation in open-field scenarios have been proposed
or integrated into past and present missions [1], many of
these approaches  hinge upon heuristic  algorithms and
conventional  pathfinding  techniques,  including  A*,
Monte Carlo and RRT [2]. Instead, this study aims to
assess the efficacy of a machine learning-driven strategy
in  tackling  this  task.  Specifically,  we  propose  a
Reinforcement  Learning  (RL)  agent  that  perceives  its
surroundings  through  a  point  cloud  representation,  as
opposed to a  2D representation  obtained via common
RGB cameras. This is due to the assumption that, since
a  point  cloud  natively  encodes  depth  information,  it
should  be  more  efficient  for  a  RL agent  to  learn  an
effective navigation policy using such representation.
 
  The  main  contribution  of  this  work  consists  in  the
development of the required software infrastructure to
allow users to train the RL agent with a virtual rover in
a simulated environment, namely DIANA-Gym.

   All of the software is available, free and open-source,
at https://github.com/Anatr1/DIANA-Gym.

2. Related Works
   Recent advancements in the field of machine learning,
particularly in the area of Deep Reinforcement Learning
(DRL), have had a significant impact on robotics and, in
particular,  on  the  approach  to  autonomous  navigation
tasks.  DRL  has  mitigated  the  limitations  of  static
heuristic algorithms by enabling agents to learn optimal
actions  through  interaction  with  their  environments.
This  dynamic  learning  paradigm  is  particularly  well-
suited  for  open-field  navigation,  where  environments
are  subject  to  change  and  adaptability  is  paramount.
Through continuous interaction  with the  environment,
DRL  agents  can  develop  contextually  adaptive

navigational strategies, enhancing their performance in
complex landscapes.

   An important milestone for the DRL community has
been the introduction of Gym by OpenAI [3], which has
rapidly become the standard framework for building and
evaluating DRL models. The introduction of Gym led to
the  development  of  Baselines  [4]  and,  subsequently,
Stable  Baselines  by  Raffin  et  al  [5],  an  open-source
implementation of many DRL algorithms that follow a
consistent,  gym-compatible  interface  to  facilitate  the
training and comparison of different models.

   DRL has been applied to robot navigation tasksin a
number  of  settings  with  different  aims  and  analyzing
different scenarios and aspects of the problem, ranging
from search  and  rescue  [6]  to  agriculture  automation
[7].  Koutras  et  al.  [8]  proposed  a  gym-compatible
framework  for  exploiting  DRL  models  to  learn
exploration policies in unknown 2D environments and
performed preliminary studies  on various state-of-the-
art DRL algorithms such as SAC [9] and PPO [10].

  Martini  et  al.  [11]  presented  PIC4rl-gym,  a  novel
framework  based  on  ROS2  and  Gazebo  [12],  for
training and testing DRL agents on several outdoor and
indoor navigation scenarios. Pic4RL-gym is intended as
an  alternative  to  OpenAI  Gym  and  is  not  gym-
compatible. Liang et al., leveraging ROS, Gazebo, and
gym-gazebo [13], proposed Parallel Gym Gazebo [14],
a gym-compatible training platform for DRL applied to
robotic  tasks  that  addresses  the  computational
bottleneck resulting from the simulation of complex and
realistic  dynamics,  which  often  significantly  impedes
progress in the field by imposing unsustainable training
times and costs.  Although interesting,  an  open-source
implementation of this work is currently not available.

  Ferigo et al [15] developed Gym-Ignition, a framework
to  create  reproducible  robot  environment  for  RL
research  introducing  Gym-compatible  environment
support  to  Gazebo-Ignition  [16],  a  simulator  derived
from  Gazebo  with  focus  on  advanced  rendering,
physics  and sensors simulation.

 Finally,  ROS2Learn [17], together with gym-gazebo2
[18], constitutes yet another gym-compatible framework
for  training  and  developing  RL-based  robotic
applications using, once again, Gazebo and ROS2.

3. Requirements
   The project has been developed within DIANAs, a
student  team from Politecnico  di  Torino active in the
Rover Challenge Series. As such, its requirements are
shaped  according  to  those  imposed  by  similar
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competitions,  in  particular  the European  Rover
Challenge 2023 (ERC23)  [19],  and  to  the  means  and
necessities of a university student team. For this reason,
the  listed  requirements  may  differ,  sometimes
substantially, to those applying to actual spacecraft and
space-rated hardware. In particular, the trained networks
resulting from this project are designed to be run on an
embedded ARM computer such as an NVIDIA Jetson
Xavier  or  NVIDIA  Jetson  Orin.  Similar  computers,
which  usually  are  supported  by  a  strong  GPU,  are
designed for earth-bounded robots and AI applications,
and  differ  significantly  from  the  industry  standard
computing  hardware  for  space  applications,  both  in
terms of computational power and energy usage.

The requirements desired for the trained agent to fulfill
are the following:

 Safe travel. The system should keep the rover
on a path safe from terrain hazards and avoid
collisions  while  keeping  the  pitch  and  roll
angles as close as possible to 0°. The system
should not  guide the rover  between passages
too narrow for its size or in regions in which it
would be hard to maneuver and escape.

 Ground  speed. For  small-sized  rovers  (~10
kg), at the bare minimum the system should be
able to travel at least 100 meters in 20 minutes,
which corresponds to an average ground speed
of  0.083  m/s.  Speeds  as  high  as  0.33  m/s
should be achievable, always depending on the
considered rover.

 Light  and  weather  robustness. The  system
should  be  able  to  operate  with  comparable
performances  under  any  possible  light
condition.

 Field-agnostic. The system should be able to
navigate  in  any  open  field  resembling  a
mars/lunar  landscape  not  featuring  any  other
moving  object/entity  except  from  the  rover
itself.

 Platform  flexibility. The  system  should  be
flexible enough to be integrated, after a proper
retraining,  into  every  ground-based  robotic
platform  compliant  with  the  guidance  and
control stack described next.

4. Infrastructure

4.1 Perception and Control
  This  project  assumes  three  core  components  to  be
available  and  properly  working  on  the  target  rover
platform:

 A reliable pose estimation service.  The robot
needs  to  be  aware  of  its  position  and
orientation  on  the  field  at  any  moment.  The

position is calculated with respect to the origin
of  the  reference  frame  placed  on  the  rover
starting point  with x-axis  facing  front  and y-
axis growing to the left  of it,  starting with a
yaw value of 0 degrees. This value will be used
as input  by the RL agent  and  will  constitute
part of its internal state.

 A sensor returning a 3D representation of the
surrounding  environment.  For  the
implementation,  a  depth-camera  has  been
considered.  3D  LIDARs  providing  360°
degrees point-clouds could also be applied. The
resulting data will also be utilized by the RL
agent as an input.

 A  service  enabling  to  control  the  rover  in
position, meaning that, upon receiving a target
point  to  reach,  the  rover  must  be  able  to
compute a trajectory and to follow it until the
given point is reached, assuming an obstacle-
free terrain and without performing any kind of
obstacle detection or avoidance. The output of
the  RL agent  will  consist  in  a  series  of  2D
points to be reached by the position controller.

4.2 Simulation Environment: DIANA-Gym
    To facilitate the training of RL agents in a simulated
environment  for  autonomous  rover  navigation  across
challenging  terrains,  the  selection  of  an  appropriate
simulation  framework  is  paramount.  In  this  project,
Gazebo was chosen as the foundation due to its inherent
support  and  seamless  integration  with ROS platforms
and  for  the  large  support  provided  by  its  active
community  [12],  ensuring  compatibility  with  a  wide
range of robotic hardware and software components. 

 We  introduce  DIANA-Gym,  a  novel  simulation
environment tailored for RL training of robotic rovers.
DIANA-Gym builds  upon the  framework  proposed  by
Martini  et  al.  in PIC4rl-gym,  extending  it  to  offer
enhanced  compatibility  with  OpenAI's  Gym
environments, mirroring the approach taken by Nuin et
al.  in  their ROS2Learn/Gym-Gazebo2 framework.
Beyond  these  foundations,  DIANA-Gym incorporates
support for  Stable Baselines 3, easing its adaptation to
various  reinforcement  learning  algorithms.  This  not
only  simplifies  the  implementation  process  but  also
grants  users  access  to  a  rich  repository  of  pre-built
features  for  training  monitoring  and  parallelization,
making the framework versatile and user-friendly.

   DIANA-Gym is equipped with the ERC23 Mars Yard
as its default simulation environment, which constitutes
of  an  artificial  terrain  designed  to  mimic  Martian
landscapes.  This simulation world spans an expansive
53x41 meter  area  and  has  been  captured  in  an  high-
fidelity  3D  model  by  means  of  photogrammetry
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techniques.  The  Mars  Yard  provides  a  challenging
terrain in which to train RL models,  featuring uneven
terrain, rocky outcrops, sand dunes, and other geological
elements  that  typify  Martian  landscapes.  For  testing
purposes,  or  for  applications  which do not  require  to
navigate  similarly  harsh  terrains,  a  number  of  more
forgiving simulated worlds are also provided to the user.

Figure 1-2: Samples from the ERC23 Mars Yard

   For simplicity, the position controller that has been
implemented follows a basic routine to guide the rover
to the target destination, by first spinning in place on its
center until it reduces its yaw angle with respect to the
target to near 0°, and subsequently moving forward until
its  tracked  position is within a tolerance  margin from
the  target.  In  future  extensions,  more  sophisticated
controllers could be explored and implemented. 

Due  to  the  lack  of  an  .urdf  file  representative  of
DIANA’s  rover,  the  simulation environment  currently
utilizes as default a Jackal robot, by Clearpath Robotics
[20]. Authors plan to add as soon as possible a model of
DIANA’s most recent rover platform, ARDITO, which
features a six-wheels rocker-bogie configuration much
like those of NASA’s Mars exploration rovers.

5. RL agent

5.1 Action Space
    Considering the aforementioned constraints and the
requirement for the agent's output to consist of the next-
step 2D coordinates,  used as  input  for  the underlying

Position Controller, this project defines the action space
as the collection of 2D points situated in proximity of
the rover's current position.

   Specifically,  when a user  opts  for  a  square  action
space,  the available  coordinates  encompass  the points
within  a  square,  with  sides  measuring  seven  meters,
centered on the rover's  current position. Alternatively,
when a  circular  action  space  is  chosen,  the  available
coordinates are confined to a circle with a radius of four
meters, centered on the rover's current location. In both
instances, the resulting output is expressed in Cartesian
coordinates  within  the  absolute  reference  frame.  This
reference frame is established with its origin coinciding
with  the  rover's  pose  at  the  commencement  of  the
navigation task.

5.2 Observation Space
    In this project, the observation space is fundamentally
comprised  of  two  distinct  data  structures,  fed  to  the
learning model to access to the status of the robot:

 Agent Position Relative to Navigation Goal:
This  component  encodes  critical  information
about  the  agent's  position  concerning  the
designated  navigation  goal.  It  includes  the
agent's  Euclidean  distance  from  the  goal,
expressed  in  meters,  and  the  yaw  angle,
presented in degrees.

 Surrounding Environment's Morphology:
The  second  component  encompasses
information  related  to  the  three-dimensional
morphology  of  the  environment  surrounding
the rover. To incorporate this information into
the  observation  space,  data  obtained  from  a
dedicated sensor, in the form of a point cloud
or depth image, necessitates preprocessing. In
the  implemented  configuration,  a  simulated
depth  camera  is  employed,  yielding  a  two-
dimensional  matrix  that  conveys  spatial
distance information pertaining to objects and
terrain in front of the rover.

Figure 3: Sample from the unprocessed depth-image
captured from the simulated sensor
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5.3 Reward Function
 The  reward  function  implemented  takes  into
consideration several metrics to assess the performance
of  the  agent  during  training  and  guide  the  algorithm
learning process:

 The distance travelled  towards the goal. If
during a training step the agent moves closer to
the  target  goal,  it  receives  a  reward  bonus
proportional  to  the  distance  travelled.
Equivalently, a penalty is assigned to the agent
should it travel further from the goal during a
training step.

 The yaw angle  to  the  goal.  The  reward  is
maximum  for  yaw  angles  equal  to  0°,
progressively  decreasing  until  reaching  a
maximum penalty for values equal to +-180°,
when  the  rover  is  traveling  in  the  opposite
direction  with  respect  to  the  target  it  should
approach.

 Roll and pitch angles. The safest  traverse is
the  one  which  avoids  dangerous  slopes
whenever  possible.  For  this  reason,  small
reward bonuses are granted for maintaining roll
and pitch angles, separately, close to 0°. Since
this  project  is  developed  for  planetary
exploration rovers, which usually grant notable
mobility  capacities  on  uneven  terrains,  the
penalty  for  pitch  and  roll  angles  is  kept
negligible for absolute values up until 5°, and
then progressively  incremented.  The intended
objective is to let the agent choose to traverse
over  moderately  steep  routes  if  considered
necessary  or  particularly  convenient  to  reach
the target.

 Success or Failure conditions. A large reward
is  granted  whenever  the  rover  reaches  the
target  within  a  given  tolerance.  Similarly,  a
major  penalty  is  assigned  should  the  rover
collide with environmental features. Finally, a
penalty  is  also  assigned  depending  on  the
number of steps it took the agent to reach the
target,  or  otherwise  to  end  the  run  either  by
collision or timeout.

Each of these metrics can be tweaked and fine-tuned by
modifying  existing  hyperparameters  while  performing
application specific reward shaping. 

5.4 Algorithms
  DIANA-Gym seamlessly integrates with the entire suite
of reinforcement learning algorithms provided by Stable

Baselines 3, catering to the diverse needs and means of
users. The selection of algorithms at the disposal of the
user spans over many state-of-the-art options supporting
environments featuring continuous action spaces.  This
includes algorithms of considerable repute, such as the
Soft  Actor-Critic  (SAC)  [9],  Proximal  Policy
Optimization  (PPO)  [10],  and  the  Advantage  Actor-
Critic (A2C) [21]. These algorithms are known for their
efficacy  in  solving  complex  robotic  control  tasks,
offering  varying  trade-offs  in  terms  of  exploration,
sample  efficiency,  and  stability.  Researchers  and
engineers  can  effortlessly  switch  between  these
algorithms, experimenting and fine-tuning their choice
to  optimize  training  outcomes  and  enhance  the
performance  of  autonomous  agents  operating  in
challenging terrains.

6. Conclusions and future works
   With this work we presented  DIANA-Gym, a novel
software  stack  to  enable  training  of  Reinforcement
Learning  models  on  autonomous  navigation  tasks  for
planetary  exploration  rovers,  particularly  focused  on
robots employing depth sensors able to return a point-
cloud/depth  representation  of  the  surrounding
environment.  By  merging  Gazebo,  ROS2,  Stable
Baselines  3, and  the  ERC23  Mars  Yard  3D  model,
DIANA-Gym offers  a  versatile,  open-source,  gym-
compatible  and  easily  expandible  environment  for
robotics  researchers  and  space  or  AI  enthusiasts  to
familiarize with RL for robotics or advance knowledge
in this field.

DIANA-Gym will continue to be updated from DIANA
Computer  Science  department  and  new  features  are
likely to be added in next future. New robot models and
simulated environments are planned to be added soon as
well as support to other kinds of sensors, such as RGB
cameras, to enable multimodality support.
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