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This paper introduces a portable framework for developing, scaling and maintaining energy management 
and information systems (EMIS) applications using an ontology-based approach. Key contributions include an 
interoperable layer based on Brick schema, the formalization of application constraints pertaining metadata and 
data requirements, and a field demonstration. The framework allows for querying metadata models, fetching data, 
preprocessing, and analyzing data, thereby offering a modular and flexible workflow for application development. 
Its effectiveness is demonstrated through a case study involving the development and implementation of a data-
driven anomaly detection tool for the photovoltaic systems installed at the Politecnico di Torino, Italy. During 
eight months of testing, the framework was used to tackle practical challenges including: (i) developing a machine 
learning-based anomaly detection pipeline, (ii) replacing data-driven models during operation, (iii) optimizing 
model deployment and retraining, (iv) handling critical changes in variable naming conventions and sensor 
availability (v) extending the pipeline from one system to additional ones.
1. Introduction

The digitalization of the building sector, thanks to the widespread 
adoption of Internet of Things (IoT) technologies, significantly increased 
the amount of information pertaining actual building operation. In the 
current paradigm of smart buildings, building owners, energy managers 
and occupants can leverage more and more sophisticated software so-
lutions, exploiting data analytics, capable to inform and assist them in 
reducing energy use, enhancing occupant satisfaction, comfort, safety, 
and facilitating a proactive approach to building operations and main-
tenance [1–4]. Such solutions belong to the rapidly evolving family of 
tools that monitor, analyze, and control building energy use and system 
performance also called Energy Management and Information Systems 
(EMIS) [3,5]. Such tools are categorized in three main groups: (i) En-

ergy and Information Systems (EIS) which focus on meter-level monitored 
data to perform tasks such as energy consumption forecasting, anomaly 
detection, advanced benchmarking, load profiling and schedule opti-
mization of building energy systems, (ii) Fault Detection and Diagnosis 
(FDD) systems which are designed to automatically detect unpermitted 
deviation of a system operation from its usual and acceptable operat-
ing range, and finally (iii) Advanced System Optimization (ASO) which 
analyze Building Automation System (BAS) data and modify the con-
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trol settings for achieving an optimized energy performance of building 
systems [3,5]. Commercially available EMIS solutions have shown to be 
effective in reducing energy waste during building operations, with a 
median savings of 9% reported in Kramer et al. [5]. Meanwhile, a sub-
stantial body of academic work has proposed innovative data-driven 
algorithms that promise even better performance in identifying faults 
[6] and optimally controlling building systems [7]. Unfortunately, these 
advanced algorithms have largely not been implemented in today’s EMIS 
tools [3,8,9]. The reasons for this lack of technology transfer are not well 
understood, but the scientific literature has been primarily focusing on 
developing applications that enhance the performance, accuracy and 
robustness of innovative applications while very few studies consider 
practical implementation, deployment and scaling factors [10,11]. Key 
areas that need further research include:

• Perform more tests of the applications in real-world scenarios. Often, 
novel algorithms and methods are developed and tested in con-
trolled or constrained environments, raising concerns about their 
scalability and portability when applied to different system settings 
[12]. A recent review by Andersen et al. [13], highlighted that only 
4% of the studies related to automatic FDD processes for build-
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ing energy systems have been implemented in real-world scenarios. 
This is largely due to the complexities involved in developing an 
EMIS application that effectively addresses all the practical prob-
lems of a site throughout its life-cycle.

• Address integration of applications with other systems and software 
tools. In field implementations, new EMIS applications must be in-
tegrated with existing proprietary communication protocols, legacy 
building automation systems, IT infrastructure and possibly other 
EMIS tools [14,15]. Researchers often overlook these aspects, fo-
cusing on standalone and monolithic applications rather than inte-
gration, which can be a barrier for wider adoption [16].

• Develop efficient approaches to wrangling data and metadata. In real 
buildings, essential operational data may be missing due to inade-
quate sub-metering, or insufficient data resolution, making imple-
mentation unfeasible [17,18]. Additionally, even if data streams 
are available, they may be unstructured and difficult to interpret, 
requiring significant effort and expertise to map them to a standard 
naming convention or metadata schema. [16,19,20]. Identifying ef-
ficient methods to address these challenges is essential to facilitate 
the adoption of these methods by industry.

• Identify practical methods to deploy Artificial Intelligence (AI) and Ma-

chine Learning (ML) pipelines The majority of the recently proposed 
applications in the literature rely on Artificial Intelligence (AI) and 
Machine Learning (ML) techniques able to automatically draw in-
ferences from patterns in the analyzed data [6,21,22]. These tech-
niques require a (i) continuous integration of streaming data, (ii) 
online model re-training and updating and (iii) dynamic parameter 
settings. Monolithic ML pipelines, are not well suited to be inte-
grated in field deployments [23] and may require significant effort, 
expertise and may be difficult to scale [24,25].

• Evaluate costs and savings. The upfront and maintenance costs of im-
plementing EMIS applications are frequently neglected in academic 
research [9]. At the same time insufficient information related to 
potential savings of these new tools and processes still hinders EMIS 
market transfer [8]. It is essential to develop cost-effective solu-
tions that are easy to set up and replicate, taking into account the 
hardware, software, and human resources needed for their imple-
mentation. Additionally, potential savings should be evaluated for 
different common scenarios.

By integrating these considerations into the early stages of design, re-
searchers can develop, share and test EMIS applications that are not 
only technologically innovative but also practical and ready for being 
validated in relevant environments supporting their widespread adop-
tion. This holistic approach enhances the potential impact of research 
by ensuring that the conceived innovative EMIS applications are viable, 
desirable, and usable in real-world scenarios, harmonizing research out-
put with market expectations. Considering that an EMIS application can 
be ideally implemented and deployed at any point of the building’s life 
cycle, the key challenge is then to develop modular applications that are 
easily integrable with existing BAS and monitoring infrastructure, but at 
the same time are independent from site specific constraint (e.g., naming 
conventions) while also being maintainable and flexible enough to adapt 
to different building system configurations [12]. Achieving this balance 
requires careful consideration of modular design principles, standardiza-
tion efforts in data handling, and interoperable frameworks. In this con-
text, modularity refers to the capability of decomposing an application 
behind an EMIS solution into smaller, self-contained components that 
can be easily replaceable or upgradable without disrupting the overall 
system and each one performing a single specific function. This modular 
approach facilitates easier maintenance, scalability, and customization, 
as individual components can be developed, tested, and tailored inde-
pendently. Additionally, a modular design fosters collaboration among 
development teams and facilitates the integration of applications into 
a unified, multilevel EMIS system. This approach enables seamless in-
2

formation exchange between tools and the reuse of existing application 
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modules across different projects, ultimately leading to a more efficient 
and cost-effective implementation process. Such strategies are essential 
for ensuring smooth in-field deployment and operation of applications, 
thereby enhancing their usability and effectiveness across diverse sce-
narios.

For example, when a new measured variable is available to be in-
cluded within a FDD workflow, several adjustments may be necessary 
to ensure effective utilization of the additional information. Firstly, the 
FDD algorithm may need to be modified to incorporate the new variable 
into its analytics processes. This might involve updating rules, thresh-
olds, or models to account for the new data input. Furthermore, the 
integration of the new variable into the overall FDD framework should 
be carefully managed to maintain the integrity and reliability of the 
analysis. In a monolithic application, where components are tightly 
coupled, the inclusion of a new variable could necessitate significant 
reconfiguration of the entire system, from data collection to analysis im-
plementation. However, in a modular and decoupled approach, where 
components are independent and interchangeable, integrating new data 
points can be accomplished more efficiently with minimal disruption to 
the existing system. This modular approach enables analysts to compose 
a tailored process that suits the specific requirements of the case study, 
thereby increasing agility and adaptability to evolving needs.

In this context, the objective of this paper is to contribute in answer-
ing the following research questions:

• Can EMIS applications be deconstructed into smaller, self-contained 
modular components, each dedicated to specific processes and 
seamlessly replaceable, in order to enable their deployment through 
a single comprehensive modular framework? For example, using 
the same framework for both a simple rule based application and a 
complex online data-driven machine learning pipeline.

• In developing a portable EMIS application, where should developers 
address the complexity of handling heterogeneous data and meta-
data? Should this complexity be managed within the application 
logic, at the interface between the application and metadata, or is 
it entirely delegated to the building metadata schema modeler?

To this aim, the present work introduces a novel development frame-
work that can help in facing, in the robust and general way as possible, 
issues arising at the different stages of an EMIS application life-cycle. 
Together with a theoretical discussion about all the methodological 
steps and concepts addressed by the proposed framework, a practical 
case study is also analyzed. Specifically, the introduced framework was 
applied to develop and implement an ML-based anomaly detection ap-
plication designed to identify electrical power production anomalies in 
Photovoltaic System (PV). The PV systems utilized in the field experi-
ment are located in the university campus of Politecnico di Torino, Italy. 
The application was deployed and tested against a series of tests, such 
as the substitution of the estimation model and the change of naming 
conventions, to validate the capabilities of the proposed framework.

The paper is organized as follows: Section 2 provides background 
related to the EMIS application life-cycle concepts and related issues, 
Section 3 describes the proposed application framework, Section 4 de-
tails its implementation in the real case study. Finally, Section 6 and 7
discuss the results obtained and offer concluding remarks on the work.

2. Related work and contributions

The life-cycle of an EMIS application is a multifaceted process that 
unfolds in several incremental stages, as shown in Fig. 1. These stages 
include:

• Development: This initial stage defines the methodology and how 
the algorithms are combined in the analytic pipeline. It is the foun-
dational step where the theoretical aspects of the EMIS application 

are formulated.
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Fig. 1. Life-cycle steps of Energy Management and Information Systems (EMIS) application.
• Implementation: Consists in the evaluation of the proposed solution 
through real-world case studies. This phase is crucial for testing the 
validity and feasibility of implementing the EMIS application in real 
operational environments.

• Deployment: Once the solution has been implemented and evalu-
ated, the focus shifts to deployment. This stage entails the concep-
tualization and execution of a deployment strategy, ensuring that 
the EMIS application is effectively integrated into the existing sys-
tems and processes.

• Continuous Commissioning: The final stage involves ongoing perfor-
mance monitoring and adaptation to evolving boundary conditions, 
metering infrastructure, and system changes. Continuous commis-
sioning ensures that the EMIS application remains effective and 
efficient over time, responding to new challenges and opportuni-
ties.

Each stage is critical to the overall successful operation of the EMIS 
application, ensuring that it not only meets initial requirements but also 
adapts to changing conditions and continues to provide value through-
out its life-cycle [26].

In this section, the related works are structured following the EMIS 
application life-cycle, highlighting the challenges and constraints en-
countered at each stage and examining how existing literature addresses 
them by introducing potential solutions.

2.1. Development

The development of EMIS application in the literature has predomi-
nantly focused on demonstrating their effectiveness through simulations 
or off-line tests. In fact, a comprehensive understanding of EMIS perfor-
mance under various operating conditions necessitates extensive testing 
and evaluation on well known datasets and controlled boundary condi-
tions. Usually, EMIS applications are developed upon datasets which 
provide a well-known ground truth and performance of such tools can 
be evaluated, alongside a systematic framework for result reproduction 
and evaluation [27]. This approach is transversal for all the different 
EMIS applications pertaining EIS, FDD and ASO solutions. As a refer-
ence example, simulation models of single duct VAV systems in Energy 
Plus and Modelica have been used by Chen et al. [28] to assess the short 
and long-term impacts of faults on building energy consumption. Addi-
tionally, a simulation framework was introduced by Chen et al. [29] to 
facilitate the evaluation of FDD tool effectiveness and the assessment of 
fault effects in fan coil units. Recent studies have emphasized the pro-
vision of detailed and comprehensive datasets to enable researchers to 
thoroughly test and benchmark algorithms. Work such as ASHRAE re-
search projects RP-1312 [30], and National Institute of Standards and 
Technology (NIST) 10D243 project [31], represent a pioneer work to 
3

provide labeled datasets to develop and evaluate advanced control and 
FDD technologies. More recently, Granderson et al. [32] released a first 
of its kind public dataset with ground-truth data on the presence and 
absence of faults that spans a range of seasons and operational condi-
tions and encompasses multiple building system types. The data were 
created using both simulation models and experimental facilities pro-
viding a common ground for the development and testing of FDD algo-
rithms, thus allowing for performance comparison. Simulated datasets 
and simulation environments offer a way for testing and fine-tuning not 
only FDD tools but also ASO solutions. For example, Building Optimiza-
tion Testing Framework (BOPTEST) provides a simulation environment 
where developers can assess advanced controls on realistically modeled 
buildings [33,34]. This test-bed was successfully employed in many re-
search papers for the implementation of new control strategies [35–38], 
comparison between different controllers [39–41] and assessment and 
evaluation of control sequences [42,43]. Furthermore, in addition to 
simulation-based approaches, many EMIS tools have been developed 
and tested on experimental datasets as well [44–46].

However, one major issue in the development phase is that many 
EMIS applications are not designed with practical implementation in 
mind and often fail to account for the complexities and issues that arise 
during actual building operations [10,47]. When field tests do occur, 
they are frequently limited in scope, which restricts the understand-
ing of potential implementation issues on a larger scale. Furthermore, 
the design of many EMIS applications often neglects the practical needs 
and workflows of building managers and facility operators. This over-
sight results in systems that are difficult to use and do not integrate 
seamlessly into daily operations. Additionally, these solutions are not 
always designed to expand from small pilot projects to full-scale imple-
mentation across multiple buildings. Another significant barrier is the 
monolithic structure of many EMIS applications that makes compati-
bility difficult and increases integration costs, as any change requires 
extensive testing to ensure it does not disrupt other system components. 
To overcome these challenges, adopting modular and micro-services ar-
chitectures can significantly enhance flexibility and scalability. These 
architectures make it easier to integrate with existing systems and scale 
as needed, and they simplify maintenance and updates, reducing down-
time and the risk of disruptions.

2.2. Implementation

Implementation studies focused on evaluating the capabilities and 
real-world application of developed EMIS methods. For example, Gun-
dersen et al. [48] collected more than 415 reproducible online machine 
learning workflow related to the creation of forecast models for metered 
building energy usage in the context of ASHRAE Great Energy Predictor 
[49] competition. Another example is the EMIS implementation enabled 
by Building Genome Project [50], an open dataset containing 3053 en-

ergy meters from 1636 non-residential buildings across North America 
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and Europe, that allowed developer to test the scaling of developed EIS 
solutions on real building data [51–53]. A considerable amount of liter-
ature has been produced around FDD tools and their application in real 
case studies, ranging from data-driven [54–56] to rule based methods 
[57,58]. The typical FDD tools are often integrated as a layer on top of 
existing BAS, operating in an open-loop manner by providing input to 
building operators and being adjusted through human intervention. To 
bridge this implementation gap, some studies have proposed more com-
plex implementations involving two-way communication between the 
FDD solution and BAS data for read-write operations. For example, Pri-
toni et al. [59] implemented seven auto-commissioning FDD algorithms 
in commercial platforms to automatically correct faults and improve 
the operation of large HVAC system without the intervention of hu-
man operators. When it comes to implementation of EMIS application 
that interact BAS, like FDD auto-correction or ASO [60–62] interoper-
ability issues arise, mainly related to the absence of transparent and 
standardized naming conventions for data streams and measurement 
points within proprietary equipment and BAS [63].

Contextualizing data in relation to building operations through se-
mantic schemas has proven to be an effective approach for addressing 
such implementation challenges [1]. Semantic metadata schemas stan-
dardize the meaning of data communicated over a building’s extensive 
network of sensors, abstracting and representing the building and its en-
ergy systems using graph structures. Relationships between points and 
systems are encoded, providing standardized descriptions of the physi-
cal, logical, and virtual assets within buildings, along with relationships 
between these assets [64,63]. A recent review identified more than 40 
metadata schemas designed to represent and handle metadata across 
different building life stages and building services such as HVAC and 
lighting [65]. Among these metadata schemas Brick Schema is the one 
gaining significant traction in the smart buildings sector [20,66,63]. 
Brick is an application oriented metadata schema which incorporated 
the standard Haystack terms to define entities and relationships [67]. 
This ontology represents buildings metadata as directed labeled graphs 
consisting of triples (i.e., subject, edge, and predicate) and adheres to the 
Resource Description Framework (RDF) data model [68,64]. Subjects 
and predicates represent node entities (e.g., Temperature_Sensor), 
while edges denote relationships (e.g., isPartOf). This schema has 
been successfully applied in various scenarios, including automatically 
inferring the nature of unknown BAS data points [69], creating digital 
representations of AHU control systems [70], implementing rule based 
FDD [71–73] and enabling advanced demand response strategies [74].

Although addressing and overcoming interoperability issues during 
implementation is crucial, it is only the first step. When such approaches 
are applied across heterogeneous case studies, portability issues arise 
[11]. In the context of EMIS, an application can be defined portable if it 
is able to effectively be implemented on different buildings regardless 
on the specific data naming convention used, energy systems configura-
tions and so on [24]. Ultimately, portability defines the generalizability 
of the application across heterogeneous buildings. In this context, some 
works have attempted to standardize various implementations into a 
formal framework [66]. In their study, Fierro et al. [75] present an 
initial attempt to formalize the characteristics of portable applications. 
They conceptually divide portable applications into five components: (i) 
qualify, (ii) fetch, (iii) clean, (iv) analyze, and (v) aggregate. These com-
ponents respectively address metadata requirements, data acquisition, 
data preprocessing, algorithm execution, and data presentation. The pa-
per illustrates how various EMIS portable applications, ranging from 
FDD to benchmark applications, can be constructed, tested, and eval-
uated using Mortar, an open test-bed encompassing over 90 buildings 
and more than 9.1 billion data points. The primary contribution of this 
work lies in demonstrating that by formally defining the components 
of portable applications, it is possible to abstract the application from 
site-specific implementations. This formalization enables the adaptation 
of applications to different scopes while maintaining their portability 
4

characteristics. More recently, some works have attempted to introduce 
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field-specific portability frameworks, such as those for FDD and ASO. 
Mavrokapnidis et al. [71] introduced a portable programming model 
based on Brick ontology for rule-based FDD. This approach specifically 
examines the separation of FDD application logic (i.e., algorithm de-
velopment) from configuration with specific data inputs, eliminating 
the need for rule authors to explicitly query metadata models. This en-
ables the application to self-configure and execute across different build-
ing configurations. By executing AHU Performance Assessment Rules 
(APAR) in two different buildings, they demonstrated its potential to 
reduce manual and repetitive tasks for rule developers, thus acceler-
ating the widespread adoption and scale of FDD applications. Nehasil 
et al. [76] combined a rule-based FDD tool, semantic data description 
and cloud architecture, to create a generizable FDD system that in-
teracts with BAS and SCADA systems. Similarly, de Andrade Pereira 
et al. [74] presented a real-time implementation of supervisory con-
trols for demand flexibility in buildings. Their approach was able to 
deploy different strategies in various virtual and real buildings, demon-
strating the system’s versatility and effectiveness in managing demand 
flexibility across different environments. All the presented works illus-
trate some solutions to the challenges encountered when transitioning 
from development to field case studies. Once these implementation is-
sues are addressed, the deployment process can be carried out.

2.3. Deployment

When deploying EMIS applications, understanding the differences 
between static and dynamic deployment strategies is crucial, as each has 
unique characteristics, advantages, and limitations. Static deployment 
involves implementing and configuring the EMIS applications in a fixed 
environment with a predefined setup that remains relatively unchanged 
over time. In this approach, system configuration, including ML models 
or AI-based control agents and their parameters, is established during 
the initial setup and remains constant. The system is not designed to 
adapt dynamically to changing conditions or new data without manual 
adjustments. For instance, in static deployment, FDD tools are initially 
configured with a set of predefined rules, algorithms, and parameters 
tailored to the specific operational conditions of the system [77]. This 
setup typically involves thorough analysis of operational data to estab-
lish a baseline for normal operation. Once the baseline and detection 
rules are set, the system continuously monitors operations, comparing 
real-time data against established norms to identify deviations indica-
tive of faults. However, the static nature of this deployment means that 
the system does not automatically adapt to new conditions or data with-
out manual reconfiguration [78]. Thus, these static techniques do not 
leverage new data, and updates to FDD algorithms or detection rules 
require manual intervention by technical staff or service providers. In 
contrast, dynamic deployment of EMIS applications in smart buildings 
is an ongoing process due to constantly changing operating conditions 
and varying system characteristics. Over time, the relationship between 
the input and output of models underlying an EMIS application can 
change, leading to inaccurate predictions, estimations, or control sig-
nals from previously trained models. This issue, known as concept drift

or data drift [79,23], is a primary cause of performance degradation in 
data-driven models. Concept drift can occur in several forms: sudden

drift (e.g., sudden machine failures), incremental or gradual drift (e.g., 
changes in occupant behavior), and recurring drift (e.g., seasonal mete-
orological conditions and working patterns).

To counteract such events, EMIS applications often rely on deploy-
ment strategies that exploit continual model updates or retraining pro-
cesses [78]. Two prevalent methods for updating models are accumu-

lative learning and incremental learning [23]. Accumulative learning in-
volves fine-tuning or retraining a model using both historical and new 
incoming datasets. An example of this approach is reported in Coraci 
et al. [80], where an online accumulative retraining strategy is applied 
to a deep reinforcement learning controller. This technique adapts to 

new operating conditions but can be computationally expensive. Ide-
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ally, the model would learn from new data as they become available, 
without the need for retraining. This is the approach followed by the in-
cremental learning strategy, which updates the model using only new 
incoming data. An example of incremental learning is presented by Fekri 
et al. [78], where an innovative approach for electrical load forecast-
ing is used to update the ML model weights online according to new 
data and quickly adapt it to new patterns without requiring periodic 
retraining. These approaches allow learning new patterns without for-
getting historical behavior. However, in some cases, accumulative and 
incremental retraining can lead to poor model accuracy due to changing 
operating conditions, maintenance, or upgrades. In such scenarios, the 
training data may become unbalanced, favoring incorrect system oper-
ation, necessitating forgetting old behaviors in favor of new ones. This 
approach is studied in Yang et al. [81], where two adaptive models are 
proposed: an accumulative training technique and the sliding window 
training technique. With sliding window training, the size of the dataset 
used for training remains constant: as new data are added, the oldest 
data are dropped. Although this approach makes the model “forget” old 
data, it can be beneficial in situations where old data may be misleading 
or reflect anomalous or significantly different operating conditions.

Thus, the primary goal of model updates is to balance acquiring new 
knowledge with retaining prior knowledge. The effectiveness of a model 
update or replacement is highly influenced by the application frame-
work and how the application is deployed on the field. In this sense, 
a modular approach allows developers to build EMIS applications in 
discrete, self-contained units, each addressing specific functions. This ar-
chitecture facilitates easier updates and maintenance, such as replacing 
individual components (e.g., prediction models, control agents) without 
disrupting the entire system. This is particularly important for model re-
training or replacement, as it minimizes downtime and reduces the risk 
of performance degradation. By isolating changes to specific modules, 
the overall stability and reliability of the EMIS application are main-
tained, ensuring continuous and efficient operation.

2.4. Continuous commissioning

Continuous commissioning of an EMIS application is an ongoing pro-
cess that ensures the deployed application operates optimally through-
out its life-cycle [82]. This stage involves regular monitoring, updating, 
and tuning of the application to adapt to changing conditions and in-
corporate possible new advancements. However, several potential prob-
lems can arise during continuous commissioning if certain aspects are 
not properly addressed.

One significant issue, that often characterize the building and its 
energy systems, pertains the inconsistency in naming conventions of 
variables over time. If the naming convention of a variable is changed 
without proper documentation and communication, it can lead to con-
fusion and errors in data ingestion and interpretation. For instance, if 
a temperature sensor variable is renamed from TempSensor1 to TS1
without updating all references across the application, the system may 
fail to recognize and process this data correctly. This inconsistency, even 
though it may seem trivial, can disrupt the analytic pipeline affecting 
the performance and reliability of the EMIS application. In such a con-
text, without proper metadata that describes the meaning and context 
of data points, integrating and interpreting new data becomes challeng-
ing. Thus, semantic enrichment is essential for ensuring that the EMIS 
application is able to properly interpret the data in a consistent way. 
For example, if a new sensor is added to the monitoring infrastructure 
but it is not integrated in the existing data model, the EMIS application 
might not effectively use this information in an automatic way. This 
can prevent the system from leveraging new capabilities and limit its 
overall functionality. By relying on a properly defined semantic data 
model, it is possible to query metadata, enabling the retrieval of formal-
ized points and relationships across various data sources without being 
bound to site-specific variable naming conventions. This decouples the 
5

application’s internal naming convention from the site-specific naming 
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convention, facilitating more flexible and interoperable data querying 
[74]. Although having a metadata model allows developer to separate 
the application logic from the site specific naming convention, its proper 
definition still requires a deep understanding of building subsystems and 
a direct knowledge of concept relations and taxonomy of the metadata 
schema [2]. Despite different methodologies have been introduced to 
consistently build semantic models from predefined templates [63,83], 
the creation of such models remains challenging [71]. Given the ab-
sence of guidelines in building metadata schema, the same building or 
systems can be modeled in different ways according to the modeler ex-
perience and knowledge. In the scenario in which alternative models of 
the same building may exist, it is difficult to write an application that is 
flexible enough to adapt to a set of possible different graph structures. 
As a result configuring a portable application is not a trivial task and 
its interface with metadata schema must be flexible enough to adapt 
to different or changing configuration of the same system in the meta-
data schema. Thus, development complexity shifts from handling the 
heterogeneity of data within the application logic to handling the ap-
plication configuration against different building models. Eventually, 
during the continuous commissioning phase, effortless changes to pieces 
of the EMIS application are essential for maintaining it as much as pos-
sible robust and adaptable. Even in this case, the absence of modular 
application frameworks make these changes time consuming and error-
prone de-facto requiring extensive re-coding and testing.

2.5. Contributions of the paper

As emerged from the literature review, despite in the last years the 
focus of the scientific community has been on the definition of novel and 
advanced analytic processes to be embedded into EMIS solutions, new 
aspects related to the portability, interoperability, and maintainability 
of such solutions are becoming as well relevant. Although implementa-
tion issues require site-specific answers, providing an all-in-one solution 
may limit the application to a specific technology or use case. To de-
velop truly portable and widely applicable applications, it is necessary 
to abstract from site-specific constraints and build a larger framework 
that can be adapted on a case-by-case basis [24]. This involves creat-
ing frameworks that address each step of the application development 
process with portability in mind, but without being overly specific. In 
this context, the present paper introduces a novel and robust framework 
to develop, deploy and maintain portable applications in buildings. The 
contributions that it brings can be summarized as follows:

• Introduction of an interoperable and portable framework to build 
EMIS applications that allows to decouple the handling data and 
metadata from the application logic, leveraging Brick metadata 
schema;

• Demonstrate how real-life implementation issues also pertaining 
the deployment strategies of EMIS applications, can be faced while 
keeping each step of the data analytics pipeline modular and inde-
pendent;

• Creation of an open-source implementation of the framework 
through a Python package.1

3. Methodology

The proposed methodology is intended to provide a modular and 
standard framework for researchers and practitioners to speed up the 
implementation of EMIS applications in real world case studies. In this 
context, an application is intended as a piece of software that is able to 
query a metadata model of a building in order to configure its oper-
ation, retrieve data, verify constraints and execute analytics processes 

1 Code and Python Package available in the following GitHub repository 

https://github .com /baeda -polito /portable -app -framework.

https://github.com/baeda-polito/portable-app-framework
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Fig. 2. Overview of the portable application framework in terms of functions exposed, input and output.
[83]. The proposed framework inherits the main concepts of portable 
application from Fierro et al. [75] and, as shown in Fig. 2, consists of 
a Python module exposing a set of functions that provide a code-level 
interface between the EMIS logic implementation and the management 
of data and metadata from the field. The available functions are the fol-
lowing:

• Initialization: function that gathers the necessary information and 
translate it into a set of formal structured files;

• Qualify: function that assess the minimum requirements for the 
application to run and provides feedback if data and metadata con-
straints are not satisfied;

• Fetch: function that performs query on the building metadata 
schema and retrieves the required variable names;

• Preprocessing: function that performs application specific data pre-
processing steps (e.g., data normalization, data transformation, 
data cleaning) before executing the analyze step;

• Analyze: function that contains the application core logic, runs the 
algorithm, model or analysis on the provided data sets

These functions aim to create a middle-ware that separates the com-
plex development of EMIS logic - which demands significant expertise 
in the energy and building field - from the essential but time-consuming 
task of data integration and contextualization. As a result, this frame-
work allows the developers to structure an application which is modular 
and maintainable along each step of the EMIS application life-cycle. In 
the following paragraphs an overview of the application functions is 
presented and an example of a typical execution flow is provided.

3.1. Initialization of the application

The initialization of the application can be divided into two main 
steps: (i) collecting required information, and (ii) organize it into struc-
tured files. The information needed for structuring the application 
varies, but the basic requirement is knowledge of the case study’s mon-
itoring infrastructure and data acquisition strategy. For example, when 
developing an FDD application, it is essential to understand the HVAC 
configuration, available sensors, and how to access sensor data. Addi-
tionally, it is necessary to define the requirements in terms of installed 
sensors, data availability, and parameters for the application to run. 
For instance, an FDD algorithm might need a mixed air temperature 
sensor measurement with 5min aggregation to operate a rule-based al-
gorithm which requires a threshold to be set (e.g., 2 ◦C temperature 
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error tolerance). Such quantitative information must be translated into 
machine-readable files and organized into a formal structure that facili-
tates straightforward implementation of the application. In the proposed 
framework, information related to the building monitoring infrastruc-
ture is translated into a Brick schema contained in the metadata.ttl
file. Then, the application’s metadata requirements are translated into 
specific formats that allow formal definition of constraints and queries:
manifest.ttl and query.rq file respectively. After defining data 
and metadata requirements, it is possible to proceed with parameter 
specification, which will be encoded in a configuration file called con-
fig.yaml. An example of these files is shown in Fig. 3. Structuring the 
application using such approach is fundamental to guarantee modularity 
and standardization for developers, thus interoperability and usability 
for the user. In fact, the introduction of a configuration file is a powerful 
tool that allows the application developer to change critical parameters 
with minimal effort. Once the algorithm is built and tested, parameter 
tuning or sensitivity analysis can be performed by simply modifying this 
file.

3.2. Identification of application data requirements: qualify

Given that every EMIS application has different requirements in 
terms of data points and relationships between points, it is necessary 
to define if the available data and metadata are sufficient for the appli-
cation itself to run. This concept is known in the literature as semantic 
sufficiency and means that a data model is considered complete only if it 
includes enough metadata to support the development of a specific ap-
plication [83]. Referring to Fig. 2, this process of minimum requirement 
identification is performed though the definition of a qualify function 
which accepts as input the building semantic model and the required ap-
plication metadata, expressed as application constraints, and provides as 
output a feedback if the constrains are respected or not. The constraints 
are contained in the so called manifest which captures the description of 
the application requirements to be included in the analysis. The mani-
fest file (i.e., manifest.ttl) defines the requirements through Shapes 
Constraint Language (SHACL) shapes, a W3C standard language for val-
idating RDF graphs against a set of conditions expressed in the form of 
an RDF graph called shapes graphs [84]. SHACL shape graphs can also be 
viewed as a description of the data graphs that do satisfy certain condi-
tions and enable the automatic check of the required variables in a fully 
automatic way.

In Fig. 3, an example of a qualify function execution against two dis-
tinct metadata schema is depicted: the first schema (highlighted in yel-
low) includes a single mixed air temperature sensor (MAT1), whereas the 

second schema (shown in blue) comprises an outdoor air temperature 
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Fig. 3. Example of qualify and fetch functions execution on two different metadata models. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
sensor (OAT) and a mixed air temperature sensor (MAT2). By executing 
the qualify function using a manifest which requires the presence of an 
outdoor air temperature, for the second model the result is TRUE (the 
required sensor is present), conversely, in the first model the result is
FALSE (the required sensor is not present). In the latter scenario, the 
function offers, through the use of a validation procedure, a log that 
assists the developer in potentially adjusting the metadata schema to 
align with the requirements, if feasible. This validation procedure is en-
abled by the integration of Building Metadata OnTology Interoperability 
Framework (BuildingMOTIF) which is a tool that helps storing, manag-
ing, and verifying collections of templates, shapes, and metadata models 
[83]. The integration of this tool enables the model validation and in-
cremental model creation. By iteratively running the qualify function 
on a metadata schema that does not pass the validation and changing 
the constraint, it is possible to reach the proper configuration of the 
metadata schema required for the application to run. This procedure is 
extremely helpful in cases in which the building metadata schema is not 
available or is not properly configured, and may help the analyst to in-
crementally build it. From the opposite perspective, this method may 
help the analyst to understand if an application can be executed or not 
given a structured metadata model of an existing building or energy sys-
7

tem and eventually stimulate an application review in order to make it 
more flexible against different possible configurations. As a result, it is 
possible to state that the qualify function allows both app-to-model and 
model-to-app development.

3.3. Identification of required variables and self configuration: fetch

The advantage of employing an ontology-based framework lies in 
the ability to identify the required data points for a given application 
through a graph query. By querying the point classes (e.g., brick:Tem-
perature_Sensor) instead of querying a variable name it is possible 
to create applications that are independent from specific naming con-
ventions. The fundamental concept of the fetch function is then to create 
a mapping between the “internal” variable names used in application 
development and the “external” variable names used in a specific build-
ing or energy system (e.g., data point names from BAS or databases). 
By using the “internal” naming convention throughout the application 
development, it is possible to easily decouple the logic from the “exter-
nal” naming conventions, allowing the creation of portable applications 
that are independent of specific use cases. For instance, as shown in 
Fig. 3 in the fetch function box, a SPARQL query retrieves the name of 
the mixed air temperature from two building metadata schemas (i.e., 
data models), which will be internally referred as mat. In the first data 

model the mixed air temperature name is MAT1, while in the second 
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Fig. 4. Example showing how the results of the fetch function (i.e., dictionary containing key-value pairs) can be used to change the variables names of a data-frame 
from the external naming convention (red text) to the internal naming convention (blue text).
data model is MAT2. By doing so, the “internal” variable name mat will 
be associated to an “external” variable name through a simple key-value 
mapping. Understanding the mapping between the external and internal 
variable name is essential for retrieving data (e.g., from a proprietary 
database) and consistently refer to that variable within the application 
code-base. In order to facilitate the application developer to switch be-
tween internal and external naming convention, a helper function was 
implemented to convert the column names of a given data-frame from 
the internal naming convention to the external and vice-versa; this con-
cept is better explained in Fig. 4.

Differently from other frameworks [75,74], the output of the fetch
function is solely the mapping dictionary described above, leaving the 
retrieval of data to the developer. Given the variety of databases, com-
munication protocols, and site-specific architectures, it was decided to 
let the user handle data retrieval. This approach has several advantages. 
First, the framework is not dependent on platform-specific data connec-
tions, which can be limiting for some users and may require different 
implementations depending on the use case. This avoids the mainte-
nance of numerous connectors within the package, which can become 
quickly outdated or poorly tested, discouraging users from adopting the 
framework due to the need for custom implementations. Secondly, most 
of the time, such connectors are already available from the applica-
tion developer’s perspective and can be easily implemented. Finally, this 
choice was made to avoid narrowing the framework’s scope of applica-
bility to a specific use case, allowing for greater flexibility to be adopted 
in various scenarios (e.g., considering both ASO and EIS applications).

3.4. Application logic development: pre-process and analyze

The development of an EMIS application logic is by its nature various 
and difficult to standardize. However there are always two macro steps 
to perform: preprocessing and algorithm implementation. In general, 
building operational data preprocessing consists of five major tasks, i.e., 
data cleaning, reduction, scaling, transformation and partitioning [85]. 
The aim of this phase is to arrange the original data into suitable formats 
for various data analytics algorithms. To this purpose the preprocessing 
phase is implemented in the preprocess function which accepts as input 
the raw data-frame and return the data-frame in the required format for 
the analytics phase. The algorithm implementation is performed by us-
ing the analyze function. This function takes a pre-processed data-frame 
as input and produces an object containing any possible kind of outputs 
(e.g., plot, data-frame, boolean, string etc). Within this function, analysts 
have the freedom to employ any methodology or algorithm they choose, 
provided that the output results are encapsulated within an output ob-
ject. An example of application logic development is shown in Fig. 3
where the preprocessing function performs a conversion of the mixed air 
temperature into Celsius degree and the analyze function implements a 
simple threshold rule. The aim of this example is to show that if the an-
alyst uses the internal naming convention of the variables, as described 
in the fetch function, the preprocessing and analyze functions are com-
8

pletely independent from the specific naming convention on which the 
application is executed and the analyst can develop the application logic 
regardless to naming constraint or site specific conventions.

3.5. A reference execution flow of the framework

To demonstrate the implementation of the conceived portable frame-
work, a typical implementation is reported in this section. As outlined in 
the pseudo-code (see Algorithm 1), the initialization involves a guided 
process conducted via a Command Line Interface (CLI), during which 
the necessary files are either created or collected. These files include: 
(i) a configuration file containing application details, description, and 
parameters, (ii) a SPARQL query containing required variables and in-
ternal naming conventions, (iii) a manifest file containing SHACL shape 
constraints, (iv) a metadata model for the building or system under in-
vestigation, and (v) a data source containing time-series data. While the 
first three files are automatically generated during the application ini-
tialization through the CLI, the metadata schema and time-series data 
source must be provided by the user in advance.

After the initialization the application execution phase is carried out 
which involves executing the functions to identify metadata require-
ments, to perform queries on the metadata schema, query data streams, 
to process data and to execute the algorithm itself. Ideally, all the dis-
cussed functions should be executed sequentially, with the output of one 
function serving as the input for the next. Initially, the qualify function 
assesses data requirements; upon successful execution, the fetch func-
tion returns a set of variable names. Subsequently, the corresponding 
time-series data can be extracted from the data source by the analyst, 
according to the data source specific modes (e.g., API, database query 
or simply csv file upload). Once the data are fetched and transformed 
into data frames following the application internal naming convention, 
the preprocessing and analyze functions can be executed.

While the execution phase may be presented as a series of connected 
steps, each function can actually be implemented independently, offer-
ing flexibility for different deployment options for each application. For 
instance, the flow described earlier could be viewed as a unified appli-
cation flow from the data source to the final result. However, in certain 
cases, such as FDD isolation trees, the overall EMIS application can be 
seen as a sequence of rules (or applications), with each implementing a 
specific check. Here, the deployment option might resemble a chained 
execution of multiple portable applications. Conversely, for control ap-
plications, it might be advantageous to execute the qualify and fetch
functions just once during the initial run, and subsequently execute the 
preprocess and analyze function repeatedly in a loop at each control loop 
iteration. These examples illustrate just a few deployment strategies for 
EMIS applications that the introduced framework can accommodate, but 
the potential applications are diverse and the proposed framework is 
able to handle potentially all the possible configurations.

4. Cases study

The framework was tested on a real-world case study through the 

development of an online anomaly detection application implemented 
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Fig. 5. Aerial representation of the PV plant installed at the Politecnico di Torino (PoliTo) campus. The PV arrays are highlighted in yellow while the weather station, 
which supports the acquisition of weather-related measurements, is highlighted in blue.
Algorithm 1: Pseudo-code of a typical application execution 
flow by applying the proposed framework: from initialization 
to logic execution.

init Application initialization

Collect data and metadata (user);
data ← tabular like data;
metadata.ttl ← Brick metadata model;

Create Application files (CLI);
config.yml ← contains details and parameters;
query.rq ← contains SPARQL query of required points;
manifest.ttl ← contains SHACL shape;

qualify Assess minimum requirements

validate metadata.ttl against manifest.ttl requirements;
validate data against config.yml requirements;
while valid is False do

Fix metadata.ttl according to suggestions
end

fetch Collect time-series data

Query points names from metadata.ttl as defined in query.rq;
Get points from data (e.g., API query);

preprocessing Pre-process time-series data
Run preprocessing function on data (e.g., fill missing values)

analyze Implement application logic
Run analyze function on data;

on photovoltaic systems. Specifically, the case study pertains the pho-
tovoltaic energy production of six Photovoltaic System (PV) systems 
installed at the Politecnico di Torino (PoliTo) campus, an Italian uni-
versity located in the Piemonte region. Over the years, the campus has 
experienced various expansions, including the conversion of an indus-
trial hub into classrooms and the addition of new buildings for research 
centers and laboratories. To meet the increasing electricity demand, the 
campus has been equipped with multiple distributed PV shown in Fig. 5, 
with each system installed on a different building. The arrays are made 
of about 3000 PV modules and more than 40 inverters. By 2023, the 
total installed capacity nearly reached 1MW with an annual average 
production of approximately 1.3GWh.

The installation of these PV systems took place at various times, with 
each system varying in peak power, array configuration, and associ-
ated monitoring infrastructure as summarized in Table 1. The PV_Cit-
tadella array, with a peak power output of 604 kWp, was installed in 
two phases during 2015 and 2016. It includes 1849 modules rated at 
327W each and 27 inverters. The overall electrical production is moni-
tored by an electrical power sensor installed on the AC side of the main 
switch. Additionally, the array is equipped with sensors for outdoor air 
temperature and total global irradiance. The PV_DIATI photovoltaic 
array, installed in 2019, has a total capacity of approximately 183 kWp. 
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It comprises 487 modules rated at 360W each and is equipped with 8 
Table 1

Description of the installed photovoltaic systems at PoliTo with spec-
ification of the rated peak power and associated monitored quantities 
infrastructure.

Name Peak power Monitored quantities

PV_Cittadella 604 kWp • Outdoor air temperature
• Solar irradiance
• Electrical power

PV_DIATI 183 kWp • Electrical power

PV_Aule_P 50 kWp • Electrical power

PV_Aule_R 47 kWp • Electrical power

PV_EC 47 kWp • Electrical power

PV_I3P (East + West pitch) 31 kWp • Outdoor air temperature
• Solar irradiance
• Electrical power

inverters. An electrical power sensor monitors the total electrical pro-
duction on the AC side of the main switch. The PV_Aule_P array, 
installed in 2018, has a total capacity of approximately 50 kWp and 
consists of 144 modules rated at 345W, along with 2 inverters. This 
array is equipped with an electrical power sensor on the AC side of the 
switchboard to measure total production. The PV_Aule_R plant is the 
newest installed system (2021) and has a total capacity of approximately 
47 kWp. It includes 117 modules rated at 400W each and 3 inverters. 
An electrical power sensor on the AC side monitors the total electrical 
output. The PV_EC array, installed in 2016, has a total capacity of ap-
proximately 47 kWp and consists of 154 modules. Differently from the 
other PV systems, which are primarily roof-mounted, the modules in 
this array are integrated into different parts of the building: 80 modules 
on the external facade of the stairwells, 34 modules on the roof of the 
central building, and 40 modules on its transparent facade. The system 
is equipped with 4 inverters, each of them has its own electrical power 
meter. The total electricity production is calculated as a virtual sensor 
by aggregating the output of each inverter. Finally, the PV_I3P plant, 
installed in 2009, consists of 140 structural glass modules with a glass-
glass design and a 15mm Argon chamber, providing a power output of 
approximately 31 kWp. This array includes 2 inverters, each with a ca-
pacity of 15.9 kW. It is also equipped with an electrical power meter on 
the AC side, a solar irradiance sensor, and an outdoor air temperature 
sensor.

To capture the diversity of systems and monitoring infrastructure 
configurations, the entire PV plant on the campus has been described 
in a metadata model using Brick schema (v1.4), and its visual graph 
representation is shown in Fig. 6. Each PV system, represented as a
brick:PV_Generation_System equipment, was modeled by follow-

ing a top down approach: starting from the definition of its geographical 
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Fig. 6. Graphical representation of the metadata model (i.e., Brick schema) of the monitoring infrastructure of PoliTo campus. The picture shows a subset of the 
overall graph and represents the PV plant, the weather station and the associated sensors. The colored nodes represent Brick entities while the arrows represent 
relationships between the nodes. Each color and line type has a different meaning, as explained in the legend.
coordinates (i.e., latitude and longitude) and relative location in the 
campus to the characterization of the specific monitored data-points, 
modeled as entities belonging to the brick:Sensor class. This seman-
tic representation standardizes the logical and physical relationships in a 
machine-readable format, enabling the automatic querying of necessary 
metadata and data points for analysis. Complementing the monitoring 
infrastructure, the campus is also equipped with a centralized weather 
station that includes sensors for outdoor air temperature, solar irradi-
ance (global, horizontal, and diffused), outdoor air relative humidity, 
and wind speed.

Regarding data acquisition and storage, all the sensors are physically 
connected to data loggers that sample and process raw data before stor-
ing the measurements in a Timescale time-series database [86]. In the 
analyzed case study, raw data is typically sampled at 1min intervals; 
however, the sampling frequency may differ depending on the sensor 
type and manufacturer. For instance, the installed outdoor air tempera-
ture sensors record data with a timestamp of 15min. Additionally, due 
to communication and processing delays, the measurement timestamps 
may not always align precisely [87]. To maintain a consistent time in-
terval for analysis and ensure the statistical reliability of the data, the 
Timescale database’s ability to query and aggregate data into specific 
time buckets was used. This approach enabled querying and aggregat-
ing data, using the mean value as the aggregation function, to ensure 
all measurements were effectively aligned with the common minimum 
available aggregation interval, which in the specific case is 15 min.

Finally, a front-end tool was made available for real-time monitoring 
and visualization of collected data. The entire IT infrastructure, along 
with the capability to deploy custom analytic applications (e.g., anomaly 
detection tool for PV systems), is supported by an internal open-source 
cloud, based on Kubernetes open-source software [88].

4.1. Application of the portable framework in the case study

To investigate how the portable application framework could be em-
ployed to deploy and adapt an anomaly detection application for the 
case study described above, we defined and created five tests, between 
March 2023 to June 2024. These tests, represent realistic scenarios that 
might occur during the life-cycle of an application and are illustrated in 
Fig. 7. These tests, along with the objective in demonstrating the frame-
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work, are summarized as follows:
1. Development of the ML pipeline. After the complete setup of all 
the hardware and software services required for real-time monitor-
ing (e.g., installation of data-loggers and creation of the monitoring 
database) an ML pipeline was defined to perform the anomaly de-
tection task on one PV system of the campus. The process involved 
the training of an Multi Layer Perceptron neural network that esti-
mates the PV production. The model was then statically deployed 
(i.e., without retraining) and the residuals between the actual and 
predicted electrical energy production were used as a proxy for de-
tecting anomalous production patterns. The objective of this test 
was to demonstrate how the framework can be used to develop and 
deploy ML pipelines.

2. Substitution of the estimation model: After the deployment of 
the first model (i.e., the MLP neural network) a second model was 
developed (i.e., an LSTM neural network) considering the power 
production of the same PV system as a target. Since it is likely 
that new algorithms and models will emerge in the future, this test 
aimed at demonstrating how the framework enabled a straightfor-
ward substitution of the model during the online execution of the 
application without compromising it. Together with the estimation 
model also the pre-process functions were updated accordingly.

3. Optimization of the deployment strategy. Once the LSTM model 
was statically deployed (substituting the MLP neural network) the 
deployment strategy of the model was optimized. The goal here was 
to demonstrate that the framework made it possible to periodically 
modify the deployment strategy of the application introducing a 
scheduled bi-weekly retraining of the LSTM model by simply chang-
ing the application configuration file.

4. Change in naming convention and data availability. This test 
was artificially inducted during the execution of the application in 
order to test the robustness of the application to changes in input 
data. Specifically, the naming convention of the variables was sud-
denly modified and one sensor required for the execution of the 
model, was disconnected, simulating an unexpected hardware fail-
ure or maintenance event.

5. Extension of the application pipeline to other systems. The last 
test pertained the transferring of the application pipeline from one 
PV system to all the other systems installed in the campus. The goal 
was to demonstrate how the framework enables portability to other 

similar, but not identical systems and to test its robustness to dif-
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Fig. 7. Timeline of implementation and subsequent tests performed on the EMIS application for PV anomaly detection and diagnosis leveraging the portable application 
framework.

Fig. 8. Illustration of the impact of the five sequential tests represented in Fig. 7 on the components of the framework. Gray elements indicate those that remained 
unchanged from one test to the next, while blue elements represent those that changed.
ferent system configurations, naming conventions and operational 
characteristics.

The five tests are reported in a timeline form in Fig. 7 and are also 
graphically represented in the rows of Fig. 8 where in blue are re-
ported the modules of the procedure affected by an implementation or 
a change, while in gray the modules that remained unaffected.

5. Results

In the following subsections the implementation of the portable ap-
plication framework is presented by explaining how the previous de-
scribed tests have been faced and the associated issues have been solved. 
In these subsections all the technical aspects related to the setup of the 
application, the employed models and the obtained results are detailed.

5.1. Development of the ML pipeline

The initial task involved the development of a comprehensive Ma-
chine Learning (ML) pipeline employing the introduced portable appli-
11

cation framework, see “Test 1” in Fig. 8. This application performs an 
anomaly detection on the photovoltaic production of a single system 
by analyzing the residuals between the actual and the estimated power 
production given certain boundary conditions. The analysis requires the 
presence of a PV plant (brick:PV_Generation_System) with its ge-
ographical location, and equipped with an electrical power sensor (rep-
resented as brick:Active_Power_Sensor), alongside an embedded 
outdoor air temperature (represented as brick:Temperature_Sen-
sor) and solar irradiance sensor (represented as brick:Solar_Ra-
diance_Sensor). Such constraints were translated into a proper shape 
graph in the manifest.ttl file of the application. The model-building 
process started by focusing on the PV system named “Cittadella”, where 
all these metadata requisites were met, ensuring that the qualify function 
would be successfully applied. In the specific case the active power sen-
sor: solar radiance sensor and temperature sensor are identified through 
a unique ID. Since the sensors were properly structured in the metadata 
schema, it was possible to identify the required point names through the 
fetch function (id-9000 id-9001 and id-9002).

Using these IDs, the corresponding time series were retrieved from 
the time-series database, through an external API. The developed ap-
plication was based on the training of a simple Multi Layer Perceptron 

(MLP) fully connected neural network designed for point-to-point esti-
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Table 2

Summary of the main hyper-parameters of the MLP 
model.

Name Value

Input layer 5 nodes
Hidden layer 256 nodes (Relu activation function)
Output layer 1 nodes
Optimizer Adam
Learning rate 0.001
Loss function Mean Square Error (MSE)
Epochs 50

mation of the electrical power production of the PV system. The input 
variables used as predictor variables were: (i) the measured outdoor air 
temperature, (i) the measured solar radiation, (iii) the azimuth, (iv) the 
zenith and (v) the global horizontal radiation calculated in clear sky con-
ditions based on PV geographical location [89]. The model was trained 
and tested using data sampled every 15min from April to November 
2023 using 70% of data points for train and 30% for testing (such pa-
rameters were set in the application configuration file). Missing data 
and inconsistencies in the training dataset were handled through the 
preprocess function through linear interpolation if the number of con-
secutive missing values was lower than 4 (i.e., 1 h) otherwise records 
with missing values were dropped from the training set. After a min-max 
normalization of the dataset, the neural network model was defined in 
the analyze function of the application. The neural network structure 
consisted of an input layer of size 5 (as many nodes as the input vari-
ables required), an hidden layer with a standard number or 256 neurons 
and with ReLu activation function and an output layer of dimension 1. 
The Adam optimizer with a learning rate of 0.001 was used to update 
the model’s parameters. The training process involved feeding the train-
ing data through the model, computing the Mean Square Error (MSE) 
loss, performing back-propagation to calculate gradients, and updating 
the weights. This process was repeated over 50 epochs. The MLP pa-
rameters were defined according to typical settings found in literature 
[90–92]. Table 2 summarizes the main hyper-parameters and settings 
for the described model while Table 4 summarizes the training and test 
performances of the model.

After this train-test process, the model parameters were saved and 
another application dedicated to the model execution was initialized 
and statically deployed, without further retraining steps over time. To 
this purpose, the application was containerized and used for stream-
ing execution, scheduled at the end of every hour of the day when 
all the input values pertaining to a specific hour have been already 
measured and stored in the database. Throughout each execution cy-
cle, the qualify, fetch, data retrieval from the database through APIs, 
pre-process performing incoming data min-max normalization, and an-

alyze function performing the estimation were invoked and executed. 
The estimated power production of the PV system served as a dynamic 
benchmark value at each time-step under normal operation. Abnor-
mal patterns were identified based on the 3𝜎 rule [93], with potential 
anomalies flagged when actual power values deviated from the dynamic 
benchmark over eight consecutive time-steps (i.e., 2 h). This approach 
allowed for a robust identification of critical events while minimizing 
false positives caused by model inaccuracies. The sequential execution 
ensured continuous validation of model constraints, detection of poten-
tial changes in those constraints, adherence to the naming convention, 
and proper preprocessing of input variables for model execution. This 
demonstrated that a ML pipeline can be robustly encapsulated and de-
ployed using the proposed framework.

5.2. Substitution of the estimation model

As a subsequent step, it was decided to switch the model from Multi 
Layer Perceptron (MLP) to a sequence to sequence Long Short-Term 
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Memory (LSTM) that in literature was identified to have better perfor-
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Table 3

Summary of the main hyper-parameters of 
the LSTM model.

Name Value

Input layer 5 nodes
Hidden layer 2 layers 16 nodes
Output layer 1 nodes
Optimizer Adam
Learning rate 0.01
Loss function Mean Square Error (MSE)
Epochs 100

Table 4

Comparison of train, test and validation performances between two 
neural network models, respectively, Multi Layer Perceptron and Long 
Short-Term Memory for the “Cittadella” PV system. The training and 
test period is from 1st April to 1st of November 2023, and the valida-
tion period is from 1st of November 2023 to 1st of January 2024.

Model 𝑅2 train 𝑅2 test 𝑅2 validation

Multi Layer Perceptron (MLP) 0.82 0.81 0.53
Long Short-Term Memory (LSTM) 0.98 0.99 0.99

mances for time-series forecasting of PV power production [91,92]. The 
proposed LSTM structure was implemented in the analyze function by 
maintaining the same input variable as the MLP described in the previ-
ous paragraph. The proposed LSTM model consists of an input layer of 
size 5, two hidden layers with 16 neurons each, an output layer of di-
mension one. The ADAM optimizer was used in the model training for 
the parameter identification with a learning rate of 0.01. The training 
process involves feeding the training data through the model, comput-
ing the Mean Square Error (MSE) loss, performing back-propagation to 
calculate gradients, and updating the weights. Specifically, the LSTM 
model was formalized as a sequence to point model and estimates the 
incoming PV electrical power production by exploiting the past 48 ob-
servations, i.e., 12 hours considering one measurement every 15 min. 
All the models parameters were reported in the application configura-

tion file in order to support the analyst with an easier way to change the 
parameters if needed. Similarly to the MLP, the LSTM parameters were 
set according to typical values found in literature [90–92]. A summary 
of the main parameters and settings is listed in Table 3.

Given that the LSTM relied on a sequence of input values for the 
estimation task, the preprocessing function was enhanced by incorporat-
ing a more advanced seasonal trend decomposition process, in addition 
to the linear interpolation process described above. This was done to 
reconstruct possible sequences of more than four consecutive missing 
values [94,95]. The model was trained and tested on the same dataset 
used for developing the MLP using 70% of records for training and 30% 
for testing. As a result the LSTM model exhibited higher accuracy val-
ues (in terms of 𝑅2 values) in both training and testing, as shown in 
Table 4, highlighting the improved performance over the MLP model.

After this train-test process, the model parameters were saved and 
another application dedicated to the model execution was initialized 
and deployed. Executing the LSTM model also required an update to 
the pre-process function to normalize input values and fill missing val-
ues within the input sequence, which could otherwise compromise the 
model execution over a significant amount of time-steps. Throughout 
each execution cycle, the following functions were invoked and exe-
cuted: qualify, fetch, to retrieve the past 12 h input sequences, pre-process

to perform min-max normalization and missing data replacement, and 
analyze to perform the estimation. Abnormal production patterns were 
identified using the procedure explained above. Fig. 9 presents a snap-
shot of the Campus dashboard, which visualizes the output of the appli-
cation. The dashboard shows the actual power production for a single 
PV system (i.e. PV_Cittadella) and the estimated power over a six-

day period in November 2023, presented both as time series and scatter 
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Fig. 9. Screenshot of the online Campus dashboard used to visualize the results of the LSTM model during the validation period.
plots. In the scatter plot, blue dots represent residuals that fall within 
a certain range around zero (i.e., 3 times the standard deviation of 
the residuals obtained in training), while red dots indicate data points 
that are out-of-range. The identified red dots correspond to occasional 
outliers that exceed the thresholds, which in this case are most likely as-
sociated with model inaccuracies rather than anomalies in the operation 
of the PV (as discussed earlier, eight consecutive out-of-range time-steps 
are required to confirm an anomaly).

To summarize, the model switch from an MLP to an LSTM impacted 
the preprocess and analyze functions, while the rest of the procedure 
remained unchanged, as shown in the “Test 2” in Fig. 8. This demon-
strated that the portable application framework supports replacement 
of the estimation model without disrupting the online execution of the 
previously deployed EMIS application.

5.3. Optimization of the deployment strategy

During the deployment phase and the execution of the LSTM model 
online, it was decided to switch from a one-time training approach to 
a bi-weekly retraining strategy with a sliding window of 1 month, as 
shown in the “Test 3” reported in Fig. 8. This change was introduced 
due to the high dependence of the estimation model accuracy on the 
changing climatic conditions throughout the year, a re-training strat-
egy was implemented to prevent performance degradation. To achieve 
this objective, the model was re-trained every two weeks using data 
from the past month as the train-test dataset, ensuring consistency of 
the trained model with the boundary conditions at the time of estima-
tions. This enhancement was seamlessly implemented without altering 
the application itself; only the configuration file required modifications 
by setting a moving window period for model training instead of speci-
fying start and end dates statically. This test aimed to demonstrate that, 
due to a decoupled approach in the design of the application, critical pa-
rameters as the retraining period, can be simply modified by updating 
the configuration file. While this approach was found to be effective for 
data-driven algorithms, it can also be adapted for other types of models, 
as it operates independently from the specific algorithm implemented in 
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the analyze function.
5.4. Change in naming convention and data availability

During deployment, the solar irradiance sensor ID was artificially 
modified in the database, simulating an unexpected and undocumented 
renaming of the variable. The subsequent update of the metadata 
schema (“Test 4” in Fig. 8) ensured the application continued to run 
without interruption. This was made possible by the semantic data layer, 
which decouples the application logic from the handling of the meta-
data, such as sensor IDs. Additionally, the flexibility of the fetch function 
allowed for a dynamic retrieval of sensor/variable names based on the 
Brick class and its relationship with other equipment, enabling robust 
execution in real-world scenarios. During the same test, another event 
was artificially inducted, by disconnecting the outdoor air temperature 
sensor from the monitoring infrastructure of the “Cittadella” PV system. 
In this case the application could not run due to absence of a required 
variable. However, the campus is equipped with a centralized weather 
station that can serve as a fallback when local temperature or solar ra-
diation sensors are not working properly. To enable automatic querying 
of alternative data when the primary data source becomes unavailable, 
the application manifest and metadata model were modified. This up-
date introduced additional queries to check and validate the presence 
of alternative data points when the primary data point was corrupted, as 
depicted in Fig. 10 (a). This formal relaxation of the constraints allowed 
the qualify function to provide a valid output and the fetch function to 
retrieve the needed data points, thus making the application execution 
robust against potential future occurrences of the same issue.

5.5. Extension of the application pipeline to other systems

Finally, the anomaly detection application, which includes both the 
training and execution pipelines, was extended to all six available PV 
systems (“Test 5” of Fig. 8). While the process was successful, enabling 
rapid deployment of an LSTM model for each system, it required some 
limited updates to the application configurations, queries and manifests. 
This process is likely to be common when an application, initially de-
veloped for specific use cases, is extended to slightly different scenarios. 
Specifically, some of the PV systems required slightly different prepro-

cessing. For example, power production values for the “I3P” PV system 
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Fig. 10. Figure (a) on the left shows an extract of the SPARQL query, illustrating how the retrieval of the temperature sensor was generalized as described in 
Section 5.4. The query first searches for a temperature sensor on the PV array, and if no sensor is found, it then retrieves the temperature sensor from the weather 
station. Figure (b) on the right shows the additional information was added to the metadata model as described in Section 5.5. Geographical location and rated 
power output enabled a more accurate input variable calculation for the neural network model and enhanced plant-specific preprocessing procedures.
were observed to exceed its rated peak power (e.g., more than 200 kW
when the installed power is 31 kWp). After a thorough investigation, it 
was determined that this discrepancy resulted from a data monitoring 
error. To address this issue, all the preprocessing functions in the de-
ployed applications were updated to include a check that uses a cutoff 
threshold to discard measured power values exceeding the rated peak 
power of the PV system. To automate the entire process, the metadata 
schema of the Campus PV plant was then updated including a new prop-
erty for each PV system referred to its peak power. Additionally, more 
detailed latitude and longitude coordinates were incorporated into the 
metadata schema to provide accurate values for input variables depen-
dent on the system’s location (e.g., azimuth, zenith and global horizontal 
radiation calculated in clear sky conditions). For reference, an extract 
of the metadata.ttl file is shown in Fig. 10 (b), highlighting in bold 
the new metadata associated with the PV system “Cittadella”.

6. Discussion and lesson learned

The results section highlighted the framework’s capability to deploy 
an EMIS application based on a ML application and adapt it to the five 
tests introduced in the case study section. The framework allowed to 
handle these application updates without the need to rewrite the full 
code base and, in some cases, without interrupting its operation. How-
ever, the proposed framework relies on several assumptions regarding 
the availability, quality and maintenance of the underlying metadata 
model. Naturally, this raises questions about the limitation of such ap-
proach, the open questions and potential areas for future research.

6.1. Is the framework limited to the Brick schema?

The proposed framework exploits the Brick schema to express the 
semantic or meaning of the data points required by the applications. 
Brick allows to describe physical, logical and virtual assets in buildings 
and the relationships between them [96]. It was designed to represent 
a wide variety of building types and has been deployed in buildings 
across the globe. Brick is also extensible, enabling the addition of new 
concepts to its schema. Brick has been extensively used in both aca-
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demic literature [96] and industry [97,98], and it remains under active 
development at the time of writing. However, Brick may not cover all 
the use cases an application developer may need. Recent literature ex-
amines the advantages and limitations of Brick in relation to two EMIS 
use cases, including FDD and optimal supervisory control, compared to 
other ontologies [65]. Brick does not offer a detailed description of the 
layout of the equipment components, nor does it include representations 
of envelope characteristics or architectural elements like room geom-
etry and orientation [65,1]. For this reason, it is plausible that other 
application developers may prefer using different ontologies that better 
suit their specific use cases. The field of semantic schemas for build-
ings is extensive and rapidly evolving [20,65,99], and it is uncertain 
whether there will be convergence towards an unified, interoperable 
schema. Fortunately, the framework developed in this work is easily 
adaptable to different ontologies, as long as they support two core se-
mantic web technologies: RDF [68] and SHACL [84]. The combined use 
of these two W3C technologies, enables the framework to offer a flexi-
ble and standardized approach for defining and validating data [65,96]. 
Specifically, RDF provides a standard method to represent data as di-
rected, labeled graph, where the edges represent the named link (i.e. 
relationship) between two resources, represented by the graph nodes. 
In addition, SHACL defines the expected structure and constraints of the 
data, independent of the specific ontology used. While the use of addi-
tional ontologies is not explored in this paper, future work will focus on 
modifying the underlying data model by switching and/or combining 
ontologies, thereby exploring additional limitations and opportunities.

6.2. How is a semantic model of a building created?

A fundamental assumption of the proposed framework is that a com-
plete metadata model of the building is available before deploying an 
EMIS application. However, only a small number of buildings today 
have complete semantic models. In industry, these models are often 
developed when an application is deployed, for example during the 
installation and configuration of FDD tools [100]. These semantic mod-
els are constructed using information from a variety of sources such as 
building automation data, mechanical drawings and control sequence 

documentation [20,65,101]. Industry has historically used proprietary 
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tools to map this information into a semantic model, internal to their 
products [102]. Recently, the organizations supporting building ontolo-
gies have started developing public tools to streamline this process [99]. 
An example are equipment and component templates that can support 
the manual process of building a metadata model from scratch [83]. 
A template is a high level function that allows the model developer to 
create RDF graphs in a consistent manner. Although this reduces the 
amount of work required, the developer still needs deep knowledge of 
ontologies and knowledge graphs. Academia has also proposed the use 
of artificial intelligence to create Brick models from building automa-
tion labels and time-series data [103].

6.3. Is there only one way to create a semantic model?

When crating a semantic model, an important design decision in-
volves determining the level of detail required to describe the build-
ing and its systems. For example, a piece of equipment can be mod-
eled with extensive details about its configuration, components, and 
parts, or it could be modeled with only the information necessary 
for monitoring. Currently, the approach is left to the modeler ant it 
can vary significantly depending on the analyst approach and sen-
sitivity. For example, one model developer may model the same
brick:Damper_Position_Command of the same equipment (e.g., 
AHU) as a point of the brick:AHU equipment, while the other might 
consider a brick:Damper_Position_Command as a point of the
brick:Damper which is a part of the brick:AHU equipment. In ad-
dition, different use cases may require models that differ in scope or 
in granularity. For instance, a building control ASO application may 
require more detailed description of component relationships (e.g., spec-
ifying control hierarchies), while an EIS application might only need 
a higher-level information to be executed. Consequently, the creation 
of manifests (i.e., manifest.ttl) and corresponding queries (i.e.,
query.rq), which enable the application to verify the availability of 
required data points and retrieve them from the metadata model, is 
heavily dependent on the specific details of the model created. Even 
minor modifications to the relationships, classes, and structure of the 
metadata model an affect query results or prevent the application from 
running correctly. These two examples demonstrate that for some ap-
plications it is challenging to formalize queries or manifests that are 
flexible enough to adapt to a number of possible different graph struc-
tures describing the same building or system. The lack of guidance on 
structuring metadata models and determining the necessary level of 
detail for different use cases remains a significant barrier to develop 
consistent and interoperable models. As a result, applications must ac-
commodate various representations of the same components, which 
complicates the development and interpretation of queries and mani-
fests. Although different methodologies and tools have been introduced 
to build consistent semantic models from templates, the construction 
of such models and accessing the required data remains challenging 
[63,83,71]. Standardizing these model would help reduce complexity of 
the application and ensure more consistent and reliable data handling. 
Another way to addressing this issue is to shift the focus from creating 
the metadata model to its querying. Authors in Bennani et al. [2] pro-
posed a method to relax queries, making them adaptable to alternative 
model formulations. While this approach shows promise, its generaliz-
ability has not yet been demonstrated. In summary, there is a trade-off 
between the effort required to ensure consistency in metadata models 
and the effort needed to manage the complexity of the EMIS application 
in handling different model implementations.

6.4. Does the metadata model remain static in time?

During “Test 4”, the metadata model was modified to simulate an 
abrupt change in naming conventions and data availability, in order to 
evaluate the impact on the application’s execution. Although successful 
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in demonstrating the framework’s flexibility, the test also highlighted 
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that the model represents a snapshot of the building information at a 
specific point in time, which is likely to undergo modifications through-
out the building’s life cycle [104]. Without proper versioning of the 
model, changes can compromise the robustness and portability of an 
application [105]. As a reference example, it is possible to take into con-
sideration an application where a ML model, similar to the ones used in 
this paper, requires time series data for a specific variable (e.g., out-
door air temperature) over a one-month period. For example, consider 
an application where a ML model, requires time-series data for a spe-
cific sensor (e.g., outdoor air temperature) over a one-month period. If 
the variable name and corresponding metadata file are updated during 
this period, it becomes very challenging to ensure the application rec-
ognizes the sensor both before and after the update, and consequently 
retrieves the correct time series data. Proper versioning is essential to 
maintain a record of changes over time and address this issue [106]. 
Versioning and continuously updating the model is particularly impor-
tant for enabling an EMIS system to recognize new applications that 
can be executed when new data points become available in the meta-
data model. Future work should improve the framework by periodically 
scanning the metadata model for new or updated data. The system could 
then match these data points against the requirements of potential ap-
plications, such as the presence of specific sensors needed for advanced 
FDD analysis. When new data meets the requirements for an applica-
tion, the system could either prompt the user or automatically configure 
it. Additionally, this approach could support the maintenance of exist-
ing applications throughout the building life cycle, allowing them to 
dynamically adapt to the evolving monitoring infrastructure and data 
availability.

6.5. Which is the role of Generative Artificial Intelligence?

The rapid success of Large Language Models (LLMs), such as Chat-
GPT [107] and Copilot [108], suggests the potential for using LLMs to 
create metadata models for buildings. These tools may be able to stream-
line the creation of metadata models by automating template generation 
based on the descriptions of building components and equipment, pro-
vided by professionals [109]. LLMs, excel at understanding and process-
ing natural language inputs. This capability may enable the translation 
of natural language description of buildings components, energy system, 
and monitoring infrastructure into a metadata model for the building. 
This intuition is supported by recent literature that explores the use of 
LLMs in crating knowledge graphs [110] or in detecting inconsistencies 
in manually created models and suggest corrections and improvements. 
Such approaches are promising not only to automatically create meta-
data schema but also to support non experts users in the writing of the 
queries and manifests. Although promising, this approach has not yet 
been tested in the building domain. Further, concerns about inaccuracy 
of the output produced by LLMs remain unaddressed in the field of AI 
and needs more work.

7. Conclusions

This paper, introduces a portable framework for developing, deploy-
ing and maintaining EMIS applications using the Brick semantic schema. 
The framework aims to enhance the portability, interoperability, and 
maintainability of EMIS applications in buildings. Key contributions in-
clude the development of an interoperable software layer leveraging the 
Brick metadata schema, the formalization of application constraints in 
terms of metadata and data requirements, and a field demonstration. 
The framework was also implemented and made publicly available as a 
Python package, offering functions for querying metadata models, fetch-
ing data, preprocessing, and analyzing data. The framework was tested 
through a case study involving a data-driven, ML-based anomaly detec-
tion tool for photovoltaic systems, showcasing its ability to address var-

ious practical issues throughout the EMIS application life-cycle. Future 
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research in this area will focus on examining metadata schema version-
ing strategies, testing the use of different ontologies and investigating 
the use of Large Language Models (LLMs) to support model creation. 
Additionally, the research will explore how the proposed framework 
contributes to the seamless integration of newly developed applications 
with existing ones, enabling the creation of more effective multi-purpose 
EMIS systems.

Acronyms

AHU Air Handling Unit
AI Artificial Intelligence
APAR AHU Performance Assessment Rules
API Application Programming Interface
ASO Advanced System Optimization
BAS Building Automation System
BOPTEST Building Optimization Testing Framework
BuildingMOTIF Building Metadata OnTology Interoperability Frame-
work
CLI Command Line Interface
EIS Energy and Information Systems
EMIS Energy Management and Information Systems
FDD Fault Detection and Diagnosis
HVAC Heating, Ventilation and Air Conditioning
IoT Internet of Things
LLMs Large Language Models
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi Layer Perceptron
MSE Mean Square Error
PoliTo Politecnico di Torino
PV Photovoltaic System
RDF Resource Description Framework
SHACL Shapes Constraint Language
SPARQL SPARQL Protocol and RDF Query Language
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