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1. Introduction and discussion of the main result

For N ≥ 1 integer, consider the cyclic group ZN = Z/NZ, equipped with the counting 
measure.

The celebrated Donoho-Stark uncertainty principle on ZN [10,32] (see also the seminal 
paper [7]) states that, for a function f ∈ �2(ZN ) \ {0},

|supp (f)| × |supp (f̂)| ≥ N, (1.1)

where supp (f) = {j ∈ ZN : f(j) �= 0}, f̂ denotes the Fourier transform of f in ZN and 
|A| stands for the cardinality of a set A. Moreover, the extremal functions f , for which 
equality occurs in (1.1), were identified in [10] as characteristic functions of subgroups 
of ZN up to multiplication by a constant, translation and modulation (see below for the 
relevant definitions).

When N is prime, Terence Tao [39] then improved the above estimate as

|supp (f)| + |supp (f̂)| ≥ N + 1.

Refinements and generalizations to finite Abelian groups have been extensively studied 
[5,6,17,18,33,35,38]; see also [2,34] for extensions to compact groups and [40] for an up-
to-date and illuminating account (and further generalizations).

Notice that the left-hand side of (1.1) represents the cardinality of the support, in 
ZN × ZN , of the joint time-frequency distribution f ⊗ f̂ . Similar uncertainty inequali-
ties hold for other time-frequency distributions, in particular for the short-time Fourier 
transform, which is a popular choice in signal processing [31], harmonic analysis [19] and 
also mathematical physics, where it is also known as coherent state transform [29]. To 
provide its definition in the discrete setting we first introduce some notation (cf. [14], 
[26]).

For j, k ∈ ZN we define the translation and modulation operators Tj and Mk on 
�2(ZN ), and the corresponding time-frequency shifts π(j, k) as

Tjf(�) = f(�− j), Mkf(�) = e2πik�/Nf(�), π(j, k)f = MkTjf, (1.2)

where � ∈ ZN . For f, g ∈ �2(ZN ), the short-time Fourier transform of f with window g
is the complex-valued function on ZN × ZN given by

Vgf(j, k) = 1√
N

〈f, π(j, k)g〉 (1.3)

= 1√
N

∑
�∈ZN

e−2πik�/Nf(�)g(�− j) j, k ∈ ZN .

The following result [26] is the expected counterpart of (1.1) for the short-time Fourier 
transform on ZN .
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Theorem 1.1. If f, g ∈ �2(ZN ) \ {0} then

|supp (Vgf)| ≥ N. (1.4)

This lower bound can be regarded as a discrete version of the so-called weak uncer-
tainty principle [20] for the short-time Fourier transform in Rd. It should be emphasized, 
however, that (1.4) does not have an exact counterpart in Rd, because in that setting 
Vgf cannot be fully concentrated on a subset of finite measure of Rd × Rd (see e.g. 
[19]). Rather, one considers subsets where Vgf is, say, ε-concentrated [1,3,4,9,20,36]; see 
also [8,12,27,28,30] for some deep applications of this circle of ideas. The corresponding 
sharp uncertainty principle, when the window g is a Gaussian function, has recently been 
proved in [37], along with a complete study of the cases of equality.

Now, despite the simplicity of the lower bound (1.4) and its formal similarity with the 
Donoho-Stark inequality (1.1), a complete identification of the functions f, g for which 
equality occurs in (1.4) is still missing, except for an interesting special case studied in 
[16] (see below). In this note, partially motivated by the above mentioned study of the 
analogous – at least in spirit – issue in Rd [37], we address this problem and provide a 
complete answer. In order to state our result, we define yet another family of unitary 
operators defined on certain invariant subspaces of �2(ZN ).

Let a be a (positive) divisor of N and let f ∈ �2(ZN ) be a function supported in the 
subgroup Ha := {ma : m = 0, . . . , N/a − 1} of ZN generated by a. For p ∈ Z we define 
the pointwise multiplication by a discrete “virtual chirp” Cp,a as

Cp,af(�) = e
πi
N

p�2
a

(
1+N

a

)
f(�) � ∈ ZN . (1.5)

One can easily verify that this definition makes sense (in ZN ), i.e. the function Cp,af

is N -periodic, because of the above condition on the support of f and the counterterm 
involving N/a (whereas the exponential function alone is not well defined – hence the 
name “virtual”; see Fig. 1 in Appendix). The reader acquainted with the theory of 
metaplectic operators (see e.g. [13]) will notice that this is not a metaplectic operator 
on ZN (if a > 1), but it is unitarily equivalent to a metaplectic operator on ZN/a, via 
the natural identification of the linear subspace of �2(ZN ) of functions supported in Ha

with �2(ZN/a); see (2.8) below. In any case, no knowledge of the theory of metaplectic 
operators is needed to understand this paper.

The following result provides the desired identification of the subsets of ZN × ZN of 
smallest possible cardinality where Vgf may be fully concentrated, with corresponding 
extremals f, g.

Let χA denote the characteristic function of a set A.

Theorem 1.2. Let f, g ∈ �2(ZN ). The following statements are equivalent.

(a) |supp (Vgf)| = N .
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(b) supp (Vgf) is a coset of a subgroup of ZN × ZN of order N .

(c) There exist a divisor b of N , p ∈ {0, . . . , b − 1}, λ, μ ∈ ZN × ZN , c1, c2 ∈ C \ {0}
such that

g = c1π(λ)Cp,aχHa
, f = c2π(μ)g,

where a = N/b and Ha ⊆ ZN is the subgroup generated by a.

It will follow from the proof that, with f, g as in Theorem 1.2 (c),

supp (Vgf) = μ + Hb,p,

(and |Vgf | is constant on its support), where (with a = N/b, as above)

Hb,p := {(ma, nb + mp) : m = 0, . . . , b− 1, n = 0, . . . , a− 1}, (1.6)

i.e., the lattice generated by (a, p) and (0, b) in ZN × ZN . Indeed, it is known that 
all the subgroups of order N of ZN × ZN have this form for some divisor b of N and 
p ∈ {0, . . . , b − 1} (see e.g. [22]).

We will see that the operator Cp,a, p ∈ {0, . . . , N/a −1}, is associated with the phase-
space map Hb,0 → Hb,p, (ma, nb) �→ (ma, nb +mp) (m = 0, . . . , b −1, n = 0, . . . , a −1), in 
the sense that the intertwining properties (2.6) and (2.7) below hold true. Notice that, 
however, this map is not the restriction to Hb,0 of an element of SL(2, ZN ) (a is not 
supposed to be a divisor of p in ZN ), nor it is a group isomorphism (it is just a bijection). 
Indeed, as a metaplectic operator in ZN/a (via the above mentioned identification), Cp,a

is associated with the matrix 
(

1 0
p 1

)
∈ SL(2, ZN/a) (cf. [13] and (2.8) below).

The extremal functions f, g satisfying the additional condition |supp (f)| +|supp (g)| ≥
N+1 were already identified in [16, Theorem 3], and turn out to be those in Theorem 1.2
(c) for b = N , therefore a = 1 (hence, in that case the multiplication by a true chirp 
function appears – as opposed to the genuinely virtual chirps that we alluded to above). 
The proof of Theorem 1.2 in full generality however will require a different approach, to 
take into account more tightly of the symmetries of the problem – which correspond to 
the operators appearing in Theorem 1.2 (c).

It is known that Theorem 1.1 generalizes to finite Abelian groups (see [26, Proposition 
4.1] and Section 4 below). The cases of equality seem certainly worthy studying in that 
framework too, as well as for the other discrete uncertainty principles appearing in [26]. 
While we postpone this investigation to a future work, in Section 4 we briefly show that 
the implication (a)=⇒(b) in Theorem 1.2 indeed generalizes (easily) to arbitrary finite 
Abelian groups.

We conclude by observing that discrete uncertainty inequalities are of great interest 
in compressed sensing and, more generally, in sparse signal recovery [6,26]. Moreover, 
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subgroups (or structured subsets) S ⊂ ZN × ZN play also an important role in the 
construction of orthonormal basis of �2(ZN ) of the type {π(j, k)g : (j, k) ∈ S}, for 
some g ∈ �2(ZN ). This problem has a long tradition, for which we address to the recent 
contributions [24,41] (see also [11,15,21,23]) and the references therein.

Briefly, this note is organized as follows. In Section 2 we recall some basic formulas 
from time-frequency analysis on ZN , which will be needed to fully exploit the symmetries 
of the problem. Section 3 is devoted to the proof of Theorem 1.2. Finally in Section 4
we report on the very short proof of Theorem 1.1, for the sake of completeness, and 
we discuss the above mentioned partial generalization of Theorem 1.2 to finite Abelian 
groups.

2. Notation and preliminary results

2.1. Notation

We denote by ZN = Z/NZ the cyclic group of order N , equipped with the counting 
measure. The inner product and corresponding norm in �2(ZN ) ≡ CN are denoted by 
〈·, ·〉 and ‖ · ‖�2(ZN ) respectively. The support of a function f ∈ �2(ZN ) is denoted by 
supp (f) = {j ∈ ZN : f(j) �= 0}, and similarly for functions on ZN ×ZN . We denote by 
|A| the cardinality of a set A, and by χA its characteristic function.

In the following b will always denote a (positive) divisor of N and a = N/b. Ha stands 
for the subgroup of ZN generated by a, whereas Hb,p, p ∈ {0, . . . , b − 1}, is the subgroup 
of order N of ZN × ZN defined in (1.6).

We already defined in (1.2) the translation operators Tj , j ∈ ZN , the modulation 
operators Mk, k ∈ ZN and the time-frequency shifts π(j, k) = MkTj , as unitary operators 
on �2(ZN ). We also defined the chirp operator Cp,a in (1.5), as a unitary operator defined 
on the linear subspace of �2(ZN ) of functions supported in Ha. The short-time Fourier 
transform Vgf , for f, g ∈ �2(ZN ), was defined in (1.3).

2.2. Preliminaries from time-frequency analysis on ZN

We collect here some elementary formulas that will be useful in the following. We 
only sketch the proofs, or we omit them completely whenever they are straightforward 
computations (for analogous results in Rd, see [19]).

In the following, f, g denote functions in �2(ZN ).
First of all, we observe that the time-frequency shifts enjoy the commutation relations

π(j, k)π(j′, k′) = e2πi(kj′−k′j)/Nπ(j′, k′)π(j, k) (2.1)

for j, k, j′, k′ ∈ ZN .
The short-time Fourier transform Vgf(j, ·) can be regarded as the Fourier transform 

on ZN of fTjg. Hence, applying the Plancherel theorem for the Fourier transform one 
obtains at once the Parseval equality for the short-time Fourier transform, which reads
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‖Vgf‖�2(ZN×ZN ) = ‖f‖�2(ZN )‖g‖�2(ZN ). (2.2)

We also have the following pointwise estimate

|Vgf(j, k)| ≤ 1√
N

‖f‖�2(ZN )‖g‖�2(ZN ) j, k ∈ ZN , (2.3)

which is an immediate consequence of the Cauchy-Schwarz inequality.
The following covariance-type properties can be checked by direct computation, using 

the definition of Vgf and (2.1):

Vg(π(j, k)f)(j′, k′) = e2πi(k−k′)j/NVgf(j′ − j, k′ − k) (2.4)

and

Vπ(j,k)g(π(j, k)f)(j′, k′) = e2πi(kj′−k′j)/NVg(f)(j′, k′), (2.5)

for j, k, j′, k′ ∈ ZN .
Similarly, if N = ab, we have the intertwining property (cf. (1.5))

C−p,a π(ma, nb + mp) = eπipm
2(1+b)/bπ(ma, nb)C−p,a (2.6)

for p ∈ {0, . . . , b − 1}, m ∈ {0, . . . , b − 1}, n ∈ {0, . . . , a − 1}. Equivalently,

π(ma, nb + mp)Cp,a = eπipm
2(1+b)/bCp,a π(ma, nb). (2.7)

Unlike the previous formulas, (2.6) and (2.7) hold, however, only on the subspace of 
�2(ZN ) of functions supported in Ha, which indeed is an invariant subspace for all the 
operators appearing in (2.6) and (2.7) (when a = 1, hence b = N , Cp,af is defined for 
every f ∈ �2(ZN ) – in that case Cp,a is a metaplectic operator on ZN [13], and (2.7)
reduces to [13, Lemma 3.1 (iii)]; see also [25]).

Remark 2.1. More generally, let La ⊆ �2(ZN ) be the subspace of functions supported in 
Ha, and let Ua : La → �2(Zb) be given by Uaf(m) = f(ma), m ∈ Zb (b = N/a). Then

UaCp,aU−1
a f(m) = eπipm

2(1+b)/bf(m) m ∈ Zb, (2.8)

is a metaplectic operator on Zb, as defined in [13, Section 3 (iii)].

Remark 2.2. It is easy to see that f ∈ �2(ZN ) is determined by Vff up to multiplication 
by a complex number (of modulus 1, by (2.2)); cf. [19, Section 4.2]. Indeed, from the 
definition of Vgf , using the inversion formula for the discrete Fourier transform we obtain

1√
N

∑
e2πikj′/NVff(j, k) = f(j′)f(j′ − j) j, j′ ∈ ZN .
k∈ZN
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This already tells us that the support of f is determined from the function Vff . Moreover, 
if f(j0) �= 0, say, choosing j′ = j0 + j yields

f(j0 + j) = 1
f(j0)

√
N

∑
k∈ZN

e2πik(j0+j)/NVff(j, k) j ∈ ZN ,

which gives the claim.

3. Proof of Theorem 1.2

We can suppose that f and g are normalized in �2(ZN ); hence ‖f‖�2(ZN ) =
‖g‖�2(ZN ) = 1.

(a) =⇒ (b)
It follows from (2.2) and (2.3) that, if |supp (Vgf)| = N , then

|〈f, π(λ)g〉| =
√
N |Vgf(λ)| = 1 λ ∈ supp (Vgf).

Hence,

f = c(λ)π(λ)g λ ∈ supp (Vgf) (3.1)

for some c(λ) ∈ C, |c(λ)| = 1. Applying the short-time Fourier transform Vg to both 
sides of (3.1) and using (2.4) we obtain

|Vgf(μ)| = |Vgg(μ− λ)| λ ∈ supp (Vgf), μ ∈ ZN .

Hence

supp (Vgf) = λ + supp (Vgg) λ ∈ supp (Vgf). (3.2)

We claim that H := supp (Vgg) is a subgroup of ZN×ZN . Indeed, let μ1, μ2 ∈ H. For any 
λ ∈ supp (Vgf) we can write μ1 = λ1 − λ and μ2 = λ2 − λ for some λ1, λ2 ∈ supp (Vgf). 
Then μ1 − μ2 = λ1 − λ2 belongs to H thanks to (3.2) (applied with λ2 in place of λ).

(b) =⇒ (c)
Suppose that supp (Vgf) = λ0 + H, where H is a subgroup of ZN × ZN of order N
and λ0 ∈ ZN × ZN . Then |supp (Vgf)| = N and in particular we can take for granted 
what we have just proved. Hence, since λ0 ∈ supp (Vgf), from (3.2) we deduce that 
H = supp(Vgg). From the classification of the subgroups of ZN × ZN (see e.g. [22, 
Theorem 1]) we see that there exist a divisor b of N and p ∈ {0, . . . , b − 1} such that 
H = Hb,p as in (1.6), where a = N/b.
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By (3.1) we have

π(λ)g = c(λ, λ′)π(λ′)g λ, λ′ ∈ λ0 + Hb,p

for some factor |c(λ, λ′)| = 1, or equivalently, using (2.1),

π(λ)g = c(λ)g λ ∈ Hb,p (3.3)

with |c(λ)| = 1.
Applying this formula repeatedly with λ = (0, b) we see that

Mnbg = cng n ∈ Z

for some constant c ∈ C with ca = 1, hence c = e2πij0/a = e2πibj0/N for some j0 ∈
{0, . . . , a − 1}. In particular for n = 1 we obtain

e2πib�/Ng(�) = e2πibj0/Ng(�) � ∈ ZN ,

and therefore g is supported in the coset {j0 + ma : m = 0, . . . , b − 1}.
To reduce things to the case of a product-type subgroup of ZN × ZN , we introduce 

the function

γ := C−p,aT−j0g. (3.4)

Notice that T−j0g, and therefore γ, is supported in the subgroup Ha generated by a in 
ZN .

Applying the operator C−p,aT−j0 to both sides of (3.3) and using (2.1) and (2.6) we 
obtain

π(λ)γ = c(λ)γ λ ∈ Hb,0

for a new constant c(λ) ∈ C, |c(λ)| = 1.
Applying the short-Fourier transform Vγ to both sides of this equality we obtain

Vγγ(μ− λ) = Vγ(π(λ)γ)(μ) = c(λ)Vγγ(μ) λ, μ ∈ Hb,0,

for the same constant c(λ) (which is therefore independent of μ), where the first equality 
follows from (2.4) (the exponential factor appearing there is = 1 because λ, μ ∈ Hb,0).

Applying repeatedly this formula with λ = (a, 0) or λ = (0, b) we obtain, for m, n ∈ Z,

Vγγ(−ma,−nb) = c(a, 0)mc(0, b)nVγγ(0) = c(a, 0)mc(0, b)n/
√
N, (3.5)

because Vγγ(0) = ‖γ‖2
�2(ZN )/

√
N = 1/

√
N . Moreover c(a, 0)b = 1 and c(0, b)a = 1, 

namely there exist j1 ∈ {0, . . . , a − 1} and k1 ∈ {0, . . . , b − 1} such that
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c(a, 0) = e2πik1/b = e2πik1a/N , c(0, b) = e2πij1/a = e2πij1b/N . (3.6)

This also tells us that Vγγ(λ) = 0 for λ /∈ Hb,0, because |Vγγ|2 = 1/N on Hb,0 (by (3.5)
and (3.6)), |Hb,0| = ab = N and ‖Vγγ‖�2(ZN×ZN ) = ‖γ‖2

�2(ZN×ZN ) = 1 by (2.2). Hence 
supp (Vγγ) = Hb,0.

Summing up,

Vγγ(j, k) = 1√
N

e−2πi(k1j+kj1)/NχHb,0(j, k) (3.7)

for (j, k) ∈ ZN × ZN .
Now, to identify the function γ (up to a phase factor) we are going to exhibit a 

function γ̃ such that Vγ̃ γ̃ = Vγγ; this will give γ̃ = cγ for some |c| = 1 by Remark 2.2.
To this end, consider the subgroup Ha of ZN generated by a. An explicit computation 

shows that

1
b
VχHa

χHa
= 1√

N
χHb,0 .

Hence setting

γ̃ = 1√
b
M−k1Tj1χHa

and using (2.5) we obtain

Vγ̃ γ̃(j, k) = 1√
N

e−2πi(k1j+kj1)/NχHb,0(j, k)

for (j, k) ∈ ZN × ZN . Hence Vγ̃ γ̃ = Vγγ by (3.7).
By Remark 2.2 we deduce that

γ = c√
b
M−k1Tj1χHa

for some constant c ∈ C, |c| = 1. Moreover, since γ is supported in Ha we have in fact 
j1 = 0. Coming back to the function g (cf. (3.4)) we obtain

C−p,aT−j0g = c√
b
M−k1χHa

and therefore, since Cp,a and Mk1 commute and using (2.1),

g = c√
b
M−k1Tj0Cp,aχHa

for a new constant c ∈ C, |c| = 1.
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By (3.1), also f has the desired form.

(c) =⇒ (a)
Let f, g be as in the statement (c). The computation of the support of Vgf is straight-
forward. Indeed, let h := χHa

/
√
b. We have already observed that Vhh = χHb,0/

√
N . 

Moreover, for m ∈ {0, . . . , b − 1}, n ∈ {0, . . . , a − 1} we have

VCp,ahCp,ah(ma, nb + mp) = 〈Cp,ah, π(ma, nb + mp)Cp,ah〉/
√
N

= c 〈Cp,ah,Cp,aπ(ma, nb)h〉/
√
N

= c Vhh(ma, nb) = c/
√
N

for some constant c, |c| = 1, where we used (2.7) and the fact that Cp,a is unitary on the 
subspace of functions supported in Ha.

Since, by (2.2),

‖VCp,ahCp,ah‖�2(ZN×ZN ) = ‖Cp,ah‖2
�2(ZN ) = ‖h‖2

�2(ZN ) = 1,

we have supp (VCp,ahCp,ah) = Hb,p.
Using (2.5) we deduce that

supp (Vgg) = Hb,p

and by (2.4)

supp (Vgf) = μ + supp (Vgg) = μ + Hb,p,

which has therefore cardinality N .
This concludes the proof of Theorem 1.2.

4. Concluding remarks

In this section we report on the short proof of Theorem 1.1, following [26, Proposition 
4.1]. We also discuss a partial generalization of Theorem 1.2 to the case of arbitrary 
finite Abelian groups.

4.1. Proof of Theorem 1.1

([26, Proposition 4.1]) It follows from (2.3) and (2.2) that, if S = supp (Vgf),

‖f‖2
�2(ZN )‖g‖2

�2(ZN ) =
∑

(j,k)∈S

|Vgf(j, k)|2 ≤ |S|
N

‖f‖2
�2(ZN )‖g‖2

�2(ZN )

so that |S| ≥ N if f, g �= 0.
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4.2. Generalization to finite Abelian groups

The basic definitions from time-frequency analysis on Rd have a natural counterpart 
on finite Abelian groups (see e.g. [14,26]).

In short, on a finite Abelian group A (equipped with the counting measure) one can 
define the translation operator Tj, j ∈ A, and modulation operator Mk, k ∈ Â (the dual 
group), as well as the corresponding time-frequency shifts π(j, k) as unitary operators 
on �2(A) by

Tjf(�) = f(�− j), Mkf(�) = e2πi〈k,�〉f(�), π(j, k)f = MkTjf, � ∈ A,

where the map A � � �→ 〈k, �〉 denotes the additive character k ∈ Â (that is a homo-
morphism A → R/Z) – so that e2πi〈k,�〉 is the corresponding multiplicative character (a 
homomorphism A → T = {z ∈ C : |z| = 1} – the circle group).

We then define the short-time Fourier transform as

Vgf(j, k) = 1√
|A|

〈f,MkTjg〉�2(A),

for g, f ∈ �2(A), (j, k) ∈ A × Â, and the properties (2.2) and (2.3) generalize in the 
obvious way (cf. [14,26]). Hence, also the above proof of Theorem 1.1 extends to the case 
of finite Abelian groups, as already observed in [26, Proposition 4.1].

Similarly, one can easily check that the formulas (2.1) and (2.4) generalize naturally, 
and also the proof of (a)=⇒(b) in Theorem 1.2 carries on essentially without changes. 
Summing up, we have the following result.

Proposition 4.1. Let A be a finite Abelian group, and f, g ∈ �2(A) \ {0}. Then 
|supp (Vgf)| ≥ |A|. If |supp (Vgf)| = |A| then supp (Vgf) is a coset of a subgroup of 
A × Â of order N .
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Appendix A

Fig. 1. The sequence sin
(

π
N

p�2

a

(
1 + N

a

))
for N = 20, a = 2, p = 1 (� ∈ Z); cf. (1.5). Its restriction to 2Z

(marked in the figure above) is N-periodic.
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