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Design of Impulsive Feedback Controller for Dosing

Alexander Medvedev!, Anton V. Proskurnikov?, and Zhanybai T. Zhusubaliyev>*

Abstract— This paper proposes a pulse-modulated controller
that generates, under stationary conditions, a desired sequence
of uniform and equidistant impulsive control actions from con-
tinuous measurements of the output of a smooth nonlinear time-
invariant positive single-input single-output plant of Wiener
structure. The proposed controller is applied to the dosing
of the drug atracurium in closed-loop neuromuscular blockade
and its performance is studied on a database of patient-
specific pharmacokinetic-pharmacodynamic models previously
estimated from clinical data.

I. INTRODUCTION

An everyday life example of a dosing application is fol-
lowing doctor’s orders on medication regimen, for instance,
“take one tablet twice a day”. This is an open-loop dosing
strategy that does not consider the medication effect in
the particular patient. Further, increasing or decreasing the
amount of each single dose corresponds to the mechanism
of amplitude modulation in pulse-modulated control [1]
whereas manipulating the dosing interval constitutes the
principle of frequency modulation.

Besides pharmacotherapies, where drugs are administered
in tablet or injection form, similar dosing problems character-
ized by (relatively rare) impulsive control action and continu-
ous measurement of the effect are commonly found in space
technology, water treatment, food, chemical and biochemical
industries, agriculture, steel and mining industries, to name
a few. An industrial dosing control system is typically
open-loop and implemented by means of discrete logic or
automata [2]. An early example of applying optimal control
to dosing is the work of R. Bellman in [3]. However, the
open-loop control cannot neither attenuate disturbances nor
handle plant uncertainty. Motivated by a drug-dosing appli-
cation and an available pharmacokinetic-pharmacodynamic
(PK/PD) model, a Model-Predictive Control (MPC) with
impulsive control action was proposed in [4].

Notably, physiological and, in particular, endocrine regu-
lation in a living organism is often performed in an impulsive
manner. The physiological profile of insulin secretion is
around ten major hormone pulses over 24 hours [5] with
their temporal distribution related to meals. A promising
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application of impulsive MPC approach to insulin dosing
in simulated diabetes patients is reported in e.g. [6].

Impulsive feedback control is inherently nonlinear and
adding an advanced control law, such as MPC, to the closed-
loop dynamics further complicates stability and performance
analysis. Yet, simple pulse-modulated feedback solutions
manipulating the amplitude and frequency of the control
impulses have been lacking until recently. In [7], [8], it is
suggested that a nonlinear amplitude and frequency pulse
modulator can be designed to control a positive continuous
linear time-invariant third-order plant to a given periodic
solution through localization of the multipliers of the fixed
point of the closed-loop system. This paper employs the
concept of pulse-modulated feedback control and examines
its feasibility and performance limitations with respect to a
dosing application in neuromuscular blockade (NMB).

The main contributions of the paper are as follows. First,
for the nonlinear PK/PD model at hand, a closed-form
expression for the fixed point defining the stationary dosing
solution is obtained. Second, for a population of PK/PD mod-
els previously estimated from clinical data, the achievable
convergence rates under amplitude or frequency modulation
feedback alone are established. Third, it is demonstrated that
the parameters of the modulation functions that yield best
convergence can be calculated from the Hopf bifurcation
points that the desired stationary solution undergoes.

II. NEUROMUSCULAR BLOCKADE MODEL

A continuous-time Wiener model for NMB with the
muscle relaxant atracurium under general closed-loop anes-
thesia is introduced in [9]. The model assumes continuous
infusion of the drug and the input w(¢) is the administered
atracurium rate in [ug kg~ 'min~!], positive and bounded.
The current NMB level constitutes the model output y(t)
[%] and is measured by a train-of-four monitor (peripheral
nerve stimulator). When the NMB is initiated and there is
no drug in the bloodstream, the output is maximized, i.e.
y(t) = 100%.

The PK part is described by a transfer function with a unit
static gain, whose pole spectrum scales linearly with «

W(s) = Y (s) _ v V2U33 , 0

(s +v1)(s + ver)(s + v3)
where Y(s) = L{g(t)}, U(s) = L{u(t)}, and L{}
denotes the Laplace transform. The parameter 0 < o < 0.1
is estimated from patient-specific data, whereas the other
parameters in (1) are estimated from cohort data and fixed
(see [9]), v1 = 1, v = 4, and vs = 10. The PD part of




the NMB model is static and relates the output §(¢) to the
measured effect y(¢) by the Hill-type function
10002,

y(t) = e(y(t) £ L) 2

where Cso = 3.2425 pg ml™! is the drug concentration
producing 50% of the maximum effect and 0 < v < 10 is a
patient-specific parameter. In (1), (2), the effect of the NMB
agent on the patient is captured with the pair («, ).

III. PROBLEM FORMULATION

Consider the following realization of model (1), (2)

#(t) = Ax(t)+ Bu(t), y(t) = Cz(t), y(t) = ¢(y(t)), 3)

where & = |11, 2o, 73] ",

—a; 0 0 1 0
A=|g¢ —-az 0 |,B=10|,CT=|0],
0 go  —as 0 1

and a; = V1, ay = V20y, 3 = V3Q, g1 = V1Q, g = U2U3()é2.

It is readily observed that the matrix A is Hurwitz stable
and Metzler. The nonlinear function (-) is smooth, positive,
and bounded. Asymptotic stability of (3) agrees well with
the fact that chemical substances decay with time and the
(element-wise) positivity of x ensures an interpretation of the
state variables in terms of (compartment) concentrations. The
chain structure of (3) portrays dynamics of three substances’
concentrations, where a preceding substance stimulates the
production of the next one.

Let continuous plant (3) be controlled by an output
feedback that constitutes a frequency and amplitude pulse
modulation operator [1]. Then the impulsive control law is
given by the first-order difference equation

o(ty) =2(ty) + AnB, tapr =ta+Tn, (@)
T, = i)(y(tn)), Ap = F(y(tn)),
where n = 0,1, ... The minus and plus in a superscript in (4)

denote the left-sided and a right-sided limit, respectively. The
instants ¢,, are called (impulse) firing times and \,, repre-
sents the corresponding impulse weight. Then, the impulsive
controller degrees of freedom are the frequency modulation
function ®(-) and the amplitude modulation function F'(-).
Despite the jumps in (4), y is a smooth function since

CB=0,CAB =0, CA’B #0. 5)
With o denoting composition, introduce the functions
() £ (Pop)(), F(z)= (Fop)().

In order to obtain a stabilizing feedback, both F(-) and
®(-) have to be continuous and monotonic, F(-) be non-
increasing, and ®(-) be non-decreasing. To guarantee bound-

edness of closed-loop solutions in (3), (4), it is required that

where ®;, &5, I, Iy are constants.

The control problem at hand is then to select the modula-
tion functions ®(-), F(-) so that closed-loop system (3), (4)
exhibits an orbitally stable periodic solution with predefined
amplitude and period Vn : A\, = \,T,, =T.

In terms of the NMB model introduced in Section II,
the sought impulsive controller administers, under stationary
conditions, a dose of A\ ug of atracurium each 7' minutes.
When disturbed within the basin of attraction, the solution of
(3), (4) returns to the designed stationary periodic solution.

IV. SYSTEM DYNAMICS

With the plant nonlinearity ¢ incorporated in the modu-
lation functions ® and F, closed-loop system (3),(4) consti-
tutes the Impulsive Goodwin’s Oscillator (IGO) [10], [11],
a hybrid mathematical model originally devised to describe
pulsatile endocrine regulation. Denoting X,, = z(t;,), the
state vector sequence of the of the IGO obeys the map [11]

Xot1 = Q(Xa), (7
Q&) = O (¢ + F(CE)B).

In between the impulsive feedback firings ¢,, and ¢,,41, the
continuous state trajectory is uniquely defined by X, as

z(t) =N X, + A B), t€ (tntng).  (8)

A periodic solution of the IGO with one firing of the
feedback in the period is referred to as 1-cycle [12]. For
such a solution, Vn : X,, = X, where X is a solution to

X = Q(X). ©)

As proved in [11], (9) always has a unique solution X > 0
constituting the fixed point that completely defines a 1-cycle.
The Jacobian of map Q(-) at the point X is given by [7]

Q'(X) = W) 1+ (F'(30)J + @' (50) D) C,
o2 CX, D2 AX, J =AW B,

The 1-cycle corresponding to the fixed point X is orbitally
stable when the matrix Q’(X) is Schur [11].

Now the control problem defined in the end of the previous
section can be reformulated in terms of the fixed point. Given
the plant in (3) and the desired parameters of the periodic
solution \ and 7, find the modulation functions ®(-) and
F(-) such that the fixed point X satisfying (9) also solves
the equations ®(go) = T, F(go) = A and renders the
matrix Q’(X) Schur-stable.

The selection of F'(zg), ®'(2p) to stabilize the fixed point
X is equivalent to finding K that renders the matrix

Q(X) = Ap + WKC

(10)

Y
Schur-stable, where
Ap =GO W =[J D] K" =[F'(z) ®(20)].
As demonstrated in [13],
JF' (o) + D®' (o) <0,

for all feasible values of F’(§), ®'(go). Inequality (12)
highlights the role of pulse-modulated feedback (4) as a
negative feedback with respect to the output g(t), [7].

(12)



V. DATA SET

The data set used in this study is described in detail in [9].
The model parameter estimates for 48 patients are illustrated
in Fig. 1. The correlation between the estimates of « and
~ is low. Notice that the models with extreme values of ~
do not exhibit high values of a as well as high values of
both parameters do not occur at all. On the contrary, the
model with Patient Identification Number (PIN) 26 exhibits
the least value of « and the largest value of a. It is unclear
whether this a biologically motivated phenomenon or an
artifact contributed by the model estimation technique.

___________________________

Fig. 1. The model parameter pairs in the data set. 0.0270 < o < 0.0524,
1.4030 < v < 5.5619. The extreme parameter values are indicated by the
Patient Identification Number.

VI. IMPULSIVE CONTROLLER DESIGN

A design procedure to solve the posed impulsive control
problem has to produce a fixed point satisfying the param-
eters of the desired 1-cycle and ensure its stability by the
choice of the modulation functions. Further, one seeks to
obtain fast and non-oscillating convergence to the stationary
solution under a perturbation of the initial conditions.

A. Fixed point
Introduce a first divided difference of a function h(-)

hlzy, x2] £ 7h(23 : Zim),

and higher-order divided differences defined recursively by

- ]: h[xl,...,xk} —h[mo,...,xk_l]
y Lk Tr — 2o .

h[xo, ces

Proposition 1: For model (1), (2) in the state-space form
of (3) and exhibiting a 1-cycle of the period T' with the
weight ), the fixed point satisfying (9) is given by

p(—owy)
avlp‘[_avla —047)2] )
aBv1vu3 [ —avy, —awg, —aws)

X =\ (13)

where p(z) = —+—.
Proof: Omitted for brevity.

Naturally, a vector X can be obtained from (13) even
though a 1-cycle is not observed in closed-loop system (3),
(4). As proven in [11], 1-cycle always exists but does not
have to be stable.

B. Stability

To sustain the desired periodical solution in closed-loop
system (3), (4), l-cycle has to be orbitaly stable which
property is guaranteed by stability of the fixed point.

Actually, stability of the 1-cycle is readily achieved with-
out impulsive feedback (4), i.e. with constant modulation
functions F'(z) = A, ®(2) = T (thus implying K = 0 in
(11)) which is equivalent to driving (3) open-loop with a train
of equidistant impulses with constant weights. The impulsive
feedback is though instrumental in improving the conver-
gence to the desired periodical solution under deviation. As
(7) implies, without the feedback, the (local) convergence is
determined by the spectral radius of e4” that is always less
than one, due to A being Hurwitz. Recalling (12), it also
follows that increasing ®'(zp) and decreasing F”(zg) leads
to a larger spectral radius of Q'(X) and, eventually, loss of
fixed point stability. Then, another type of periodic solutions
arises. Since the standard bifurcation mechanism in the IGO
is frequency doubling [14], a stable 2-cycle typically emerges
when a 1-cycle loses stability.

A numerically calculated illustration of 1-cycle stability
is provided in Fig. 2. The spectral radius p(Q’(X)) is more
sensitive to ®’(zg) than to F’(zp). Therefore, manipulating
the dose administration time by means of frequency modu-
lation is more potent way of controlling the plant than dose
adjustment, i.e. amplitude modulation.

Spectral radius of the Jacobian

Fig. 2. Spectral radius p(Q’ (X)) as function of F”(z) and ®’(2q). The
stability border is depicted by the crossing of the colored and grey plane.
The mean population value of « is used.

Notably, the Jacobian only characterisers the dynamical
behaviors of a linearization of (3),(4) in vicinity of the fixed
point X. Then Fig. 2 reflects the stability properties of the
linearized system that do not necessarily coincide with those
of the underlying nonlinear dynamics.

C. Convergence rate

The eigenvalues of the Jacobian are as well the multipliers
of the fixed point and, besides the convergence rate to the
periodic solution, define the character of the transients. In
dosing applications, it is desirable for a fixed point to possess
positive multipliers as they render a (locally) monotone
convergence of the desired solution. By making use of (10),
the problem of minimizing the spectral radius of the Jacobian



by selecting K in (11) is
K* = argm}én max,_ & (eAT +F'(50)JC + @' (50) DC) |,

where £(-) denotes eigenvalue. The problem of minimizing
the spectral radius of a non-symmetric affine matrix function
is considered in e.g. [15]. It is non-convex and non-smooth
as the eigenvalues are generally not differentiable.

a) Amplitude modulation: To obtain a better insight
into the spectral properties of Q’(-) and how they depend on
the impulsive controller, consider a special case of amplitude
modulation that is obtained from (4) by letting ®(z) = T.
Then the Jacobian takes the form of

Qr(X) = e +F'(20)JC.

Here vector J = 47 B is the first column of the matrix
exponential, which can be found as follows [13]

oAt
e~ ut 0 0
gite[—art, —axt] e~ a2t 0
g192t% e[—ait, —aqst, —azt] gote[—ast, —ast] e !

Proposition 2: Let £ be a real eigenvalue of Q=(X). A
corresponding eigenvector is then given by
—a1T
F /(ZO)efaliT_g

V= |F(z)¢ g ot
1

and the characteristic polynomial of Q’z(X) is

D(s) = s° — y15% — Y25 — 73 =0, (14)

where
"= e—alT _|_e—a2T +e—a3T
+ F'(20)9192T? e[—a1 T, —axT, —asT],
o = F'(20)g192T? (e[—a1T, —asT) e[—asT, —asT)
- eiazT e[—alT, —ClQT, —a3T]) —
_ e—(al-‘raz)T _ e—(al +a3)T _ e—(a2+as)T7

Y3 = e~ (a1+as+as)T
Proof: The proof is straightforward and omitted here. B

The coefficients of characteristic polynomial (14) provide
information on the eigenvalues of Q%(X) since v; =
Tr Qp(X) = Y76 and 75 = detQu(X) = [I} &
Apparently, the product of the eigenvalues of the Jacobian
is independent of the amplitude modulation feedback and a
decrease in one of the eigenvalue will be accompanied with
a rise in the other ones. The sum of the eigenvalues is an
affine function of F’(zg). All the Jacobian eigenvalues are
influenced by the amplitude modulation characteristic.

To maximize the convergence rate to the desired solution
of the linearized at the fixed point closed-loop dynamics of
(3),(4), one seeks for the value of F’(zp) that minimizes
the spectral radius of Q’z(X). Fig. 3 shows the absolute
values of the eigenvalues of Q% (X) as function of F’(z).
The minimum spectral radius value is achieved at the (Hopf)
bifurcation point where two real roots of (14) turn into a
complex conjugate pair.

Absolute values of the eigenvalues of QL(X)

Mutpler 1]
——— [Multpler 2]

[Muttpler 3|

)

Fig. 3. Absolute values of the eigenvalues of Q% (X) as function of
F’(z0). The minimal spectral radius is depicted by dashed line.

Minimal spectral radius of Q(X) over the model population

min p(Q}(X)) =0.083235
max p(Qf (X)) =0.27817

Fig. 4. Histogram of minimal spectral radii of Q(X) over the NMB
model population. An approximation with Beta distribution is provided for
reference.

b) Phase modulation: Similarly to the case of pure
amplitude modulation above, consider

Q(X) =T 490/ (2) DC.

This type of impulsive feedback is obtained from (4) by
assuming F'(zg) = A. The slope of the frequency modulation
function has to be positive in order to enforce sparser drug
administration intervals for an elevated output. A faster
convergence is achieved by the impulsive feedback before
the Hopf bifurcation occurs and complex values of the
multipliers arise, Fig. 5.

Absolute values of the eigenvalues of Q;(X)

4 005 01 015 02 025 03 035 04 045 05

@2y

Fig. 5. Absolute values of the eigenvalues of Q7 (X) as function of
®’(zp). The population mean value is assumed for «. The minimal spectral
radius is depicted by dashed line.



¢) Amplitude and phase modulation: The convergence
to the desired 1-cycle, when both amplitude and frequency
modulation are exploited in closed-loop system (3), (4), is
difficult to analyze analytically. In Fig. 6, the spectral radius
of Q'(X) is calculated for the values of ®’(zy) and F”(zp)
where the multipliers are real. The manifolds where the
direct and reverse Hopf bifurcations occur (the edges in blue)
are affine functions of ®'(zy) and F’(zp). This is in line
with the stability border observed in Fig. 2 and a direct
consequence of the Jacobian being an affine matrix function
on the modulation functions slopes, cf. (10). Obviously, the
multipliers are always real for ®'(z9) = F'(z9) = 0. When
F’(zp) decreases from zero to some negative value, lower
values of ®’(z) are are required to preserve fixed point
stability and improve convergence without giving rise to
oscillating transients. Quite soon, when F”’(zp) < —8.3, the
use of amplitude modulation definitely results in complex
multipliers.

Convergence rate for real multipliers

Fig. 6.  Spectral radius of Q’(X) as function of ®'(z9) and F’(z0).
Green and light blue surfaces — spectral radius of the Jacobian when all the
multipliers are real. Spectral radius is assigned a value of —1 when there
are complex multipliers (dark blue area). Grey plane — stability border. Red
circle — the optimal value F”(z09) = —8.2600 (only amplitude modulation)
for the population mean «. Blue circle — the optimal value ®'(z9) = 0.29
(only frequency modulation) for the population mean «.

D. Modulation functions

Following [16], select the controller modulation functions
as piecewise affine, i.e.

i3 Dy < kof + K,
D) =S kol + k1 Py < kol + Ky < Do,
®y ko€ + k1 < @4,
Fy ks€ + ks < F1,
F(&) =S ki€ +ks Fi < ko€ +ks < P,
Fy Fo < kg€ + k3.

Recalling from (2) that y(t) € [0,100], the following
inequalities apply

D) < Ky, 100ke + k1 < Og, F1 < k3, 100ky + k3 < F.

15)
From the bounds on the modulation functions, it follows
that the feedback cannot administer a dose that is greater

than F5 or lower than F}. Further, no dose is administered
sooner than ®; after the previous one and at least one dose
is administered within a time interval of ®;. These bounds
can thus be easily obtained by inspection of the manual
medication protocols for the drug in question.

VII. SIMULATION EXAMPLE

Consider a 1-cycle in closed-loop system (1), (2), (4)
with 300 mg of atracurium administered each 20 min (i.e.
A = 300,7 = 20) and, for the population mean values of
«, 3, design a pulse-modulated controller that sustains this
periodic solution.

The fixed point of the desired 1-cycle is given by (13)

XT =[269.5974 84.5819 13.6249] .

A periodic solution corresponding to this fixed point is
depicted in Fig 7. The corridor in which the periodic solution
evolves can be computed without performing a simulation
by evoking Proposition 2 in [16]. Notably, the solution
in question is a result of driving Wiener system (1), (2)
by a train of equidistant impulses, essentially without any
feedback involved.

For F'(-) and ®’(-) obeying (15), by applying the chain
rule, one has

(16)

where 7o = CX and

410003,

(Cho+6)"

This yields the numerical values 7o = 13.6249, /(7o) =

—0.4073. To obtain a 1-cycle with the desired parameters,
the following equations have to hold

F(5o) = (F o ©)(0) = kap(o) + ks = A,
D(0) = (P 0 ) (Yo) = katp(To) + k1 = T.

With the help of Fig. 6 and for the desired 1-cycle, select
three sets of values of F’(-), ®'(+) to illustrate the impact of
the pulse modulation feedback design degrees of freedom.
The slope of the amplitude modulation function is kept the
same, implying that k3 and k4 do not change across the cases.

1) F'(§o) = —0.1 and ®'(gp) = 0.29 are well in an

area where the Jacobian has real stable multipliers and
possesses the eigenvalues spectrum

a7)

o (Q) = {0.2348,0.1814,0.0003}, p(Q) = 0.23485.

From (16), (17), it follows then ki = 21.5133, ko =
—0.7119, k3 = 299.4782, k4 = 0.2455.

2) Now the slope of the frequency modulation function
is increased. For F'(§o) = —0.1 and ®'(go) = 0.35,
two multipliers turn into a complex conjugate pair and
define the spectral radius of the Jacobian

o (Q) = {0.1972-£0.0870i,0.0003}, p(Q) = 0.21554.



The coefficients of the frequency modulation function
are kp = 21.8264, k2 = —0.8592.

3) With a further increase in the frequency modulation
function slope, F’(3y) = —0.1 and ®'(go) = 0.4, the
imaginary parts of the complex multiplier pair grow,
as does the spectral radius of the Jacobian

o (Q) = {0.1881£0.11957,0.0002}, p(Q) = 0.22288,

and k; = 22.0873, ko = —0.9820.

Now, the impulsive controller is completely defined and
its closed-loop dynamics can be simulated, see Fig. 8. The
transients in the beginning of the initial condition responses
are identical since the modulation functions saturate at the
same level. This a desirable safety feature that otherwise
takes a model-predictive controller to be properly ensured.
In Case 1, with the real multipliers, the convergence to the
1-cycle is slower than for the other cases, but does not
exhibit an overshoot, i.e. overdosing (crossing the lower
corridor boundary). By allowing complex multipliers with
small imaginary parts, as in Case 2, a faster convergence and
a smaller spectral radius are achieved, while the overshoot is
hardly noticeable. When the imaginary parts of the complex
multipliers become comparable in magnitude with the real
parts, the overshoot is clearly observed. Yet, it is probably
still acceptable since the plant output (NMB effect) enters
the desired corridor and causes the onset of NMB faster in
all other considered cases. This is despite the fact that the
spectral radius of the Jacobian in Case 3 is higher than in
Case 2. Notice also that the controller tends to produce an
overshoot about 40min into the NMB procedure.

Continuous nonlinear plant output

= Ya =21757

Yoo =1.3882

0 50 100 150 200 250 300 350
Time, min

Continuous linear block output

Fonae =16.0205

Fig. 7. The designed 1-cycle initiated from the fixed point X . The nonlinear
output y(t) (top plot) and the linear output g (t) (bottom plot) are presented.

VIII. CONCLUSIONS

A pulse-modulated feedback controller is applied to a dos-
ing problem of neuromuscular blocking agent. The proposed
controller design method is based on the stabilization of the
fixed point of a discrete map describing the evolution of the
state vector of the continuous plant from an impulsive control
action instant to the next one. Stability of the fixed point
guarantees the existence of a basin of attraction along the
stationary trajectory where the perturbed closed-loop system
solution converges to the stationary one. The convergence

Contii i plant output

——Case 1
Case2
Cased

0 10 20 30 40 50 60 70 80
Time, min

Fig. 8. Transient process to the 1-cycle for three combinations of modu-
lation functions slopes. Case 1: F'(go) = —0.1, ®'(go) = 0.29; Case 2:
F/(g()) = —0.1, @l(go) = 0.35; Case 3: F/(go) = —-0.1, ‘b/(’go) =0.4.

rate is assigned by the slopes of the amplitude and frequency
modulation functions of the impulsive controller.
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