
Mohammadreza Amel Solouki

Simulation Techniques For Rapid Software Development and
Validation

Department of Control and Computer Engineering
Politecnico di Torino,Turin, Italy

Abstract

Random hardware failures (RHFs) pose a significant risk, potentially
leading to data corruption and Control Flow Errors (CFEs) within embed-
ded systems. To counteract these vulnerabilities, hardening strategies are
employed, leveraging either specialized hardware or Software-Implemented
Hardware Fault Tolerance (SIHFT) methods. This thesis introduces a novel
approach, focusing on the C-level implementation of SIHFT techniques to
detect CFEs, alongside the development of simulation techniques for rapid
software development and validation. Our proposed approach centers on ap-
plying SIHFT methods to detect CFEs within C language-based application
code preceding compilation.

However, evaluating these methods presents challenges, notably in terms
of the introduced overhead to code size and, critically, real-time application
execution. The majority of these methods in the literature are implemented
using low-level languages like Assembly. Unfortunately, the development flow
for embedded systems applications prefers high-level programming languages
like C, aligning with functional safety standards.

Nevertheless, a portion of code persists in Assembly language, where the
compiler can automatically insert SIHFT methods, albeit typically limited
to highly optimized routines or device drivers. An alternative approach,
compiling the application code and then hardening the resultant assembly
code, introduces more substantial overhead compared to protecting individ-
ual statements in a high-level programming language before compilation.

1



Therefore, our proposed approach in this thesis centers on applying SI-
HFT methods to detect CFEs, also recognized as Control Flow Checking
(CFC), within C language-based application code preceding compilation.
To illustrate this approach, we conducted a comparative analysis of two es-
tablished software-based control flow error detection methods—Yet Another
Control-Flow Checking using Assertions (YACCA) and Random Additive
Control Flow Error Detection (RACFED)—implemented in the C program-
ming language. We also assessed the impacts of compiler optimizations.

In the contemporary automotive industry, there is a prevailing trend to-
ward adopting the model-based software design approach. This involves au-
tomatically translating executable algorithm models into C or C++ source
code. In this context, CFC methods have been integrated into the application
behavioral model, and off-the-shelf code generators seamlessly produce the
fortified source code for the application. It is worth noting that the majority
of SIHFT methods primarily target soft errors, such as single-event upsets
typically manifesting as bit flips.

Consequently, the diagnostic metrics commonly provided in the litera-
ture,such as error detection latency, fault coverage, and mean time to failure
(MTTF), fall short of effectively characterizing these methods when consid-
ering the broader spectrum of faults, especially permanent random hardware
faults like stuck-at faults. To bridge this gap, our thesis addresses a scenario
pertinent to the automotive industry, where the primary concern revolves
around permanent random hardware faults, particularly stuck-at faults. Fur-
thermore, we propose a classification scheme aligned with ISO26262 com-
pliance. This classification aims to benefit developers within the automo-
tive sector, where cost and safety considerations often drive the adoption of
software-only strategies.

Our results indicated that the diagnostic coverage (DC) for the YACCA
method was highest with the O1 optimization level, showing a marked im-
provement over the unoptimized version (O0). For RACFED, a similar trend
was observed, with the detection rate increasing significantly from O0 to O1.
However, at higher optimization levels (O2 and O3), while the code size was
reduced, some intra-block detection capabilities were lost.

Additionally, our experiments quantified the overheads introduced by
these methods. For the TS benchmark, YACCA imposed a text segment size
(TSS) overhead ranging from 43.8% at O0 to -28.8% at O3, while RACFED’s
TSS overhead ranged from 261.23% at O0 to 100.69% at O3. Execution
time overheads, measured as the increase in the number of executed instruc-

2



tions, showed that YACCA imposed a 318.17% overhead at O0, decreasing
to 90.55% at O3. RACFED exhibited a 44.58% overhead at O0, which turned
into a slight reduction of 5.06% at O3. These results underscore the trade-
offs between different levels of compiler optimizations and the effectiveness of
CFC methods, providing crucial insights for developers optimizing embedded
systems for reliability and performance.

3


