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Abstract 

Associating one or more Gene Ontology (GO) terms to a protein means making a statement about a particular functional characteristic of the 
protein. This association provides scientists with a snapshot of the biological context of the protein activity. This paper introduces PRONTO- 
TK, a Python-based software toolkit designed to democratize access to Neural-Network based complex protein function prediction workflows. 
PRONTO-TK is a user-friendly graphical interface (GUI) for empowering researchers, even those with minimal programming experience, to lever- 
age state-of-the-art Deep Learning architectures for protein function annotation using GO terms. We demonstrate PRONTO-TK’s effectiveness 
on a running e xample, b y sho wing ho w its intuitiv e configuration allo ws it to easily generate comple x analy ses while a v oiding the comple xities 
of building such a pipeline from scratch. 
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ntroduction 

nderstanding the functional characteristics of proteins is vi-
al for progressing toward a better understanding of metabolic
rocesses in living organisms. Among several classification
chemes such as the Enzyme Commission (EC) numbers ( 1 )
nd the Kyoto Encyclopedia of Genes and Genomes (KEGG)
 2 ), the Gene Ontology (GO) knowledgebase devised a stan-
ardized vocabulary to describe proteins functionalities in a
uman- and machine-readable manner using hierarchically re-
ated functional classes organized into three different ontolo-
ies: MFO (Molecular Function Ontology), BPO (Biological
rocess Ontology), and CCO (Cellular Component Ontol-
gy), i.e. the functional role(s), biological mechanism(s), and
ellular component(s) or sub-cellular localization(s) in which
he protein acts ( 3 ). GO terms can facilitate the annotation
nd classification of gene products in the growing number of
enome sequences and molecular profiling datasets, acceler-
ting our understanding of individual species’ and complex
cosystems’ functioning ( 4 ,5 ), and enabling the conception
f metabolic engineering and synthetic biology tools for ba-
ic and applied biological research ( 6 ). Since designing and
unning experiments to functionally annotate proteins is ex-
ensive and time-consuming, most proteins currently with-
ut known functions (i.e. assigned GO terms) are unlikely
o be experimentally evaluated anytime soon. Breakthroughs
n natural Language Models (LM) ( 7 ) have recently shown
heir enormous potential in filling the sequence-annotation
ap by generating descriptive representations, i.e. embeddings,
or the steadily growing number of proteins with unknown
unction from just their sequences ( 8–11 ) and overcoming
he limitations of standard feature-based Machine Learning
ML) methods. LM representations have been used as input
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to subsequent supervised training ( 12 ), thereby transferring
knowledge acquired during task-agnostic, self-supervised pre-
training on massive amounts of proteins to the task of predict-
ing specific aspects of protein functionality. Existing studies
showed the embeddings-based approach features remarkable
predictive performance ( 13 ,14 ) on various tasks relevant for
computational biology such as shedding light on gene regula-
tion ( 15 ) by predicting, among others, protein–nucleotide in-
terfaces ( 16 ,17 ), chromatin accessibility ( 18 ) and phenotypes
( 19 ). Despite the success of Deep Learning applications in re-
cent years, a key challenge remains: making these powerful
tools accessible to life science researchers who may not have
extensive programming experience. 

This paper introduces PRONTO-TK, an open-source
Python PROtein Neural neTwOrk ToolKit, designed to ad-
dress this gap. PRONTO-TK simplifies the use of two-stage
transfer learning. This approach leverages cutting-edge, LM-
based representations of biological sequences, as described in
( 20 ), to generate predictions for protein function across differ-
ent species, using GO terms. To translate proteins into embed-
dings, PRONTO-TK utilizes the pre-trained model ProtT5-
XL, a self-supervised model that was shown, in a recent study
( 20 ), to outperform existing methods relying on evolutionary
information. Its effectiveness in two-stage transfer learning
for complex prediction tasks has been further confirmed in
( 21 ). As the main source of data, PRONTO-TK can down-
load datasets from the UniProt database ( 22 ). PRONTO-TK
is an open-source project and can be downloaded from https:
// github.com/ alfredobenso/ PRONTO-TK and https://doi.org/
10.5281/zenodo.13272726 . 

PRONTO-TK is a user-friendly solution that streamlines
the prediction pipeline, from dataset creation, to training and
2024. Accepted: August 15, 2024 
enomics and Bioinformatics. 
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test, and to final validation. In particular, it has been designed
to perform the following tasks: 

• to download from UniProt, given one main GO term and
a set of taxonomic identifiers, a dataset of proteins anno-
tated with the required GO term (and possibly its descen-
dants), as well as a dataset of proteins NOT annotated
with the same term(s). 

• to process the protein sequence dataset and convert its
protein sequences into embeddings. 

• to train, test and fine-tune Deep Learning models us-
ing the selected datasets, while allowing users to ex-
plore different combinations of hyper-parameters. In this
phase, the configuration file allows to merge together
more dataset files. 

• to validate / infer the functionality of unknown (during
training) protein sequences, providing each protein with
a probability of being tagged with the initial GO term
(but not with descendant GO terms, since multi-label
predictions would require a different setup). 

In the realm of protein function prediction, PRONTO-
TK stands out for focusing primarily on single GO term
annotation, which enhances prediction accuracy by lever-
aging state-of-the-art Deep Learning models. This singular
focus allows PRONTO-TK optimizing predictions for spe-
cific protein functions, and differentiates itself from tradi-
tional multi-label prediction tools like NetGO 3.0 ( 11 ), Deep-
GO W eb ( 23 ), T ALE ( 24 ) and A TGO ( 25 ). Its flexibility in
hyper-parameter exploration during model training further
enhances customization options, distinguishing it from tools
like PANNZER ( 26 ) and PANDA ( 27 ) ( 28 ). PRONTO-TK
also excels in comprehensive validation, evaluating the prob-
ability of GO term predictions for individual protein se-
quences, thus ensuring robust prediction reliability. Address-
ing the computational demands of large datasets efficiently,
PRONTO-TK can support researchers in advanced protein
function predictions. 

In the remainder of this paper we will use a running ex-
ample to demonstrate the PRONTO-TK main features and
flexibility. We will create a pipeline able to annotate proteins
with the GO term ‘DNA binding transcription factor activ-
ity (GO:0003700)’. We chose this problem because Transcrip-
tion Factors (TFs) are sequence-specific DNA-binding pro-
teins that exert a central role in transcriptional initiation. TFs
promote or block the RNA polymerase to regulate the rates of
the transcription of a set of genes. Analyzing transcriptional
regulation enables us to understand an essential regulatory
layer by which an organism controls the expression of genes
in response to genetic or environmental cues. Identification of
TFs is a starting point for elucidating transcriptional regula-
tory activity. 

The reader should also keep in mind that the goal of this
paper and of this example is to demonstrate the flexibility of
the PRONTO-TK’s pipeline in fast prototyping and testing ex-
isting or future Deep Learning models that operate on protein
embeddings, and not to propose a novel annotation algorithm.

Materials and methods 

PRONTO-TK allows defining two separate pipelines: a Data
Pipeline to create an embeddings’ dataset from UniProt
queries, and a Training / T est / V alidation one to run a Deep
Learning experiment on those datasets. Both pipelines are con-
figured through a configuration file that allows controlling all 
the functionalities of the tool. The use of a configuration file 
serves as a user-friendly alternative to writing complex code 
for defining pipeline parameters. No advanced Python pro- 
gramming skills are necessary to use PRONTO-TK. 

PRONTO-TK’s GUI is presented in Figure 1 and it allows 
users to both run each pipeline in batch, or one phase at a time.
Clicking each phase opens a separate window that includes a 
progress bar and a very detailed real-time log of the executed 

operations. The Data Pipeline consists of two separate phases: 

(1) Download from UniProt : the first step of the Data 
Pipeline downloads from UniProt a dataset of proteins 
annotated with a set of user-selected GO term (the 
main one and possibly its descendants). The configu- 
ration file let users decide if to look for proteins an- 
notated with the chosen GO term only, or the ones 
tagged with the chosen GO term and any of its de- 
scendants in the Gene Ontology. The tool envisages the 
option of downloading the whole proteins associated 

with a certain GO term that include the proteins di- 
rectly associated with the GO term and the proteins 
directly associated with any of its descendants. With 

this step, we prepare the data that will be later used to 

train the Deep Learning models. The configuration file 
allows defining how to select proteins that will be La- 
beled as ’1’ (i.e. labelled with the chosen GO term(s)) 
and how to select the Label ’0’ proteins. Besides the 
target GO terms, the configuration file allows to se- 
lect the Annotation Type, i.e. the evidence upon which 

a GO annotation is based on ( manual , automatic , or 
both), the Review flag indicating whether the selected 

proteins belong to the Swiss-Prot section of UniProtKB 

( reviewed ) or to the computer-annotated TrEMBL sec- 
tion ( unreviewed ), and a maximum number of records 
to download. UniProt is not the only possible source 
of data. Any other source of data can be used, pro- 
vided that the format of the data set is identical to 

the one provided by UniProt (in terms of labels and 

type of information). In our illustrative experiment, we 
chose to download from UniProt the proteins associ- 
ated with the GO:0003700 term (DNA-binding tran- 
scription factor activity) and any of its descendants,
and to select proteins from the Terrabacteria taxon- 
omy (#1783272). We configured the tool to download 

all proteins that are annotated with the selected GO 

terms assigned the reviewed status, regardless of the 
assertion mode ( manual or automatic ). To select the 
‘Label 0 proteins’ (i.e. proteins not annotated with any 
of the selected GO terms) we chose reviewed proteins 
provided with manual annotation. When executed, this 
task downloaded a pool of 2557 proteins to be used in 

the experiment. 
(2) Protein embedding : before being able to be used by 

a Neural Network, each protein sequence is trans- 
formed into a set of 1024 embeddings using ( https: 
// github.com/ agemagician/ ProtTrans ). A state-of-the- 
art Deep Learning model ( prot-t5-xl-half-uniref50-enc 
was the best model allowed by our hardware, but it 
can be easily changed in the configuration if a more 
powerful hardware is available. The final embeddings 
dataset size is, in our example, 336 MB. Using embed- 
dings to represent protein sequences mitigates concerns 

https://github.com/agemagician/ProtTrans
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Figure 1. PRONTO-TK’s Graphical User Interface. ( A ) Main Control Panel: each pipeline can be enabled in full (by clicking on the run button), or 
step-b y -step (b y clic king on eac h individual phase). Eac h phase is enabled if the correct input files are present. Available files are colored in orange, 
whereas missing ones are colored in purple. If only some of the required files are present, the file box is colored in light gray. ( B ) Configuration Panel for 
the experiments’ configuration files. The configuration panel allows setting all the configuration parameters. A short help precedes every configuration 
item. ( C ) Log window for each step of the pipeline. A progress bar and a text box allow to track the task progress. 
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related to sequence identity, as they capture higher-
level functional and structural properties beyond sim-
ple sequence similarity. This approach ensures robust
model performance evaluation, making traditional se-
quence identity-based data splitting less critical. 

The Training / T est / V alidation Pipeline implements the fol-
owing steps: 

(1) Data filtering : after generating the final embeddings’
dataset, the tool allows customizing how to select data
for the different phases of the pipeline (Training, Fine
T uning, and V alidation / Inference). Again, the param-
eters are Annotation Type / Review / Species. In case of
data overlapping between Training and Fine Tuning (if
for example the user chooses the same filters for both
phases), it is possible to specify the percentage of data
to allocate to each phase. PRONTO-TK affords two
different types of experiment: 
• Single : in this case the dataset is typically divided

into two parts: a training set and a validation set.
The model is trained on the training set and then
evaluated on the validation set. This is a straight-
forward method to assess the model’s performance.
The configuration allows users to exclude or include
different species in each of the two steps. 

• Lea v e-one-species-out : in a Leave-One-Species-Out
experiment, the model is trained multiple times. In
each iteration, one species is left out from the train-
ing set and used as the validation set. This process
is repeated for each configured species (or group of
species). This method is particularly useful to esti-
mate the model accuracy in classifying “de novo”
species. 

(2) Training, test and fine tuning : Training, Test, and Fine
Tuning are carried out using one of the two models pre-
sented in ( 21 ). Nevertheless, the code allows, theoreti-
cally, users to create and use custom models, provided
their functional and data interface remains the same.
The tool also allows users to easily perform hyper-
parameter tuning (in both Training and Fine Tuning)
by defining a range of batch sizes, epochs, and learning
rates to explore. To set these parameters, in our exper-
iment we used the following rule-of-thumb: 

3 ∗ Dat aset Size ≈ (batchSize ∗ Epochs ) 

In our example, given a dataset of 2557 proteins, we
decided to explore all configurations corresponding to
the combination of the following parameters: batch
size: 30, 100, 300; epoch: 50, 75, 100; learning rate:
0.0005, 0.0001, 0.00001 (for a total of 27 different
models). At the end of the experiment PRONTO-TK
produces several plots that can support the user in eval-
uating the best model to choose (Figure 2 A, B). In our
transcription factor annotation experiment we decided
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Figure 2. PRONTO-TK’s visual outputs. ( A ). A plot of loss and accuracy versus epochs for each trained or fine-tuned model. ( B-1 ). 3D plot summarizing 
the performances of the trained models. Each point corresponds to a combination of the input parameters (in this case w e ha v e 27 points corresponding 
to the 27 models). The color of the dot derives from the F-score of the model. Red dots have an F -score < 0.9. Green dots are shaded accordingly to 
their F-score (darker green is a lower F-score). The yellow dot corresponds to the model with the best F -score. Moving the mouse over a dot shows its 
parameters. ( B-2 ) 3D plot of A ccuracy, P recision, and R ecall f or all trained models. Larger points correspond to the a v erage v alues (of A ccuracy, P recision, 
and Recall) for all models trained with the same parameters for each leave-one-species-out species. Moving the mouse over a point will display the 
corresponding model parameters. ( C ). For each combination of model parameters, the violin plots of the distribution of the predicted probabilities for 
each label in the validation of each ‘lea v e-one-species-out’ species. This is repeated for true positives (TP), false positives (FP), true negatives (TN) and 
f alse negativ es (FN), f ollo w ed b y a table reporting the measures of the predictiv e perf ormances achie v ed b y the model f or each species. 
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not to use Fine Tuning, and to select all available data
for training and testing. In order not to compromise the
size of the training while maintaining a statistically ad-
equate number of proteins for validation, we selected
the following leave-one-species-out species: Bacillus
Subtilis , Bacillus anthracis , Mycobacterium tubercu-
losis , Streptomyces coelicolor and Staphylococcus au-
reus . 

(3) Inference : the tool allows running inference on both
labelled and unlabelled datasets and executing a ba-
sic set of statistical analyses. For labelled datasets, it
produces a final table reporting accuracy, precision,
recall and F -score, as well as a set of plots (see Fig-
ure 2 ). In a leave-one-species-out experiment like the
proposed one, these results make it possible to better
understand and quantify how the model will behave
when inferring GO terms for proteins never used in
the training phase. 

Implementation 

PRONTO-TK is fully implemented in Python. All experiments
reported in this paper ran on a Mac Book Pro M2 with 64GB
of RAM and a Metal Performance Shaders (MPS) to leverage
the GPU on MacOS devices. The code is freely available on
GitHub and Zenodo and its modular organization makes it
easier for the community to modify it and to participate in
improving the tool and extend its capabilities. 
Results 

We evaluated the performance of our pipeline in predicting 
protein annotations with four measures: accuracy, precision,
recall and the F -score. As anticipated, PRONTO-TK is char- 
acterized by the unusual co-existence of ease in usage and con- 
siderable room for personalized configuration of the pipeline.
To illustrate this remarkable feature, we presented the out- 
comes of the pipeline in the selected species in relation to dif- 
ferent hyper-parameters settings. It is worth noting that the 
sensitivity analysis drafted here is not meant to rigorously 
meet any optimization of predictive performances. Nonethe- 
less, as shown in Figure 2 C, the pipeline achieved high perfor- 
mance as accuracy was found to vary, across the target species 
for transcription factor prediction, in the range 0.91–1.0, pre- 
cision in the range 0.85–1.0, recall in the range 0.96–1.0 and 

the F -score in the range 0.92–1.0. 
To optimize and improve the overall classifier accuracy, we 

leveraged the visualization capabilities of our tool, as depicted 

in Figure 2 B.1, to comprehensively analyze, adjust, and re- 
fine our hyper-parameter settings, namely Learning Rate (LR),
Epoch Number (EN), and Batch Size (BS). Here, we provide 
a brief explanation about the interpretation of the plot pre- 
sented in Figure 2 B. 

The plot clearly illustrates that LR stands out as the most 
critical parameter. Although an optimal solution exists at in- 
termediate LR (LR = 0.0001), such LR setting exhibits insta- 
bility, as evidenced by its considerable fluctuation in F-score 
in response to changes in other meta-parameters (BS and EN).
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owever, increasing the LR, although resulting in sub-optimal
olutions in terms of accuracy or F-score, leads to an overall
ncreased stability of the solution pool, denoted by points re-
aining solid green despite changes in other meta-parameters.
onsequently, in this example we would initially select the
ost reliable LR and subsequently fine-tune other parameters

n the quasi-optimal solution space. This entire process may
e iterated by updating meta-parameters boundaries to allow
or a coarser and finer exploration of the parameters. 

iscussion and conclusions 

RONTO-TK makes protein function prediction accessible
o a broad scientific audience, extending the access to state-
f-the-art ML tools based on representative languages to
esearchers with limited programming expertise. This user-
riendly toolkit has the potential to accelerate discoveries in
unctional genomics and protein science because it contrasts
he complexity of writing code for each stage of the data
ipeline (data download, pre-processing, model training, in-
erence) with the ease of configuring these steps in PRONTO-
K’s configuration file and GUI. The fine-grained configura-
ility allows researchers to tailor the prediction process to
heir specific needs and to the specific datasets. Last but not
east, the PRONTO-TK’s pipeline accelerates protein func-
ion discovery and facilitates large-scale functional annotation
hile standardizing the process and therefore enhancing re-
roducibility of the results. 

ata availability 

RONTO-TK, along with its documentation and manu-
ls, is available at https:// github.com/ alfredobenso/ PRONTO- 
K and https:// doi.org/ 10.5281/ zenodo.13272726 . 
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