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Abstract: This paper tackles the problem of resource sharing and dynamic task assignment in a
task scheduling architecture designed to enable a persistent, safe, and energy-efficient Intelligent
Transportation System (ITS) based on multi-rotor Unmanned Aerial Vehicles (UAVs). The addressed
task allocation problem consists of heterogenous pick-up and delivery tasks with time deadline
constraints to be allocated to a heterogenous fleet of UAVs in an urban operational area. The proposed
architecture is distributed among the UAVs and inspired by market-based allocation algorithms. By
exploiting a multi-auctioneer behavior for allocating both delivery tasks and re-charge tasks, the fleet
of UAVs is able to (i) self-balance the utilization of each drone, (ii) assign dynamic tasks with high
priority within each round of the allocation process, (iii) minimize the estimated energy consumption
related to the completion of the task set, and (iv) minimize the impact of re-charge tasks on the delivery
process. A risk-aware path planner sampling a 2D risk map of the operational area is included in the
allocation architecture to demonstrate the feasibility of deployment in urban environments. Thanks
to the message exchange redundancy, the proposed multi-auctioneer architecture features improved
robustness with respect to lossy communication scenarios. Simulation results based on Monte Carlo
campaigns corroborate the validity of the approach.

Keywords: auction; multi-robot task allocation; intelligent transportation system; UAV; drone
delivery; aerial robotics; task scheduling; path planning; aerial package delivery; UAS; dynamic task

1. Introduction

The versatility of Unmanned Aerial Vehicles (UAVs), i.e., drones, is such that they
are being extensively integrated into the technology of Intelligent Transportation Systems
(ITSs) nowadays [1]. Both the efficiency and the sustainability of the ITS technology can
be enhanced by the integration of drones, making UAVs a revolutionizing technology in
this sector. The applications of UAVs in the ITS context are being developed by researchers
and companies all over the world, with a particular focus on urban applications [2]. The
main applications include, but are not limited to, traffic and environmental monitoring,
infrastructure inspection, aerial mapping, surveillance, emergency management, data
collection, and logistics [3].

Considering the drone delivery application in an urban environment, which is the main
focus of this work, UAVs are seen as a strategic technological advancement for addressing
the challenges of urban transportation, being able to reduce the environmental impact of the
transportation network as well as reduce costs and delivery time [4]. Whether UAVs operate
in cooperation with traditional transportation systems, e.g., trucks, or they constitute a
transportation system on their own, their capability of enhancing the sustainability and
efficiency of the delivery process is unquestionable. This is mainly due to the capability of
drones to (i) navigate the crowded urban environment with ease, independently of both the
complexity of the urban landscape and the road traffic conditions; (ii) reduce both urban
traffic congestion and delivery costs, especially in case of small-package delivery, with
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superior efficiency with respect to trucks; (iii) enable delivery services in areas difficult
of reach by conventional ground vehicles or areas hit by natural disasters; (iv) enable
on-demand dynamic delivery services with reduced waiting times for customers; (v) collect
real-time data to be included into smart city platforms, thus enabling the continuous
optimization of the delivery service itself as well as improving decision-making capabilities
in a smart city context; (vi) rapidly perform medical deliveries, and (vii) offer a variety of
simultaneous services throughout their operation for transportation purposes, such as data
analysis, prediction of patterns, etc. [5,6].

On the other hand, the drone technology still faces some technical, environmental,
regulatory, and societal barriers for its large-scale deployment in urban environments [7].
Limited flight range due to battery capacity, energy consumption, integration into the
current airspace, licensing of pilots, noise pollution, safety and security risks, poor with-
standing capability of adverse weather conditions, privacy concerns, infrastructure require-
ments, and high initial costs are some of the main challenges that have not been completely
addressed yet [8]. Therefore, the sustainability of UAV-based ITSs will require a non-trivial
joint effort from regulators, researchers, logistics and drone companies, and urban planners
to overcome the current barriers that limit the real-world applicability of unmanned aerial
networks in smart cities.

When dealing with a multi-robot system, such as an ITS based-on UAVs [9–12], the
conceptualization of a task allocation architecture is needed to enable an optimal distri-
bution of tasks among the robots. The Multi-Robot Task Allocation (MRTA) problem is a
variant of the well-known NP-hard Traveling Salesman Problem (TSP), and several sub-
optimal approaches have been proposed in the literature [13–16]. The main task allocation
algorithms for UAV networks proposed in the literature are deterministic algorithms [17],
stochastic algorithms [18], auction-based algorithms [19], bio-inspired algorithms [20],
and edge-computing algorithms [21]. Depending on the communication architecture im-
plemented in the multi-agent system, MRTA algorithms can be classified as centralized,
decentralized, and distributed. The latter refers to a case where the architecture is hybrid. In
centralized task allocation architectures, a central coordinator (considering the information
shared by the other robots) allocates the tasks to the robots, maximizing the global utility
of the multi-robot system. On the other hand, in a decentralized architecture, the tasks
are allocated to the robots according to the partial knowledge of the environment that
each robot has. Market-based allocation strategies are widely used to assign tasks (items)
in multi-robot systems since they represent an effective and intuitive way of accounting
for different robots’ costs with respect to the tasks to be allocated [22]. Auction-based
algorithms feature, in general, polynomial computational complexity and are suitable
for every type of communication architecture. A classical auction-based task allocation
algorithm works according to a communication protocol between a central allocating robot
(auctioneer) and the other robots of the system (bidders). The protocol is repeated for every
round of allocation. The total number of rounds depends on the number of tasks advertised
and allocated per round, and the auction algorithm is defined as either multiple-item or
single-item accordingly. A standard auction-based allocation protocol consists of four
Phases (P), as follows:

• Advertisement (P1): the auctioneer broadcasts the task to the robots of the network.
• Bidding (P2): each robot undergoes a task valuation process and sends its bid to the

auctioneer.
• Award (P3): the auctioneer selects the most suitable robot for the task based on all the

received bids for that task.
• Acknowledgment (P4): each robot acknowledges the assignment to the auctioneer.

A schematic representation of the process is presented in Figure 1.
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Figure 1. Schematic representation of the standard four phases of an auction-based allocation round
in a centralized multi-robot system.

One of the main advantages of auction-based optimization is the low computational
complexity and the ease of hybridization with other optimization approaches. The work
in [23] proposed a dynamic task allocation framework based on the decomposition of
the task assignment problem into two sub-problems, i.e., group-level task assignment
and member-level task assignment. The sub-problems were then solved by using Particle
Swarm Optimization (PSO) together with distributed auctions. A distributed sequen-
tial auction allocation strategy was proposed in [24] to tackle the multi-UAV target task
allocation problem with limited communication range. Detected targets are advertised
sequentially and, depending on the decision of neighbor UAVs, each UAV decides whether
to auction or forfeit the target. A simulation study conducted with different communication
ranges proved the superiority of the distributed sequential auction strategy with respect to
a simpler greedy allocation. Auction algorithms are also exploited for assigning tasks in
dynamic and changeable environments, such as the battlefield environment. The problem
of optimal task rescheduling in such a scenario was addressed in [25], and a distributed
task scheduling algorithm was proposed. By means of a result update strategy, the original
schedule of tasks undergoes a partial reset, and re-planning aiming at payoff maximization
is performed by means of the proposed online auction mechanism. Auction algorithms
are also popular because they can abstract the characteristics and the limitations of the
multi-robot system with respect to the tasks. As shown in [26], a distributed auction-based
assignment strategy for search and destroy missions carried out by Miniature Aerial Ve-
hicles (MAVs) was implemented and tested for different target distributions and sensor
ranges. Combinatorial auction-based strategies [27,28] also represent an efficient and scal-
able sub-optimal solution to the TSP and its variants, such as last-mile delivery with drones
and, in general, Multi-Unmanned Aerial Vehicle Task Allocation (MUAVTA). Applications
for the optimal scheduling of air taxi operations in an urban air mobility context can be
found in [29].

This paper is a follow-up to a previous work on a centralized market-based task
allocation architecture for a drone-based parcel pick-up and delivery system [30]. Such
work consisted of (i) the formalization of a persistent drone delivery problem that takes
into account the safety of UAV flyable paths, UAV battery discharge, task due dates, and
UAV energy consumption for task execution, (ii) the design and implementation of a
dynamic-auctioneer auction-based task scheduling architecture distributed among the
UAVs of the network, (iii) the integration of a risk-aware path planning strategy with an
energy consumption-aware velocity optimizer of task execution within the task scheduling
framework, and (iv) the evaluation of the proposed approach with a real-world aerial
delivery scenario in the city of Turin, Italy. Moreover, the impact of fallible communication
among the drones on the overall assignment of tasks was simulated, highlighting an
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increasing number of unassigned tasks in the final solution for increasing probability of
communication losses in the network.

In this work, the market-based task assignment architecture proposed in [30] is ex-
tended to enable both resource sharing for an even distribution of tasks in the fleet and
allocation of dynamic tasks during each round of the main allocation process. Starting
from the same task allocation architecture proposed in [30], a hybrid variable-auctioneer
auction-based allocation of tasks is nested into the main sequential single-item algorithm.
In this way, besides the allocation of “regular” delivery tasks and re-charge tasks, tasks with
higher priority can be allocated dynamically to the UAVs while the main multi-auctioneer
algorithm is being executed. Moreover, the message exchange in the novel distributed
architecture is more redundant than the one in the previous work. As such, an increased
robustness of the aerial network with respect to communication failures is obtained. The
literature gaps covered in this work are highlighted in the following:

• Formalization of an original drone delivery problem (DDP) with charging hubs, in-
cluding risk-aware route planning, dynamic task allocation, and balance of number of
assigned tasks to each UAV.

• Development of a comprehensive allocation framework for tackling the formulated
problem, optimizing energy efficiency, risk of flyable paths, and flight time.

• Inclusion of a redundant allocation strategy within the formulated architecture to
address lossy communication scenarios.

We advance the state-of-the-art about auction-based task allocation for UAV networks
by not only proposing a combined auction-based task scheduling and path planning
heuristic solution to a drone pick-up and delivery problem with charging hubs, but also
considering dynamic assignment of tasks with high priority within the allocation protocol
and the problem of resource sharing in the multi-robot system.

This paper is organized as follows. In Section 2, the addressed problem is defined, as
well as the assumptions. Section 3 presents the comprehensive auction-based allocation
architecture, including the allocation algorithm, the energy consumption model, the opti-
mization algorithm, and the path planning approach. Simulation results are reported in
Section 4. Conclusions are drawn in Section 5.

2. Problem Statement

The problem addressed in this work can be defined as a combined task allocation and
path planning problem to enable a persistent UAV-based intelligent transportation system
in urban environments. It follows the formalization of the aerial delivery scenario:

• The multi-robot system consists of multi-rotor UAVs operating in a well-defined
populated urban operational area with charging stations.

• The task set consists of payload transportation tasks within the operational area. Each
task is defined as the transportation of a payload mass from a pick-up location to a
delivery location within a delivery time window.

The formulated problem is to define an optimization-based combined task scheduling
and path planning architecture in order to allocate the delivery tasks to the fleet of UAVs,
with the following objectives:

• Minimize the total energy consumption required by the UAVs to execute all tasks.
• Minimize the discrepancy in the number of allocated tasks to each drone, i.e., maximize

the workload homogeneity in the fleet of UAVs.
• Enable the allocation of dynamic tasks with higher priority with respect to the “regular”

set of transportation tasks. An example is represented by the unexpected aerial
delivery of medical samples to a hospital located in the operational area.

• Maximize the safety of the community and the feasibility of deployment of the aerial
system in the real world by predicting risk-aware flyable paths to be executed by the
UAVs [31].
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To improve the clarity of the problem statement, the notations used in this section
are provided in a dedicated “Nomenclature” section at the end of the manuscript, which
includes a complete list of symbols adopted in this work.

Figure 2 represents a simplified example of the problem with three drones, three
delivery tasks, and one charge hub in the city of Turin, Italy.
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To address the problem formulated above, the following simplifying assumptions
were made:

• The payload capacity of a UAV equals its mass.
• A UAV can carry one payload at a time.
• A UAV cannot visit a charge station in loaded conditions.
• At the beginning of the delivery process, the UAVs are fully charged.
• The UAV re-charge time is the sum of the battery re-charge time (linearly interpolated

from the residual battery level of the UAV) and the time needed by the UAV to reach
the charge hub.

• A delivery task consists of six consecutive phases: unloaded UAV take-off, unloaded
UAV cruise, unloaded UAV landing (the parcel pick-up phase takes place in unloaded
conditions), loaded UAV take-off, loaded UAV cruise, and loaded UAV landing (the
parcel delivery phase takes place in loaded conditions).

• A re-charge task consists of three consecutive phases: UAV take-off, UAV cruise, and
UAV landing. In this case, no payload is carried by the UAV.

• UAVs maintain constant velocity throughout each phase of task execution, i.e., UAVs
ascend at constant speed, cruise at constant speed, etc.

• UAV tilt angles are small throughout the flight.
• Turbulent atmospheric phenomena are neglected.

A residual battery level was imposed to each UAV in order to cover the worst-case
scenario, i.e., both the UAV and the charge hub were located at the extremities of the
operational area. EMIN is predicted by the following optimization problem:

EMIN = minECT(VCT), subject to : (1)

h
(

1
V′

1
− 1

V′
3

)
+

dMAX
V′

2
≤ ∆TMAX (2)
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ECT(VCT) ≤ EMAX (3)

VLB< VCT < VUB (4)

with VUB = [VMAX , VMAX , 0] and VLB = [0, 0,−VMAX ]. VCT =
[
V′

1, V′
2, V′

3
]

denotes the
UAV velocity vector for a re-charge task. Equation (1) minimizes the UAV energy to reach a
charge station while considering the constraints on (i) maximum allowable flight time to the
charge station itself in the worst-case scenario (Equation (2)), (ii) maximum energy stored
in the UAV battery (Equation (3)), and (iii) maximum and minimum UAV velocities during
the three phases of a re-charge task (take-off, cruise, and landing), as per Equation (4).

The UAV optimal velocity of execution of a “regular” delivery task is predicted
as follows:

V∗
DT = arg[minEDT(VDT)], subject to : (5)

Ti + h
(

1
V1

− 1
V3

+
1

V4
− 1

V6

)
+

L1

V2
+

L2

V5
≥ TMIN (6)

Ti + h
(

1
V1

− 1
V3

+
1

V4
− 1

V6

)
+

L1

V2
+

L2

V5
≤ TMAX (7)

EDT(VDT) ≤ EU − EMIN (8)

VLB< VDT < VUB (9)

with VUB = [VMAX , VMAX , 0, VMAX , VMAX , 0] and VLB = [0, 0,−VMAX , 0, 0,−VMAX ]. The
energy consumption predicted for the completion of a delivery task is E*

DT = EDT
(
V*

DT
)
.

VDT = [V1, V2, V3, V4, V5, V6] denotes the UAV velocity vector for a delivery task. In Equa-
tion (5), the UAV optimal velocity of execution of a delivery task is computed by minimizing
the energy required to execute that task, subject to the constraints that (i) the task is deliv-
ered within the due date window, as per Equations (5) and (6), (ii) the UAV does not run
out of energy, as per Equation (8), and (iii) maximum and minimum UAV velocities for the
six phases of a delivery task are respected.

The optimal velocity of execution of a re-charge task is predicted as follows:

V∗
CT = arg

[
min

(
h
(

1
V′

1
− 1

V′
3

)
+

d
V′

2

)]
, subject to : (10)

EU − ECT( VCT) ≥ 0 (11)

VLB< VCT < VUB (12)

Equation (10) computes the optimal velocity of execution of a re-charge task by min-
imizing the flight time to the charge station, subject to the constraints that (i) the UAV
does not run out of battery before reaching the charge hub, as per Equation (11), and
(ii) maximum and minimum UAV velocities for the three phases of a re-charge task are
respected.

The UAV optimal velocity of execution of a dynamic delivery task with high priority
is predicted as follows:

V∗
DDT = arg

[
minh

(
1

V ′′
1
− 1

V ′′
3
+

1
V ′′

4
− 1

V ′′
6

)
+

L1

V ′′
2
+

L2

V ′′
5

]
, subject to : (13)

Ti + h

(
1

V ′′
1
− 1

V ′′
3
+

1
V ′′

4
− 1

V ′′
6

)
+

L1

V ′′
2
+

L2

V ′′
5

≥ TMIN (14)

Ti + h

(
1

V ′′
1
− 1

V ′′
3
+

1
V ′′

4
− 1

V ′′
6

)
+

L1

V ′′
2
+

L2

V ′′
5

≤ TMAX (15)

EDDT(VDDT) ≤ EU (16)
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VLB< VDDT < VUB (17)

The optimal energy consumption related to the completion of a dynamic delivery
task is E∗

DDT = EDDT

(
V*

DDT

)
. VDDT =

[
V ′′

1 , V ′′
2 , V ′′

3 , V ′′
4 , V ′′

5 , V’’
6
]

denotes the UAV velocity
vector for a dynamic delivery task. Equation (13) computes the optimal UAV velocity for a
dynamic delivery task, minimizing the flight time, subject to the constraints that (i) the task
is delivered within the due date window, as per Equations (14) and (15), (ii) the UAV does
not run out of energy before completing the task, as per Equation (16), and (iii) maximum
and minimum UAV velocities for the six phases of a delivery task are respected. It is worth
noticing that after the completion of a dynamic task, the UAV may have no residual energy
in the battery. This is due to the priority of the dynamic task, which overrides the constraint
on EMIN introduced for formulating a persistent drone delivery system. For the sake of
clarity, it is hereby specified that landing velocities are considered as negative.

3. Task Allocation Architecture

The proposed market-based task optimization architecture is conceptualized as a
distributed combined task allocation and path planning architecture. The market-based
architecture consists of a central allocator (the coordinator of the fleet of UAVs) with
auctioneer behavior that allocates the delivery tasks to the UAVs of the fleet. Each UAV
runs, in a decentralized way, both a risk-aware path planner and an optimization algorithm
to (i) compute both the optimal path for the task and the optimal velocity of execution for the
task, and (ii) bid for the advertised task. The architecture is implemented in MATLAB/ROS.
The communication between the UAVs throughout the allocation process is simulated by
means of ROS nodes and a publisher/subscriber logic. Besides the main allocation process
of the delivery task set, each UAV features an auctioneer behavior when the allocation
of a re-charge task is needed to preserve the persistency of the aerial UAV-based ITS. A
sequential single-item auction-based allocation strategy is implemented for the allocation
of the delivery tasks, while a multiple-item auction-based strategy is implemented for the
allocation of the re-charge tasks. This is because sequential single-item allocation strategies
represent a better strategy for tasks with different priorities and different due dates (as for
the commercial parcel delivery use case of this work). On the other hand, since multiple
re-charge tasks (corresponding to the multiple charge hubs in the operational aera) have to
be evaluated by the UAV to be charged before the allocation is performed, a multiple-item
allocation strategy is preferred for this type of task. The fleet coordinator retains the delivery
task set, while dynamic tasks, such as the delivery of medical samples with high priority,
can be broadcasted to all the UAVs of the aerial ITS at any time. During the bidding phase
for a “regular” delivery task, another single-item allocation is enabled such that the bidding
UAV temporarily becomes the auctioneer of the network in order to (i) be able to allocate,
if present, a dynamic task with high priority within the main allocation process, and (ii) bid
for the “regular” delivery task advertised by the fleet coordinator in that round while being
aware of the current workload distribution in the fleet. The communication among the
UAVs of the network is assumed to be potentially fallible, apart from the messages from
auctioneer to auctioneer, which are never lost.

A schematic representation of the distributed multi-auctioneer behavior of the UAV
network is provided in Figure 3. In particular, Figure 3 represents a snapshot of a possible
set of roles of the UAVs of the network within a task allocation round, with UAV N
being the fleet coordinator (auctioneer of delivery tasks), UAV i (i = 1, . . . , N − 1) being
the coordinated robot (bidder for delivery tasks), each UAV beside the fleet coordinator
being the auctioneer of a re-charge task, and UAV 1 being the auctioneer of a dynamic
high-priority task arising during its bidding phase for a “regular” delivery task.

The allocation algorithm is presented in detail in Section 3.1, while the path planning
algorithm, the energy consumption model, and the optimizer are presented in Section 3.2,
Section 3.3, and Section 3.4, respectively.
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3.1. Market-Based Task Scheduling

The proposed market-based task optimization algorithm is reported in Algorithm 1.
The computational complexity of Algorithm 1, which also includes Algorithms 2 and 3,

is polynomial and is defined as O
(

MNB + MN2). Therefore, the approach is highly scal-
able with respect to the number of drones, tasks, and re-charge hubs.

Algorithm 2 presents the auction-based algorithm for assigning dynamic high-priority
delivery tasks to the UAVs of the network. During the bidding phase of each UAV’s regular
delivery task allocation process, the UAV acts as an auctioneer for the dynamic task that is
being broadcasted.

Algorithm 3 presents the auction-based algorithm for assigning re-charge tasks to
the UAVs of the network whose energy stored in the battery is smaller than the required
minimum energy level, EMIN , plus a threshold factor.

3.2. Risk-Aware Path Planning

The flyable UAV paths connecting the UAV locations to the task locations are generated
by means of a sampling-based path planning algorithm that samples a risk map of the
operational area. The approach is taken from previous works since the aerial risk-aware
path planning problem in urban environments has already been tackled. The problem of
minimum-risk aerial path computation is decomposed in two steps. The first step consists of
generating a 2D location-based risk map, which accounts for both the population density in
the operational area and the UAV parameters (UAV mass, payload mass, UAV dimensions,
UAV maximum speed, etc.). In the second step, a sampling-based algorithm based on the
well-known RRT* algorithm computes the minimum-risk path in the map, minimizing both
the overall risk associated with the computed path and the UAV flight time for that path.
The risk map associates a risk value, expressed in expected fatalities per hour (h−1), with
each location. Since the planning algorithm returns, in general, sub-optimal risk-optimized
paths, the average risk of each computed path is compared to an equivalent level of safety
(ELOS) of 106 h−1, as defined in [31]. After verifying the risk compatibility with respect
to the ELOS, the computed path length is used in the energy computation function as a
constant parameter. Further details about the risk map generation and the risk-aware path
planning algorithm can be found in [32,33]. The risk-aware path planner is implemented in
C++ using the ROS (Robot Operating System) framework.
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      𝑈𝐴𝑉ே  computes bid  𝑑௝,௜ 

      𝑈𝐴𝑉ே  adds  𝑑௝,௜  to  𝑆𝑜𝐵௖೟ 

  end 

  𝑃ଶ
௖೟ሺ𝑝, 𝑆𝑜𝐵௖೟, 𝑈𝐴𝑉ே ⟶ 𝑈𝐴𝑉௜ሻ 

  𝑈𝐴𝑉௜  computes  𝑑௢ ൌ min
௢ୀଵ,…,஻

ሺ𝑆𝑜𝐵௖೟ሻ , 𝑽𝑪𝑻
∗ ௜,௖೟

೚
 

  𝑃ସ
௖೟ሺ𝑝, 𝐷𝑆௜ ൌ 0, 𝑈𝐴𝑉௜ ⟶ 𝑈𝐴𝑉ேሻ 

  if  𝑃ଵ
௖೟ ൌ 𝑃ଶ

௖೟ ൌ 𝑃ସ
௖೟ ൌ 1  do 

    𝑐௧
௢  is assigned to  𝑈𝐴𝑉௜ 

    𝑈𝐴𝑉௜  updates  𝐸௎
௜ ൌ 𝐸ெ஺௑

௜ , 𝑇௜
௜, 𝑈௅

௜ , 𝐷𝑆 ൌ 0 
  end 

end 

3.2. Risk‐Aware Path Planning The proposed risk-aware path planning approach implements a high-fidelity risk
assessment [32] considering the UAS parameters. Thus, the risk map changes according
to the drone mass and the payload mass. Every time a UAV bids for a delivery task, two
different risk maps are generated. The planning algorithm samples the first risk map to
compute the risk-optimized path L1, which corresponds to the first step of the delivery
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process (the UAV moves from its start location to the pick-up location with no payload).
Secondly, for the computation of L2, the planning algorithm samples another risk map
that accounts for the updated total mass of the UAV (m + mP) in the risk computation.
For this reason, it is necessary to evaluate a delivery task also considering the payload
transported. The effect of the payload on the risk map and the resulting path can be
observed in Figures 4 and 5. Figure 4 shows the risk map with a minimum-risk path
considering a UAV type C without any additional payload. A similar scenario is reported
in Figure 5, considering the same operational area and start and goal positions, but with
a payload of 2.5 kg. Comparing Figures 4 and 5, we observed that the payload caused a
higher risk in the risk map and, consequently, the resulting path changed. The involved risk
is also shown in Figure 6, with the evolution of the risk along the paths with and without
payload. Moreover, Figure 6 demonstrates the usefulness of the risk-aware path planning
by comparing the minimum-risk path and the Line Of Sight (LOS) path. The LOS path is
shorter but, on the contrary, provides a higher risk.
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The proposed approach is easily scalable to large urban areas. The risk map is gen-
erated by computing the risk for each cell (representing a location) in the map. Conse-
quently, the computational complexity increases proportionally to the number of cells in
the map and, therefore, with the dimension of the map. However, the resolution of the
risk map can be adapted to manage large urban areas without excessively increasing the
computational complexity.

The increase in the size of the risk map consequently also implies an increase in the
computational complexity of the risk-aware path planning algorithm. The RRT*-based
algorithm requires more nodes to both adequately explore the search space (i.e., the risk
map) and obtain a near-optimal path. Therefore, as discussed in [34], the computational
complexity of RRT* can be approximated to O(nlog n), with n being the number of nodes
sampled within the risk map.
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3.3. Energy Consumption Model

The energy consumption model is derived from the power consumption model pro-
posed and validated in [35]. By merging such a power consumption model with the
assumptions of Section 2, the resulting UAV energy consumption model can be defined as:

EDT(VDT) = Ei(mg, V1, V1, h) + Ep(mg, V1, h) + Ei(mg, 0, V2, L1) + Ep(mg, V2, L1) + Epar(V2, L1) + Ei(mg, V3, V3, h)+
Ep(mg, V3, h) + Ei

((
m + mp

)
g, V4, V4, h

)
+ Ep

((
m + mp

)
g, V4, h

)
+ Ei

((
m + mp

)
g, 0, V5, L2

)
+ Ep( (m+

mp) g, V5, L2) + Epar(V5, L2) + Ei
((

m + mp
)

g, V6, V6, h
)
+ Ep

((
m + mp

)
g, V6, h

)
,

(18)

for the completion of a delivery task, and as:

ECT(m, VCT, d, h) = Ei
(
mg, V′

1, V′
1, h
)
+ Ep

(
mg, V′

1, h
)
+ Ei(mg, 0, V′

2, d) + Ep(mg, V′
2, d) + Epar(V′

2, d)+
Ei
(
mg, V′

3, V′
3, h
)
+ Ep(mg, V′

3, h),
(19)

for the completion of a re-charge task. As far as dynamic tasks are concerned, EDDT(VDDT) =
EDT(VDDT) since the conceptualization of the delivery phases does not change. In par-

ticular, Ei(T, Vv, V, L) = T

[
Vv
2 +

√(
Vv
2

)2
+ T

2ρAr

]
L
V refers to the induced energy compo-

nent (to propel air downward), Ep(T, V, L) =
√

b3cdNbcρ R4

8

√
T3 L

V refers to the profile
energy component (to resist rotational drag due to the rotation of the propellers), and
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Epar(V, L) = 1
2 cdρAdV2L refers to the parasite energy component (to resist drag during

the relative translational motion of the UAV with respect to the wind), with L denoting
the general path length and V denoting the general drone velocity. The proposed energy
consumption model overestimates the energy consumed by a UAV during task execution
since T does not depend on V in forward flight. Furthermore, such an energy consumption
model is valid independently from the type of multi-rotor UAV configuration (quadrotor,
hexarotor, etc.).

3.4. Numerical Optimization

According to the problem formulation in Section 2, an optimization problem has to be
solved by each bidding UAV in order to compute the optimal velocity of task execution
while respecting the constraints of the delivery system. It follows the standard representa-
tion of the nonlinear constrained optimization problems defining the optimal energy-aware
execution of tasks in Section 2: min f (x), subject to the constraints g(x) ≤ 0, with x ∈ Rn,
f (x) : Rn −→ R , g(x) : Rn −→ Rm . All the optimization problems stated in Section 2 can

be brought in the standard form, with m being equal to the number of constraints of the
problem stated for task for which the UAV is bidding during the allocation process, n
being equal to the number of phases of the task, x being equal to either VCT or VDT/DDT,
and f being the objective function of the task. Both the UAVs’ parameters and the tasks’
parameters appear as constants in the optimization problems, except for the task execution
velocity, which has to be optimized. Algorithm 4 shows the implementation of the con-
strained optimization algorithm based on a numerical Penalty Function (PF) Sequential
Unconstrained Optimization (SUO) method.

Algorithm 4: PF-based SUO Algorithm
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SUO algorithms iteratively perform unconstrained optimization on an enhanced ob-
jective function that includes the constraints of the original constrained optimization prob-
lem [36]. In this case, the enhanced objective function, 𝑃(𝒙, 𝝀,𝝆), is defined as the sum of 
the normalized objective function of the constrained problem, ௙൫𝒙ೖ൯ாಾಲ೉, and the constraint-

dependent penalty term, ∑ 𝑚𝑎𝑥 ቀଵଶ 𝜆௜ + 𝜌௜𝑔௜(𝒙), 0ቁଶ௠௜ୀଵ , as in [37]. At each step, 𝑘, of un-
constrained optimization on 𝑃 , the penalty parameters 𝝀 = [𝜆ଵ, 𝜆ଶ, … , 𝜆௠] and 𝝆 =[𝜌ଵ,𝜌ଶ, … ,𝜌௠]  are updated depending on constraint-satisfaction-based criteria. A finite 
convergence to a sub-optimal solution can be achieved for finite penalty parameters, the 
latter of which should not be excessively increased in order to avoid numerical problems. 

SUO algorithms iteratively perform unconstrained optimization on an enhanced
objective function that includes the constraints of the original constrained optimization
problem [36]. In this case, the enhanced objective function, P(x, λ, ρ), is defined as the

sum of the normalized objective function of the constrained problem,
f (xk)
EMAX

, and the

constraint-dependent penalty term, ∑m
i=1 max

(
1
2 λi + ρigi(x), 0

)2
, as in [37]. At each step,

k, of unconstrained optimization on P, the penalty parameters λ = [λ1, λ2, . . . , λm] and
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ρ = [ρ1, ρ2, . . . , ρm] are updated depending on constraint-satisfaction-based criteria. A
finite convergence to a sub-optimal solution can be achieved for finite penalty parameters,
the latter of which should not be excessively increased in order to avoid numerical problems.
The variation in the penalty parameters at each iteration depends on the parameters q1,
q2, and q3. The convergence speed of the algorithm depends on q1, q2, q3, , and ξ. The
termination condition of the proposed PF-based SUO algorithm depends on both the
constraint satisfaction and tolerance parameters, and ξ. The average execution time of
Algorithm 4 is 0.4 s. The unconstrained optimization performed on the PF exploits the
fminsearch(·) MATLAB function. This optimizer implements the Nelder–Mead simplex
algorithm, as defined in [38]. Considering that P(x, λ, ρ) is at least a three-dimensional
function, there is no theoretical guarantee that Algorithm 2 converges to the global optimum
of the constrained problem. Figure 7 shows the evolution of both P and f throughout
the bidding process of a UAV type A for the delivery task 2 in the simplified scenario of
Figure 2.
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to Figure 7a.

4. Simulation Results

In order to demonstrate the capability of the proposed market-based task allocation
strategy to efficiently handle planning and allocation of delivery tasks, re-charge tasks, and
dynamic tasks with different priorities and constraints, a whole set of simulation campaigns
was designed for an operational area, defined as a squared populated portion of the city
of Turin, Italy. As far as the operational area is concerned, the latitude and longitude
extremities of the area where the aerial delivery fleet operates are [45.0414◦, 45.0769◦] and
[7.6527◦, 7.7134◦] respectively. The height of flight h is limited to the range [50, 120] m. The
aerial delivery fleet of UAVs is composed by N = 5 different UAVs, whose characteristics
are reported in Table 1. The parameters reported in Table 1 were both taken from publicly
available datasets and, when not available, linearly interpolated to fill in all the values.
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Table 1. Parameters of the delivery fleet of UAVs.

UAV Type A B C D E

m (kg) 1 2 3 4 5

Ar (m2) 0.2 0.28 0.36 0.44 0.52

Ad (m2) 0.4 0.6 0.8 1 1.2

cd 0.1 0.2 0.3 0.4 0.5

b (kg·m) 0.001 0.002 0.003 0.004 0.005

c (m) 0.01 0.02 0.03 0.04 0.05

R (m) 0.1 0.12 0.15 0.18 0.21

VMAX (m/s) 16 19 20 22 24

EMAX (MJ) 0.68 0.9 1.17 1.43 1.67

The “regular” delivery tasks set was defined by a set of M = 36 tasks, with 6 tasks for
each category of the 5 payload classes considered in the simulation campaigns: (0.5, 0.8,
1.0, 1.5, and 2.0 kg). The “dynamic” delivery tasks set was defined by a set of 6 tasks, with
1 task for each category of the 5 payload classes. Those tasks were advertised at random
time instants between the start and the end of the main task allocation process. B = 4
charge hubs were assumed to be present within the operational area of reference. The time
needed to fully re-charge a UAV with no residual energy in the battery was set to 0.5 h.
Also, KT = 0.1, dMAX = 6.2 km, ∆TMAX = 0.30 h, and ρ = 1.3 kg·m−3. The simulation
campaigns designed to corroborate the validity of the approach were based on Monte Carlo
simulations, repeated with four different scenarios:

• Scenario SA: TMIN = 0, and random initialization of the following parameters: initial
UL, delivery tasks’ pick-up and delivery locations, h associated to each task, re-charge
hubs’ locations, and TMAX (within the range of [0, 3] h).

• Scenario S∗
A: analogous to SA, but with no resource sharing in the allocation strategy

and with each phase of task execution being completed at maximum speed.
• Scenario SB: random initialization of the following parameters: initial UL, delivery

tasks’ pick-up and delivery locations, h associated to each task, re-charge hubs’ loca-
tions, TMAX (within the range of [0, 3] h), and TMIN (within the range of [1, 3] h).

• Scenario S∗
B: analogous to SB, but with no resource sharing in the allocation strategy

and with each phase of task execution being completed at maximum speed.

Tasks are advertised by the auctioneer according to ascending values of TMAX so that
tasks with higher priority in terms of due date are executed earlier. The results in terms
of mean value (ϑ) and standard deviation (δ) of a set of well-defined output schedule
parameters (NU

DT , NU
DDT , NCT , and NA

DTi) are derived from 50 simulations repeated for
each scenario. In this case, the communication among the UAVs is assumed to be ideal
(p = 0). Such results are reported in Table 2.

Table 2. Simulation results with ideal communication.

Scenario
ETOT [MJ] NU

DT NU
DDT NCT ϑ

(
NA

DT
)

i δ
(
NA

DT
)

i

ϑ δ ϑ δ ϑ δ ϑ δ A B C D E A B C D E

SA 7.21 1.29 3 1.7 0 0 3 1 7 6 6 5 5 0.2 0.3 0.2 0.1 0.1

S∗
A 37.86 1.36 1 1.24 0 0 20 1.18 9 8 7 4 3 0.6 0.7 0.6 0.8 0.4

SB 6.96 1.11 5 1.89 0 0 2 1.3 6 7 6 5 5 0.3 0.4 0.2 0.1 0.1

S∗
B 34.59 1.98 1 1.36 0 0 21 2.4 9 9 7 4 3 0.5 0.8 0.7 0.5 0.6
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The impact of communication failures on the output schedule parameters was also
investigated. Sets of 50 Monte-Carlo-based simulation campaigns were performed up
to a 50% probability of communication failure by considering 1 particular instance for
each of the 2 scenarios of reference (SA and SB). The simulation results are reported in
Tables 3 and 4.

Table 3. Simulation results with lossy communication for an instance of scenario SA.

p ETOT [MJ] NU
DT NU

DDT NCT ϑ
(
NA

DT
)

i δ
(
NA

DT
)

i

ϑ δ ϑ δ ϑ δ ϑ δ A B C D E A B C D E

0 6.74 0 3 0 0 0 3 0 7 6 7 6 6 0 0 0 0 0

0.1 6.71 0.58 3 0 0 0 3 0 7 6 7 6 6 0.1 0.1 0.2 0.1 0.1

0.2 6.52 0.43 4 0.67 0 0 3 0 6 6 7 6 6 0.2 0.2 0.1 0.2 0.2

0.3 6.49 0.67 4 0.54 1 0.17 3 0.32 7 4 6 5 5 0.3 0.3 0.3 0.3 0.4

0.4 6.15 0.72 5 0.74 1 0.51 2 0.39 6 4 5 3 5 0.4 0.5 0.4 0.4 0.4

0.5 5.95 0.64 6 1.20 2 0.84 2 0.54 5 4 5 3 5 0.5 0.6 0.5 0.3 0.4

Table 4. Simulation results with lossy communication for an instance of scenario SB.

p ETOT [MJ] NU
DT NU

DDT NCT ϑ
(
NA

DT
)

i δ
(
NA

DT
)

i

ϑ δ ϑ δ ϑ δ ϑ δ 1 2 3 4 5 1 2 3 4 5

0 6.33 0 6 0 0 0 2 0 6 7 6 5 5 0 0 0 0 0

0.1 6.33 0.32 6 0 0 0 2 0 6 7 6 5 5 0.2 0.1 0.1 0.1 0.1

0.2 6.21 0.38 6 0.34 0 0 2 0 6 7 6 4 5 0.2 0.2 0.2 0.1 0.1

0.3 5.87 0.55 8 0.68 1 0.24 2 0.43 5 6 5 4 5 0.3 0.4 0.4 0.3 0.3

0.4 5.55 0.77 9 0.93 1 0.34 1 0.78 5 4 4 3 5 0.4 0.5 0.6 0.5 0.4

0.5 4.78 0.81 10 1.54 2 0.75 1 0.48 4 3 4 2 5 0.6 0.6 0.6 0.3 0.4

As far as the results with ideal communication are concerned, the capability of the
proposed approach to handle a demanding task set was corroborated by the Monte-Carlo-
based simulation campaign. The medium energy consumption decreased by 81% from the
comparison of SA and S∗

A, and by 80% from the comparison of SB and S∗
B. The medium

number of assigned re-charge tasks decreased by 85% from the comparison of SA and S∗
A,

and by 90.5% from the comparison of SB and S∗
B. Scenarios S∗

A and S∗
B were conceived to

show that, even with highly demanding task sets and the presence of dynamic tasks in the
allocation loop, an energy-aware allocation of tasks was preferred over a simpler auction-
based allocation with UAVs operating at maximum speed. The proposed market-based
allocation architecture allowed the aerial fleet to evenly self-balance the distribution of the
allocated delivery tasks, while minimizing the total energy consumption of the fleet and
reducing the number of re-charge tasks to be executed by the fleet. This was reflected by
mean and standard deviation values of NA

DT , which increased in relative difference from
SA/B to S∗

A/B. Obviously, with the task sets of both scenario SA and scenario SB being
highly demanding ones, with tens of random parcel deliveries to be completed within
close random time deadlines, a few more tasks remained unassigned when the results
were compared to S∗

A and S∗
B. The higher variability in the distribution of tasks in the fleet

in terms of ϑ and δ for scenarios S∗
A and S∗

B was due to the lack of the resource sharing

condition (N A
DTi − 1 ≤ ϑ

(
NA

DT
)

j=1,..., N (j ̸=i)

)
in the bidding phase of each UAV.

As far as the results with lossy communication are concerned, the proposed allocation
architecture featured superior robustness to fallible communication with respect to the one
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proposed in our previous work in [30]. This was due to the redundancy of the allocation
protocol when a task was not assigned due to message loss.

The results obtained with both the implementation of the aforementioned simulation
campaigns and the analysis of the solution quality parameters (NU

DT, NU
DDT, NCT, and NA

DTi)
enabled the following conclusions:

• The proposed architecture successfully tackled the formulated DDP with real-world
instances of the problem itself.

• The main allocation objective of minimizing the energy consumption, despite be-
ing less favorable for the maximization of the number of completed tasks, did not
compromise the level of performance of the allocation output.

• The proposed architecture was highly modular, flexible, and easily adaptable to
tackle other task assignment problems with different objectives in the context of
drone-based ITSs.

• Even with more demanding problem instances, such as scenario S∗
B, the allocation

architecture’s features of energy optimization, resource sharing, and dynamic task as-
signment did not compromise the overall level of performance of the architecture itself.

• The redundancy added in the allocation strategy enhanced the performances in case
of lossy communication scenarios.

5. Conclusions

This work focused on presenting the development of a comprehensive combined
task allocation and path planning architecture for managing a UAV-based intelligent
transportation system in an urban environment. By inserting a nested variable-auctioneer
auction-based allocation in the sequential single-item multi-auctioneer architecture, we
showed that it is possible to both balance the distribution of tasks in the fleet and assign
dynamic tasks during each round of the main task allocation process. This is particularly
useful when a task with high priority, such as the aerial delivery of a medical sample, needs
to be inserted in the allocation loop dynamically. The proposed allocation system proved
to be able to efficiently allocate heterogenous tasks with time deadline constraints to a
heterogenous fleet of multi-rotor UAVs. The architecture featured good robustness with
respect to lossy communication scenarios.

Future works will be focused on validating the proposed approach by implementing
the proposed protocol in a real fleet of UAVs. Also, future research directions can include a
variety of simulation campaigns with other types of tasks and diverse urban environments,
as well as a more in-depth analysis of the dynamic aspects of task allocation, including
both final user-dependent tasks and real-time environment-dependent data.
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Nomenclature

m UAV mass
mP Payload mass
Vv UAV vertical velocity
T Total thrust
ρ Air density

https://www.distrettoaerospazialepiemonte.com/en/
https://www.distrettoaerospazialepiemonte.com/en/
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Ar Total propeller area
b Thrust coefficient
cd Drag coefficient
Nb Number of propeller blades
c Blade width
R Blade radius
Ad UAV cross-section
VMAX UAV maximum speed
TMIN Minimum delivery task due date
TMAX Maximum delivery task due date
M Number of delivery tasks
N Number of multi-rotor UAVs
B Number of charge hubs
p Probability of communication failure
Ti Time instant at which the UAV is available for task execution
UL UAV location
EU UAV residual energy
KT Threshold energy level above EMIN , such that the UAV has to re-charge
dt Delivery task
ddt Dynamic delivery task
rt Re-charge task
DS Discharged status, denoting if UAV needs to be charged (DS = 1) or not

(DS = 0)
L1 Path length from UL to parcel pick-up location
L2 Path length from parcel pick-up location to parcel delivery location
d Path length from UL to charge hub location
SoB Set of bids in the allocation process
h Height of flight
Vi UAV velocity for execution of delivery task phase i
V′

i UAV velocity for execution of re-charge task phase i
V ′′

i UAV velocity for execution of dynamic delivery task phase i
EDT UAV energy consumption for delivery task
ECT UAV energy consumption for reaching the re-charge hub
EDDT UAV energy consumption for dynamic delivery task
EMIN UAV minimum residual energy for worst-case scenario
EMAX UAV maximum energy stored in the battery
dMAX Maximum path length from UL to charge hub location in worst-case scenario
∆TMAX Maximum flight time from UL to charge hub location in worst-case scenario
Pi(p1, p2, k −→ j) Phase Pi of the task allocation process, with probability of communication

failure p1, message p2, and directivity from k to j. Pi = 1 if communication is
successful; otherwise, Pi = 0

ETOT Total energy consumption associated with the output schedule
NU

DT Number of unassigned delivery tasks in the output schedule
NU

DDT Number of unassigned dynamic delivery tasks in the output schedule
NCT Number of assigned charge tasks in the output schedule
NA

DTi Number of delivery tasks assigned to a UAV type i in the output schedule
ϑ Mean value
δ Standard deviation
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5. Pons-Prats, J.; Živojinović, T.; Kuljanin, J. On the understanding of the current status of urban air mobility development and its
future prospects: Commuting in a flying vehicle as a new paradigm. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102868.
[CrossRef]

6. He, Y.; Wang, D.; Huang, F.; Zhang, R.; Min, L. Aerial-Ground Integrated Vehicular Networks: A UAV-Vehicle Collaboration
Perspective. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5154–5169. [CrossRef]

7. Hu, Z.; Chen, H.; Lyons, E.J.; Solak, S.; Zink, M. Towards sustainable UAV operations: Balancing economic optimization with
environmental and social considerations in path planning. Transp. Res. Part E Logist. Transp. Rev. 2024, 181, 103314. [CrossRef]

8. Zarbakhshnia, N.; Ma, Z. Critical Success Factors for the Adoption of AVs in Sustainable Urban Transportation. Transp. Policy
2024, 156, 62–76. [CrossRef]

9. Telikani, A.; Sarkar, A.; Du, B.; Shen, J. Machine Learning for UAV-Aided ITS: A Review with Comparative Study. IEEE Trans.
Intell. Transp. Syst. 2024, 1–19. [CrossRef]

10. Rinaldi, M.; Primatesta, S.; Guglieri, G.; Rizzo, A. Auction-based Task Allocation for Safe and Energy Efficient UAS Parcel
Transportation. Transp. Res. Procedia 2022, 65, 60–69. [CrossRef]

11. Tomasicchio, G.; Cedrone, A.; Fiorini, F.; Esposito, L.; Scardapane, G.; Filipponi, F.; Rinaldi, M.; Primatesta, S. Resilient Drone
Mission Management and Route Optimization in Drone Delivery Context. In Proceedings of the 28th Ka and Broadband
Communications Conference (Ka), Bradford, UK, 23–26 October 2023.

12. Rinaldi, M.; Primatesta, S.; Bugaj, M.; Rostáš, J.; Guglieri, G. Development of Heuristic Approaches for Last-Mile Delivery TSP
with a Truck and Multiple Drones. Drones 2023, 7, 407. [CrossRef]

13. Poudel, S.; Moh, S. Task assignment algorithms for unmanned aerial vehicle networks: A comprehensive survey. Veh. Commun.
2022, 35, 100469. [CrossRef]

14. Jia, X.; Meng, M.Q.-H. A survey and analysis of task allocation algorithms in multi-robot systems. In Proceedings of the 2013
International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December 2013.

15. Skaltsis, G.M.; Shin, H.S.; Tsourdos, A. A survey of task allocation techniques in MAS. In Proceedings of the 2021 International
Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021.

16. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. Stud. Comput. Intell. 2015,
604, 31–51.

17. Nishira, M.; Ito, S.; Nishikawa, H.; Kong, X.; Tomiyama, H. An Integer Programming Based Approach to Delivery Drone Routing
under Load-Dependent Flight Speed. Drones 2023, 7, 320. [CrossRef]

18. Huang, H.; Hu, C.; Zhu, J.; Wu, M.; Malekian, R. Stochastic Task Scheduling in UAV-Based Intelligent On-Demand Meal Delivery
System. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13040–13054. [CrossRef]

19. Cheng, Q.; Yin, D.; Yang, J.; Shen, L. An Auction-Based Multiple Constraints Task Allocation Algorithm for Multi-UAV System. In
Proceedings of the 2016 International Conference on Cybernetics, Robotics and Control (CRC), Hong Kong, China, 19–21 August
2016.

20. Qiu, Y.; Jiang, H.; Li, Q.; Dong, X.; Ren, Z. Application of an Adapted Genetic Algorithm on Task Allocation Problem of Multiple
UAVs. In Proceedings of the 2018 CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August
2018.

21. Hu, X.; Wong, K.K.; Yang, K.; Zheng, Z. Task and Bandwidth Allocation for UAV-Assisted Mobile Edge Computing with Trajectory
Design. In Proceedings of the 2019 Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019.

22. Otte, M.; Kuhlman, M.J.; Sofge, D. Auctions for multi-robot task allocation in communication limited environments. Auton. Robot.
2020, 44, 547–584. [CrossRef]

23. Cao, L.; Tan, H.S.; Peng, H.; Pan, M.C. Multiple UAVs hierarchical dynamic task allocation based on PSO-FSA and decentralized
auction. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia,
5–10 December 2014.

24. Sujit, P.B.; Beard, R. Distributed Sequential Auctions for Multiple UAV Task Allocation. In Proceedings of the 2007 American
Control Conference, New York, NY, USA, 9–13 July 2007.

25. Li, X.; Liang, Y. An Optimal Online Distributed Auction Algorithm for Multi-UAV Task Allocation. In Proceedings of the 11th
International Conference on Logistics, Informatics and Service Sciences (LISS), Jinan, China, 23–26 July 2021.

26. Sujit, P.B.; Beard, R. Multiple uav task allocation using distributed auctions. In Proceedings of the AIAA Guidance, Navigation
and Control Conference and Exhibit, Hilton Head, CA, USA, 20–23 August 2007.

27. Xu, S.; Yu, L.; Deng, X.; Tang, L. Task Allocation for Multiple Unmanned Aerial Vehicles Based on Combinatorial Auctions. In
Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 15–17 October 2021.

28. Lee, C.W.; Wong, W.P. Last-mile drone delivery combinatorial double auction model using multi-objective evolutionary algorithms.
Soft Comput. 2022, 26, 12355–12384. [CrossRef]

29. Kim, J. Learning-based Second Price Auction for Distributed Delivery Scheduling in Smart and Autonomous Urban Air Mobility.
In Proceedings of the 2022 13th International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July
2022.

30. Rinaldi, M.; Primatesta, S.; Guglieri, G.; Rizzo, A. Multi-Auctioneer Market-based Task Scheduling for Persistent Drone Delivery.
In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, PL, USA, 6–9 June 2023.

https://doi.org/10.1016/j.tre.2022.102868
https://doi.org/10.1109/TITS.2023.3341636
https://doi.org/10.1016/j.tre.2023.103314
https://doi.org/10.1016/j.tranpol.2024.07.002
https://doi.org/10.1109/TITS.2024.3422039
https://doi.org/10.1016/j.trpro.2022.11.008
https://doi.org/10.3390/drones7070407
https://doi.org/10.1016/j.vehcom.2022.100469
https://doi.org/10.3390/drones7050320
https://doi.org/10.1109/TITS.2021.3119343
https://doi.org/10.1007/s10514-019-09828-5
https://doi.org/10.1007/s00500-022-07094-9


Drones 2024, 8, 473 20 of 20

31. Dalamagkidis, K.; Valavanis, K.P.; Piegl, L.A. On unmanned aircraft systems issues, challenges and operational restrictions
preventing integration into the National Airspace System. Prog. Aerosp. Sci. 2008, 44, 503–519. [CrossRef]

32. Primatesta, S.; Rizzo, A.; la Cour-Harbo, A. Ground risk map for unmanned aircraft in urban environments. J. Intell. Robot. Syst.
2020, 97, 489–509. [CrossRef]

33. Primatesta, S.; Guglieri, G.; Rizzo, A. A risk-aware path planning strategy for UAVs in urban environments. J. Intell. Robot. Syst.
2019, 95, 629–643. [CrossRef]

34. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
35. Liu, Z.; Sengupta, R.; Kurzhanskiy, A. A power consumption model for multi-rotor small unmanned aircraft systems. In

Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017.
36. Byrne, C. Sequential unconstrained minimization algorithms for constrained optimization. Inverse Probl. 2008, 24, 015013.

[CrossRef]
37. Available online: https://www.researchgate.net/publication/255602767_Methods_for_Constrained_Optimization (accessed on 9

May 2024).
38. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low

Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.paerosci.2008.08.001
https://doi.org/10.1007/s10846-019-01015-z
https://doi.org/10.1007/s10846-018-0924-3
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1088/0266-5611/24/1/015013
https://www.researchgate.net/publication/255602767_Methods_for_Constrained_Optimization
https://doi.org/10.1137/S1052623496303470

	Introduction 
	Problem Statement 
	Task Allocation Architecture 
	Market-Based Task Scheduling 
	Risk-Aware Path Planning 
	Energy Consumption Model 
	Numerical Optimization 

	Simulation Results 
	Conclusions 
	References

