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Domain Generalization (DGE) studies the capability of a deep learning maodel to generalize to out-of-training
distributions. In the last decade, literature has been massively filled with training methodologies that claim
to obtain more abstract and robust data representations to tackle domain shifts. Recent research has provided
a reproducible benchmark for DG, pointing out the effectiveness of naive empirical risk minimization (ERM)
over existing algorithms. Mevertheless, researchers persist in using the same outdated feature extractors, and
little to no attention has been given to the effects of different backbones yet. In this paper, we go “back to the
backbones™, proposing a comprehensive analysis of their intrinsic generalization capabilities, which so far have
been owerlooked by the research community. We evaluate a wide variety of feature extractors, from standard
residual solutions to transformer-based architectures, finding an evident linear correlation between large-scale
single-domain classification accuracy and DG capability. Our extensive experimentation shows that by adopting
competitive backbones in conjunction with effective data sugmentation, plain ERM outperforms recent DG
solutions and achieves state-of-the-art accuracy. Moreover, our additional qualitative studies reveal that novel
backbones give more similar representations to same-class samples, separating different domains in the feature
space. This boost in generalization capabilities leaves marginal room for DG algorithms. It suggests a new
paradigm for investigating the problem, placing backbones in the spotlight and encouraging the development
of consistent algorithms on top of them. The code is available at hitps:/ /github.com/PIC45eR /Back-to- Bones.

1. Introduction poses a concrete barrier to deploying models in all critical applica-
tions that reguire true generalization power. For instance, autonomous
driving could face environments and circumstances not encountered
during the training phase caused by light, weather, background, and
nearby object dynamics. Indeed, disparate independent studies report

The problem of induction has a central role in the learning pro-
cess. Without generalization, machine learning algorithms would be
able to exhibit useful behaviors only in situations identical to the

ones previously experienced [1]. Deep newral networks are powerful
muodels capable of extracting subtle regularities from training data.
Mevertheless, they often fail to generalize to out-of-training data. Even
if supervised training methodologies have proved to produce newral
networks with remarkable performances, their results are valid only in
well-defined settings and do not generalize across tasks, domains, and
categories [2). For the specific object recognition task, several literature
works have shown that, unlike humans, training frameworks commonly
produce networks that are more prone to be biased towards tex-
tures and global image statistics in making decisions [3,4], prioritizing
casier-to-fit spurious correlations in favor of invariant shape cues [5].
That prevents scaling on all samples showing a distribution shift and

how neural networks could easily fail without effective generalization
capabilities, negatively affecting the behavior of the overall system
[6,7]. Similarly, another realistic example of a domain gap is training
neiral networks in simulation, which has become a standard proce-
dure in the robotics research community. Recently, rescearchers have
faced the Simulation-to-Reality (SimZReal) gap problem, trying to ef-
fectively transfer Deep Newral Networks from virtual scenarios to the
real world [8,9].

Domain Generalization (DG) aims at training models that gener-
alize to out-of-distribition (00D data. The aceess to a set of source
datasets provides a predictor with the ability to extract and learn
general invariant patterns, which are, hypothetically, also recognizable
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Fig. 1. Our experimentation proves the importance of beckbones in Domain General-
ization. We Gnd that novel architectures, such as transformed-based models, lead o a
better representation of data, outperforming outdated backbones, such as ResNets, and
leaving marginal room for festure mapping improvement using DG algorithms.

in the target domain dataset [10,11). As an extension of supervised
learning, this approach aims to minimize empirical risk at training time
to extrapolate an overall probability distribution from source datasets
that enables accurate classification of 00D data. In the last decade,
aware of the tremendous impact of generalization on computer vision
applications, the DG research community has tackled the problem with
algorithms that aim to find invariant features that hold with novel
domains. Among the constellation of proposed approaches, we iden-
tify the principal broad strategies adopted for domain generalization
in augmenting the source domain [12,13], aligning domain distribu-
tons [14-18], meta-learning [19-21], self-supervised learning [22-
24], and regularization strategies [25-259].

Although methodologies have given meaningful insights about the
nature of DG over the years, only recent research contributions have
proposed a rigorous testing benchmark to evaluate and compare the
advantages provided by DG algorithms fairly. With DosusBen [30],
the results obtained by the most relevant solutions have been eritically
analyzed over DG datasets, unmasking the marginal positive or nega-
tive improvement obtained in most cases compared to naive empirical
risk minimization (ERM). Nevertheless, the study has been carred out
uniguely with ResMet50 [31] as a feature extractor. Thus, new DG algo-
rithms are still proposed overlooking a fundamental aspect of practical
deep learning applications: the importance of the backbone. In past
years, several competitive deep learning architectures, characterized
by different types of feature extractors, have been proposed to solve
classification tasks [32] on popular datasets such as ImageNet [33].
Classical backbones are based on convolutional layers: AlexMNet [34]
is a network based on a small set of convolutions and max-pooling
layers combined with RelU activation. The VGG archivecture [35], in
its variations VGG-16 and VGG-19, further explores the convolution-
pooling structure by stacking more layers and reaching a deeper design.
ResMet [36] first adopted a residual approach to help gradient flow
with skip-connections, and it is still a widely adopted backbone for
various computer vision tasks. Similarly to VGG, ResNet has been
proposed in different fashions, with variable depth, such as ResNetl8,
ResMNet3dd, and ResNet50. Other architectures, such as DenseMet [37]
or IneeptionNet [38], focus on different mechanisms, like dense con-
nections or parallelization of convelutional layers with different kernel
sizes, MobileNet [39] and EfficientNet [40] have been proposed to
increase model efficiency, reaching competitive classification results
with lightweight architectures and fewer parameters. More recently,
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Fig. 2. DG accuracy achieved by tested badkbones compared with their performance
an ImageMNet, with errar bars. Regardless of different architectures and peiors, we find
a sirong linear correlation betwesn the two metrics (@ = 0.921). In Section 3.1, we
alse compare DG accuracy with the number of parameters, finding a much weaker
carrelation.

self-attention-based models have reached state-of-the-art image classifi-
cation performance, inspired by the Transformer [41] architecture first
proposed for language modeling. In particular, the Vision Transformer
(WIT) [42] first adopted a Transformer encoder for vision tasks, while
its training methodology has been refined by the Data Efficient ViT
(DeiT) [43]); ConViIT [44] combines convolutions with self-attention,
and LeViT [45] focuses on a pyramidal architecture of self-attention
layers that progressively shrinks spatial dimensions. This rich liter-
ature landscape offers a wide choice for researchers when selecting
feature extractors for visual applications. However, among the different
computer vision tasks, the DG community has substantially neglected
the generalization power of existing backbones, promoting sophisti-
cated algorithms combined with outdated feature extractors such as
BesMNetl8 or even AlexMNet. Only very few attempts have been made
in this direction: Sultana et al. [46] proposed the first DG algorithm
specifically for Transformer-based models; Guo et al. [47] studied how
MLP-like models generalize better than CNN by incorporating more
global-structure information and proposed a new Mixture-of-Experts
architecture; a concurrent work by Li et al. [48] has brought useful
insights on the intwition that multi-head attention is a low-pass filter
with a shape bias, while convolution is a high-pass filter with a texture
bias.

In this paper, we claim that the domain gaps existing in realis-
tic scenarios should be tackled starting from accurately selecting the
model architecture, which is undeniably central in most deep learning
applications (Fig. 1). We come to similar experimental conclusions
to the concurrent work of [48] on the generalization of transformers
and the weaker effect of DG methods. However, we push it further
by evaluating multiple backbones with different priors and several
DG methodologies and find a strong correlation between ImageMet
accuracy and generalization.

In particular, we conduct extensive experimentation on the princi-
pal DG datasels and assess a wide variety of backbone architectires,
from novel vision transformers to standard convolutional models. Our
results demonstrate an evident linear correlation between large-scale
single-domain classification accuracy and domain generalization per-
formanee (Fig. 2). Moreover, we achieve state-of-the-art results in DG
with naive ERM and simple data augmentation, remarking that, under
fair testing conditions, the most promising algorithms presented so far
give no substantial advantage,

We reinforce the experimentation with a visual analysis of the
feature extractors. Using the t-SNE manifold leaming technique [49]
on extracted features, we show that novel backbones map same-class
samples closer in the feature space and outperform older architectures
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when trained in a DG framework. We propose a quantitative evaluation
of this difference by fitting a k-MNN classifier on the extracted features.

This study aims to promote a complete and meaningful approach to
the domain generalization problem, avoiding isolated research efforts
on DG algorithms and encouraging contributions that target the overall
maximization of model generalization. Evidence in the literature shows
that researchers from disparate application fields could significantly
benefit from a shift of the DG paradigm towards realistic circumstances.
For instance, data augmentation can automatically be exploited to
generate a vast collection of artificial source domains. Domain Random-
ization fully exploits this principle [8], demonstrating its effectiveness
in training agents in simulation for controlling manipulators accom-
plishing visual tasks [50] and autonomous racing drones [51]. That
is further concrete proof that the success of domain generalization in
real-world applications relies on simple ERM techniques, which offer
an easy implementation together with a robust generalization boost.

The main contributions of this work can be, therefore, summarized
as follows:

+ We propose an extensive evaluation of backbones for domain
generalization, showing remarkable improvements compared to
literature results. We empirically find a linear correlation between
large-seale single-domain classification aceuracy and domain gen-
eralization performance (Fig. 2).

We prove that adopting DG algorithms does not provide the
expected generalization boost compared to naive ERM when using
state-of-the-art feature extractors.

We enrich the conducted experiments with an introspective study
of the backbones, comparing the feature representations before
and after the DG fine-tuning.

As an outcome of this work, we release Back-ro-Bowes," a testbed to
encourage the deep learning community to evaluate and compare the
domain generalization performance of newly proposed backbones,

The rest of the paper is organized as follows. In Section 2, we
briefly frame the DG theoretical background and introduce our back-
bone definition. In Section 3, we introduce our research outcome,
deseribing the conducted approach and the criteria that guided the
choice of backbones, model selection, hyperparameter optimization,
and overall experimental framework; then, we report numerical results
in conjunction with a visual introspection of the representations learmed
by the most relevant backbones under investigation. Section 4 discusses
additional considerations about transformer-based backbones general-
tzation and baseline selection in previois works. Finally, in Section 5,
we present our conclusive remarks and suggestions for future works on
D,

2. The domain generalization framework

In this section, we first define necessary notations and concepts

to frame the problem of domain generalization and empirical risk
mimimization. Secondly, we introduce a formal definition of a backbone
and its constituents.
Problem Definition Given the input random variable X with values
x € &, and the target random variable ¥ with values » € ¥, the
definition of domain is associated with the joint probability distribu-
tion Py, or POX,Y), over Xx). Supervised learning aims to train a
classifier f : X — ¥ exploiting & available labeled examples of a
dataset D = {x,,y,}ﬂ] that are identically and independently distribured
and sampled according to Py, The goal of the training process is to
mimimize the empirical risk associated with a loss function ! @ ¥x ¥ =
[, 4oa),

N
1
Remplf) = E; TG v 1)

! hetps://github.com,/PIC45e R/ Back-to-Bones
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by learning the classifier £, The dataset D is the only available source
of knowledge to learn Py . We refer to this basic learning method as
empirical risk minimization [52].

In domain generalization, a set of different K source domains § =
{S‘-}:-l is used to learn a classifier f that aims at generalizing well on
an unknown target domain T, Each source domain is associated with
its joint probability distribution P;r, whereas P;'r indicates the overall
source distribution learned by the classifier [53]. Indeed, DG aims to
enable the classifier to predict well on out-of-distribution data, namely
on the target domain distribution P;'r, by learning an overall domain
invariant distribution from the source domains seen during training.
Backbone Definition We define a backbone 5= fiA, Ty, I as a func-
tion of three elements: the model architecture A, the training procedure
Ty (including optimization, regularization, and data augmentation],
and the training data D, Consequently, all three factors introduce a
certain degree of variability to the domain generalization accuracy:

fle] (8,T) = g(B, Tpg. Ny

acouracy

where T, is the adopted DG training procedure and "”P is the
experimentation noise. Ty, usually includes a dedicated algorithm to
cope with domain shifts. .'u"m comprehends a systematic error due o
the adopted mode] selection strategy and a random component caused
by the stochasticity in the training process.

3. Back-to-bones

Wi set up our experimental benchmark to run a detailed analysis
of the role of feature extractors in domain gencralization. Besides
choosing architectures, datasets, and DG algorithms to evaluate, par-
ticular attention is given to model selection strategy and statistical
interpretation to obtain a fair and accurate benchmark. In the following
subsections, we provide details on our experimental setup.

Backbones To be consistent with previous works, we include ResNet18
and ResMet50 [31] in the benchmark and compare them with some of
the most successful architectures proposed in recent image classifica-
tion research. We also consider the latest ResMet50 Al [54], trained
using the most recent practices in optimization and data augmentation
and reaching a remarkable 80.4% top-1 accuracy on lmagenct1
We include different sizes for each network to glimpse the effects
of model dimension on DG accuracy. EfficientMNet [55] demonstrated
that systematical model scaling and dimension balancing yield remark-
able results with fewer parameters. For this reason, we select three
network versions, namely BO, B2, and B3. Finally, transformers [41]
recently revolutionized deep learning by proving the effectivencess of
self-attention for feature extraction; hence, four transformer-based ar-
chitectures are included in the comparison. In particular, we choose
DedT (Small and Base) [43], ConViT [44] (both in its Small and Base
configurations), and LeViT Base [45]. To provide further insights on the
effect of additional pretraining data besides standard ImageNet [33],
we also include Vision Transformer (ViT) [42] trained on ImageNet21K
in its Small and Base versions. Regarding ViT Base, a configuration
with a 32 x 32 patch size has been added to the standard 16 = 16
format to test the impact of patch size on DG, Further information on
architectural details can be found in the cited papers. We report the
number of parameters for each model in the last column of Table 1.

Datasets Among the various datasets created explicitly for DG in
the last vears, we use four of the most widely adopted ones for our
primary experimentation. VLCS [56] considers four previous classifi-
cation datasets as domains, while PACS [57] and Office-Home [58]
focus more on style shifts (e.g. from photos to cartoons, sketches, and
paintings). Terra Incognita [59] comprehends several animal photos
taken with camera traps placed in different locations by day and night.
To those, we add DomainNet [60], a bigger and more recent dataset
that contains six domains divided by style and 345 classes. We use it
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Table 1
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Basedines comparisan of different backbenes for G, We report the average accuracy over three muns and the associated Standard deviation for each madel, We
imclude the results schieved by DomasBen with ResNetS0 for reference. The models marked with * are pretrained on Imagenet21K instesd of ImageNet]B. The
rightmost column indicates the sccuracy of the networks on ImageRellK. In Appendix A, we report in detail the results obtained For all the domains.

Backbane PACS VLCS Office—Home Terra Incognita Average Imiageblet Parameters
ResNetlB Bl.51 + 0.29 Td.64 + 0.61 63.E7 + 0.36 40.93 + 1.B5 &4.99 + 0.78 6976 11.69M
ResNetsD [30] B5.50 + 0.20 77.50 = 0.40 B6.50 + 0.30 #5.10 + 1.80 68,90 + 0GB 76.13 25.56M
ResNetsD E385 + 0.77 T6.21 + 1.20 GE.7S + 0.21 47.32 + 0.97 59.04 + 0.79 76.13 25 56M
ResNet50 Al B4.52 + D.68 TA.37 + 0.56 TZAT + 0.13 42.2%3 + 0.B7 G940 + 0.56 B.AD 25.56M
EfficientMNetBd B5.46 + 0.65 75.16 = 0.34 67.27 + 0.27 41,76 + 0.54 68.16 + 0.55 T6.30 5.20M
EfficientNe1B2 B7.02 = 1.37 T4 =+ 0.20 69.35 + 0.24 43.B0 + 1.90 68,90 = 0.93 T79.80 B11M
EfficientNetB3 B6.71 + 0.30 78.14 = 0.18 69.84 + 0,08 45.70 + 1.84 7010 + 060 E1.10 12.23M
DeiT Small 16 B622 + 1.33 TAAT + 0.41 7203 + 0.33 43.40 + 1.08 7028 + 0.79 T9.87 X2 05M
DeiT Base 16 BE. 10 + 0.48 T9.80 + 0.32 76.35 + 0.36 47.22 + 0.75 7287 + D48 B2.00 B6.5TM
ComWiT Small B7.10 + D.33 B0.0D + 0.34 73090 + 0.17 45.83 + 0.6l 7171 = 0.36 El.43 27.7aM
Con¥iT Base B7.27 + 0.40 B0.31 + 0.67 76.51 + 0.25 5,37 + 0.E9 7262 + 0.55 B9 B.SM
LeViT Base B7.55 + 1.50 78.91 + 0.50 7516 + 0.13 45.68 + 1.50 71.83 + 091 E2.59 39.13IM
’ WiT Small 16* E159 + D43 79.56 + 0.60 77.25 + 0.33 #1.12 + 1.07 7123 + 0.61 E1.40 22 05M
WViT Base 32* B4.00 + 1.17 TAAG + 0.64 76684 + 0.17 36.71 + 2.07 §9.00 + 1.01 BO.72 B8 XIM
Wil Base 16* BEA48 + 1.22 B0.O5 + 0.15 Bl.AT + 0.21 49.77 + 1.28 74.94 = 0.72 B4.53 B6.5TM

to further stress the generalization capability of the best-performing
backbones in the presence of more transfer leamning data and fewer
samples per class, We omit Rotated MNIST [61] and Colored MMNIST [5]
since we consider them too distant from any practical application.
Moreover, from our perspective, simple rotation and colorization do
not constitute actual domain shifis.

DG Algorithms We choose some of the most promising DG algorithms
in recent research, particularly considering their performance on Do-
mamBzen [30]. Moreover, we select them to explore different approaches
to the DG problem. CORAL [15] and MMD [17], indeed, focus on
aligning the extracted features through second-order statistics {covari-
ance). On the other hand, Mixup [62] works directly on input images,
interpolating samples from different domains and considering the loss
coming from both precursors. RSC [26], instead, introduces a heuristic
that discards dominant features in the label determination, stimulating
the model to rely on weaker data correlations. CauslRL [63] (used in
combination with MMD or CORAL) builds from a causal analysis of
generalization enforcing soft domain invariance to interventions on the
source domain, CAD [64] introduces a contrastive adversarial domain
bottleneck to guarantee convergence to target domains that preserve
the Bayes predictor. ADDG [65] exploits a double mechanism (Intra-
muodel and Inter-model) to diversify attention between features and
sippress domain-related attention.

Data Augmentation Many research works prove that data augmenta-
tion plays a fundamental role in DG, as it can partially compensate for
certain domain shifts [13]. That is particularly true in the presence
of style changes, as popular data augmentation strategies involve the
alteration of saturation, hue, and contrast. Since the effect of data
augmentation on DG has already been investigated, in this paper, we
use a standard setup to keep the focus on backbones. The de-facto stan-
dard augmentation strategy for DG, which we use in our benchmark,
includes random cropping keeping at least 80% of the original image,
horizontal flipping with 50% probability, image grayscaling with 10%
chance, and random changes in color brightness, contrast, saturation,
and hie, with a maximum of 40%. Since all the models are pretrained
on ImageMetlK or ImageNet21K, input images are further normalized
according to the mean and standard deviation of that datasets.

Model Selection To assess the DG capability of the considered pre-
trained networks, we fine-tune each of them on a set of K source
domains 5 and test them on a target domain T, As pointed out
by [30], “a domain generalization algorithm should be responsible for
specifying a model selection method” and aveid improper comparisons
between results obtained adopting different selection methods. In total
agreement with their recommendations, we use the troining-domain
validation set strategy, which picks the model maximizing the accuracy

on a validation split of the training set (in our case 10%, uniform across
domains) at the end of each epoch. This selection method assumes that
the average distribution of source domains is similar to that of the
target domain on which the best model is tested.

Hyperparameter Search We conduct a random search for each back-
bone and dataset to determine the optimal training hyperparameters
for the baselines. We define a range of values for continuous argu-
ments and a set of choices for discrete ones, running approximately
32 iterations for each search and selecting the best combination via
the previously defined model selection strategy. The leaming rate is
bounded in the range [10-%, 10-2], choosing its scheduler among step
(9% reduction after 80% of the epochs), exponential (with a decay in
the range [(1.9, 1}), and cosine annealing. The batch size and the number
of training epochs are the same for all the experimentation, fixing their
values at 32 and 30, respectively. Finally, we use cross-entropy loss and
select the optimizer among SGD (with a momentum of 0.9) and Adam,
keeping the weight decay to 5. 1077,

Experimental Framework Our benchmarks are developed in Python
3 using the deep learning framework PyTorch. As the experimentation
applies transfer learning to pretrained models, we use existing imple-
mentations of the considered backbones. Only the classification head
is changed, adapting the network to the different number of classes.
In particular, standard ResMets are taken from the PyTorch library
torchvision,® EfficientNets from EfficientNet-PyTorch,” transformers and
ResMet50 Al from timm? The implementations of DG algorithms are
taken from DosmamBes® and adapted to work with the architectures
under test.

Wi repeat each training three times with different and randomly
generated seeds to give more statistical information about accuracy
results. In this way, both hyperparameter search and benchmarks can-
not take advantage of the repeatability of trials, as data splitting,
augmentation, and weight initialization change from one iteration to
the next. Therefore, each of the results of our benchmark is reported as
the mean over three repetitions, along with its standard deviation.

3.1. Baseline benchmark

The first analysis of our work consists of a precise and fair bench-
mark of the DG capabilities of recent deep learning architectures for
image classification, trying to determine what solutions work best

pytorch.org /vision/stable/models
github.com,Tukemelas/EfficientMet-PyTorch
github.com,/rwightman,pytorch-image-models
github.com/ facebookresearch,/DomainBed

[ T
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Table 2

Baseline comparison of a selection of the best backbones on DomainMet (Cliport,
Infopraph, Pointing, Cheickdraw, Feml, and Sketch domains). We include the resules
achieved by DomasBio with ResNet50 for reference. The mode]l marked with * is
pretrained on Imagen=t21K instead of ImageiMet1E.

Backbone Cc 1 P Q E 5 Avg
BesMet50 [30] 5B.1 188 46,7 12.2 9.5 19,8 40.%
DeiT Base 16 60.1 25.0 55.8 17.1 &9.3 570 48.9
ConViT Base 68.5 243 55.7 17.7 9.3 57.0 48.9
WIT Base 16* 74.9 289 &0.8 17.5 77.3 61.8 535

and, possibly, why. Every pretrained backbone, after a hyperparame-
ter search, is trained following the standard DG leave-one-domein-out
procedure using the previously described model selection strategy, Our
benchmark results are reported in Table 1 as the mean and standard
deviation over three iterations.

Firstly, our benchmark highlights a strong correlation between DG
accuracy and ImageNet performance. As depicted in Fig. 2, we find
a direct proportionality between the two metrics (excluding the ViT
models due to their different pretraining). We apply linear least-square
regression and obtain a Prearson correlation coefficient p = 0921
Indeed, a quick look at the results is sufficient to notice how newer
and more performing backbones tend to achieve a higher DG accuracy
on nearly all the datasets, That is primarily true for different sizes of
the same architecture. ResNet50 reaches better results than ResNetld
for all the datasets, and the same happens for EfficientMNet, ConViT, and
ViT variants. For ResNet50, we also compare our results with those ob-
tained by DomamBen and find comparable values. ResNet50 A1 benefits
from its stronger pretraining, largely improving the accuracy obtained
by the standard model on VLCS and Office-Home. However, Terra
Incognita seems to penalize the network with its peculiar light con-
ditions, resulting in a slight overall enhancement. Regarding different
architectures, EfficientNetB2 performs very similarly to ResMet50 while
the B3 version gaing an additional 1% on them. Transformer-based
muodels bring further improvements by exploiting their self-attention-
based feature extraction, even in the case of DeiT Small and ConViT
Small. In particular, they strongly outperform EfficientNet on Office-
Home by over 4%, while Terra Incognita is the only dataset without
any significant progress. That is probably due to the peculiarity of the
domains, comprehending many night shots that can be challenging
even for humans and rewarding less effective ImageNet pretraining.
Among other transformers, DeiT Base 16 and ConViT Base prove to
be the best, the latter being slightly more performing. Finally, the
three ViT models show that pretraining on a more significant amount
of data improves generalization. However, only ViT Base 16 registers
a considerable step forward, suggesting that the abundance of data
is fully exploited only by larger models. Nonetheless, ConViT Small
performs similarly to the same-sized ViT Small 16, while larger patches
demonstrate to degrade the aceuracy of VIT Base 32, In conclusion, our
results show how better DG comes from the union of a good feature
extractor architecture and an optimal pretraining, as none of the two
is sufficient alone. In Section 4, we further discuss the generalization
capability of transformers. We stress the importance of adopting a good
muodel selection strategy by comparing our ResNetl8 baseline with
various recent results obtained vsing the same backbone.

As an additional comparison, we plot the achieved DG accuracy
compared to the number of parameters of the backbones (Fig. 3). Con-
trary to the graph of Fig. 2, in this case, the correlation between model
dimension and generalization is much less marked, with a Pearson
correlation coefficient (p) of 0.740. This confirms the central role of
model architecture in DG tasks and our idea of backbone as the union
of architecture, training procedure, and data.

Finally, we conduct an additional benchmark on the Domain®Net
dataset. Although representing a significant challenge for large-scale
generalization, we choose to include DomainNet only in this second
stage of the study due to its demanding computational nature and
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Fig. 3. DG accuracy achieved by tested backbones compared with their number of
parameters, with emor bars. We find a much weaker correlation between the two
metrics {p = 0.740) than the ane reported in Fig. 3.

strong class unbalancing. Indeed, our main intention is to promote a
practical and accessible benchmark that aims to become a widespread
reference for DG, We select only the best three models from the previ-
ous tests for this one (DeiT Base 16, ConViT Base, and ViT Base 168). In
Table 2, we report the results achieved on each test domain, including
those obtained by DoumanBen on ResNet50 for reference. It is well
evident that the feature extraction capabilities of modern backbones
bring substantial improvement in all the domains, with an average
inerease in DG accuracy up to 12.6%. Moreover, VIT further enhances
the results by exploiting its stronger pretraining.

3.2, Model introspection

After assessing the DG performance of different backbones, we
propose a series of insights on how different architectures leverage
training data to create their inner representation. First, we investigate
the benefits of ImageNet pretraining for DG with a k-NN classifier,
comparing ResNet50 and the best models from our benchmark. Then,
we apply +-SNE [49] on the same extracted features to visualize how
close same-class and same-domain samples are and the effect of fine-
tuning on DG datasets. Finally, we inspect the attention maps of one
of the transformer-based models to have a qualitative insight on the
region of the images it focuses on.

K-NN Evaluation Firstly, we take ResNet50 and the best-performing
models from our benchmark and evaluate their ability to tackle DG
without fine-tuning. To do so, we uwse ImageMet weights to extract
features from training domains and a k-NN (with & = 5) to fit that
data. Then, we use test-domain images for the evaluation. To have
a fair comparison with our benchmark, we use the same amount of
training data, leaving out 10% of samples from source domains. The
results in Table 3 show an overall difference of about 5% between
ResMet50 and transformer-based models pretrained on ImageNetlk.
This outcome is consistent with the generalization boost achieved in
the standard DG framework (Table 1), although k-NN results tend to
oscillate among different datasets. On the same trend, VIT Base 16
gains an additional 10% average accuracy, thanks to its pretraining on
the larger ImageNet21K dataset. This outcome suggests that learning
a wider overall source distribution Py, is always needed to tackle
a substantial domain gap effectively. That pretraining alone does not
guarantee the ability to extract domain-invarant features.

Feature Mapping Visualization To further enlighten the role of back-
bones in extracting meaningful and invariant features to deal with DG,
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Fig. 4. Deil Base attention maps when using the [CLS) token as a query for the
different heads in the last layer. We select the same head for all examples. ERB
encourages the backbone to focus on domain-dovariant features, highly mitigating
pretraining noise.

Table 3
Comparison of different feature extractors without fine-tuning, using a k-NN classifier
[k = 5} The model marked with * is pretrained on ImagenetZ1 K instead of ImageNet1E

Back bame PACS VLS Ofce-Home Terralne. Avg

ResNet50 56.04 69.57 56.26 14.75 45.16
DeiT Base 16 56,27 65.50 65.57 27.06 33,60
Con¥iT Base 56.63 64.50 66.63 27 .96 53.54
VIT Base 16* 7514 7514 B2.72 25.64 2R

we can visualize the distributions in the feature space by projecting
them in a two-dimensional space using t-SNE. Fig. 5 shows t-SNE
visualization for ResNet50 and ConViT Base, pretrained on ImageNet1K
and fine-tuned on PACS, targeting the Art Painting domain. For each
model, we remove the classification head and extract the features for
the whole dataset. The more clustered the same class features appear in
the t-5MNE, the more separable from other classes they are in the original
space. We also include the silhouette score (5) as a quantitative metric
of the separation of classes below each plot.

Fig. 5(c) shows how ResNet50 pretrained on ImageNet tends to map
together same-domain samples and not same-class ones, being therefore
unsuitable for DG without fine-tuning. After the fine-tuning process
(Fig. 5(a)), the model achieves a better separation of source domain
classes. However, many target domain samples are still mapped in the
same space, far from the same-class source clusters (e.g. the Art Painting
guitar example). Similarly to ResNet50, without fine-tuning, domains
dominate the features space distribution of ConViT (Fig. 5(d]), causing
several clusters of the same class but different domains to emerge
in different locations {e.g. horse samples). However, some same-class
samples of more similar domains, such as the guitars of Corteon and
Art Painting, are effectively clustered together. The fine-tuning process
(Fig. 5(e)) distinctly pushes together same-class clusters, resulting in
good generalization over the target domain. This analysis suggests
that the Con¥iT backbone is more suited for DG than ResMet50 since
it wends to give more similar representations to same-class samples
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from different domains, Addidonal feature mapping visualizations are
presented in Appendix B

Self-attention Visualization In literature, DG algorithms are often
presented with a qualitative analysis, highlighting the regions the net-
work focises on using interpretation methods such as GradCAM [66].
Indeed, heat maps are brought as evidence of their capability to push
attention toward more localized and demain-invariant features. Never-
theless, this section shows that competitive backbones with naive ERM
can perfectly localize class-diseriminative regions. In particular, Fig, 4
shows the attention maps extracted using the [CL2] token as a query
for the different heads in the last layer of the DeiT Base architecture.
We provide four random examples for different target domains of
PACS showing the same attention head map before and after DG fine-
tuning. It is remarkable how naive ERM is able to redirect attention
towards more invariant features. Additional attention visualizations are
reported in Appendix B.

3.3, Domain peneralization alporithms

Domain generalization research mainly focuses on studying non-
trivial algorithms to reduce the effect of domain shifis on classification
accuracy. However, these algorithms are uniquely proposed in combi-
nation with outdated backbones such as ResNet50, ResNetld, or even
AlexNet, According to the results in Table 1, recent backbones can
provide significant improvements compared to ResNet50 with simple
ERM. At this point, it is worth determining whether the application
of DG algorithms brings a further boost in generalization to our base-
lines. To do so, we combine some of the most promising and recent
algorithms available on DosmasBeo with three of our best baselines.
We evaluate the methods introduced at the beginning of this Section
(MMD, CORAL, Mixup, RSC, CAD, CausIRL CORAL, CausIRL MMD,
and ADDG) using ViT Base 16, Deil Base 16, and ConViT Base as
backbones and repeating each training three times. Table 4 reporis
the obtained results, composed of average accuracy and associated
standard deviation. Results obtained with ResNet50 are also reported
directly from DomausBen for the same group of datasets as a reference.
The only exception is the most recent ADDG, which the authors have
not tested on VLCS and Terra Incognita and does not report standard
CITOrs.

As highlighted by the values in bold, the overall performance of
ERM is equal to or better than other DG algorithms for all the con-
sidered datasets and backbones, Indeed, even where another method-
ology slightly outperforms ERM, the accuracy results mostly fall in
the same confidence interval and hence differ very little statistically.
We can then conclude from our experimentation that DG algorithms
improve generalization properties marginally or even negatively for
transformer-based backbones. This outcome extends the recent findings
of DomamBen to other baselines and strongly reinforces the belief that
choosing an effective backbone is the first step towards filling domain
gaps, Adopting an outdated or poorly trained baseline is not the correct
way to demonstrate the improvement derived from a DG algorithm. In
the next section, we briefly ask ourselves what the reason behind this
result is. Moreover, in Appendix A, we detail the results obtained for
all the domains.

4. Additional considerations
4.1, Are transformer-based backbores better at generalizing?

Beflecting on experimental evidence and visual introspection from
previous sections, we discuss whether transformer-based backbones
are more robust to domain shifts in this paragraph. Undoubtedly, all
baseline comparisons of Section 3.1 and features visualizations shown
in Fig. 5 would suggest a positive answer to this interesting guestion. In
all results and wisual representations, self-attention-based models tend
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Fig. 5. Backbone features visualization with t-5ME on PACS (Photo (F), Ant Painting (A), Cartoon (C) and Sketch (5) domaing). Target domain samples are highlighted. Some
image examples from different domaing and classes are viswalized for better interpretability. After the fine-tuning, the ConViT Base architecture achieves a better class separation

than ResNetS0, clustering together same-class samples of different domains.

to generalize better to unseen domains. This result enforees the finding
of [48] that multi-head attention acts as a low-pass filter with a shape
bias thanks to its milder prior, while convolution is a high-pass filter
with a texture bias.

Mevertheless, exercising caution and critically analyzing all the vari-
ables involved in the process is important. Indeed, such a conclusion
only holds leveraging our backbone definition as a function of architec-
ture A, training procedure Ty, and data I (as presented in Section 2).
Architecture and training procedure are difficult to disentangle, and
there is no guarantee that a training procedure optimal for a specific
architecture remains the best for another. Therefore, that implies it
is impossible to compare two different architectures directly. Some
recent experimentation on residual architectures with current state-of-
the-art training procedures has shed some light on the contribution of
A to the generalization process. Indeed, in [54], a vanilla ResNet50

is trained with the approach developed by [43], reaching 80.4% top-
1 aceuracy on ImageMet without extra data or distillation. However,
ResMet50 Al performs only slightly better than the orginal model on
our Barx-ro-Boses testbed, even if there is a difference of over 4%
in ImageNet accuracy. That deviates slightly from the linear cormela-
tion described in Section 3.1 and suggests that a transformer-based
architecture brings a significant generalization contribution. As fur-
ther evidence of this trend, ConViT Small has comparable parameters
with [54] and a similar training procedure but outperforms it by more
than 4% on some datasets. Nonetheless, further experimentation can
yield more comprehensive results on this interesting aspect of vision
transformers.

4.2, On baseline selection in previows works

A5 already stated in Section 1, in the last decade, a plethora
of algorithms for domain generalization (DG) has been proposed in
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Comparison between ERM and three promising DG algorithms on the best-pedforming backbenes of our benchmark. 'We report the average
accuracy aver three runs and the sssociated gandard deviation for esch model. We highlight in bald the best result for each dataset, including
ERM, when its accuracy is in the ssme confidence interval. We include the results achieved by DosunBen with ResNet50 for reference. The
moddel marked with * is pretrained on Imagens=21K instead of ImageNet1E In Appendix A, we report in detail the results obtained for all the

dhmains,

Backbone Algorithm PACS VLCS Office-Hame Terra Incognita Overall
ERM [52] 8550 + 0.20 7750 + 040 66.50 + 0.30 46.10 + 1.80 GE.OD + (.68
REC [26] 8520 + 0.90 7710 £ 050 65.50 + 0.50 46.60 + 1.00 GE.60 + (.83
Mixup [62] 8460 + 0.60 F7AD £+ 060 6810 + 030 47.90 + 0.80 BL.50 + 0.58
CORAL [15] B6.20 + 0.30 TE.ED + O.60 68.70 = 0.30 47.60 + 1.00 70.33 + O.55

ResNet5e} [30] MRID [17] 84.60 + 0.50 77.560 + 0.90 6650 + 010 42230 + 1.60 67.65 + 0.78
CauslRL CORAL [65] 8580 + 0.10 77.50 + 0u60 G860 + 0.30 47.30 + 0.80 GE.BD + 045
CauslRL MMD [£3] 84.00 + 0.80 Fr.60 + 040 65.70 + 0.6l 46.30 + 0.90 GE.4D + (.68
CAD [&] 8520 + 0.90 TE.OD + 050 67.40 + 020 4730 + 2.20 GLLAR + (.95
ADDG [65] 89.2 - 725 - -
ERM [52] BR.10 + O4E TO.B0 + 0.32 7635 + 036 4722 + 0.75 TLET + 0.48
REC [26] 8537 + 1.30 FI.2T + 051 TGAF + 0.2 41541 = 1.50 7097 + 0.90
Mixup [62] 85.67 + 0.61 TE.25 + (060 7596 + 0L11 46.63 + 0.49 71.32 + Q.48

DaT Baze 16 CORAL [15] 85.153 + 0.2 TE.B4 + 086 TaA4E + 0.14 46.33 + 1.83 71.38 + 0.93
MM [17] 8722 + 0.28 7RT71 + 022 FPO03 = 010 48,35 + 1.42 T3.08 + 0.50
CauslRL CORAL [63] 8386 + 0.75 77.BD £+ 040 7612 + 0.04 46.73 + 0.81 71.13 + 0.50
CauslRL MMD [63] 8546 + 0.68 FIAT + 042 T6.53 + 042 4577 + L.66 71.26 + 0.79
CAD [64] B7.74 + 062 TL2E + 036 76.61 + 015 4746 + 0.64 TLIT + 0.44
ADDG [65] 7530 + 0.34 TE.2E + 0.77 F7.58 = 0.30 1914 + 2.24 65.07 + 0.91
ERM [52] B7.IT + 040 BO.31 + OLGT 76.51 + 025 #6.37 + 0.89 TL6Z + 0.55
REC [26] 85.73 =+ 0.81 7L.05 + (61 TE77 + 026 44.94 + 1.47 71.62 + 0.79
Mixup [62] 86.00 + 0.45 BOLOD + .76 TOAE + 016 43.95 =+ 0.18 71.61 + Q.39

ConViT Base CORAL [15] 8624 + 0.24 To62 + 038 75.33 + 022 44.41 + 1.33 7140 + 054
MRID [17] 86.84 + 0.63 BO.7Z + (LS5 Fro4 + 0.31 +6.78 + 1.22 T3.07 + 0.68
CaunslRL CORAL [65] 84.71 + 0.31 7014 + 069 77.05 + 016 45,63 + 2.03 71.63 + 080
CauslRL MMD [63] 86.59 + 0.96 BO.30 + 056 F7.92 + 0.35 46.85 + 0.59 T292 + 0.61
CAD [6d] B7.42 + 066 7H99 + 041 FIT1 = 0,09 #6.77 + 3.31 T19T + 1.12
ADDG [65] 8634 + 0.76 TLFO + 030 76.29 + 033 4387 + 1.75 71.60 + 0.78
ERM [52] BB.48 + 1.22 BOLOS + (.15 B1.47 + 021 49.77 + 1.28 Td.04 + 072
REC [26] 86.58 + 214 TL.59 + 063 TH.74 + (LG4 40.79 + 1.41 7142 + 1.20
Mixup [62] BR.62 + 054 BO.7T + 1.28 82,93 + 0.07 48.59 + 0.92 7523 + 070

ViT Base 16* CORAL [15] 84.60 + 1.31 BO.ED + 0.49 80.92 + 0.25 50.58 + 0.26 74.25 + (.58
MR [17] 87.99 + 0.0B 7054 + 037 81.71 + 0.2 49,40 + 2.45 Td.66 + 0.79
CauslRL CORAL [63] BR.26 + 1.00 BOLID + .91 81.73 + 0L13 4729 + 2.64 7435 + 1.19
CauslRL MMD [63] 8557 + 113 TH4B + 1.12 B1.62 + 0L2Z 49.52 + 0.58 T30 + 076
CAD [64] 8744 + 0.53 TEFO + 243 7980 + 036 3945 + 4.15 71.57 + 147
ADDG [65] 7533 = 0.54 TIFT + 032 Fr.72 £ 009 X560 + 0.64 64.11 + Q.40

Table 5

Comparison between the FesMNetlB baseline obtained in our BacooBaoses
benchmark on PACS and those reported by popular DG works, Owr
woruracy result (without any extra component) outperforms all previous
ones, which rarely include statistical information from multiple training
iterations. Moreover, thess works seldom discuss hyperparameter search
procedures and model selection strategies.

Baseline Average Std Deviation
TRM [67] 77.13 1.53
MMLD [BE] 78.70 -
JiGen [69] 79.05 -
Epi-FCR [70] 79.05 -
MASF [T1] 7923 0.15
SagNer [TZ] 7926 -
DDAIG [73] 79.53 0.48
D-5AM [74] 79.55 -
PAdaly [75] 7972 -
MetaReg [19] 79.93 0.28
RSC [26] 79.94 -
BaoxraBoxes 80.51 0.29

the literature, trying to tackle the problem with a wide variety of
sophisticated methodologies. Nevertheless, our experimentation high-
lights that presented baselines often lack proper optimization. Table 5
compares the accuracy result obtained in our BackroBoses benchmark
with those reported by several recent works. We evaluate ResNet18
on PACS as this is the most common setup, and the baseline we
obtain with fair hyperparameter search and validation cutperforms all
those reported in the latest research works without adding any extra
component. Moreover, statistical information is often absent in past DG
works, overlooking proper hyperparameter search and model selection
strategy discussion. In accordance with the outcomes of DosunBen,
we hope to encourage the adoption of rgorous testing procedures, in
conjunction with a standard model selection strategy, for transparent
research results. With this study, we suggest that new DG algorithms
should be analyzed based on adopting well-trained backbones. fs a
matter of fact, an advantage brought to underpowered baselines can
be considered meaningless,

5. Conclusion and future work

In this paper, we deeply investigate the role of backbones in domain
generalization, bringing back to light the fundamental contribution ne-
glected by the community that a competitive feature extractor provides
for generalizing to out-of-distribution data. According to our suggested
backbone definition, novel architectural solutions such as DeiT, Con-
WiT, and LeViT show remarkable improvements in reducing domain
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Baselines comparisen of different backbones on the four considered DG datasets, We report the average scouracy over three runs and the associated Sandard deviation
for each model. The models marked with * are pretrained on Imagenst21K instead of ImageNet1K.

Backbone Phote Art paincing Camonn Skerch Bapkbers Caltask Labelme Pazral =

ResMetls 403 + 049 TRES + 1.74 FETI 2 075 7LED = 153 [r— 560 + D18 5255 + 1.29 TIED 4 1.90 BT8O0 4 1.63
ReshietS0 W53 + 0.54 BXS86 & 2.4T TRES + 470 H1.18 = 0.58 Foeslizr50 9609 + 1.35 &L4T & 172 Fi43 + 334 TOEE + 3.25
ResMetS0 A1 9784 + DEE BEET + (.60 7443 + 133 THG4 = 0.86 ResNetsd Al QHEY + D16 6323 + 077 TTEA + 1.84 TITZ 4 0.55
EfficieniNetB0 9543 + 0.2 BLZY 3 LOD BO.EF 1 LS55 B3.45 = 214 Effi clestietB 96.84 + 059 G176 + (40 7043 + 116 TLEZ + 1.0
EfficieniNetB2 6] + 035 BE30 & 1.44 BLTS + 109 B3.44 = 321 Efflclesifiet8 2 9787 & 117 6394 + L595 TLI1 % 1.52 GETE 4 0.62
EfficieniNetB3 9580 + 060 B1EZ + 0.54 BL9E + 1.23 B5.10 = 1.18 Efflclestiatad 97,36 + 041 G368 + .99 7637 4+ 1.51 TE30 4+ 2.09
DefT Small 16 9838 + LIS B7.58 + 213 BLZZ + L96 77.60 = 0.88 OeiT Small 16 97.53 + 038 6491 + L52 A58 + 1.21 TEES & 1.02
DelT Base 16 9938 + 015 G074 4 075 BATS + 1AV 7952 = 1.54 DelT Base 16 97.79 + D18 5524 & 029  FEOs + 217 TEIL 1 141
ConViT Small 9916 + L1E 5123 + 0.57 HLEE + 145 Thd43 = 1.38 CanViT Smadl g7.05 & D21 &8 + 151 B33 & 1.07 TETZE + 067
ComViT Base .18 + 118 %1.05 + 0.75 B1.29 + 1.61 74T = 1.45 ConViT Base 97.95 & 03T &5.78 & 136 22 & LEI TB2E + 2.0
LeVIT Base S804 + D55 BE.20 + 16T BEZ1 + 1.5% BOLTE = 215 LEVIT Base 9819 + D30 6452 + 1.13 TEST + T4 TE3IE 4+ 1.30
VIT Emall 16 9940 + D12 8994 + 0.5 BOWED + 246 64.40 = 1.20 WIT Small 16 760 + 041 G486 + 1.59 T4l 4 272 TTET 4 0.96
WiT Base 3Z° .30 + 0.32 B5563 + 0.28 BOEZ + 091 G684 = 460 VIT Base 32* Q8.78 & D71 &l.66 + 0.2 TEAT & 140 Tddh & 279
VIT Base 167 Fa50 & DT G325 & 109 BE5Z 4 264 THET = 2.2 WIT Base 15* GT.6S ¢ 5D 6542 4 LI8 TOS5 4 LG4 TTES 4 0.4

{a} PACE b1 VLCE

Backbone Prosdoct Art Clipart Beal world Backboae L1o0 138 L43 LA

ResMetls TIEE + D36 5542 + 0.1 5LT3 3 0.3% 7146 = 0.20 ResMer18 44.48 + 271 35495 + LET 4926 + LOB 403 3+ 1.50
ResMets0 7716 + DLI8 6323 3 0.46 56,36 + 0.20 FB.51 = 100 FiesMersi 5119 + 5.6 4157 + 148 5410 + 1.33 4043 3 1.42
ResMetS0 A1 T9.88 + DT G9.2H 3 0.44 5763 3 LGH B3.11 = 0.32 ResMet50 Al 4822 + 1.50 .4l + 17T 4550 + 249 577 + 0.84
EfflcientNet B0 TEO6 + 08 E0E1 4 0.7 54.55 + 1.30 TTEE = 006 Effl clesiMetB 4473 ¢ 215 4140 + 413 5414 2 DH3 IETE 4 0.09
EfficientNetB2 TEEZ + DLET G299 3 .66 5627 + .45 TUEZ = 0.51 Efflclesifeta2 41.82 & DTS 4142 + 4.02 5506 + 1.74 80+ 3.08
EfficientNetB3 TOIT + 043 6450 + 0.53 5513 1 104 BOLIE = 0.81 Efflclesifeta 3 4893 & 276 ITA2 + 169 5827 + 108 ITET 3 2.40
DeT Small 16 7991 + D55 G930 4 0.93 56.74 + 063 BL1E = 0.21 DeiT Small 16 5111 & 252 3064 + 54D 5079 3+ 244 907 + 176
DeT Base 16 E55 4+ 03T TEZ2 + 0.55 6107 + 052 B5.55 = 064 DeiT Base 16 58.53 + 1.07 IO+ 1.42 5257 + LHZ 4183 4 2.12
ConViT Small =069 + 0.7 TEAS + 0.3 5869 + 0.17 B3.7% = Q.84 Can¥iT Sanall 5355 + 1.0% 3641 + 44 5393 + 09 3943 + 0.65
ConViT Base 8321 + 058 7449 2 0.50 BLSE & 144 B5.77 = 0.31 ConViT Base 5217 & 4.05 3254 + 126 5730 + 027 4350 + 2.44
LeVIT Base 2223 + 014 TEES & 0.91 6055 + 056 BA.OZ = 066 LEVIT Base 5502 + 3.48 373 + 134 5537 & (W62 01 + 1.52
VIT Small 16 479 + 055 TE32 + 0.8 6050 + 072 B7.38 = 0.58 ¥IT Small 16° 54.10 + 417 ZRT0 + 1.0 5015 + .23 3BEZ + 2.15
VIT Base 32° 5392 + 037 7528 + 0.33 6095 + 071 B7.21 = Q.15 WIT Base 32* 33.33 + 3BA Z6.84 + D6 SZST + LEZ 3206+ 0.99
VIT Base 16° 2030 4+ 0I5 993 + 0.87 6771 & 036 BO.ES = 0.89 VIT Base 1&6* SHES + 4.18 4114 + 212 5683 4+ 1.9 4247 3 262

ie) Cdflce-Eoomme {d) Terra Incognica
gaps with their intrinsic feature mapping mechanisms. They achieve Acknowledgments
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shown remarkable generalization capabilities [47,48] and deserve fur-
ther study. For this reason, we encourage the research community to
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maintain a benchmark dedicated to backbones in the DG problem. With
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current situation surrounding DG works, trying to shift towards more
effective research. From a broader perspective, our research points out
the fundamental role of backbones in DG, However, we did not thor-
oughly examine the backbone components responsible for the observed
correlation between source and target accuracy. Indeed, architecture,
backbone training procedure, and data could contribute differently to
the measured generalization capabilities. Therefore, we believe that
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Appendix A. Additional benchmark resulis

Al Baseline benchmark

This section includes additional results from our benchmark of
different backbones, described in Section 3.1, In particular, Table &
reports accuracy results for each target domain, further highlighting
the differences between different models. Besides some oscillations
given by peculiar domains, the trend of novel and more performing
backbones overcoming cutdated ones is present for each target split.
Each value is recorded as the mean over three independent runs, along
with its standard deviation.

A2 Domain generalization algorithms

As for the bascline benchmark, we report more detailed results
for the experimentation described in Section 3.3, In particular, Ta-
ble 7 includes accuracy results for each target domain to highlight the
strengths and the weaknesses of the examined algorithms, The evalu-
ated methodologies generally do not significantly benefit DG aceuracy,
performing similarly or even worse than naive ERM for nearly all target
domains. Moreover, the unreliability of DG algorithms highlighted by
our experimentation is further compounded by the fact that target

® hetpe:/ /picdser. polio.it
7 hetps://smartdata, polito.it
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Table 7
Comparison of different DG algorithms on the three best backbones from our benchmark, covering each domain of the four considered datasets, We report the aversge socuracy
over three runs amd the associated standard deviation for each model. The model marked with * is pretrained on Imagenet21K instead of ImageMet15

Hackbone Alygeribm Fhain At paisting Lartzm Sheich Bachbone Algreithen Cukeck Labalag [ Sun
ERM [52) [52) TS & 015 WL = 095 ELTH & 107 PRS2 5 154 ERM [52] GTI0 . LIS SA34 » 020 TASE + 217 TRID & Lel
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Fig. 6. PACS features extracted with ResNet50 and ResNetS0 Al projectsd on 2D space with -5NE. Target domain Art Pointing samples are highlighted. Even though ResMet50
Al has a higher starting accuracy on ImageNetlK, the two backbones have comparable feature space distributions.

labels are rarely available in a real scenario. That prevents a direct
check of the effectiveness of the procedure, leading to the adoption
of more robust and trustworthy solutions. Indeed, ERM is casy to
implement and consistently achieves remarkable accuracy results. Each
value is recorded as the mean over three independent runs, along with

its standard deviation.
Appendix B. Additional model introspection
B.1. ResNet50 vs ResNet50 Al

ResNet50 Al [54] is a retrained version of the popular ResNets(0,
exploiting the most recent techniques in data augmentation and hy-
perparameter search, leading to an increased top-1 accuracy on Im-
ageMetll test set of 80.4%. Fig. 6 compares the t-SNE visualization
of the two models including the silhouette score (5) as a quantitative
metric of the separation of classes. Even though ResMet50 Al starts
with a remarkable advantage in terms of ImageNet accuracy, the two
backbones generate comparable feature distributions. In particular,
both models tend to separate samples by domain and not by class
without fine-tuning (see Fig. 6(a)), which does not favor DG, After
retraining on three source domains (Fhoto, Cortoon and Sketch), same-
class clusters emerge, still with a certain overapping over the Ant
Fointing target domain.

B.2. Feature mapping visualization

Section 3.2 reports and discusses the visualization of the PACS do-
main Art Painting with ResNet50 and ConViT, highlighting the advan-
tage of using transformer-based networks. In this section, we propose
an additional t-SNE single-domain representation of features extracted
from all PACS domains, with BesMNet50 and our three best backbones
(Fig. 7). According to the higher distance between source and target dis-
tributions, more challenging target domaing result in more agglomerate
clusters of domain samples. From this representation, the competitive
advantage offered by transformer-based backbones is especially evident
for Art Painting. ConViT shows more separated class features for the
Cartoon domain. These findings confirm the baseline results reported
in Section 3.1, in which transformers show valuable improvements on
every target domain. We also include the silhouette score (8] in Table 8
as a quantitative metric of the separation of classes.

B.3. Self-atention visualization

We provide more self-attention visualizations for randomly selected
PACS images: Photo and Art Pointing domains in Fig. 8, Cartoon and
Sketch in Fig. 9. We show the four most active heads of DeiT Base using
the [cLs] token as a query for the different heads of the last layer.
It is clear how ERM maps present more localized attention regions,
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Fig. 7. The 1-SME representation of features extracted from all PACS target domaing, with ResNet50 and several transformer-based networks, shows how better the same domain
samples are divided into easier domaing such as Phoeo. The Sketch distribution is affected by a more consistent domain gap, resulting in a more agglomerate domain cluster of
samples. From this representation, the competitive advantage of transformer-based backbones is especially evident for Art Painting, although valuable in the clasification accuracy
on every target domain, The model mared with * s pretrained on Imagenet31E instead of ImageMetlE
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ImageNetlK

Fig. 8. Self-attention DeiT Base of most active heads of the last layer for some samples of the Plrobo and Art Pointing PACE domains, We look at the attention map when using
the [CL5)] token as a query for the different heads in the last layer. 1t is clear how ERM is very effective at effectively redirecting attention towand more meaningful regions ansd
mitigating pretraining noise.
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Fig. 9. Self-attention DeiT Base of most active heads of the last layer for some samples of the Canoon and Sketch PACS domains. We look at the attention map when using the

5] token ag a query for the different heads in the last layer. It is clear how ERM is very effective at effectively redirecting attention toward more meaningful regions and
mitigating prefraining noise.
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Table &
Silhouwette scores for the 1-SME representations in Fig. 7. The model marked with * is
pretrained on Imagenet21K instead of ImageiNet1E.

Backbane Phuta Art painting Cartoon Sketch
ResNet50 0.7191 0.3107 DAlGH 0.2950
DerT Boss 16 0.76E% 0.5745 GA720 0.4037
ConWiT Base 0.7304 0.5688 Q4639 0.3921
Wil Base 16* 0.5523 0.6778 05197 0.30093

focusing on more meaningful features. Finally, highly active isolated
patches are learned during ImageNet training due to overfitting; even if
some pretraining noise remains, ERM strongly attenuates this problem,
further focalizing the attention of the network and reducing biased
predictions.
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