# POLITECNICO DI TORINO Repository ISTITUZIONALE

Back-to-Bones: Rediscovering the role of backbones in domain generalization

| Original Back-to-Bones: Rediscovering the role of backbones in domain generalization / Angarano, Simone; Martini, Mauro; Salvetti, Francesco; Mazzia, Vittorio; Chiaberge, Marcello In: PATTERN RECOGNITION ISSN 0031-3203 156:(2024), pp. 1-16. [10.1016/j.patcog.2024.110762] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Availability: This version is available at: 11583/2990930 since: 2024-07-23T14:14:53Z                                                                                                                                                                                           |
| Publisher:<br>Elsevier                                                                                                                                                                                                                                                          |
| Published<br>DOI:10.1016/j.patcog.2024.110762                                                                                                                                                                                                                                   |
| Terms of use:                                                                                                                                                                                                                                                                   |
| This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository                                                                                                                                         |
|                                                                                                                                                                                                                                                                                 |
| Publisher copyright                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                 |

(Article begins on next page)

ELSEVIER

Contents lists available at ScienceDirect

## Pattern Recognition

journal homepage: www.elsevier.com/locate/pr





## Back-to-Bones: Rediscovering the role of backbones in domain generalization

Simone Angarano a,b,\*, Mauro Martini a,b, Francesco Salvetti a,b,c, Vittorio Mazzia a,b,c, Marcello Chiaberge a,b

- a Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
- b PIC4SeR, Politecnico di Torino Interdepartmental Centre for Service Robotics, Turin, Italy
- c SmartData@PoliTo, Big Data and Data Science Laboratory, Turin, Italy

#### ARTICLE INFO

#### Keywords: Deep learning Computer vision Image classification Domain generalization Backbone

#### ABSTRACT

Domain Generalization (DG) studies the capability of a deep learning model to generalize to out-of-training distributions. In the last decade, literature has been massively filled with training methodologies that claim to obtain more abstract and robust data representations to tackle domain shifts. Recent research has provided a reproducible benchmark for DG, pointing out the effectiveness of naive empirical risk minimization (ERM) over existing algorithms. Nevertheless, researchers persist in using the same outdated feature extractors, and little to no attention has been given to the effects of different backbones yet. In this paper, we go "back to the backbones", proposing a comprehensive analysis of their intrinsic generalization capabilities, which so far have been overlooked by the research community. We evaluate a wide variety of feature extractors, from standard residual solutions to transformer-based architectures, finding an evident linear correlation between large-scale single-domain classification accuracy and DG capability. Our extensive experimentation shows that by adopting competitive backbones in conjunction with effective data augmentation, plain ERM outperforms recent DG solutions and achieves state-of-the-art accuracy. Moreover, our additional qualitative studies reveal that novel backbones give more similar representations to same-class samples, separating different domains in the feature space. This boost in generalization capabilities leaves marginal room for DG algorithms. It suggests a new paradigm for investigating the problem, placing backbones in the spotlight and encouraging the development of consistent algorithms on top of them. The code is available at https://github.com/PIC4SeR/Back-to-Bones.

### 1. Introduction

The problem of induction has a central role in the learning process. Without generalization, machine learning algorithms would be able to exhibit useful behaviors only in situations identical to the ones previously experienced [1]. Deep neural networks are powerful models capable of extracting subtle regularities from training data. Nevertheless, they often fail to generalize to out-of-training data. Even if supervised training methodologies have proved to produce neural networks with remarkable performances, their results are valid only in well-defined settings and do not generalize across tasks, domains, and categories [2]. For the specific object recognition task, several literature works have shown that, unlike humans, training frameworks commonly produce networks that are more prone to be biased towards textures and global image statistics in making decisions [3,4], prioritizing easier-to-fit spurious correlations in favor of invariant shape cues [5]. That prevents scaling on all samples showing a distribution shift and poses a concrete barrier to deploying models in all critical applications that require true generalization power. For instance, autonomous driving could face environments and circumstances not encountered during the training phase caused by light, weather, background, and nearby object dynamics. Indeed, disparate independent studies report how neural networks could easily fail without effective generalization capabilities, negatively affecting the behavior of the overall system [6,7]. Similarly, another realistic example of a domain gap is training neural networks in simulation, which has become a standard procedure in the robotics research community. Recently, researchers have faced the Simulation-to-Reality (Sim2Real) gap problem, trying to effectively transfer Deep Neural Networks from virtual scenarios to the real world [8,9].

Domain Generalization (DG) aims at training models that generalize to out-of-distribution (OOD) data. The access to a set of source datasets provides a predictor with the ability to extract and learn general invariant patterns, which are, hypothetically, also recognizable

<sup>\*</sup> Corresponding author at: Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy. E-mail addresses: simone.angarano@polito.it (S. Angarano), mauro.martini@polito.it (M. Martini), francesco.salvetti@polito.it (F. Salvetti), vittorio.mazzia@polito.it (V. Mazzia), marcello.chiaberge@polito.it (M. Chiaberge).



Fig. 1. Our experimentation proves the importance of backbones in Domain Generalization. We find that novel architectures, such as transformed-based models, lead to a better representation of data, outperforming outdated backbones, such as ResNets, and leaving marginal room for feature mapping improvement using DG algorithms.

in the target domain dataset [10,11]. As an extension of supervised learning, this approach aims to minimize empirical risk at training time to extrapolate an overall probability distribution from source datasets that enables accurate classification of OOD data. In the last decade, aware of the tremendous impact of generalization on computer vision applications, the DG research community has tackled the problem with algorithms that aim to find invariant features that hold with novel domains. Among the constellation of proposed approaches, we identify the principal broad strategies adopted for domain generalization in augmenting the source domain [12,13], aligning domain distributions [14–18], meta-learning [19–21], self-supervised learning [22–24], and regularization strategies [25–29].

Although methodologies have given meaningful insights about the nature of DG over the years, only recent research contributions have proposed a rigorous testing benchmark to evaluate and compare the advantages provided by DG algorithms fairly. With DomainBed [30], the results obtained by the most relevant solutions have been critically analyzed over DG datasets, unmasking the marginal positive or negative improvement obtained in most cases compared to naive empirical risk minimization (ERM). Nevertheless, the study has been carried out uniquely with ResNet50 [31] as a feature extractor. Thus, new DG algorithms are still proposed overlooking a fundamental aspect of practical deep learning applications: the importance of the backbone. In past years, several competitive deep learning architectures, characterized by different types of feature extractors, have been proposed to solve classification tasks [32] on popular datasets such as ImageNet [33]. Classical backbones are based on convolutional layers: AlexNet [34] is a network based on a small set of convolutions and max-pooling layers combined with ReLU activation. The VGG architecture [35], in its variations VGG-16 and VGG-19, further explores the convolutionpooling structure by stacking more layers and reaching a deeper design. ResNet [36] first adopted a residual approach to help gradient flow with skip-connections, and it is still a widely adopted backbone for various computer vision tasks. Similarly to VGG, ResNet has been proposed in different fashions, with variable depth, such as ResNet18, ResNet34, and ResNet50. Other architectures, such as DenseNet [37] or InceptionNet [38], focus on different mechanisms, like dense connections or parallelization of convolutional layers with different kernel sizes. MobileNet [39] and EfficientNet [40] have been proposed to increase model efficiency, reaching competitive classification results with lightweight architectures and fewer parameters. More recently,



Fig. 2. DG accuracy achieved by tested backbones compared with their performance on ImageNet, with error bars. Regardless of different architectures and priors, we find a strong linear correlation between the two metrics ( $\rho = 0.921$ ). In Section 3.1, we also compare DG accuracy with the number of parameters, finding a much weaker correlation.

self-attention-based models have reached state-of-the-art image classification performance, inspired by the Transformer [41] architecture first proposed for language modeling. In particular, the Vision Transformer (ViT) [42] first adopted a Transformer encoder for vision tasks, while its training methodology has been refined by the Data Efficient ViT (DeiT) [43]; ConViT [44] combines convolutions with self-attention, and LeViT [45] focuses on a pyramidal architecture of self-attention layers that progressively shrinks spatial dimensions. This rich literature landscape offers a wide choice for researchers when selecting feature extractors for visual applications. However, among the different computer vision tasks, the DG community has substantially neglected the generalization power of existing backbones, promoting sophisticated algorithms combined with outdated feature extractors such as ResNet18 or even AlexNet. Only very few attempts have been made in this direction: Sultana et al. [46] proposed the first DG algorithm specifically for Transformer-based models; Guo et al. [47] studied how MLP-like models generalize better than CNN by incorporating more global-structure information and proposed a new Mixture-of-Experts architecture; a concurrent work by Li et al. [48] has brought useful insights on the intuition that multi-head attention is a low-pass filter with a shape bias, while convolution is a high-pass filter with a texture bias.

In this paper, we claim that the domain gaps existing in realistic scenarios should be tackled starting from accurately selecting the model architecture, which is undeniably central in most deep learning applications (Fig. 1). We come to similar experimental conclusions to the concurrent work of [48] on the generalization of transformers and the weaker effect of DG methods. However, we push it further by evaluating multiple backbones with different priors and several DG methodologies and find a strong correlation between ImageNet accuracy and generalization.

In particular, we conduct extensive experimentation on the principal DG datasets and assess a wide variety of backbone architectures, from novel vision transformers to standard convolutional models. Our results demonstrate an evident linear correlation between large-scale single-domain classification accuracy and domain generalization performance (Fig. 2). Moreover, we achieve state-of-the-art results in DG with naive ERM and simple data augmentation, remarking that, under fair testing conditions, the most promising algorithms presented so far give no substantial advantage.

We reinforce the experimentation with a visual analysis of the feature extractors. Using the t-SNE manifold learning technique [49] on extracted features, we show that novel backbones map same-class samples closer in the feature space and outperform older architectures when trained in a DG framework. We propose a quantitative evaluation of this difference by fitting a k-NN classifier on the extracted features.

This study aims to promote a complete and meaningful approach to the domain generalization problem, avoiding isolated research efforts on DG algorithms and encouraging contributions that target the overall maximization of model generalization. Evidence in the literature shows that researchers from disparate application fields could significantly benefit from a shift of the DG paradigm towards realistic circumstances. For instance, data augmentation can automatically be exploited to generate a vast collection of artificial source domains. Domain Randomization fully exploits this principle [8], demonstrating its effectiveness in training agents in simulation for controlling manipulators accomplishing visual tasks [50] and autonomous racing drones [51]. That is further concrete proof that the success of domain generalization in real-world applications relies on simple ERM techniques, which offer an easy implementation together with a robust generalization boost.

The main contributions of this work can be, therefore, summarized as follows:

- We propose an extensive evaluation of backbones for domain generalization, showing remarkable improvements compared to literature results. We empirically find a linear correlation between large-scale single-domain classification accuracy and domain generalization performance (Fig. 2).
- We prove that adopting DG algorithms does not provide the expected generalization boost compared to naive ERM when using state-of-the-art feature extractors.
- We enrich the conducted experiments with an introspective study of the backbones, comparing the feature representations before and after the DG fine-tuning.

As an outcome of this work, we release Back-to-Bones, a testbed to encourage the deep learning community to evaluate and compare the domain generalization performance of newly proposed backbones.

The rest of the paper is organized as follows. In Section 2, we briefly frame the DG theoretical background and introduce our backbone definition. In Section 3, we introduce our research outcome, describing the conducted approach and the criteria that guided the choice of backbones, model selection, hyperparameter optimization, and overall experimental framework; then, we report numerical results in conjunction with a visual introspection of the representations learned by the most relevant backbones under investigation. Section 4 discusses additional considerations about transformer-based backbones generalization and baseline selection in previous works. Finally, in Section 5, we present our conclusive remarks and suggestions for future works on DG.

## 2. The domain generalization framework

In this section, we first define necessary notations and concepts to frame the problem of domain generalization and empirical risk minimization. Secondly, we introduce a formal definition of a backbone and its constituents.

**Problem Definition** Given the input random variable X with values  $x \in \mathcal{X}$ , and the target random variable Y with values  $y \in \mathcal{Y}$ , the definition of *domain* is associated with the joint probability distribution  $P_{XY}$ , or P(X,Y), over  $\mathcal{X}x\mathcal{Y}$ . Supervised learning aims to train a classifier  $f: \mathcal{X} \to \mathcal{Y}$  exploiting N available labeled examples of a dataset  $D = (x_i, y_i)_{i=1}^N$  that are identically and independently distributed and sampled according to  $P_{XY}$ . The goal of the training process is to minimize the *empirical risk* associated with a loss function  $l: \mathcal{Y} \times \mathcal{Y} \to [0, +\infty)$ .

$$R_{\text{emp}}(f) = \frac{1}{N} \sum_{i=1}^{N} l(f(x_i), y_i)$$
 (1)

by learning the classifier f. The dataset D is the only available source of knowledge to learn  $P_{XY}$ . We refer to this basic learning method as empirical risk minimization [52].

In domain generalization, a set of different K source domains  $S = (S_k)_{k=1}^K$  is used to learn a classifier f that aims at generalizing well on an unknown target domain T. Each source domain is associated with its joint probability distribution  $P_{XY}^k$ , whereas  $P_{XY}^S$  indicates the overall source distribution learned by the classifier [53]. Indeed, DG aims to enable the classifier to predict well on out-of-distribution data, namely on the target domain distribution  $P_{XY}^T$ , by learning an overall domain invariant distribution from the source domains seen during training.

Backbone Definition We define a backbone  $\mathcal{B} = f(\mathcal{A}, \mathcal{T}_B, \mathcal{D})$  as a function of three elements: the model architecture  $\mathcal{A}$ , the training procedure  $\mathcal{T}_B$  (including optimization, regularization, and data augmentation), and the training data  $\mathcal{D}$ . Consequently, all three factors introduce a certain degree of variability to the domain generalization accuracy:

$$DG_{accuracy}(S, T) = g(B, T_{DG}, N_{exp})$$

where  $\mathcal{T}_{DG}$  is the adopted DG training procedure and  $\mathcal{N}_{exp}$  is the experimentation noise.  $\mathcal{T}_{DG}$  usually includes a dedicated algorithm to cope with domain shifts.  $\mathcal{N}_{exp}$  comprehends a systematic error due to the adopted model selection strategy and a random component caused by the stochasticity in the training process.

#### 3. Back-to-bones

We set up our experimental benchmark to run a detailed analysis of the role of feature extractors in domain generalization. Besides choosing architectures, datasets, and DG algorithms to evaluate, particular attention is given to model selection strategy and statistical interpretation to obtain a fair and accurate benchmark. In the following subsections, we provide details on our experimental setup.

Backbones To be consistent with previous works, we include ResNet18 and ResNet50 [31] in the benchmark and compare them with some of the most successful architectures proposed in recent image classification research. We also consider the latest ResNet50 A1 [54], trained using the most recent practices in optimization and data augmentation and reaching a remarkable 80.4% top-1 accuracy on Imagenet1K. We include different sizes for each network to glimpse the effects of model dimension on DG accuracy. EfficientNet [55] demonstrated that systematical model scaling and dimension balancing yield remarkable results with fewer parameters. For this reason, we select three network versions, namely B0, B2, and B3. Finally, transformers [41] recently revolutionized deep learning by proving the effectiveness of self-attention for feature extraction; hence, four transformer-based architectures are included in the comparison. In particular, we choose DeiT (Small and Base) [43], ConViT [44] (both in its Small and Base configurations), and LeViT Base [45]. To provide further insights on the effect of additional pretraining data besides standard ImageNet [33], we also include Vision Transformer (ViT) [42] trained on ImageNet21K in its Small and Base versions. Regarding ViT Base, a configuration with a 32  $\times$  32 patch size has been added to the standard 16  $\times$  16 format to test the impact of patch size on DG. Further information on architectural details can be found in the cited papers. We report the number of parameters for each model in the last column of Table 1.

Datasets Among the various datasets created explicitly for DG in the last years, we use four of the most widely adopted ones for our primary experimentation. VLCS [56] considers four previous classification datasets as domains, while PACS [57] and Office-Home [58] focus more on style shifts (e.g. from photos to cartoons, sketches, and paintings). Terra Incognita [59] comprehends several animal photos taken with camera traps placed in different locations by day and night. To those, we add DomainNet [60], a bigger and more recent dataset that contains six domains divided by style and 345 classes. We use it

https://github.com/PIC4SeR/Back-to-Bones

Table 1

Baselines comparison of different backbones for DG. We report the average accuracy over three runs and the associated standard deviation for each model. We include the results achieved by DOMAINBED with ResNet50 for reference. The models marked with \* are pretrained on Imagenet21K instead of ImageNet1K. The rightmost column indicates the accuracy of the networks on ImageNet1K. In Appendix A, we report in detail the results obtained for all the domains.

| Backbone       | PACS         | VLCS         | Office-Home  | Terra Incognita  | Average      | ImageNet | Parameters |
|----------------|--------------|--------------|--------------|------------------|--------------|----------|------------|
| ResNet18       | 80.51 ± 0.29 | 74.64 ± 0.61 | 63.87 ± 0.36 | 40.93 ± 1.85     | 64.99 ± 0.78 | 69.76    | 11.69M     |
| ResNet50 [30]  | 85.50 ± 0.20 | 77.50 ± 0.40 | 66.50 ± 0.30 | 46.10 ± 1.80     | 68.90 ± 0.68 | 76.13    | 25.56M     |
| ResNet50       | 83.85 ± 0.77 | 76.21 ± 1.20 | 68.79 ± 0.21 | $47.32 \pm 0.97$ | 69.04 ± 0.79 | 76.13    | 25.56M     |
| ResNet50 A1    | 84.52 ± 0.68 | 78.37 ± 0.56 | 72.47 ± 0.13 | $42.23 \pm 0.87$ | 69.40 ± 0.56 | 80.40    | 25.56M     |
| EfficientNetB0 | 85.46 ± 0.65 | 75.16 ± 0.34 | 67.27 ± 0.27 | 44.76 ± 0.94     | 68.16 ± 0.55 | 76.30    | 5.29M      |
| EfficientNetB2 | 87.02 ± 1.37 | 75.44 ± 0.20 | 69.35 ± 0.24 | 43.80 ± 1.90     | 68.90 ± 0.93 | 79.80    | 9.11M      |
| EfficientNetB3 | 86.71 ± 0.30 | 78.14 ± 0.18 | 69.84 ± 0.08 | 45.70 ± 1.84     | 70.10 ± 0.60 | 81.10    | 12.23M     |
| DeiT Small 16  | 86.22 ± 1.33 | 79.47 ± 0.41 | 72.03 ± 0.33 | 43.40 ± 1.08     | 70.28 ± 0.79 | 79.87    | 22.05M     |
| DeiT Base 16   | 88.10 ± 0.48 | 79.80 ± 0.32 | 76.35 ± 0.36 | 47.22 ± 0.75     | 72.87 ± 0.48 | 82.00    | 86.57M     |
| ConViT Small   | 87.10 ± 0.33 | 80.00 ± 0.34 | 73.90 ± 0.17 | 45.83 ± 0.61     | 71.71 ± 0.36 | 81.43    | 27.78M     |
| ConViT Base    | 87.27 ± 0.40 | 80.31 ± 0.67 | 76.51 ± 0.25 | 46.37 ± 0.89     | 72.62 ± 0.55 | 82.29    | 86.54M     |
| LeViT Base     | 87.55 ± 1.50 | 78.91 ± 0.50 | 75.16 ± 0.13 | 45.68 ± 1.50     | 71.83 ± 0.91 | 82.59    | 39.13M     |
| ViT Small 16*  | 83.59 ± 0.43 | 79.96 ± 0.60 | 77.25 ± 0.33 | 44.12 ± 1.07     | 71.23 ± 0.61 | 81.40    | 22.05M     |
| ViT Base 32*   | 84.00 ± 1.17 | 78.46 ± 0.64 | 76.84 ± 0.17 | 36.71 ± 2.07     | 69.00 ± 1.01 | 80.72    | 88.22M     |
| ViT Base 16*   | 88.48 ± 1.22 | 80.05 ± 0.15 | 81.47 ± 0.21 | 49.77 ± 1.28     | 74.94 ± 0.72 | 84.53    | 86.57M     |

to further stress the generalization capability of the best-performing backbones in the presence of more transfer learning data and fewer samples per class. We omit Rotated MNIST [61] and Colored MNIST [5] since we consider them too distant from any practical application. Moreover, from our perspective, simple rotation and colorization do not constitute actual domain shifts.

DG Algorithms We choose some of the most promising DG algorithms in recent research, particularly considering their performance on Do-MAINBED [30]. Moreover, we select them to explore different approaches to the DG problem. CORAL [15] and MMD [17], indeed, focus on aligning the extracted features through second-order statistics (covariance). On the other hand, Mixup [62] works directly on input images, interpolating samples from different domains and considering the loss coming from both precursors. RSC [26], instead, introduces a heuristic that discards dominant features in the label determination, stimulating the model to rely on weaker data correlations. CausIRL [63] (used in combination with MMD or CORAL) builds from a causal analysis of generalization enforcing soft domain invariance to interventions on the source domain. CAD [64] introduces a contrastive adversarial domain bottleneck to guarantee convergence to target domains that preserve the Bayes predictor. ADDG [65] exploits a double mechanism (Intramodel and Inter-model) to diversify attention between features and suppress domain-related attention.

Data Augmentation Many research works prove that data augmentation plays a fundamental role in DG, as it can partially compensate for certain domain shifts [13]. That is particularly true in the presence of style changes, as popular data augmentation strategies involve the alteration of saturation, hue, and contrast. Since the effect of data augmentation on DG has already been investigated, in this paper, we use a standard setup to keep the focus on backbones. The de-facto standard augmentation strategy for DG, which we use in our benchmark, includes random cropping keeping at least 80% of the original image, horizontal flipping with 50% probability, image grayscaling with 10% chance, and random changes in color brightness, contrast, saturation, and hue, with a maximum of 40%. Since all the models are pretrained on ImageNet1K or ImageNet21K, input images are further normalized according to the mean and standard deviation of that datasets.

Model Selection To assess the DG capability of the considered pretrained networks, we fine-tune each of them on a set of K source domains S and test them on a target domain T. As pointed out by [30], "a domain generalization algorithm should be responsible for specifying a model selection method" and avoid improper comparisons between results obtained adopting different selection methods. In total agreement with their recommendations, we use the training-domain validation set strategy, which picks the model maximizing the accuracy on a validation split of the training set (in our case 10%, uniform across domains) at the end of each epoch. This selection method assumes that the average distribution of source domains is similar to that of the target domain on which the best model is tested.

Hyperparameter Search We conduct a random search for each backbone and dataset to determine the optimal training hyperparameters for the baselines. We define a range of values for continuous arguments and a set of choices for discrete ones, running approximately 32 iterations for each search and selecting the best combination via the previously defined model selection strategy. The learning rate is bounded in the range  $[10^{-6}, 10^{-2}]$ , choosing its scheduler among step (90% reduction after 80% of the epochs), exponential (with a decay in the range [0.9, 1)), and cosine annealing. The batch size and the number of training epochs are the same for all the experimentation, fixing their values at 32 and 30, respectively. Finally, we use cross-entropy loss and select the optimizer among SGD (with a momentum of 0.9) and Adam, keeping the weight decay to  $5 \cdot 10^{-4}$ .

Experimental Framework Our benchmarks are developed in Python 3 using the deep learning framework PyTorch. As the experimentation applies transfer learning to pretrained models, we use existing implementations of the considered backbones. Only the classification head is changed, adapting the network to the different number of classes. In particular, standard ResNets are taken from the PyTorch library torchvision,<sup>2</sup> EfficientNets from EfficientNet-PyTorch,<sup>3</sup> transformers and ResNet50 A1 from timm.<sup>4</sup> The implementations of DG algorithms are taken from DomainBed<sup>5</sup> and adapted to work with the architectures under test.

We repeat each training three times with different and randomly generated seeds to give more statistical information about accuracy results. In this way, both hyperparameter search and benchmarks cannot take advantage of the repeatability of trials, as data splitting, augmentation, and weight initialization change from one iteration to the next. Therefore, each of the results of our benchmark is reported as the mean over three repetitions, along with its standard deviation.

## 3.1. Baseline benchmark

The first analysis of our work consists of a precise and fair benchmark of the DG capabilities of recent deep learning architectures for image classification, trying to determine what solutions work best

<sup>2</sup> pytorch.org/vision/stable/models

<sup>3</sup> github.com/lukemelas/EfficientNet-PyTorch

<sup>4</sup> github.com/rwightman/pytorch-image-models

<sup>5</sup> github.com/facebookresearch/DomainBed

Table 2
Baseline comparison of a selection of the best backbones on DomainNet (Clipart, Infograph, Painting, Quickdraw, Real, and Sketch domains). We include the results achieved by DomainBub with ResNet50 for reference. The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K.

| Backbone      | C    | I    | P    | Q    | R    | S    | Avg  |
|---------------|------|------|------|------|------|------|------|
| ResNet50 [30] | 58.1 | 18.8 | 46.7 | 12.2 | 59.6 | 49.8 | 40.9 |
| DeiT Base 16  | 69.1 | 25.0 | 55.8 | 17.1 | 69.3 | 57.0 | 48.9 |
| ConViT Base   | 69.5 | 24.3 | 55.7 | 17.7 | 69.3 | 57.0 | 48.9 |
| VîT Base 16*  | 74.9 | 28.9 | 60.8 | 17.5 | 77.3 | 61.8 | 53.5 |

and, possibly, why. Every pretrained backbone, after a hyperparameter search, is trained following the standard DG leave-one-domain-out procedure using the previously described model selection strategy. Our benchmark results are reported in Table 1 as the mean and standard deviation over three iterations.

Firstly, our benchmark highlights a strong correlation between DG accuracy and ImageNet performance. As depicted in Fig. 2, we find a direct proportionality between the two metrics (excluding the ViT models due to their different pretraining). We apply linear least-square regression and obtain a Pearson correlation coefficient  $\rho = 0.921$ . Indeed, a quick look at the results is sufficient to notice how newer and more performing backbones tend to achieve a higher DG accuracy on nearly all the datasets. That is primarily true for different sizes of the same architecture. ResNet50 reaches better results than ResNet18 for all the datasets, and the same happens for EfficientNet, ConViT, and ViT variants. For ResNet50, we also compare our results with those obtained by DomainBed and find comparable values. ResNet50 A1 benefits from its stronger pretraining, largely improving the accuracy obtained by the standard model on VLCS and Office-Home. However, Terra Incognita seems to penalize the network with its peculiar light conditions, resulting in a slight overall enhancement. Regarding different architectures, EfficientNetB2 performs very similarly to ResNet50 while the B3 version gains an additional 1% on them. Transformer-based models bring further improvements by exploiting their self-attentionbased feature extraction, even in the case of DeiT Small and ConViT Small. In particular, they strongly outperform EfficientNet on Office-Home by over 4%, while Terra Incognita is the only dataset without any significant progress. That is probably due to the peculiarity of the domains, comprehending many night shots that can be challenging even for humans and rewarding less effective ImageNet pretraining. Among other transformers, DeiT Base 16 and ConViT Base prove to be the best, the latter being slightly more performing. Finally, the three ViT models show that pretraining on a more significant amount of data improves generalization. However, only ViT Base 16 registers a considerable step forward, suggesting that the abundance of data is fully exploited only by larger models. Nonetheless, ConViT Small performs similarly to the same-sized ViT Small 16, while larger patches demonstrate to degrade the accuracy of ViT Base 32. In conclusion, our results show how better DG comes from the union of a good feature extractor architecture and an optimal pretraining, as none of the two is sufficient alone. In Section 4, we further discuss the generalization capability of transformers. We stress the importance of adopting a good model selection strategy by comparing our ResNet18 baseline with various recent results obtained using the same backbone.

As an additional comparison, we plot the achieved DG accuracy compared to the number of parameters of the backbones (Fig. 3). Contrary to the graph of Fig. 2, in this case, the correlation between model dimension and generalization is much less marked, with a Pearson correlation coefficient ( $\rho$ ) of 0.740. This confirms the central role of model architecture in DG tasks and our idea of backbone as the union of architecture, training procedure, and data.

Finally, we conduct an additional benchmark on the DomainNet dataset. Although representing a significant challenge for large-scale generalization, we choose to include DomainNet only in this second stage of the study due to its demanding computational nature and



Fig. 3. DG accuracy achieved by tested backbones compared with their number of parameters, with error bars. We find a much weaker correlation between the two metrics ( $\rho = 0.740$ ) than the one reported in Fig. 2.

strong class unbalancing. Indeed, our main intention is to promote a practical and accessible benchmark that aims to become a widespread reference for DG. We select only the best three models from the previous tests for this one (DeiT Base 16, ConViT Base, and ViT Base 16). In Table 2, we report the results achieved on each test domain, including those obtained by DomainBed on ResNet50 for reference. It is well evident that the feature extraction capabilities of modern backbones bring substantial improvement in all the domains, with an average increase in DG accuracy up to 12.6%. Moreover, ViT further enhances the results by exploiting its stronger pretraining.

#### 3.2. Model introspection

After assessing the DG performance of different backbones, we propose a series of insights on how different architectures leverage training data to create their inner representation. First, we investigate the benefits of ImageNet pretraining for DG with a k-NN classifier, comparing ResNet50 and the best models from our benchmark. Then, we apply t-SNE [49] on the same extracted features to visualize how close same-class and same-domain samples are and the effect of fine-tuning on DG datasets. Finally, we inspect the attention maps of one of the transformer-based models to have a qualitative insight on the region of the images it focuses on.

K-NN Evaluation Firstly, we take ResNet50 and the best-performing models from our benchmark and evaluate their ability to tackle DG without fine-tuning. To do so, we use ImageNet weights to extract features from training domains and a k-NN (with k = 5) to fit that data. Then, we use test-domain images for the evaluation. To have a fair comparison with our benchmark, we use the same amount of training data, leaving out 10% of samples from source domains. The results in Table 3 show an overall difference of about 5% between ResNet50 and transformer-based models pretrained on ImageNet1k. This outcome is consistent with the generalization boost achieved in the standard DG framework (Table 1), although k-NN results tend to oscillate among different datasets. On the same trend, ViT Base 16 gains an additional 10% average accuracy, thanks to its pretraining on the larger ImageNet21K dataset. This outcome suggests that learning a wider overall source distribution  $P_{XY}^{S}$  is always needed to tackle a substantial domain gap effectively. That pretraining alone does not guarantee the ability to extract domain-invariant features.

Feature Mapping Visualization To further enlighten the role of backbones in extracting meaningful and invariant features to deal with DG,



Fig. 4. DeiT Base attention maps when using the [CLS] token as a query for the different heads in the last layer. We select the same head for all examples. ERM encourages the backbone to focus on domain-invariant features, highly mitigating pretraining noise.

Table 3 Comparison of different feature extractors without fine-tuning, using a k-NN classifier (k = 5). The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K.

| Backbone     | PACS  | VLCS  | Office-Home | TerraInc. | Avg   |
|--------------|-------|-------|-------------|-----------|-------|
| ResNet50     | 56.04 | 69.57 | 56.26       | 14.75     | 49.16 |
| DeiT Base 16 | 56.27 | 65.50 | 65.57       | 27.06     | 53.60 |
| ConViT Base  | 56.83 | 64.50 | 66.63       | 27.96     | 53.98 |
| ViT Base 16* | 75.14 | 75.14 | 82.72       | 25.64     | 64.66 |

we can visualize the distributions in the feature space by projecting them in a two-dimensional space using t-SNE. Fig. 5 shows t-SNE visualization for ResNet50 and ConViT Base, pretrained on ImageNet1K and fine-tuned on PACS, targeting the Art Painting domain. For each model, we remove the classification head and extract the features for the whole dataset. The more clustered the same class features appear in the t-SNE, the more separable from other classes they are in the original space. We also include the silhouette score (S) as a quantitative metric of the separation of classes below each plot.

Fig. 5(c) shows how ResNet50 pretrained on ImageNet tends to map together same-domain samples and not same-class ones, being therefore unsuitable for DG without fine-tuning. After the fine-tuning process (Fig. 5(a)), the model achieves a better separation of source domain classes. However, many target domain samples are still mapped in the same space, far from the same-class source clusters (e.g. the Art Painting guitar example). Similarly to ResNet50, without fine-tuning, domains dominate the features space distribution of ConViT (Fig. 5(d)), causing several clusters of the same class but different domains to emerge in different locations (e.g. horse samples). However, some same-class samples of more similar domains, such as the guitars of Cartoon and Art Painting, are effectively clustered together. The fine-tuning process (Fig. 5(e)) distinctly pushes together same-class clusters, resulting in good generalization over the target domain. This analysis suggests that the ConViT backbone is more suited for DG than ResNet50 since it tends to give more similar representations to same-class samples

from different domains. Additional feature mapping visualizations are presented in Appendix B.

Self-attention Visualization In literature, DG algorithms are often presented with a qualitative analysis, highlighting the regions the network focuses on using interpretation methods such as GradCAM [66]. Indeed, heat maps are brought as evidence of their capability to push attention toward more localized and domain-invariant features. Nevertheless, this section shows that competitive backbones with naive ERM can perfectly localize class-discriminative regions. In particular, Fig. 4 shows the attention maps extracted using the [CLS] token as a query for the different heads in the last layer of the DeiT Base architecture. We provide four random examples for different target domains of PACS showing the same attention head map before and after DG finetuning. It is remarkable how naive ERM is able to redirect attention towards more invariant features. Additional attention visualizations are reported in Appendix B.

#### 3.3. Domain generalization algorithms

Domain generalization research mainly focuses on studying nontrivial algorithms to reduce the effect of domain shifts on classification accuracy. However, these algorithms are uniquely proposed in combination with outdated backbones such as ResNet50, ResNet18, or even AlexNet. According to the results in Table 1, recent backbones can provide significant improvements compared to ResNet50 with simple ERM. At this point, it is worth determining whether the application of DG algorithms brings a further boost in generalization to our baselines. To do so, we combine some of the most promising and recent algorithms available on DomainBed with three of our best baselines. We evaluate the methods introduced at the beginning of this Section (MMD, CORAL, Mixup, RSC, CAD, CausIRL CORAL, CausIRL MMD, and ADDG) using ViT Base 16, DeiT Base 16, and ConViT Base as backbones and repeating each training three times. Table 4 reports the obtained results, composed of average accuracy and associated standard deviation. Results obtained with ResNet50 are also reported directly from DomainBed for the same group of datasets as a reference. The only exception is the most recent ADDG, which the authors have not tested on VLCS and Terra Incognita and does not report standard errors.

As highlighted by the values in bold, the overall performance of ERM is equal to or better than other DG algorithms for all the considered datasets and backbones. Indeed, even where another methodology slightly outperforms ERM, the accuracy results mostly fall in the same confidence interval and hence differ very little statistically. We can then conclude from our experimentation that DG algorithms improve generalization properties marginally or even negatively for transformer-based backbones. This outcome extends the recent findings of DomainBed to other baselines and strongly reinforces the belief that choosing an effective backbone is the first step towards filling domain gaps. Adopting an outdated or poorly trained baseline is not the correct way to demonstrate the improvement derived from a DG algorithm. In the next section, we briefly ask ourselves what the reason behind this result is. Moreover, in Appendix A, we detail the results obtained for all the domains.

### 4. Additional considerations

#### 4.1. Are transformer-based backbones better at generalizing?

Reflecting on experimental evidence and visual introspection from previous sections, we discuss whether transformer-based backbones are more robust to domain shifts in this paragraph. Undoubtedly, all baseline comparisons of Section 3.1 and features visualizations shown in Fig. 5 would suggest a positive answer to this interesting question. In all results and visual representations, self-attention-based models tend S. Angarano et al. Pattern Recognition 156 (2024) 110762



Fig. 5. Backbone features visualization with t-SNE on PACS (Photo (P), Art Painting (A), Cartoon (C) and Sketch (S) domains). Target domain samples are highlighted. Some image examples from different domains and classes are visualized for better interpretability. After the fine-tuning, the ConViT Base architecture achieves a better class separation than ResNet50, clustering together same-class samples of different domains.

to generalize better to unseen domains. This result enforces the finding of [48] that multi-head attention acts as a low-pass filter with a shape bias thanks to its milder prior, while convolution is a high-pass filter with a texture bias.

Nevertheless, exercising caution and critically analyzing all the variables involved in the process is important. Indeed, such a conclusion only holds leveraging our backbone definition as a function of architecture A, training procedure  $\mathcal{T}_B$ , and data D (as presented in Section 2). Architecture and training procedure are difficult to disentangle, and there is no guarantee that a training procedure optimal for a specific architecture remains the best for another. Therefore, that implies it is impossible to compare two different architectures directly. Some recent experimentation on residual architectures with current state-of-the-art training procedures has shed some light on the contribution of A to the generalization process. Indeed, in [54], a vanilla ResNet50

is trained with the approach developed by [43], reaching 80.4% top-1 accuracy on ImageNet without extra data or distillation. However, ResNet50 A1 performs only slightly better than the original model on our Back-to-Bones testbed, even if there is a difference of over 4% in ImageNet accuracy. That deviates slightly from the linear correlation described in Section 3.1 and suggests that a transformer-based architecture brings a significant generalization contribution. As further evidence of this trend, ConViT Small has comparable parameters with [54] and a similar training procedure but outperforms it by more than 4% on some datasets. Nonetheless, further experimentation can yield more comprehensive results on this interesting aspect of vision transformers.

## 4.2. On baseline selection in previous works

As already stated in Section 1, in the last decade, a plethora of algorithms for domain generalization (DG) has been proposed in

Table 4

Comparison between ERM and three promising DG algorithms on the best-performing backbones of our benchmark. We report the average accuracy over three runs and the associated standard deviation for each model. We highlight in bold the best result for each dataset, including ERM, when its accuracy is in the same confidence interval. We include the results achieved by DomanBen with ResNet50 for reference. The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K. In Appendix A, we report in detail the results obtained for all the domains.

| Backbone        | Algorithm          | PACS             | VLCS             | Office-Home      | Terra Incognita  | Overall          |
|-----------------|--------------------|------------------|------------------|------------------|------------------|------------------|
|                 | ERM [52]           | $85.50 \pm 0.20$ | 77.50 ± 0.40     | $66.50 \pm 0.30$ | 46.10 ± 1.80     | 68.90 ± 0.68     |
|                 | RSC [26]           | $85.20 \pm 0.90$ | $77.10 \pm 0.50$ | $65.50 \pm 0.90$ | $46.60 \pm 1.00$ | $68.60 \pm 0.83$ |
|                 | Mixup [62]         | $84.60 \pm 0.60$ | $77.40 \pm 0.60$ | $68.10 \pm 0.30$ | $47.90 \pm 0.80$ | $69.50 \pm 0.58$ |
| ResNet50 [30]   | CORAL [15]         | $86.20 \pm 0.30$ | $78.80 \pm 0.60$ | $68.70 \pm 0.30$ | $47.60 \pm 1.00$ | $70.33 \pm 0.55$ |
|                 | MMD [17]           | $84.60 \pm 0.50$ | $77.50 \pm 0.90$ | $66.30 \pm 0.10$ | $42.20 \pm 1.60$ | $67.65 \pm 0.78$ |
|                 | CausIRL CORAL [63] | $85.80 \pm 0.10$ | $77.50 \pm 0.60$ | $68.60 \pm 0.30$ | $47.30 \pm 0.80$ | $69.80 \pm 0.45$ |
|                 | CausIRL MMD [63]   | $84.00 \pm 0.80$ | $77.60 \pm 0.40$ | $65.70 \pm 0.60$ | $46.30 \pm 0.90$ | $68.40 \pm 0.68$ |
|                 | CAD [64]           | $85.20 \pm 0.90$ | $78.00 \pm 0.50$ | $67.40 \pm 0.20$ | $47.30 \pm 2.20$ | 69.48 ± 0.95     |
|                 | ADDG [65]          | 89.2             | -                | 72.5             | -                | -                |
|                 | ERM [52]           | 88.10 ± 0.48     | 79.80 ± 0.32     | 76.35 ± 0.36     | 47.22 ± 0.75     | 72.87 ± 0.48     |
|                 | RSC [26]           | $85.37 \pm 1.30$ | $77.27 \pm 0.51$ | $76.47 \pm 0.28$ | $45.41 \pm 1.50$ | $70.97 \pm 0.90$ |
|                 | Mixup [62]         | $85.67 \pm 0.61$ | $78.25 \pm 0.60$ | $75.96 \pm 0.11$ | $46.63 \pm 0.49$ | $71.32 \pm 0.48$ |
| DeiT Base 16    | CORAL [15]         | $85.13 \pm 0.82$ | $78.34 \pm 0.86$ | $76.48 \pm 0.14$ | $46.33 \pm 1.83$ | $71.38 \pm 0.93$ |
|                 | MMD [17]           | $87.22 \pm 0.28$ | $78.71 \pm 0.22$ | $77.03 \pm 0.10$ | $49.35 \pm 1.42$ | $73.08 \pm 0.50$ |
|                 | CausIRL CORAL [63] | 83.86 ± 0.75     | 77.80 ± 0.40     | $76.12 \pm 0.04$ | 46.73 ± 0.81     | $71.13 \pm 0.50$ |
|                 | CausIRL MMD [63]   | $85.46 \pm 0.68$ | $77.27 \pm 0.42$ | $76.53 \pm 0.42$ | $45.77 \pm 1.66$ | $71.26 \pm 0.79$ |
|                 | CAD [64]           | $87.74 \pm 0.62$ | $79.28 \pm 0.36$ | $76.61 \pm 0.15$ | 47.46 ± 0.64     | 72.77 ± 0.44     |
|                 | ADDG [65]          | $75.30 \pm 0.34$ | $78.28 \pm 0.77$ | $77.58 \pm 0.30$ | $29.14 \pm 2.24$ | $65.07 \pm 0.91$ |
|                 | ERM [52]           | 87.27 ± 0.40     | 80.31 ± 0.67     | 76.51 ± 0.25     | 46.37 ± 0.89     | 72.62 ± 0.55     |
|                 | RSC [26]           | $85.73 \pm 0.81$ | $79.05 \pm 0.61$ | $76.77 \pm 0.26$ | $44.94 \pm 1.47$ | $71.62 \pm 0.79$ |
|                 | Mixup [62]         | $86.00 \pm 0.45$ | $80.00 \pm 0.76$ | $76.48 \pm 0.16$ | $43.95 \pm 0.18$ | $71.61 \pm 0.39$ |
| Continue Proces | CORAL [15]         | $86.24 \pm 0.24$ | $79.62 \pm 0.38$ | $75.33 \pm 0.22$ | $44.41 \pm 1.33$ | $71.40 \pm 0.54$ |
| ConViT Base     | MMD [17]           | $86.84 \pm 0.63$ | $80.72 \pm 0.55$ | $77.94 \pm 0.31$ | $46.78 \pm 1.22$ | $73.07 \pm 0.68$ |
|                 | CausIRL CORAL [63] | $84.71 \pm 0.31$ | $79.14 \pm 0.69$ | $77.05 \pm 0.16$ | $45.63 \pm 2.03$ | $71.63 \pm 0.80$ |
|                 | CausIRL MMD [63]   | $86.59 \pm 0.96$ | $80.30 \pm 0.56$ | $77.92 \pm 0.35$ | $46.85 \pm 0.59$ | $72.92 \pm 0.61$ |
|                 | CAD [64]           | $87.42 \pm 0.66$ | $79.99 \pm 0.41$ | $77.71 \pm 0.09$ | $46.77 \pm 3.31$ | $72.97 \pm 1.12$ |
|                 | ADDG [65]          | $86.34 \pm 0.76$ | $79.79 \pm 0.30$ | $76.29 \pm 0.33$ | $43.97 \pm 1.75$ | $71.60 \pm 0.78$ |
|                 | ERM [52]           | 88.48 ± 1.22     | 80.05 ± 0.15     | 81.47 ± 0.21     | 49.77 ± 1.28     | 74.94 ± 0.72     |
|                 | RSC [26]           | $86.58 \pm 2.14$ | $79.59 \pm 0.63$ | $78.74 \pm 0.64$ | 40.79 ± 1.41     | $71.42 \pm 1.20$ |
|                 | Mixup [62]         | $88.62 \pm 0.54$ | $80.77 \pm 1.28$ | $82.93 \pm 0.07$ | $48.59 \pm 0.92$ | $75.23 \pm 0.70$ |
|                 | CORAL [15]         | $84.60 \pm 1.31$ | 80.89 ± 0.49     | $80.92 \pm 0.25$ | $50.58 \pm 0.26$ | $74.25 \pm 0.58$ |
| ViT Base 16*    | MMD [17]           | $87.99 \pm 0.08$ | $79.54 \pm 0.37$ | $81.71 \pm 0.28$ | $49.40 \pm 2.45$ | $74.66 \pm 0.79$ |
|                 | CausIRL CORAL [63] | $88.26 \pm 1.09$ | 80.10 ± 0.91     | $81.73 \pm 0.13$ | $47.29 \pm 2.64$ | $74.35 \pm 1.19$ |
|                 | CausIRL MMD [63]   | 86.57 ± 1.13     | 79.48 ± 1.12     | 81.62 ± 0.22     | 49.52 ± 0.58     | 74.30 ± 0.76     |
|                 | CAD [64]           | 87.44 ± 0.53     | 78.79 ± 2.43     | 79.80 ± 0.36     | 39.45 ± 4.15     | 71.37 ± 1.87     |
|                 | ADDG [65]          | 75.33 ± 0.54     | 77.77 ± 0.32     | 77.72 ± 0.09     | 25.60 ± 0.64     | 64.11 ± 0.40     |

Table 5

Comparison between the ResNet18 baseline obtained in our BACKTOBONES benchmark on PACS and those reported by popular DG works. Our accuracy result (without any extra component) outperforms all previous ones, which rarely include statistical information from multiple training iterations. Moreover, these works seldom discuss hyperparameter search procedures and model selection strategies.

| Baseline     | Average | Std Deviation |
|--------------|---------|---------------|
| TRM [67]     | 77.13   | 1.53          |
| MMLD [68]    | 78.70   | -             |
| JiGen [69]   | 79.05   | -             |
| Epi-FCR [70] | 79.05   | -             |
| MASF [71]    | 79.23   | 0.15          |
| SagNet [72]  | 79.26   | -             |
| DDAIG [73]   | 79.53   | 0.48          |
| D-SAM [74]   | 79.55   | _             |
| PAdaIN [75]  | 79.72   | -             |
| MetaReg [19] | 79.93   | 0.28          |
| RSC [26]     | 79.94   | -             |
| BACKTOBONES  | 80.51   | 0.29          |

the literature, trying to tackle the problem with a wide variety of sophisticated methodologies. Nevertheless, our experimentation highlights that presented baselines often lack proper optimization. Table 5 compares the accuracy result obtained in our BACKTOBONES benchmark with those reported by several recent works. We evaluate ResNet18 on PACS as this is the most common setup, and the baseline we obtain with fair hyperparameter search and validation outperforms all those reported in the latest research works without adding any extra component. Moreover, statistical information is often absent in past DG works, overlooking proper hyperparameter search and model selection strategy discussion. In accordance with the outcomes of DomainBed, we hope to encourage the adoption of rigorous testing procedures, in conjunction with a standard model selection strategy, for transparent research results. With this study, we suggest that new DG algorithms should be analyzed based on adopting well-trained backbones. As a matter of fact, an advantage brought to underpowered baselines can be considered meaningless.

## 5. Conclusion and future work

In this paper, we deeply investigate the role of backbones in domain generalization, bringing back to light the fundamental contribution neglected by the community that a competitive feature extractor provides for generalizing to out-of-distribution data. According to our suggested backbone definition, novel architectural solutions such as DeiT, Con-ViT, and LeViT show remarkable improvements in reducing domain

Table 6

Baselines comparison of different backbones on the four considered DG datasets. We report the average accuracy over three runs and the associated standard deviation for each model. The models marked with \* are pretrained on Imagenet 21K instead of ImageNet IK.

| or coen moder  | . The models me  | irkeu witii are  | pretramed on a   | magenet21K inst  | ead or | imagewettk.    |                  |                  |                  |     |
|----------------|------------------|------------------|------------------|------------------|--------|----------------|------------------|------------------|------------------|-----|
| lackbone       | Photo            | Art painting     | Cartoon          | Sketch           |        | Backbone       | Caltech          | Labelme          | Pascal           |     |
| ResNet18       | $94.03 \pm 0.49$ | $79.65 \pm 1.74$ | $75.71 \pm 0.75$ | $72.63 \pm 1.53$ |        | ResNet18       | 95.60 ± 0.18     | 62.55 ± 1.29     | 72.80 ± 1.90     | -   |
| ResNet50       | $94.53 \pm 0.54$ | $82.86 \pm 2.42$ | $76.83 \pm 4.70$ | $81.18 \pm 0.68$ |        | ResNet50       | $96.09 \pm 1.36$ | $64.47 \pm 1.72$ | $73.43 \pm 3.34$ |     |
| ResNet50 A1    | 97.84 ± 0.66     | 85.87 ± 0.60     | 74.43 ± 1.33     | $79.94 \pm 0.86$ |        | ResNet50 A1    | $98.89 \pm 0.16$ | $63.23 \pm 0.77$ | $77.64 \pm 1.84$ |     |
| EfficientNetB0 | $95.43 \pm 0.23$ | $82.29 \pm 1.00$ | $80.69 \pm 1.55$ | $83.45 \pm 2.14$ |        | EfficientNetB0 | 96.84 ± 0.99     | 61.76 ± 0.40     | 70.43 ± 1.16     | 7   |
| EfficientNetB2 | $96.61 \pm 0.35$ | $85.30 \pm 1.44$ | $82.75 \pm 1.09$ | $83.44 \pm 3.21$ |        | EfficientNetB2 | $97.97 \pm 1.27$ | $63.94 \pm 0.95$ | $71.11 \pm 1.52$ | - 6 |
| EfficientNetB3 | $95.89 \pm 0.60$ | $83.82 \pm 0.54$ | $81.93 \pm 1.23$ | $85.20 \pm 1.18$ |        | EfficientNetB3 | $97.36 \pm 0.41$ | $63.68 \pm 0.99$ | $76.32 \pm 1.51$ | 7   |
| DelT Small 16  | 98.38 ± 1.25     | 87.58 ± 2.13     | 81.32 ± 1.96     | 77.60 ± 0.88     |        | DeiT Small 16  | 97.53 ± 0.38     | 64.91 ± 0.52     | 79.58 ± 1.21     | 7   |
| DelT Base 16   | $99.38 \pm 0.15$ | $90.74 \pm 0.75$ | $82.75 \pm 1.07$ | $79.52 \pm 1.54$ |        | DeiT Base 16   | $97.79 \pm 0.18$ | $65.24 \pm 0.29$ | $78.06 \pm 2.17$ | 7   |
| ConViT Small   | $99.16 \pm 0.16$ | $91.23 \pm 0.57$ | $81.58 \pm 1.45$ | $76.43 \pm 1.38$ |        | ConViT Small   | $97.95 \pm 0.31$ | $64.98 \pm 0.51$ | 80.33 ± 1.07     | 7   |
| ConViT Base    | $99.18 \pm 0.18$ | $91.05 \pm 0.75$ | $81.39 \pm 1.61$ | $77.47 \pm 1.45$ |        | ConViT Base    | $97.95 \pm 0.37$ | $65.78 \pm 0.36$ | 79.22 ± 2.63     | 7   |
| LeViT Base     | $98.04 \pm 0.55$ | $85.20 \pm 2.67$ | $86.21 \pm 1.59$ | $80.76 \pm 2.15$ |        | LeViT Base     | $98.19 \pm 0.30$ | 64.52 ± 1.13     | $76.57 \pm 0.74$ | 7   |
| ViT Small 16*  | 99.40 ± 0.12     | 89.94 ± 0.52     | 80.60 ± 2.46     | 64.40 ± 1.20     |        | ViT Small 16*  | 97.90 ± 0.41     | 64.86 ± 1.99     | 79.41 ± 2.72     | 7   |
| ViT Base 32*   | $99.30 \pm 0.33$ | $89.63 \pm 0.28$ | $80.22 \pm 0.91$ | $66.84 \pm 4.60$ |        | ViT Base 32*   | $98.78 \pm 0.71$ | $64.66 \pm 0.24$ | 75.97 ± 1.40     | 7   |
| ViT Base 16*   | $99.50 \pm 0.17$ | $93.25 \pm 1.09$ | $85.52 \pm 2.64$ | $75.67 \pm 2.29$ |        | VIT Base 16*   | $97.69 \pm 0.59$ | 65.42 ± 2.28     | $79.55 \pm 2.64$ | 7   |
|                |                  | (a) PACS         |                  |                  |        |                |                  | (b) VLCS         |                  |     |
| Backbone       | Product          | Art              | Clipart          | Real world       |        | Backbone       | 1.100            | 138              | L43              | L   |
| ResNet18       | 73.88 ± 0.36     | 55.42 ± 0.91     | 52.73 ± 0.39     | 73.46 ± 0.20     |        | ResNet18       | 44.48 ± 2.71     | 35.95 ± 2.87     | 49.26 ± 2.08     | 3   |
| ResNet50       | $77.16 \pm 0.28$ | $63.23 \pm 0.46$ | $56.26 \pm 0.20$ | $78.51 \pm 1.00$ |        | ResNet50       | $53.19 \pm 5.66$ | $41.57 \pm 2.48$ | $54.10 \pm 1.33$ | 4   |
| ResNet50 A1    | $79.88 \pm 0.57$ | $69.28 \pm 0.44$ | $57.63 \pm 0.68$ | $83.11 \pm 0.32$ |        | ResNet50 A1    | $48.22 \pm 1.90$ | $39.41 \pm 2.77$ | $45.50 \pm 2.49$ | 3   |
| EfficientNetB0 | 75.96 ± 0.28     | 60.91 ± 0.72     | 54.56 ± 1.39     | 77.65 ± 0.06     |        | EfficientNetB0 | 44.73 ± 3.15     | 41.40 ± 4.13     | 54.14 ± 0.83     | 3   |
| EfficientNetB2 | $78.52 \pm 0.67$ | $62.99 \pm 0.66$ | $56.27 \pm 0.45$ | $79.62 \pm 0.51$ |        | EfficientNetB2 | $41.92 \pm 0.75$ | $41.42 \pm 4.02$ | $55.06 \pm 1.74$ | 3   |
| EfficientNetB3 | $79.37 \pm 0.43$ | $64.50 \pm 0.83$ | $55.13 \pm 1.04$ | $80.38 \pm 0.41$ |        | EfficientNetB3 | $48.93 \pm 2.76$ | $37.92 \pm 3.69$ | $58.27 \pm 1.08$ | 3   |
| DeiT Small 16  | 79.91 ± 0.55     | 69.30 ± 0.93     | 56.74 ± 0.63     | 82.16 ± 0.21     |        | DeiT Small 16  | 53.11 ± 2.52     | 30.64 ± 5.40     | 50.79 ± 2.44     | 3   |
| DelT Base 16   | $83.55 \pm 0.37$ | $75.22 \pm 0.55$ | $61.07 \pm 0.52$ | $85.55 \pm 0.64$ |        | DelT Base 16   | $58.53 \pm 1.07$ | $35.93 \pm 1.42$ | $52.57 \pm 2.82$ | 4   |
| ConViT Small   | $80.69 \pm 0.37$ | $72.45 \pm 0.83$ | $58.69 \pm 0.17$ | $83.79 \pm 0.44$ |        | ConViT Small   | $53.55 \pm 1.06$ | $36.41 \pm 0.44$ | $53.93 \pm 2.09$ | 3   |
| ConViT Base    | 83.21 ± 0.58     | $74.49 \pm 0.50$ | 62.58 ± 1.44     | 85.77 ± 0.31     |        | ConViT Base    | 52.17 ± 4.05     | $32.54 \pm 3.26$ | 57.30 ± 0.27     | 4   |
| LeViT Base     | 83.23 ± 0.14     | $72.85 \pm 0.91$ | $60.55 \pm 0.56$ | 84.02 ± 0.66     |        | LeViT Base     | $55.02 \pm 3.48$ | $36.23 \pm 2.34$ | $55.37 \pm 0.92$ | 3   |
| ViT Small 16*  | 84.79 ± 0.55     | 76.32 ± 0.82     | 60.50 ± 0.72     | 87.38 ± 0.58     |        | ViT Small 16*  | 54.10 ± 4.17     | 33.70 ± 1.04     | 50.15 ± 2.23     | 3   |
| ViT Base 32*   | 83.92 ± 0.37     | $75.28 \pm 0.33$ | $60.95 \pm 0.71$ | $87.21 \pm 0.15$ |        | ViT Base 32*   | $33.33 \pm 3.86$ | $28.84 \pm 2.64$ | $52.57 \pm 2.82$ | 3   |
| ViT Base 16*   | $88.39 \pm 0.35$ | $79.93 \pm 0.87$ | $67.71 \pm 0.36$ | $89.85 \pm 0.89$ |        | ViT Base 16*   | $58.65 \pm 4.18$ | $41.14 \pm 2.12$ | $56.83 \pm 1.39$ | 4   |

gaps with their intrinsic feature mapping mechanisms. They achieve state-of-the-art results in DG with naive ERM and data augmentation only. Hence, we point out that a complete domain generalization study should consider the choice of the backbone as the first step. Moreover, we claim that the advantage of adopting generalization algorithms should be proved using recent and effectively trained feature extractors.

(c) Office-Home

The enhancement of architectures represents the main road to guide future research on DG. Mixture-of-Experts, for example, have recently shown remarkable generalization capabilities [47,48] and deserve further study. For this reason, we encourage the research community to evaluate novel backbones on the proposed testbed BACK-TO-BONES to maintain a benchmark dedicated to backbones in the DG problem. With this work, we do not add a methodology to the long list but ponder the current situation surrounding DG works, trying to shift towards more effective research. From a broader perspective, our research points out the fundamental role of backbones in DG. However, we did not thoroughly examine the backbone components responsible for the observed correlation between source and target accuracy. Indeed, architecture, backbone training procedure, and data could contribute differently to the measured generalization capabilities. Therefore, we believe that besides collecting additional results with the proposed benchmark, further studies aim to evaluate the role of backbone components in DG.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Data availability

All the data used in this work comes from existing publicly available datasets. The code will be open sourced.

#### Acknowledgments

This work has been developed with the contribution of the Politecnico di Torino Interdepartmental Centre for Service Robotics (PIC4SeR)<sup>6</sup> and SmartData@Polito.<sup>7</sup>

(d) Terra Incognita

## Appendix A. Additional benchmark results

#### A.1. Baseline benchmark

This section includes additional results from our benchmark of different backbones, described in Section 3.1. In particular, Table 6 reports accuracy results for each target domain, further highlighting the differences between different models. Besides some oscillations given by peculiar domains, the trend of novel and more performing backbones overcoming outdated ones is present for each target split. Each value is recorded as the mean over three independent runs, along with its standard deviation.

## A.2. Domain generalization algorithms

As for the baseline benchmark, we report more detailed results for the experimentation described in Section 3.3. In particular, Table 7 includes accuracy results for each target domain to highlight the strengths and the weaknesses of the examined algorithms. The evaluated methodologies generally do not significantly benefit DG accuracy, performing similarly or even worse than naive ERM for nearly all target domains. Moreover, the unreliability of DG algorithms highlighted by our experimentation is further compounded by the fact that target

<sup>6</sup> https://pic4ser.polito.it

<sup>7</sup> https://smartdata.polito.it

Table 7

Comparison of different DG algorithms on the three best backbones from our benchmark, covering each domain of the four considered datasets. We report the average accuracy over three runs and the associated standard deviation for each model. The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K.

| Backbone                                | Algorithm                                                                                                                                                                                                                                                                                              | Photo                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Art painting                                                                                                                                                                                                                                                                                                                                                                 | Cartoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sketch                                                                                                                                                                                                                                                                                                                                                                                       | Backbone                  | Algorithm                                                                                                                                                                                                                                                                                                                                                                                | Caltech                                                                                                                                                                                                                                                                                                                                                                                       | Labelme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pascal                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | ERM [52] [52]                                                                                                                                                                                                                                                                                          | $99.38 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $90.74 \pm 0.75$                                                                                                                                                                                                                                                                                                                                                             | $82.75 \pm 1.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $79.52 \pm 1.54$                                                                                                                                                                                                                                                                                                                                                                             |                           | ERM [52]                                                                                                                                                                                                                                                                                                                                                                                 | 97.79 ± 0.18                                                                                                                                                                                                                                                                                                                                                                                  | 65.24 ± 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78.06 ± 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.11 ± 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | RSC [26]                                                                                                                                                                                                                                                                                               | $99.20 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $87.65 \pm 0.51$                                                                                                                                                                                                                                                                                                                                                             | $78.46 \pm 3.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $76.19 \pm 1.77$                                                                                                                                                                                                                                                                                                                                                                             |                           | RSC [26]                                                                                                                                                                                                                                                                                                                                                                                 | $97.95 \pm 0.96$                                                                                                                                                                                                                                                                                                                                                                              | $64.95 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $71.42 \pm 0.58$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74.77 ± 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Mixup [62]                                                                                                                                                                                                                                                                                             | $99.28 \pm 0.16$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $87.52 \pm 0.81$                                                                                                                                                                                                                                                                                                                                                             | $77.20 \pm 1.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $78.66 \pm 2.36$                                                                                                                                                                                                                                                                                                                                                                             |                           | Mixup [62]                                                                                                                                                                                                                                                                                                                                                                               | $98.42 \pm 0.30$                                                                                                                                                                                                                                                                                                                                                                              | $63.72 \pm 0.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $74.59 \pm 2.19$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76.25 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DeiT Base 16                            | CORAL [15]                                                                                                                                                                                                                                                                                             | $99.44 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $87.97 \pm 0.32$                                                                                                                                                                                                                                                                                                                                                             | $75.74 \pm 3.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $77.38 \pm 0.92$                                                                                                                                                                                                                                                                                                                                                                             | DeiT Base 16              | CORAL [15]                                                                                                                                                                                                                                                                                                                                                                               | $97.74 \pm 0.55$                                                                                                                                                                                                                                                                                                                                                                              | $65.32 \pm 0.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $73.55 \pm 1.80$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76.74 ± 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dell Dake 10                            | MMD [17]                                                                                                                                                                                                                                                                                               | $99.48 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $89.44 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                             | $79.75 \pm 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $80.20 \pm 1.15$                                                                                                                                                                                                                                                                                                                                                                             | Dell Rose 10              | MMD [17]                                                                                                                                                                                                                                                                                                                                                                                 | $98.09 \pm 0.88$                                                                                                                                                                                                                                                                                                                                                                              | $64.29 \pm 1.13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $74.74 \pm 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77.71 ± 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | CausIRL CORAL [63]                                                                                                                                                                                                                                                                                     | $99.28 \pm 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $86.56 \pm 0.79$                                                                                                                                                                                                                                                                                                                                                             | $72.94 \pm 1.35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $76.65 \pm 1.82$                                                                                                                                                                                                                                                                                                                                                                             |                           | CausIRL CORAL [63]                                                                                                                                                                                                                                                                                                                                                                       | $98.87 \pm 0.35$                                                                                                                                                                                                                                                                                                                                                                              | $62.64 \pm 0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $73.95 \pm 1.31$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $75.72 \pm 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | CausIRL MMD [63]                                                                                                                                                                                                                                                                                       | $99.04 \pm 0.36$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $87.75 \pm 1.02$                                                                                                                                                                                                                                                                                                                                                             | $77.69 \pm 1.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $77.36 \pm 2.70$                                                                                                                                                                                                                                                                                                                                                                             |                           | CausIRL MMD [63]                                                                                                                                                                                                                                                                                                                                                                         | $97.36 \pm 0.59$                                                                                                                                                                                                                                                                                                                                                                              | $63.67 \pm 2.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $71.97 \pm 0.48$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $76.09 \pm 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | CAD [64]                                                                                                                                                                                                                                                                                               | $99.54 \pm 0.19$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $90.10 \pm 0.44$                                                                                                                                                                                                                                                                                                                                                             | $81.06 \pm 1.58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $80.23 \pm 1.42$                                                                                                                                                                                                                                                                                                                                                                             |                           | CAD [64]                                                                                                                                                                                                                                                                                                                                                                                 | $96.89 \pm 0.77$                                                                                                                                                                                                                                                                                                                                                                              | $65.30 \pm 0.91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $77.80 \pm 1.56$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $77.14 \pm 1.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | ADDG [65]                                                                                                                                                                                                                                                                                              | $96.87 \pm 0.88$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $87.50~\pm~1.18$                                                                                                                                                                                                                                                                                                                                                             | $72.65 \pm 2.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $44.16 \pm 2.15$                                                                                                                                                                                                                                                                                                                                                                             |                           | ADDG [65]                                                                                                                                                                                                                                                                                                                                                                                | $99.22 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                              | $65.19 \pm 0.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $77.17 \pm 1.06$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $71.54 \pm 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | ERM [52]                                                                                                                                                                                                                                                                                               | 99.18 ± 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.05 ± 0.75                                                                                                                                                                                                                                                                                                                                                                 | 81.39 ± 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.47 ± 1.45                                                                                                                                                                                                                                                                                                                                                                                 |                           | ERM [52]                                                                                                                                                                                                                                                                                                                                                                                 | 97.95 ± 0.37                                                                                                                                                                                                                                                                                                                                                                                  | 65.78 ± 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.22 ± 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.28 ± 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | RSC [26]                                                                                                                                                                                                                                                                                               | $98.36 \pm 1.33$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.96 ± 0.93                                                                                                                                                                                                                                                                                                                                                                 | $78.37 \pm 2.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $76.22 \pm 2.06$                                                                                                                                                                                                                                                                                                                                                                             |                           | RSC [26]                                                                                                                                                                                                                                                                                                                                                                                 | 98.19 ± 0.29                                                                                                                                                                                                                                                                                                                                                                                  | 65.50 ± 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.89 ± 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.63 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Mixup [62]                                                                                                                                                                                                                                                                                             | 99.32 ± 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.79 ± 0.71                                                                                                                                                                                                                                                                                                                                                                 | 78.94 ± 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.94 ± 0.55                                                                                                                                                                                                                                                                                                                                                                                 |                           | Mixup [62]                                                                                                                                                                                                                                                                                                                                                                               | 99.22 ± 0.14                                                                                                                                                                                                                                                                                                                                                                                  | 64.57 ± 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.17 ± 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.04 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | CORAL [15]                                                                                                                                                                                                                                                                                             | 99.50 ± 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.67 ± 0.64                                                                                                                                                                                                                                                                                                                                                                 | $78.06 \pm 0.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76.73 ± 2.12                                                                                                                                                                                                                                                                                                                                                                                 |                           | CORAL [15]                                                                                                                                                                                                                                                                                                                                                                               | 98.35 ± 0.25                                                                                                                                                                                                                                                                                                                                                                                  | 66.49 ± 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.14 ± 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.51 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ConViT Base                             | MMD [17]                                                                                                                                                                                                                                                                                               | 99.54 ± 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.84 + 0.62                                                                                                                                                                                                                                                                                                                                                                 | 80.19 + 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.77 + 1.82                                                                                                                                                                                                                                                                                                                                                                                 | ConViT Base               | MMD [17]                                                                                                                                                                                                                                                                                                                                                                                 | 97.92 ± 0.55                                                                                                                                                                                                                                                                                                                                                                                  | 68.03 ± 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.44 ± 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.47 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | CausIRL CORAL [63]                                                                                                                                                                                                                                                                                     | 99.18 ± 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.92 ± 1.14                                                                                                                                                                                                                                                                                                                                                                 | 75.41 ± 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.32 ± 1.70                                                                                                                                                                                                                                                                                                                                                                                 |                           | Causirii CORAL [63]                                                                                                                                                                                                                                                                                                                                                                      | 99.20 ± 0.29                                                                                                                                                                                                                                                                                                                                                                                  | 64.59 ± 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77.53 ± 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.25 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | CausIRL MMD [63]                                                                                                                                                                                                                                                                                       | 99.50 ± 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.67 ± 1.15                                                                                                                                                                                                                                                                                                                                                                 | 79.45 ± 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.74 ± 2.43                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | CAD [64]                                                                                                                                                                                                                                                                                               | 99.48 ± 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.63 ± 0.83                                                                                                                                                                                                                                                                                                                                                                 | 82.76 ± 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76.80 ± 1.36                                                                                                                                                                                                                                                                                                                                                                                 |                           | CausIRL MMD [63]                                                                                                                                                                                                                                                                                                                                                                         | 98.61 ± 0.34                                                                                                                                                                                                                                                                                                                                                                                  | 65.86 ± 0.58<br>65.49 ± 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.55 ± 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.16 ± 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | ADDG [65]                                                                                                                                                                                                                                                                                              | 99.34 ± 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.14 ± 1.16                                                                                                                                                                                                                                                                                                                                                                 | 80.79 ± 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75.11 ± 1.92                                                                                                                                                                                                                                                                                                                                                                                 |                           | CAD [64]                                                                                                                                                                                                                                                                                                                                                                                 | 97.67 ± 0.12                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.01 ± 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.80 ± 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | ADDA [80]                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              |                           | ADDG [65]                                                                                                                                                                                                                                                                                                                                                                                | 98.45 ± 0.92                                                                                                                                                                                                                                                                                                                                                                                  | 65.28 ± 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.02 ± 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.43 ± 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | ERM [52]                                                                                                                                                                                                                                                                                               | $99.50~\pm~0.17$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $93.25 \pm 1.09$                                                                                                                                                                                                                                                                                                                                                             | $85.52 \pm 2.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $75.67 \pm 2.29$                                                                                                                                                                                                                                                                                                                                                                             |                           | ERM [52]                                                                                                                                                                                                                                                                                                                                                                                 | $97.69 \pm 0.59$                                                                                                                                                                                                                                                                                                                                                                              | $65.42~\pm~2.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $79.55 \pm 2.64$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $77.53 \pm 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | RSC [26]                                                                                                                                                                                                                                                                                               | $98.94 \pm 0.40$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $92.07 \pm 2.34$                                                                                                                                                                                                                                                                                                                                                             | $86.03 \pm 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $69.26 \pm 7.69$                                                                                                                                                                                                                                                                                                                                                                             |                           | RSC [26]                                                                                                                                                                                                                                                                                                                                                                                 | $98.23 \pm 1.84$                                                                                                                                                                                                                                                                                                                                                                              | $65.21 \pm 0.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $78.02 \pm 1.64$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $76.89 \pm 1.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Mixup [62]                                                                                                                                                                                                                                                                                             | $99.60 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $95.04 \pm 0.32$                                                                                                                                                                                                                                                                                                                                                             | $87.17 \pm 0.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $72.67 \pm 0.94$                                                                                                                                                                                                                                                                                                                                                                             |                           | Misup [62]                                                                                                                                                                                                                                                                                                                                                                               | $97.46 \pm 0.46$                                                                                                                                                                                                                                                                                                                                                                              | $66.87 \pm 0.31$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $80.26 \pm 4.70$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.51 ± 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ViT Base 16*                            | OORAL [15]                                                                                                                                                                                                                                                                                             | $98.38 \pm 1.00$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $93.08 \pm 0.73$                                                                                                                                                                                                                                                                                                                                                             | $81.20 \pm 1.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $65.75 \pm 4.21$                                                                                                                                                                                                                                                                                                                                                                             | VIT Bese 16*              | CORAL [15]                                                                                                                                                                                                                                                                                                                                                                               | $98.78 \pm 0.46$                                                                                                                                                                                                                                                                                                                                                                              | $67.24 \pm 0.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $78.33 \pm 0.38$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.20 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| All page 10                             | MMD [17]                                                                                                                                                                                                                                                                                               | $99.36 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $94.56 \pm 0.41$                                                                                                                                                                                                                                                                                                                                                             | $84.88 \pm 2.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $73.14 \pm 1.58$                                                                                                                                                                                                                                                                                                                                                                             | VII Base 16"              | MMD [17]                                                                                                                                                                                                                                                                                                                                                                                 | $98.07 \pm 0.55$                                                                                                                                                                                                                                                                                                                                                                              | $64.92 \pm 0.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $77.98 \pm 2.01$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $77.20 \pm 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | CausIRL CORAL [63]                                                                                                                                                                                                                                                                                     | $99.50 \pm 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $94.07 \pm 0.42$                                                                                                                                                                                                                                                                                                                                                             | $86.36 \pm 0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $73.11 \pm 4.03$                                                                                                                                                                                                                                                                                                                                                                             |                           | CausIRL CORAL [63]                                                                                                                                                                                                                                                                                                                                                                       | $97.03 \pm 1.10$                                                                                                                                                                                                                                                                                                                                                                              | $65.89 \pm 0.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $79.93 \pm 2.10$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $77.54 \pm 3.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | CausIRL MMD [63]                                                                                                                                                                                                                                                                                       | $99.42 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $93.57 \pm 1.27$                                                                                                                                                                                                                                                                                                                                                             | $83.96 \pm 2.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $69.34 \pm 2.53$                                                                                                                                                                                                                                                                                                                                                                             |                           | CausIRL MMD [63]                                                                                                                                                                                                                                                                                                                                                                         | $97.67 \pm 0.40$                                                                                                                                                                                                                                                                                                                                                                              | $65.59 \pm 0.59$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $79.16 \pm 3.52$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $75.50 \pm 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | CAD [64]                                                                                                                                                                                                                                                                                               | $99.52 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $93.85 \pm 0.91$                                                                                                                                                                                                                                                                                                                                                             | $84.91 \pm 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $71.47 \pm 1.65$                                                                                                                                                                                                                                                                                                                                                                             |                           | CAD [64]                                                                                                                                                                                                                                                                                                                                                                                 | 98.09 ± 0.12                                                                                                                                                                                                                                                                                                                                                                                  | 60.30 ± 8.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.38 ± 2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.37 ± 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | ADDG [65]                                                                                                                                                                                                                                                                                              | $97.80 \pm 0.54$                                                                                                                                                                                                                                                                                                                                                                                                                                             | $88.35 \pm 0.57$                                                                                                                                                                                                                                                                                                                                                             | $72.22 \pm 0.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $42.96 \pm 1.58$                                                                                                                                                                                                                                                                                                                                                                             |                           | ADDG [65]                                                                                                                                                                                                                                                                                                                                                                                | $99.43 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.41 ± 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71.93 ± 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                                                                                                                                                                                                                                                                                        | (a) PA                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cs                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                          | (b) VL                                                                                                                                                                                                                                                                                                                                                                                        | cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Backbone                                | Algorithm                                                                                                                                                                                                                                                                                              | Art                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clipart                                                                                                                                                                                                                                                                                                                                                                      | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Real world                                                                                                                                                                                                                                                                                                                                                                                   | Backbone                  | Algorithm                                                                                                                                                                                                                                                                                                                                                                                | L100                                                                                                                                                                                                                                                                                                                                                                                          | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L43                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | ERM (52)                                                                                                                                                                                                                                                                                               | 75.22 + 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.07 ± 0.52                                                                                                                                                                                                                                                                                                                                                                 | 83.55 + 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85.55 ± 0.64                                                                                                                                                                                                                                                                                                                                                                                 |                           | ERM [52]                                                                                                                                                                                                                                                                                                                                                                                 | 58.53 + 1.07                                                                                                                                                                                                                                                                                                                                                                                  | 35.93 ± 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.57 + 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41.83 ± 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | EIUM [54]                                                                                                                                                                                                                                                                                              | 75.22 ± 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.55 ± 0.64                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | BOC 1961                                                                                                                                                                                                                                                                                               | 75.11 . 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                              | P2 62 + 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92.41 ( 0.22                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | RSC [26]                                                                                                                                                                                                                                                                                               | 75.11 ± 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.70 ± 1.26                                                                                                                                                                                                                                                                                                                                                                 | 83.07 ± 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83.41 ± 0.22                                                                                                                                                                                                                                                                                                                                                                                 |                           | RSC [26]                                                                                                                                                                                                                                                                                                                                                                                 | 56.55 ± 2.31                                                                                                                                                                                                                                                                                                                                                                                  | 29.77 ± 5.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.91 ± 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | Mixup [62]                                                                                                                                                                                                                                                                                             | 75.10 ± 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $60.83 \pm 0.93$                                                                                                                                                                                                                                                                                                                                                             | $81.62~\pm~0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $81.37 \pm 0.25$                                                                                                                                                                                                                                                                                                                                                                             |                           | Mixup [62]                                                                                                                                                                                                                                                                                                                                                                               | $48.40 \pm 1.09$                                                                                                                                                                                                                                                                                                                                                                              | $35.62 \pm 0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $54.73~\pm~1.02$                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.76 ± 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]                                                                                                                                                                                                                                                                               | 75.10 ± 0.75<br>74.60 ± 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                 | $60.83 \pm 0.93$<br>$61.53 \pm 0.06$                                                                                                                                                                                                                                                                                                                                         | $81.62 \pm 0.20$<br>$83.31 \pm 0.47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81.37 ± 0.25<br>83.45 ± 0.28                                                                                                                                                                                                                                                                                                                                                                 | DelT Base 16              | Misup [62]<br>CORAL [15]                                                                                                                                                                                                                                                                                                                                                                 | $48.40 \pm 1.09 \\ 52.28 \pm 3.75$                                                                                                                                                                                                                                                                                                                                                            | $35.62 \pm 0.43$<br>$35.06 \pm 3.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $54.73 \pm 1.02$<br>$52.32 \pm 1.04$                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.42 ± 0.5<br>47.76 ± 1.4<br>45.65 ± 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]                                                                                                                                                                                                                                                                   | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91                                                                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14                                                                                                                                                                                                                                                                                                                                                 | DeiT Base 16              | Mixup [62]<br>CORAL [15]<br>MMD [17]                                                                                                                                                                                                                                                                                                                                                     | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33                                                                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71                                                                                                                                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.4<br>45.65 ± 2.5<br>45.63 ± 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>Causiril CORAL [63]                                                                                                                                                                                                                                            | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22                                                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25                                                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22                                                                                                                                                                                                                                                                                                                                 | DeiT Base 16              | Minup [62]<br>CORAL [15]<br>MMD [17]<br>Causiri. CORAL [63]                                                                                                                                                                                                                                                                                                                              | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87                                                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15                                                                                                                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>CousiRL CORAL [63]<br>CousiRL MMD [63]                                                                                                                                                                                                                         | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73                                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91                                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25                                                                                                                                                                                                                                                                                                                 | DeiT Base 16              | Misup [62]<br>CORAL [15]<br>MMD [17]<br>Causiri. CORAL [63]<br>Causiri. MMD [63]                                                                                                                                                                                                                                                                                                         | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61                                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46                                                                                                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.45.65 ± 2.545.63 ± 2.546.46 ± 1.544.23 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DelT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>GessiRL CORAL [63]<br>GessiRL MMD [63]<br>CAD [64]                                                                                                                                                                                                             | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05                                                                                                                                                                                                                                                                                                 | DelT Base 16              | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>Causiri. CORAL [63]<br>Causiri. MMD [63]<br>CAD [64]                                                                                                                                                                                                                                                                                             | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $54.73 \pm 1.02$<br>$52.32 \pm 1.04$<br>$56.38 \pm 2.71$<br>$54.17 \pm 1.15$<br>$51.96 \pm 1.46$<br>$53.69 \pm 1.79$                                                                                                                                                                                                                                                                                                                                         | 47.76 ± 1.45.65 ± 2.145.63 ± 2.146.46 ± 1.144.23 ± 0.144.11 ± 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>CousiRL CORAL [63]<br>CousiRL MMD [63]                                                                                                                                                                                                                         | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73                                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91                                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25                                                                                                                                                                                                                                                                                                                 | DelT Rose 16              | Misup [62]<br>CORAL [15]<br>MMD [17]<br>Causiri. CORAL [63]<br>Causiri. MMD [63]                                                                                                                                                                                                                                                                                                         | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61                                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46                                                                                                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DeiT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>GessiRL CORAL [63]<br>GessiRL MMD [63]<br>CAD [64]                                                                                                                                                                                                             | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40                                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94                                                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05                                                                                                                                                                                                                                                                                                 | DelT Base 16              | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>Causiri. CORAL [63]<br>Causiri. MMD [63]<br>CAD [64]                                                                                                                                                                                                                                                                                             | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92                                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $54.73 \pm 1.02$<br>$52.32 \pm 1.04$<br>$56.38 \pm 2.71$<br>$54.17 \pm 1.15$<br>$51.96 \pm 1.46$<br>$53.69 \pm 1.79$                                                                                                                                                                                                                                                                                                                                         | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DelT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>GussiRL CORAL [63]<br>CausiRL MMD [63]<br>CAD [64]<br>ADDG [85]                                                                                                                                                                                                | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80                                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58                                                                                                                                                                                                                                                                 | $81.62 \pm 0.20$<br>$83.31 \pm 0.47$<br>$83.36 \pm 0.31$<br>$82.56 \pm 0.07$<br>$83.43 \pm 0.15$<br>$83.52 \pm 0.15$<br>$85.82 \pm 0.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27                                                                                                                                                                                                                                                                                 | DelT Base 16              | Misup [62]<br>CORAL [15]<br>MMD [17]<br>CrusiRL CORAL [63]<br>CrusiRL MMD [63]<br>CAD [64]<br>ADDG [65]                                                                                                                                                                                                                                                                                  | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 2.17                                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $54.73 \pm 1.02$<br>$52.32 \pm 1.04$<br>$56.38 \pm 2.71$<br>$54.17 \pm 1.15$<br>$51.96 \pm 1.46$<br>$53.69 \pm 1.79$<br>$29.76 \pm 3.00$                                                                                                                                                                                                                                                                                                                     | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DelT Base 16                            | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>CausiRL CORAL [63]<br>CausiRL MMD [63]<br>CAD [64]<br>ADDG [65]<br>ERM [52]                                                                                                                                                                                    | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50                                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44                                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.05 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31                                                                                                                                                                                                                                                                 | DelT Base 16              | Minup [62]<br>CORAL [15]<br>MMD [17]<br>CresiRL CORAL [63]<br>CresiRL MMD [63]<br>CAD [64]<br>ADDG [65]<br>ERM [52]                                                                                                                                                                                                                                                                      | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05                                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27                                                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>Carallel. CORAL [63]<br>CALL [64]<br>ADDG [65]<br>EIM [52]<br>BSC [26]                                                                                                                                                                                         | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.95 ± 0.17                                                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32                                                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>87.25 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36                                                                                                                                                                                                                                                 |                           | Minup [62]<br>CORAL [15]<br>MMD [17]<br>CrestRL CORAL [63]<br>CrestRL MMD [63]<br>CAD [64]<br>ADDG [65]<br>ERM [52]<br>RSC [26]                                                                                                                                                                                                                                                          | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.61<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20                                                                                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.28                                                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | Mixup [62]<br>CORAL [15]<br>MMD [17]<br>CausiRL CORAL [63]<br>CausiRL MMD [63]<br>CAD [64]<br>ADDG [65]<br>ERM [82]<br>BSC [26]<br>Mixup [62]<br>CORAL [15]                                                                                                                                            | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.95 ± 0.17<br>75.79 ± 0.60<br>75.71 ± 0.54                                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24                                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.05 ± 0.52                                                                                                                                                                                                                 | DelT Base 16  ConViT Base | Misup [62]<br>CORAL [15]<br>MMD [17]<br>CresiRL CORAL [63]<br>CresiRL MMD [63]<br>CAD [64]<br>ADDG [65]<br>ERM [52]<br>RSC [26]<br>Misup [62]<br>CORAL [15]                                                                                                                                                                                                                              | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.35<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 217<br>52.17 ± 4.05<br>48.27 ± 4.05<br>44.45 ± 1.81<br>45.91 ± 5.60                                                                                                                                                                                                                   | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.28<br>56.03 ± 2.38                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.52 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | Mixup [62] CORAL [15] MMD [17] Cuttallil. CORAL [63] Cuttallil. MMD [63] CAD [64] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15] MMD [17]                                                                                                                                                           | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.95 ± 0.17<br>75.79 ± 0.60<br>75.71 ± 0.54<br>76.46 ± 0.68                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64                                                                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>83.79 ± 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.05 ± 0.52<br>86.80 ± 0.24                                                                                                                                                                                                 |                           | Minup [62] CORAL [15] MMD [17] CrestRt. CORAL [63] CrestRt. MMD [63] ADDG [65] ERM [52] RSC [26] Minup [62] CORAL [15] MMD [17]                                                                                                                                                                                                                                                          | $\begin{array}{c} 48.40\pm1.09 \\ 52.28\pm3.75 \\ 57.11\pm4.33 \\ 48.73\pm3.87 \\ 53.38\pm3.61 \\ 53.94\pm1.92 \\ 23.78\pm2.17 \\ 52.17\pm4.05 \\ 48.27\pm4.20 \\ 44.45\pm1.81 \\ 45.91\pm5.60 \\ 48.39\pm0.30 \end{array}$                                                                                                                                                                   | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>56.03 ± 2.38<br>58.02 ± 1.15                                                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.52 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | Mixup [62] CORAL [15] MMD [17] Causiri. CORAL [63] Causiri. MMD [63] CAD [64] ADDG [65] BSC [26] Mixup [62] CORAL [15] MMD [17] Causiri. CORAL [63]                                                                                                                                                    | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.79 ± 0.60<br>75.71 ± 0.54<br>75.64 ± 0.68<br>75.16 ± 0.54                                                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73                                                                                                                                                                 | $\begin{array}{c} 81.62 \pm 0.20 \\ 83.31 \pm 0.47 \\ 83.36 \pm 0.31 \\ 82.56 \pm 0.07 \\ 83.43 \pm 0.15 \\ 83.52 \pm 0.15 \\ 85.82 \pm 0.38 \\ 83.21 \pm 0.58 \\ 83.49 \pm 0.64 \\ 81.67 \pm 0.13 \\ 81.18 \pm 0.19 \\ 83.79 \pm 0.56 \\ 82.86 \pm 0.12 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81.57 ± 0.25<br>83.48 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>83.95 ± 0.05<br>87.25 ± 0.27<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.65 ± 0.32<br>86.80 ± 0.24                                                                                                                                                                                                                 |                           | Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26] Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63]                                                                                                                                                                                                                                                 | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 2.17<br>48.27 ± 4.05<br>48.27 ± 4.05<br>44.45 ± 1.81<br>45.91 ± 5.65<br>48.39 ± 0.30<br>43.63 ± 1.91                                                                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.28<br>56.03 ± 2.38<br>58.02 ± 1.15<br>57.33 ± 1.03                                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.52 ± 1.<br>47.13 ± 2.<br>45.88 ± 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | Mixup [62] CORAL [15] MMD [17] Causifil. CORAL [63] Causifil. MMD [63] CAD [64] ADDG [66] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Causifil. CORAL [63] Causifil. MMD [63]                                                                                                                     | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.73<br>75.20 ± 0.80<br>74.49 ± 0.50<br>75.79 ± 0.60<br>75.71 ± 0.54<br>75.71 ± 0.54<br>75.16 ± 0.58<br>75.16 ± 0.58<br>75.16 ± 0.58                                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68                                                                                                                                                 | $\begin{array}{c} 81.62 \pm 0.20 \\ 83.31 \pm 0.47 \\ 83.36 \pm 0.07 \\ 83.45 \pm 0.07 \\ 83.43 \pm 0.15 \\ 83.52 \pm 0.15 \\ 85.82 \pm 0.38 \\ 83.21 \pm 0.58 \\ 83.49 \pm 0.64 \\ 81.67 \pm 0.13 \\ 81.18 \pm 0.19 \\ 83.79 \pm 0.56 \\ 83.49 \pm 0.64 \\ 81.67 \pm 0.13 \\ 81.68 \pm 0.12 \\ 83.63 \pm 0.15 \\ 83.63 \pm 0.15 \\ 83.63 \pm 0.15 \\ 83.63 \pm 0.26 \\$ | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>96.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.65<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.65 ± 0.52<br>86.90 ± 0.24<br>86.84 ± 0.34                                                                                                                                                                                 |                           | Misup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CrusiRL MMD [63] ADDG [65] ERM [52] RSC [26] Misup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CrusiRL CORAL [63]                                                                                                                                                                                                                      | $\begin{array}{c} 48.40\pm1.09\\ 52.28\pm3.75\\ 57.11\pm4.33\\ 48.73\pm3.87\\ 53.94\pm1.92\\ 23.78\pm2.17\\ 52.17\pm4.05\\ 48.27\pm4.20\\ 44.45\pm1.81\\ 45.91\pm5.60\\ 48.39\pm0.30\\ 43.63\pm1.91\\ 47.04\pm3.78\\ \end{array}$                                                                                                                                                             | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.73<br>57.33 ± 1.03<br>57.33 ± 1.03<br>58.44 ± 0.65                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.52 ± 1.<br>47.13 ± 2.<br>45.88 ± 0.<br>45.54 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | Mixup [62] CORAL [15] MMD [17] Cuttilkl. CORAL [63] Cuttilkl. MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttilkl. CORAL [63] CAD [64]                                                                                                                               | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.95 ± 0.17<br>75.79 ± 0.60<br>75.71 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.25<br>76.47 ± 0.25<br>76.47 ± 0.25                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.32<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.68<br>64.31 ± 0.25                                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.28<br>83.83 ± 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>83.52 ± 0.18<br>81.05 ± 0.52<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.20 ± 0.24<br>86.20 ± 0.35                                                                                                                                                 |                           | Misup [62] CORAL [15] MMD [17] CrestRL CORAL [63] CrestRL MMD [63] ADDG [65] ERM [52] RSC [26] Misup [62] CORAL [15] MMD [17] CrestRL CORAL [63] CAD [64]                                                                                                                                                                                                                                | $\begin{array}{c} 48.40\pm1.09 \\ 52.28\pm3.75 \\ 57.11\pm4.33 \\ 48.73\pm3.67 \\ 53.38\pm3.61 \\ 53.94\pm1.92 \\ 23.78\pm2.17 \\ 52.17\pm4.05 \\ 48.27\pm4.20 \\ 44.45\pm1.81 \\ 45.91\pm5.60 \\ 48.39\pm0.30 \\ 43.63\pm1.91 \\ 47.04\pm3.78 \\ 50.88\pm4.26 \end{array}$                                                                                                                   | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.28<br>56.03 ± 2.38<br>58.02 ± 1.15<br>57.33 ± 1.03<br>58.44 ± 0.65<br>57.78 ± 1.78                                                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.52 ± 1.<br>47.13 ± 2.<br>45.88 ± 0.<br>45.54 ± 1.<br>44.01 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | Mixup [62] CORAL [15] MMD [17] Cuttilkl. CORAL [63] Cuttilkl. MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttilkl. CORAL [63] CAD [64] ADDG [65]                                                                                                                     | $\begin{array}{c} 75.10 \pm 0.75 \\ 74.60 \pm 0.77 \\ 74.60 \pm 0.77 \\ 75.53 \pm 0.18 \\ 74.69 \pm 0.22 \\ 74.50 \pm 0.73 \\ 75.20 \pm 0.40 \\ 76.62 \pm 0.80 \\ 74.49 \pm 0.50 \\ 75.95 \pm 0.17 \\ 75.79 \pm 0.60 \\ 75.71 \pm 0.64 \\ 75.71 \pm 0.64 \\ 75.71 \pm 0.54 \\ 76.46 \pm 0.68 \\ 75.16 \pm 0.54 \\ 76.47 \pm 0.25 \\ 76.43 \pm 0.37 \\ 74.42 \pm 0.63 \end{array}$                                                                            | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.32<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.28<br>83.83 ± 0.08<br>82.41 ± 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>83.52 ± 0.18<br>81.05 ± 0.92<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.20 ± 0.35<br>86.84 ± 0.34<br>86.26 ± 0.35<br>85.46 ± 0.30                                                                                                                 |                           | Mixup [62] CORAL [15] MMD [17] CrestRL CORAL [63] CrestRL MMD [63] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15] MMD [17] CrestRL CORAL [63] CAD [64] ADDG [65]                                                                                                                                                                                                                      | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.67<br>53.38 ± 3.61<br>53.94 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>47.04 ± 3.78<br>50.88 ± 4.26<br>43.57 ± 0.67                                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>30.47 ± 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.28<br>56.03 ± 2.38<br>56.03 ± 2.38<br>58.02 ± 1.15<br>57.33 ± 1.03<br>58.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94                                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>45.63 ± 2.<br>44.11 ± 0.<br>44.11 ± 0.<br>43.50 ± 2.<br>43.80 ± 1.<br>47.13 ± 2.<br>45.82 ± 1.<br>47.13 ± 2.<br>45.84 ± 0.<br>45.54 ± 1.<br>44.01 ± 1.<br>45.51 ± 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | Mixup [62] CORAL [15] MMD [17] CustRL CORAL [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] CustRL CORAL [63] CustRL MMD [63] CustRL MMD [63] CustRL MMD [64] ADDG [65] ERM [52]                                                                                              | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.40<br>75.20 ± 0.40<br>76.62 ± 0.80<br>75.95 ± 0.17<br>75.79 ± 0.60<br>75.71 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.25<br>76.43 ± 0.37<br>74.42 ± 0.63<br>79.93 ± 0.67                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54                                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.52 ± 0.15<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.08<br>82.41 ± 0.44<br>88.39 ± 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>85.78 ± 0.14<br>86.22 ± 0.32<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>86.60 ± 0.52<br>86.60 ± 0.34<br>86.26 ± 0.35<br>86.46 ± 0.34<br>86.26 ± 0.35<br>85.46 ± 0.30                                                                                                                                 |                           | Minup [62] CORAL [15] MMD [17] CrestRt. CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26] Minup [62] CORAL [15] MMD [17] CrestRt. CORAL [63] CrestRt. MMD [63] CAD [64] ADDG [65] ERM [52] ERM [52] ERM [52] ERM [52] ERM [52]                                                                                                                                                             | $\begin{array}{c} 48.40\pm1.09 \\ 52.28\pm3.75 \\ 57.11\pm4.33 \\ 48.73\pm3.61 \\ 53.94\pm1.92 \\ 23.78\pm2.17 \\ 52.17\pm4.05 \\ 48.27\pm4.20 \\ 44.45\pm1.81 \\ 45.91\pm5.60 \\ 48.39\pm0.30 \\ 43.63\pm1.91 \\ 47.04\pm3.78 \\ 50.88\pm4.26 \\ 43.57\pm0.67 \\ \hline \end{array}$                                                                                                         | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>20.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>30.47 ± 4.60<br>41.14 ± 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>52.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.10<br>57.33 ± 1.03<br>58.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.33 ± 1.39                                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>46.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>44.82 ± 1.<br>47.13 ± 2.<br>45.88 ± 0.<br>45.54 ± 1.<br>45.51 ± 2.<br>45.51 ± 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | Mixup [62] CORAL [15] MMD [17] Causiril. CORAL [63] Causiril. MMD [63] CAD [64] ADDG [66] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Causiril. CORAL [63] CAD [64] ADDG [66] ERM [52] BSC [26]                                                                                                   | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.70<br>75.20 ± 0.80<br>74.49 ± 0.50<br>75.79 ± 0.60<br>75.71 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.25<br>76.43 ± 0.37<br>76.42 ± 0.63                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>66.32 ± 0.34                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.08<br>82.41 ± 0.44<br>83.83 ± 0.08<br>82.41 ± 0.44<br>83.93 ± 0.35<br>85.42 ± 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>96.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.65<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.65 ± 0.52<br>86.90 ± 0.24<br>86.84 ± 0.35<br>86.20 ± 0.25<br>86.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35                                                                                                                 |                           | Mixup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CrusiRL MMD [68] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26]                                                                                                                                                                                                    | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.94 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>47.04 ± 3.78<br>50.88 ± 4.26<br>43.57 ± 0.67<br>58.65 ± 4.18<br>48.83 ± 5.00                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>32.54 ± 3.26<br>31.87 ± 1.45<br>30.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>41.14 ± 2.12<br>30.84 ± 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.73<br>57.33 ± 1.03<br>57.33 ± 1.03<br>57.33 ± 1.03<br>56.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.83 ± 1.39<br>56.83 ± 1.39                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.50 ± 2.<br>45.73 ± 2.<br>45.73 ± 2.<br>45.88 ± 0.<br>45.54 ± 1.<br>44.01 ± 1.<br>45.51 ± 2.<br>42.47 ± 2.<br>42.47 ± 2.<br>43.10 ± 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | Mixup [62] CORAL [15] MMD [17] CutalRL CORAL [63] CutalRL MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] CutalRL CORAL [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62]                                                                                              | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.91 ± 0.60<br>75.91 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.52<br>76.43 ± 0.37<br>74.42 ± 0.63<br>79.93 ± 0.87<br>76.99 ± 0.54<br>82.05 ± 0.31                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>67.71 ± 0.36<br>66.32 ± 0.34<br>69.70 ± 0.38                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.21 ± 0.44<br>84.39 ± 0.45<br>85.43 ± 0.08<br>82.41 ± 0.44<br>88.39 ± 0.35<br>88.42 ± 2.33<br>89.17 ± 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.05 ± 0.52<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.26 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.47 ± 0.35                                                                                 |                           | Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CresiRL MMD [63] ADDG [65] ERM [52] BSC [26] Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CAD [64] ADDG [65] ERM [52] ERM [52] ERM [52] ERM [52] ERM [52] ERM [53] ERM [52] ERM [52] ERM [52] ERM [52] Minup [62]                                                                                                                 | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.39 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>50.88 ± 4.26<br>43.57 ± 0.67<br>58.65 ± 4.18<br>48.83 ± 5.00<br>58.50 ± 2.43                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>40.47 ± 4.60<br>41.14 ± 2.12<br>30.84 ± 6.25<br>30.84 ± 6.25<br>30.84 ± 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.28<br>56.03 ± 2.38<br>58.02 ± 1.15<br>57.33 ± 1.03<br>58.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.33 ± 1.99<br>52.39 ± 1.01<br>57.12 ± 2.32                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>46.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>45.83 ± 2.<br>45.84 ± 0.<br>45.73 ± 2.<br>45.84 ± 0.<br>45.54 ± 1.<br>45.51 ± 2.<br>45.64 ± 0.<br>45.55 ± 2.<br>45.64 ± 0.<br>45.65 |
| ConVIT Base                             | Mixup [62] CORAL [15] MMD [17] Causiril. CORAL [63] Causiril. MMD [63] CAD [64] ADDG [66] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Causiril. CORAL [63] CAD [64] ADDG [66] ERM [52] BSC [26]                                                                                                   | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.70<br>75.20 ± 0.80<br>74.49 ± 0.50<br>75.79 ± 0.60<br>75.71 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.25<br>76.43 ± 0.37<br>76.42 ± 0.63                                                                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>66.32 ± 0.34                                                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.08<br>82.41 ± 0.44<br>83.83 ± 0.08<br>82.41 ± 0.44<br>83.93 ± 0.35<br>85.42 ± 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>96.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.65<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.65 ± 0.52<br>86.90 ± 0.24<br>86.84 ± 0.35<br>86.20 ± 0.25<br>86.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35                                                                                                                 | ConViT Base               | Mixup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CrusiRL MMD [68] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26]                                                                                                                                                                                                    | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.94 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>47.04 ± 3.78<br>50.88 ± 4.26<br>43.57 ± 0.67<br>58.65 ± 4.18<br>48.83 ± 5.00                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>32.54 ± 3.26<br>31.87 ± 1.45<br>30.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>41.14 ± 2.12<br>30.84 ± 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.73<br>57.33 ± 1.03<br>57.33 ± 1.03<br>57.33 ± 1.03<br>56.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.83 ± 1.39<br>56.83 ± 1.39                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>46.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>45.83 ± 0.<br>47.13 ± 2.<br>45.84 ± 0.<br>45.54 ± 1.<br>46.54 ± 1.<br>46.54 ± 1.<br>46.54 ± 1.<br>46.54 ± 1.<br>46.54 ± 1.<br>46.54 ± 2.<br>46.54 ± 3.<br>46.54 |
| ConVIT Base                             | Mixup [62] CORAL [15] MMD [17] CutalRL CORAL [63] CutalRL MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] CutalRL CORAL [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62]                                                                                              | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.91 ± 0.60<br>75.91 ± 0.54<br>76.46 ± 0.68<br>75.16 ± 0.54<br>76.47 ± 0.52<br>76.43 ± 0.37<br>74.42 ± 0.63<br>79.93 ± 0.87<br>76.99 ± 0.54<br>82.05 ± 0.31                                                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>67.71 ± 0.36<br>66.32 ± 0.34<br>69.70 ± 0.38                                                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.21 ± 0.44<br>84.39 ± 0.45<br>85.43 ± 0.08<br>82.41 ± 0.44<br>88.39 ± 0.35<br>88.42 ± 2.33<br>89.17 ± 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.05 ± 0.52<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.26 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.46 ± 0.35<br>85.47 ± 0.35                                                                                 |                           | Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CresiRL MMD [63] ADDG [65] ERM [52] BSC [26] Minup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CAD [64] ADDG [65] ERM [52] ERM [52] ERM [52] ERM [52] ERM [52] ERM [53] ERM [52] ERM [52] ERM [52] ERM [52] Minup [62]                                                                                                                 | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.87<br>53.38 ± 3.61<br>53.39 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>50.88 ± 4.26<br>43.57 ± 0.67<br>58.65 ± 4.18<br>48.83 ± 5.00<br>58.50 ± 2.43                                                                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>40.47 ± 4.60<br>41.14 ± 2.12<br>30.84 ± 6.25<br>30.84 ± 6.25<br>30.84 ± 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.28<br>56.03 ± 2.38<br>58.02 ± 1.15<br>57.33 ± 1.03<br>58.44 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.33 ± 1.99<br>52.39 ± 1.01<br>57.12 ± 2.32                                                                                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>45.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>47.13 ± 2.<br>45.88 ± 0.<br>47.13 ± 2.<br>45.84 ± 1.<br>44.11 ± 0.<br>45.51 ± 2.<br>45.63 ± 2.<br>45.64 ± 1.<br>46.71 ± 2.<br>47.72 ± 2.<br>47.73 ± 2.<br>47.74 |
| ConVIT Base                             | Mixup [62] CORAL [15] MMD [17] Cuttallill. CORAL [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttallill. CORAL [63] CAD [64] ADDG [66] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttallill. CORAL [63] CAD [64] ADDG [66] ERM [52] BSC [26] Mixup [62] CORAL [15] | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.43<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.71 ± 0.50<br>75.71 ± 0.54<br>76.47 ± 0.25<br>76.43 ± 0.37<br>74.42 ± 0.63<br>79.93 ± 0.87<br>76.99 ± 0.54<br>82.05 ± 0.54<br>76.90 ± 0.54 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.32<br>64.71 ± 0.64<br>63.34 ± 0.73<br>64.74 ± 0.68<br>64.71 ± 0.64<br>64.71 ± 0.64<br>65.71 ± 0.36<br>66.32 ± 0.34<br>66.32 ± 0.34<br>66.32 ± 0.34<br>66.71 ± 0.44                                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>81.18 ± 0.19<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.28<br>83.83 ± 0.28<br>83.83 ± 0.44<br>83.99 ± 0.35<br>85.42 ± 2.33<br>85.42 ± 2.33<br>85.42 ± 2.34<br>85.49 ± 0.35<br>85.42 ± 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.17<br>83.68 ± 0.36<br>83.52 ± 0.18<br>81.05 ± 0.32<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.20 ± 0.24<br>86.25 ± 0.18<br>86.26 ± 0.35<br>83.46 ± 0.30<br>89.85 ± 0.89<br>86.21 ± 0.39<br>86.21 ± 0.39<br>86.21 ± 0.39<br>86.21 ± 0.39<br>86.21 ± 0.39<br>86.21 ± 0.39                 | ConViT Base               | Mixup [62] CORAL [15] MMD [17] CrestRt. CORAL [63] CrestRt. MMD [63] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15] MMD [17] CrestRt. CORAL [63] CAD [66] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [63] CAD [66] ADDG [65] ERM [52] RSC [26] Mixup [62] CORAL [15]                                                                                                                | $\begin{array}{c} 48.40 \pm 1.09 \\ 52.28 \pm 3.75 \\ 57.11 \pm 4.33 \\ 48.73 \pm 3.87 \\ 53.94 \pm 1.92 \\ 23.78 \pm 2.17 \\ 52.17 \pm 4.05 \\ 48.27 \pm 4.20 \\ 44.45 \pm 1.81 \\ 45.91 \pm 5.60 \\ 48.39 \pm 0.30 \\ 43.63 \pm 1.91 \\ 47.04 \pm 3.78 \\ 50.88 \pm 4.26 \\ 43.57 \pm 0.67 \\ 58.65 \pm 4.18 \\ 48.83 \pm 5.00 \\ 58.50 \pm 2.43 \\ 59.77 \pm 2.14 \\ \end{array}$          | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>30.47 ± 4.60<br>41.14 ± 2.12<br>30.84 ± 6.25<br>30.84 ± 6.25<br>40.87<br>41.14 ± 2.12<br>30.84 ± 6.25<br>30.84 ± 6.25<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40.87<br>40 | $\begin{array}{c} 54.73 \pm 1.02 \\ 52.32 \pm 1.04 \\ 56.38 \pm 2.71 \\ 54.17 \pm 1.15 \\ 51.95 \pm 1.46 \\ 53.69 \pm 1.79 \\ 22.76 \pm 3.00 \\ 57.30 \pm 0.27 \\ 55.82 \pm 0.72 \\ 55.82 \pm 0.72 \\ 55.82 \pm 0.73 \\ 56.03 \pm 2.33 \\ 58.02 \pm 1.15 \\ 57.33 \pm 1.03 \\ 58.44 \pm 0.65 \\ 57.78 \pm 1.78 \\ 56.32 \pm 0.94 \\ 56.83 \pm 1.39 \\ 56.33 \pm 1.39 \\ 56.33 \pm 1.39 \\ 56.33 \pm 1.39 \\ 57.12 \pm 2.32 \\ 56.31 \pm 4.21 \\ \end{array}$ | 47.76 ± 1. 45.65 ± 2. 46.46 ± 1. 44.23 ± 0. 44.11 ± 0. 23.18 ± 3. 43.50 ± 2. 44.52 ± 1. 47.13 ± 2. 44.52 ± 1. 47.13 ± 2. 45.88 ± 0. 45.54 ± 1. 44.01 ± 1. 45.51 ± 2. 45.62 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 45.54 ± 1. 47.13 ± 2. 47.13 ± 2. 47.13 ± 2. 47.13 ± 2. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 3. 40.49 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0. 47.13 ± 0.                                                                                                                                                                                                                                                                                                                                                     |
| DeiT Base 16  ConVit Base  Vit Base 16* | Mixup [62] CORAL [15] MMD [17] Causifil. CORAL [63] Causifil. MMD [63] CAD [64] ADDG [66]  ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Causifil. MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17]                                                                     | $\begin{array}{c} 75.10 \pm 0.75 \\ 74.60 \pm 0.77 \\ 74.60 \pm 0.77 \\ 75.53 \pm 0.18 \\ 74.69 \pm 0.22 \\ 74.50 \pm 0.73 \\ 75.20 \pm 0.40 \\ 76.62 \pm 0.80 \\ \\ 74.49 \pm 0.50 \\ 75.99 \pm 0.60 \\ 75.71 \pm 0.54 \\ 76.46 \pm 0.68 \\ 75.71 \pm 0.54 \\ 76.47 \pm 0.25 \\ 76.43 \pm 0.37 \\ 74.42 \pm 0.63 \\ \\ 76.99 \pm 0.54 \\ \\ 80.48 \pm 0.31 \\ \\ \\ 80.48 \pm 0.31 \\ \\ \\ \\ \end{array}$                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.38 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.54 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>66.32 ± 0.34<br>69.70 ± 0.28<br>67.71 ± 0.48<br>66.32 ± 0.34<br>69.70 ± 0.28<br>67.71 ± 0.48<br>68.33 ± 0.59 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>85.82 ± 0.38<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.19<br>83.79 ± 0.56<br>83.49 ± 0.64<br>81.67 ± 0.19<br>83.79 ± 0.56<br>83.83 ± 0.10<br>82.86 ± 0.12<br>83.83 ± 0.08<br>82.41 ± 0.44<br>88.39 ± 0.35<br>86.42 ± 2.33<br>89.17 ± 0.34<br>87.96 ± 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.45 ± 0.28<br>86.78 ± 0.14<br>96.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>81.65 ± 0.52<br>86.80 ± 0.24<br>86.84 ± 0.34<br>86.26 ± 0.35<br>85.46 ± 0.35<br>86.40 ± 0.34<br>86.21 ± 0.53<br>90.77 ± 0.34<br>86.21 ± 0.53<br>90.77 ± 0.34                                                                                 | ConViT Base               | Minup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CrusiRL MMD [63] ADDG [65]  ERM [52] RSC [26] Minup [62] CORAL [15] MMD [17] CrusiRL CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26] Minup [62] RSC [26] RSC [26] RSC [26] RSC [26] RSC [26] RSC [26] RSC [27] | $\begin{array}{c} 48.40 \pm 1.09 \\ 52.28 \pm 3.75 \\ 57.11 \pm 4.33 \\ 48.73 \pm 3.87 \\ 53.94 \pm 1.92 \\ 23.78 \pm 2.17 \\ \\ 52.17 \pm 4.05 \\ 48.27 \pm 4.20 \\ 44.45 \pm 1.81 \\ 45.91 \pm 5.60 \\ 48.39 \pm 0.30 \\ 47.04 \pm 3.78 \\ 50.88 \pm 4.26 \\ 43.57 \pm 0.67 \\ \\ 58.65 \pm 4.18 \\ 48.83 \pm 5.00 \\ 58.50 \pm 2.43 \\ \\ 50.77 \pm 2.14 \\ 60.50 \pm 2.22 \\ \end{array}$ | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>32.54 ± 3.26<br>31.87 ± 1.45<br>30.82 ± 0.88<br>31.17 ± 0.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>30.47 ± 4.60<br>30.41 ± 2.12<br>30.84 ± 6.25<br>38.26 ± 1.16<br>44.58 ± 0.92<br>42.88 ± 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.72<br>57.33 ± 1.03<br>57.33 ± 1.03<br>57.34 ± 1.78<br>56.32 ± 0.94<br>56.83 ± 1.39<br>56.33 ± 1.39<br>56.33 ± 1.34<br>56.33 ± 1.34<br>56.31 ± 4.21<br>56.31 ± 4.21                                                                                                 | 47.76 ± 1.<br>45.65 ± 2.<br>46.63 ± 2.<br>46.46 ± 1.<br>44.23 ± 0.<br>44.11 ± 0.<br>23.18 ± 3.<br>43.50 ± 2.<br>43.80 ± 1.<br>45.73 ± 2.<br>45.83 ± 0.<br>45.51 ± 2.<br>45.61 ± 1.<br>46.52 ± 1.<br>47.13 ± 2.<br>40.49 ± 0.<br>41.65 ± 1.<br>39.31 ± 5.<br>40.33 ± 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ConVIT Base                             | Mixup [62] CORAL [15] MMD [17] Cuttill. CORAL [63] Cuttill. MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttill. MMD [63] CAD [64] ADDG [65] ERM [52] BSC [26] Mixup [62] CORAL [15] MMD [17] Cuttill. CORAL [63] Mixup [62] CORAL [15] MMD [17] Cuttill. CORAL [63]  | 75.10 ± 0.75<br>74.60 ± 0.77<br>75.53 ± 0.18<br>74.69 ± 0.22<br>74.50 ± 0.73<br>75.20 ± 0.40<br>76.62 ± 0.80<br>74.49 ± 0.50<br>75.91 ± 0.61<br>75.71 ± 0.54<br>75.71 ± 0.54<br>76.47 ± 0.25<br>76.43 ± 0.37<br>74.42 ± 0.63<br>79.93 ± 0.87<br>76.99 ± 0.54<br>82.05 ± 0.31<br>79.95 ± 0.34<br>80.48 ± 0.28<br>80.46 ± 0.58                                                                                                                                 | 60.83 ± 0.93<br>61.53 ± 0.06<br>62.44 ± 0.91<br>61.02 ± 0.25<br>61.79 ± 0.91<br>61.76 ± 0.94<br>60.62 ± 1.58<br>62.58 ± 1.44<br>63.97 ± 0.32<br>62.95 ± 0.11<br>63.37 ± 0.24<br>64.71 ± 0.64<br>63.34 ± 0.73<br>64.74 ± 0.68<br>64.31 ± 0.25<br>62.86 ± 0.54<br>67.71 ± 0.36<br>66.32 ± 0.34<br>69.70 ± 0.28<br>67.14 ± 0.44<br>68.33 ± 0.59<br>68.34 ± 0.44                 | 81.62 ± 0.20<br>83.31 ± 0.47<br>83.36 ± 0.31<br>82.56 ± 0.07<br>83.43 ± 0.15<br>83.52 ± 0.15<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.21 ± 0.58<br>83.49 ± 0.64<br>81.67 ± 0.13<br>83.79 ± 0.56<br>82.86 ± 0.12<br>83.83 ± 0.08<br>82.41 ± 0.44<br>88.39 ± 0.35<br>86.42 ± 2.33<br>89.17 ± 0.34<br>87.68 ± 0.56<br>88.12 ± 0.56<br>88.12 ± 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.37 ± 0.25<br>83.48 ± 0.38<br>86.78 ± 0.14<br>86.22 ± 0.22<br>86.40 ± 0.25<br>85.95 ± 0.05<br>87.25 ± 0.27<br>85.77 ± 0.31<br>83.68 ± 0.36<br>85.52 ± 0.18<br>86.80 ± 0.24<br>86.20 ± 0.24<br>86.20 ± 0.24<br>86.84 ± 0.35<br>85.65 ± 0.39<br>86.84 ± 0.34<br>86.26 ± 0.35<br>85.65 ± 0.39<br>87.75 ± 0.30<br>89.85 ± 0.39<br>89.85 ± 0.39<br>99.85 ± 0.39<br>99.89 ± 0.23<br>89.89 ± 0.23 | ConViT Base               | Misup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CresiRL MMD [63] ADDG [65] ERM [52] RSC [26] Misup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CAD [64] ADDG [65] ERM [52] RSC [26] Misup [62] CORAL [15] MMD [17] CresiRL CORAL [63] CAD [64] ADDG [65]                                                                                                                               | 48.40 ± 1.09<br>52.28 ± 3.75<br>57.11 ± 4.33<br>48.73 ± 3.61<br>53.39 ± 1.92<br>23.78 ± 2.17<br>52.17 ± 4.05<br>48.27 ± 4.20<br>44.45 ± 1.81<br>45.91 ± 5.60<br>48.39 ± 0.30<br>43.63 ± 1.91<br>50.88 ± 4.26<br>43.57 ± 0.67<br>58.65 ± 4.18<br>48.83 ± 5.00<br>58.50 ± 2.43<br>59.77 ± 2.14<br>60.50 ± 2.22<br>55.03 ± 8.22                                                                  | 35.62 ± 0.43<br>35.06 ± 3.15<br>38.27 ± 2.38<br>37.55 ± 2.86<br>33.51 ± 3.77<br>38.07 ± 1.90<br>39.85 ± 7.85<br>32.54 ± 3.26<br>31.87 ± 1.45<br>29.82 ± 0.88<br>31.17 ± 4.07<br>33.57 ± 3.10<br>35.67 ± 6.21<br>36.39 ± 0.84<br>34.43 ± 6.64<br>30.47 ± 4.60<br>41.14 ± 2.12<br>30.84 ± 6.52<br>30.84 ± 6.54<br>41.85 ± 0.92<br>42.88 ± 4.99<br>42.88 ± 4.99<br>42.88 ± 4.99<br>40.92 ± 2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.73 ± 1.02<br>52.32 ± 1.04<br>56.38 ± 2.71<br>54.17 ± 1.15<br>51.95 ± 1.46<br>53.69 ± 1.79<br>29.76 ± 3.00<br>57.30 ± 0.27<br>55.82 ± 0.72<br>55.82 ± 0.72<br>55.82 ± 0.15<br>57.33 ± 1.03<br>57.33 ± 1.03<br>57.34 ± 0.65<br>57.78 ± 1.78<br>56.32 ± 0.94<br>56.33 ± 1.39<br>56.31 ± 4.21<br>56.31 ± 4.21<br>56.31 ± 4.21<br>56.30 ± 1.39                                                                                                                 | 47.76 ± 1.45.65 ± 2.45.63 ± 2.46.46 ± 1.44.23 ± 0.44.11 ± 0.23.18 ± 3.43.50 ± 2.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64 ± 1.45.64                                                                                                                                                                                                                                                                                                                                                     |

(c) Office-Home

(d) Terra Incognita



Fig. 6. PACS features extracted with ResNet50 and ResNet50 A1 projected on 2D space with t-SNE. Target domain Art Painting samples are highlighted. Even though ResNet50 A1 has a higher starting accuracy on ImageNet1K, the two backbones have comparable feature space distributions.

labels are rarely available in a real scenario. That prevents a direct check of the effectiveness of the procedure, leading to the adoption of more robust and trustworthy solutions. Indeed, ERM is easy to implement and consistently achieves remarkable accuracy results. Each value is recorded as the mean over three independent runs, along with its standard deviation.

## Appendix B. Additional model introspection

#### B.1. ResNet50 vs ResNet50 A1

ResNet50 A1 [54] is a retrained version of the popular ResNet50, exploiting the most recent techniques in data augmentation and hyperparameter search, leading to an increased top-1 accuracy on ImageNet1K test set of 80.4%. Fig. 6 compares the t-SNE visualization of the two models including the silhouette score (S) as a quantitative metric of the separation of classes. Even though ResNet50 A1 starts with a remarkable advantage in terms of ImageNet accuracy, the two backbones generate comparable feature distributions. In particular, both models tend to separate samples by domain and not by class without fine-tuning (see Fig. 6(a)), which does not favor DG. After retraining on three source domains (Photo, Cartoon and Sketch), same-class clusters emerge, still with a certain overlapping over the Art Painting target domain.

#### B.2. Feature mapping visualization

Section 3.2 reports and discusses the visualization of the PACS domain Art Painting with ResNet50 and ConViT, highlighting the advantage of using transformer-based networks. In this section, we propose an additional t-SNE single-domain representation of features extracted from all PACS domains, with ResNet50 and our three best backbones (Fig. 7). According to the higher distance between source and target distributions, more challenging target domains result in more agglomerate clusters of domain samples. From this representation, the competitive advantage offered by transformer-based backbones is especially evident for Art Painting. ConViT shows more separated class features for the Cartoon domain. These findings confirm the baseline results reported in Section 3.1, in which transformers show valuable improvements on every target domain. We also include the silhouette score (S) in Table 8 as a quantitative metric of the separation of classes.

## B.3. Self-attention visualization

We provide more self-attention visualizations for randomly selected PACS images: Photo and Art Painting domains in Fig. 8, Cartoon and Sketch in Fig. 9. We show the four most active heads of DeiT Base using the [CLS] token as a query for the different heads of the last layer. It is clear how ERM maps present more localized attention regions,



Fig. 7. The t-SNE representation of features extracted from all PACS target domains, with ResNet50 and several transformer-based networks, shows how better the same domain samples are divided into easier domains such as Photo. The Sketch distribution is affected by a more consistent domain gap, resulting in a more agglomerate domain cluster of samples. From this representation, the competitive advantage of transformer-based backbones is especially evident for Art Painting, although valuable in the classification accuracy on every target domain. The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K.



Fig. 8. Self-attention DeiT Base of most active heads of the last layer for some samples of the Photo and Art Painting PACS domains. We look at the attention map when using the [CLS] token as a query for the different heads in the last layer. It is clear how ERM is very effective at effectively redirecting attention toward more meaningful regions and mitigating pretraining noise.



Fig. 9. Self-attention DeiT Base of most active heads of the last layer for some samples of the Cartoon and Sketch PACS domains. We look at the attention map when using the [CLS] token as a query for the different heads in the last layer. It is clear how ERM is very effective at effectively redirecting attention toward more meaningful regions and mitigating pretraining noise.

Table 8
Silhouette scores for the t-SNE representations in Fig. 7. The model marked with \* is pretrained on Imagenet21K instead of ImageNet1K.

| Backbone     | Photo  | Art painting | Cartoon | Sketch |
|--------------|--------|--------------|---------|--------|
| ResNet50     | 0.7191 | 0.3107       | 0.4064  | 0.2930 |
| DeiT Base 16 | 0.7689 | 0.5745       | 0.4720  | 0.4037 |
| ConViT Base  | 0.7304 | 0.5688       | 0.4639  | 0.3921 |
| ViT Base 16* | 0.5523 | 0.6778       | 0.5197  | 0.3093 |

focusing on more meaningful features. Finally, highly active isolated patches are learned during ImageNet training due to overfitting; even if some pretraining noise remains, ERM strongly attenuates this problem, further focalizing the attention of the network and reducing biased predictions.

#### References

- L. Valiant, Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World, Basic Books (AZ), 2013.
- [2] G. Csurka, Domain Adaptation in Computer Vision Applications, Springer, 2017.
- [3] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F.A. Wichmann, W. Brendel, ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness, in: International Conference on Learning Representations, 2019.
- [4] L. Gatys, A.S. Ecker, M. Bethge, Texture synthesis using convolutional neural networks, in: C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), in: Advances in Neural Information Processing Systems, vol. 28, Curran Associates, Inc., 2015.
- [5] M. Arjovsky, L. Bottou, I. Gulrajani, D. Lopez-Paz, Invariant risk minimization, 2019, arXiv preprint arXiv:1907.02893.
- [6] D. Dai, L. Van Gool, Dark model adaptation: Semantic image segmentation from daytime to nighttime, in: 2018 21st International Conference on Intelligent Transportation Systems, ITSC, IEEE, 2018, pp. 3819–3824.
- [7] G. Volk, S. Müller, A. von Bernuth, D. Hospach, O. Bringmann, Towards robust CNN-based object detection through augmentation with synthetic rain variations, in: 2019 IEEE Intelligent Transportation Systems Conference, ITSC, IEEE, 2019, pp. 285–292.
- [8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain randomization for transferring deep neural networks from simulation to the real world, in: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2017, pp. 23–30.
- [9] M. Mozifian, A. Zhang, J. Pineau, D. Meger, Intervention design for effective Sim2Real transfer, 2020, arXiv preprint arXiv:2012.02055.
- [10] G. Blanchard, G. Lee, C. Scott, Generalizing from several related classification tasks to a new unlabeled sample, in: Advances in Neural Information Processing Systems, vol. 24, 2011, pp. 2178–2186.
- [11] K. Muandet, D. Balduzzi, B. Schölkopf, Domain generalization via invariant feature representation, in: International Conference on Machine Learning, PMLR, 2013, pp. 10–18.
- [12] S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, S. Sarawagi, Generalizing across domains via cross-gradient training, in: International Conference on Learning Representations, 2018.
- [13] R. Volpi, H. Namkoong, O. Sener, J.C. Duchi, V. Murino, S. Savarese, Generalizing to unseen domains via adversarial data augmentation, in: Advances in Neural Information Processing Systems, vol. 31, 2018.
- [14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, Domain-adversarial training of neural networks, J. Mach. Learn. Res. 17 (1) (2016) 2030–2096.
- [15] B. Sun, K. Saenko, Deep CORAL: Correlation alignment for deep domain adaptation, in: European Conference on Computer Vision, Springer, 2016, pp. 443–450.
- [16] S. Motiian, M. Piccirilli, D.A. Adjeroh, G. Doretto, Unified deep supervised domain adaptation and generalization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5715–5725.
- [17] H. Li, S.J. Pan, S. Wang, A.C. Kot, Domain generalization with adversarial feature learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5400–5409.
- [18] S. Chen, L. Wang, Z. Hong, X. Yang, Domain generalization by joint-product distribution alignment, Pattern Recognit. (ISSN: 0031-3203) 134 (2023) 109086.
- [19] Y. Balaji, S. Sankaranarayanan, R. Chellappa, Metareg: Towards domain generalization using meta-regularization, Adv. Neural Inf. Process. Syst. 31 (2018) 998–1008.
- [20] D. Li, Y. Yang, Y.Z. Song, T.M. Hospedales, Learning to generalize: Meta-learning for domain generalization, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

- [21] M.M. Zhang, H. Marklund, N. Dhawan, A. Gupta, S. Levine, C. Finn, Adaptive risk minimization: A meta-learning approach for tackling group shift, in: International Conference on Learning Representations, 2020.
- [22] S. Bucci, A. D'Innocente, Y. Liao, F.M. Carlucci, B. Caputo, T. Tommasi, Self-supervised learning across domains, IEEE Trans. Pattern Anal. Mach. Intell. 44 (9) (2022) 5516–5528.
- [23] I. Albuquerque, N. Naik, J. Li, N. Keskar, R. Socher, Improving out-of-distribution generalization via multi-task self-supervised pretraining, 2020, arXiv preprint arXiv:2003.13525.
- [24] M.M. Rahman, C. Fookes, M. Baktashmotlagh, S. Sridharan, Correlation-aware adversarial domain adaptation and generalization, Pattern Recognit. (ISSN: 0031-3203) 100 (2020) 107124.
- [25] S. Sagawa, P.W. Koh, T.B. Hashimoto, P. Liang, Distributionally robust neural networks, in: International Conference on Learning Representations, 2020.
- [26] Z. Huang, H. Wang, E.P. Xing, D. Huang, Self-challenging improves cross-domain generalization, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, Springer, 2020, pp. 124–140.
- [27] S. Shahtalebi, J.C. Gagnon-Audet, T. Laleh, M. Faramarzi, K. Ahuja, I. Rish, SAND-mask: An enhanced gradient masking strategy for the discovery of invariances in domain generalization, 2021, arXiv preprint arXiv:2106.02266.
- [28] D. Kim, Y. Yoo, S. Park, J. Kim, J. Lee, Selfreg: Self-supervised contrastive regularization for domain generalization, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 9619–9628.
- [29] M. Segu, A. Tonioni, F. Tombari, Batch normalization embeddings for deep domain generalization, Pattern Recognit. (ISSN: 0031-3203) 135 (2023) 109115.
- [30] I. Gulrajani, D. Lopez-Paz, In search of lost domain generalization, in: International Conference on Learning Representations, Computer Vision Foundation, 2021.
- [31] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016.
- [32] O. Elharrouss, Y. Akbari, N. Almaadeed, S. Al-Maadeed, Backbones-review: Feature extraction networks for deep learning and deep reinforcement learning approaches, 2022, arXiv preprint arXiv:2206.08016.
- [33] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Ieee, 2009, pp. 248–255.
- [34] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, vol. 25 (2012) 1097–1105.
- [35] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.
- [36] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
- [37] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
- [38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1-9.
- [39] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.
- [40] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in: International Conference on Machine Learning, PMLR, 2019, pp. 6105–6114.
- [41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing Systems, 2017, pp. 5998–6008.
- [42] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, in: International Conference on Learning Representations, 2021.
- [43] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, in: Proceedings of the 38th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 10347–10357.
- [44] S. D'Ascoli, H. Touvron, M.L. Leavitt, A.S. Morcos, G. Biroli, L. Sagun, ConViT: Improving vision transformers with soft convolutional inductive biases, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 2286–2296.
- [45] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, M. Douze, Levit: A vision transformer in convnet's clothing for faster inference, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 12259–12269.

S. Angarano et al. Pattern Recognition 156 (2024) 110762

[46] M. Sultana, M. Naseer, M.H. Khan, S. Khan, F.S. Khan, Self-distilled vision transformer for domain generalization, in: Proceedings of the Asian Conference on Computer Vision, 2022, pp. 3068–3085.

- [47] J. Guo, N. Wang, L. Qi, Y. Shi, ALOFT: A lightweight MLP-like architecture with dynamic low-frequency transform for domain generalization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24132–24141.
- [48] B. Li, Y. Shen, J. Yang, Y. Wang, J. Ren, T. Che, J. Zhang, Z. Liu, Sparse mixture-of-experts are domain generalizable learners, in: The Eleventh International Conference on Learning Representations, 2022.
- [49] L. Van der Maaten, G. Hinton, Visualizing data using t-SNE, J. Mach. Learn. Res. 9 (11) (2008).
- [50] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray, J. Schneider, P. Welinder, et al., Domain randomization and generative models for robotic grasping, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, IEEE, 2018, pp. 3482–3489.
- [51] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, D. Scaramuzza, Deep drone racing: From simulation to reality with domain randomization, IEEE Trans. Robot. 36 (1) (2019) 1–14.
- [52] V.N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural Netw. 10 (5) (1999) 988–999.
- [53] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, C.C. Loy, Domain generalization: A survey, IEEE Trans. Pattern Anal. Mach. Intell. 45 (4) (2023) 4396–4415.
- [54] R. Wightman, H. Touvron, H. Jegou, ResNet strikes back: An improved training procedure in timm, in: NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future, 2021.
- [55] M. Tan, Q. Le, EfficientNet: Rethinking model scaling for convolutional neural networks, in: Proceedings of the 36th International Conference on Machine Learning, in: Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 6105–6114.
- [56] C. Fang, Y. Xu, D.N. Rockmore, Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2013.
- [57] D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Deeper, broader and artier domain generalization, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2017.
- [58] H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing network for unsupervised domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
- [59] S. Beery, G. Van Horn, P. Perona, Recognition in terra incognita, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 456–473.
- [60] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment matching for multi-source domain adaptation, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, Computer Vision Foundation, 2019.
- [61] M. Ghifary, W.B. Kleijn, M. Zhang, D. Balduzzi, Domain generalization for object recognition with multi-task autoencoders, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2551–2559.
- [62] S. Yan, H. Song, N. Li, L. Zou, L. Ren, Improve unsupervised domain adaptation with mixup training, 2020, arXiv preprint arXiv:2001.00677.
- [63] M. Chevalley, C. Bunne, A. Krause, S. Bauer, Invariant causal mechanisms through distribution matching, 2022, arXiv preprint arXiv:2206.11646.
- [64] Y. Ruan, Y. Dubois, C.J. Maddison, Optimal representations for covariate shift, in: International Conference on Learning Representations, 2022.
- [65] R. Meng, X. Li, W. Chen, S. Yang, J. Song, X. Wang, L. Zhang, M. Song, D. Xie, S. Pu, Attention diversification for domain generalization, in: Computer Vision– ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIV, Springer, 2022, pp. 322–340.
- [66] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
- [67] Y. Xu, T. Jaakkola, Learning representations that support robust transfer of predictors, 2021, arXiv preprint arXiv:2110.09940.
- [68] T. Matsuura, T. Harada, Domain generalization using a mixture of multiple latent domains, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 11749–11756.
- [69] F.M. Carlucci, A. D'Innocente, S. Bucci, B. Caputo, T. Tommasi, Domain generalization by solving jigsaw puzzles, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2229–2238.
- [70] D. Li, J. Zhang, Y. Yang, C. Liu, Y.Z. Song, T.M. Hospedales, Episodic training for domain generalization, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV, 2019.
- [71] Q. Dou, D. Coelho de Castro, K. Kamnitsas, B. Glocker, Domain generalization via model-agnostic learning of semantic features, Adv. Neural Inf. Process. Syst. 32 (2019) 6450–6461.
- [72] H. Nam, H. Lee, J. Park, W. Yoon, D. Yoo, Reducing domain gap by reducing style bias, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 8690–8699.
- [73] K. Zhou, Y. Yang, T. Hospedales, T. Xiang, Deep domain-adversarial image generation for domain generalisation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 13025–13032.

- [74] A. D'Innocente, B. Caputo, Domain generalization with domain-specific aggregation modules, in: German Conference on Pattern Recognition, Springer, 2018, pp. 187–198.
- [75] O. Nuriel, S. Benaim, L. Wolf, Permuted adain: Reducing the bias towards global statistics in image classification, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9482–9491.



Simone Angarano is a Ph.D. candidate in Machine Learning at Politecnico di Torino. He is a member of the Al section of the Interdepartmental Centre for Service Robotics PIC4SeR (https://pic4ser.polito.it), where he focuses on creating efficient deep learning models for robot perception and control. In his research, particular attention is given to key aspects of real-world applications like generalization and robustness. He spent part of his Ph.D. at versity of Texas at Austin to work on efficient foundation vision models.



Mauro Martini is a Ph.D. student in Electrical, Electronics and Communication Engineering at Politecnico di Torino. He received from the Politecnico di Torino a Master's Degree with laude in Mechatronic Engineering in 2020, with the thesis "Visual based local motion planner with Deep Reinforcement Learning". He is now carrying out his research activity in collaboration with the Interdepartmental Centre for Service Robotics (PIC4SeR, https://pic4ser.polito.it). His research interests currently involve machine learning for autonomous navigation in service robotics, with a particular focus on perception and deep reinforcement learning based planners.



Francesco Salvetti is currently a Ph.D. student in Electrical, Electronics and Communications Engineering in collaboration with the interdepartmental centers PIC4SeR (https://pic4ser.polito.it) and Smart Data (https://smartdata.polito.it) at Politecnico di Torino, Italy. He received his Bachelor's Degree in Electronic Engineering in 2017 and his Master's Degree in Mechatronic Engineering in 2019 at Politecnico di Torino. He is currently working on Machine Learning applied to Computer Vision and Image Processing in robotics applications.



Vittorio Mazzia is a Ph.D. student in Electrical, Electronics, and Communications Engineering working with the two Interdepartmental Centres PIC4SeR (https://pic4ser.polito.it) and SmartData (https://smartdata.polito.it). He received a master's degree in Mechatronic Engineering from Politecnico di Torino, presenting a thesis entitled "Use of deep learning for low-cost automatic detection of cracks in tunnels", developed in collaboration with the California State University. His current research interests involve deep learning applied to different computer vision tasks, autonomous navigation for service robotics, and reinforcement learning. Moreover, he is currently working on machine learning algorithms and their embedded implementation for AI at the edge using neural compute devices (like Jetson Xavier, Jetson Nano, Movidius Neural Stick) for hardware acceleration.



Marcello Chiaberge is currently an Associate Professor within the Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy. He is also the Co-Director of the Mechatronics Lab, Politecnico di Torino (www.lim.polito.it), Turin, and the Director and the Principal Investigator of the Interdepartmental Centre for Service Robotics (PIC4SeR, https://pic4ser.polito.it), Turin. He has authored more than 100 articles accepted in international conferences and journals, and he is the co-author of nine international patents. His research interests include hardware implementation of neural networks and fuzzy systems and the design and implementation of reconfigurable real-time computing architectures.