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Abstract—This special session paper introduces the Horizon
Europe NEUROPULS project, which targets the development
of secure and energy-efficient RISC-V interfaced neuromor-
phic accelerators using augmented silicon photonics technology.
Our approach aims to develop an augmented silicon photon-
ics platform, an FPGA-powered RISC-V-connected computing
platform, and a complete simulation platform to demonstrate
the neuromorphic accelerator capabilities. In particular, their
main advantages and limitations will be addressed concerning the
underpinning technology for each platform. Then, we will discuss
three targeted use cases for edge-computing applications: Global
National Satellite System (GNSS) anti-jamming, autonomous
driving, and anomaly detection in edge devices. Finally, we will
address the reliability and security aspects of the stand-alone
accelerator implementation and the project use cases.

Index Terms—artificial neural networks, modeling, simulation

I. INTRODUCTION

The increasing need to process large amounts of data has
been a major driver for developing novel, energy-efficient
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computing architectures [1]. Among the multitude of ap-
proaches to tackle energy efficiency requirements, brain-
inspired neuromorphic architectures are one of the most viable
solutions thanks to their inner absence of I/O bottleneck
between memory and processing units and their more natural
mapping to machine learning (ML) algorithms [2]. Neuro-
morphic approaches are especially suitable for developing
lightweight, low-latency, and low-power accelerators in line
with the requirements sought by edge-computing systems for
applications such as autonomous driving, Internet of Things
(IoT) devices, and 5G networks.

Integrating photonics can efficiently target all the needs
above [3] among the various technologies for building neuro-
morphic architectures. This is mainly due to the current avail-
ability of mature CMOS-compatible platforms, e.g., Silicon-
on-Insulator (SOI), which allow the dense integration of de-
vices such as modulators, detectors, optical interfaces, etc.,
for volume scaling. In particular, photonic approaches can
provide a key advantage concerning electronic ones regarding
energy consumption, bandwidth, and latency thanks to low
propagation losses in photonic integrated circuits (PICs) as
well as the possibility for large parallelism using wavelength-
multiplexing techniques, high-speed data encoding/decoding
devices, and speed-of-light propagation throughout photonic



Fig. 1. Overview of the novel contributions brought by the NEUROPULS project (left-side) and the computing platform that will be developed alongside its
expected performance and targeted use cases (right-side).

components [4].
In what follows, we will provide an overview of the

NEUROPULS project and its scientific objectives towards
strengthening the European digital supply chain and develop-
ing European secure specialized accelerator designs capable
of delivering high-performance computing at ultra-low power
operation. NEUROPULS’ unique technology will improve the
performance per watt by at least two orders of magnitude
for the targeted edge applications, thus addressing the per-
formance reduction of current CMOS-based general-purpose
computing platforms and the slow-down of Moore’s law.

II. PROPOSED APPROACH IN NEUROPULS

In NEUROPULS, we will develop three different platforms
at technological, hardware computing, and simulation levels
(see Fig. 1). The technological platform is based on the open-
access silicon photonics platform from CEA-LETI with the
addition of phase-change materials (PCMs) and III-V mate-
rials. The building blocks based on these technologies, such
as plastic non-volatile photonic synapses [5] and non-linear
neurons based on spiking lasers [6], will enable various kinds
of neuromorphic photonic architectures that NEUROPULS
will investigate.

Security layers will be built upon Physical Unclonable
Functions (PUFs), security primitives that avoid digital keys
stored in memory [7]. These primitives will be embedded
in the photonic and electronic chips. A software/hardware
interface will leverage the security layers at a silicon level
to set up multiple security features for the accelerator, such
as secure authentication, encryption of neural network (NN)
data, and signing of the output data.

Using high-speed RF wiring and packaging, the photonic
architectures will be driven by an ASIC chip linked to the
PIC chip. The developed accelerator will then be interfaced
by an FPGA where a RISC-V processor is implemented. The
processor will be the interface between the outside world and
the accelerator. It would allow transmission/retrieval of raw
data/computing results and will handle the security protocols,

leveraging the security primitives. In our vision, the ASIC chip
will also contain the RISC-V processor for large-volume man-
ufacturing, leading to a stand-alone self-consistent hardware
computing platform. However, for prototyping reasons, the
ASIC in NEUROPULS will only contain the driving circuitry,
the interface with the FPGA, and electronic PUFs. The latter
will be used for hardware integrity to bundle the photonic and
electronic chips uniquely. The PIC and the ASIC chips will be
mounted on a board and connected using an FPGA interface
to the FPGA hosting a RISC-V processor.

Computational models with different complexity levels for
PCM-based photonic devices and systems will also be devel-
oped to simulate the behavior of the neuromorphic and PUF
architectures taped out in the silicon photonics platforms and
their response once included within the entire computing plat-
form. Finally, we will use the accelerator for three use cases of
interest in edge computing: GNSS anti-jamming, autonomous
driving, and anomaly detection in edge devices. State-of-the-
art simulation tools considering the whole hardware computing
platform will allow us to investigate performance scaling for
the accelerator, e.g., energy consumption, latency, and speed
as a function of the number of inputs/outputs/layers/neurons,
etc. well its security features. In NEUROPULS, we target
highly demanding performance from our accelerator, which
will allow us to improve by, e.g., two orders of magnitude the
energy/MAC metric compared to concurring GPU technology
for the selected edge-computing use cases. Besides, security
features based on PUFs will be investigated for the stand-alone
accelerator and the targeted use cases using both hardware and
software approaches, from the security primitives level to the
software-driven security protocols implemented.

III. CMOS-COMPATIBLE PLATFORM

The platform that will be developed in the project is based
on the silicon photonics platform from CEA-LETI, available
in open-access multi-project wafer runs. It already includes
several key building blocks, such as optical interfaces (grating
couplers), modulators, detectors, resonators, etc. (see Fig. 2).



Fig. 2. Cross-section of the augmented silicon photonics platform in NEUROPULS. PCMs such as GSST (left side) and III-V materials (right side) are
integrated on top of waveguides. Two layers of interconnects will be available for routing purposes.

However, one of the novel features we aim to integrate
includes PCMs. These thin PCM layers, e.g., GeSbTe (GST)
and GeSSbTe (GSST) materials with different stoichiometric
compositions, will be placed as thin (10-20-nm-thick) rectan-
gular patches above optical waveguides as shown in Fig. 2.
Their integration influences the optical field propagation due
to changes in effective refractive index depending on the PCM
state, i.e., amorphous versus crystalline. Strong modulation of
the optical properties can be obtained due to the optical field
interaction with the PCM patch. Various waveguides will be
available, namely strip (fully etched) and rib (partially etched)
configurations, where the overall silicon layer thickness is 300
nm. Two layers of metal interconnect will also be present
to ease the routing of the components, and heaters will also
be included (not present in the cross-section) to modify the
crystalline degree of the PCM. Thanks to high-performance
traveling-wave modulators and Ge detectors, the platform
allows operating at frequencies above 50 GHz.

IV. HARDWARE COMPUTING PLATFORM

Regarding the optical architecture, we will implement differ-
ent options based on combining silicon photonics and PCMs.

One straightforward option is to consider an accelerator for
matrix-vector products in feedforward NNs (FFNNs), where
a mesh of modulators is programmed so that the system
implements a certain matrix multiplication [4]. This can be
done, e.g., by using singular value decomposition to factor
the matrix into the product of a unitary matrix, a diagonal
matrix, and another unitary matrix.

The main limitation here is that the optical components’
size prevents the implementation of huge matrices. Therefore,
we will also explore other options for implementing larger
systems. One approach we will consider is pruning, which
involves removing unnecessary connections and weights in
the network to reduce the overall size of the matrix. Another
option is to use block matrix decompositions, where the matrix
is divided into smaller blocks that can be processed separately.
This allows for larger matrices to be implemented with a
smaller number of optical components.

Furthermore, we will explore tensor-train approaches pro-
posed in [8]. These approaches involve representing the matrix
as a product of low-rank tensors, which can be more efficiently
processed using optical components. Using these various ap-
proaches, we aim to develop a scalable optical architecture that
can handle larger matrices and more complex NNs. This will
enable faster, more scalable, and more efficient training of NNs
using photonics. Apart from feedforward architectures, we will
also study recurrent NNs (RNNs). We can consider fully train-
able RNNs, but a variant called reservoir computing will also
be considered. In reservoir computing, an RNN is randomly
initialized and left untrained. Instead, what is trained is a linear
combination of the time traces of the signals at each node. This
technique has the advantage of being more computationally
efficient than fully trainable RNNs, while still achieving good
performance in many applications. This approach has been
implemented in integrated photonics before [9]. It has been
used, e.g., to realize nonlinear dispersion compensation of
telecom signals [10], demonstrating the potential of photonics
in a wide range of applications beyond traditional ML.

We plan to incorporate PCMs in our proposed architecture
to implement non-volatile optical weights. Various studies
have used these materials, such as [11] and [12]. Using non-
volatile weights significantly reduces power consumption com-
pared to volatile weights, which must be driven continuously
or refreshed periodically. However, in addition to their non-
volatility, PCMs have another advantage we plan to exploit in
our architecture: their nonlinear dynamics. E.g., by exciting the
material with pulses rather than continuous-wave excitation,
we can take advantage of the nonlinear behavior of the material
to enable other computing paradigms, such as spiking NNs
(SNNs). In such NNs, the neurons communicate using brief
pulses or spikes rather than continuously varying signals.
This enables the implementation of energy-efficient and highly
parallel NNs. To generate the spikes injected into the system,
we will monolithically integrate lasers in III-V materials in the
same platform to develop advanced high-extinction ratio (ER
> 8 dB) Q-switched spiking lasers [13]. These hybrid III-V-
on-Si spiking lasers are a scalable and low-cost alternative to



previous pure III-V versions of these Q-switched lasers.

V. SIMULATION PLATFORM

Novel hardware architectures require the development of
an ecosystem of state-of-the-art tools capable of supporting
and promoting innovative hardware approaches. Specifically,
the feasibility of innovation demands simulation tools that
allow exploring the functional benefits of the new technology
while supporting a precise estimation of the impact of the
accelerators on the final system regarding performance, power
consumption, and reliability, among others.

The NEUROPULS project aims to develop a simulation
platform that models and evaluates computing systems in-
corporating neuromorphic accelerators and hardware security
primitives. The simulation platform will explore the design
space of heterogeneous computing systems that utilize pho-
tonic neuromorphic accelerators and hardware primitives to
achieve optimal performance. The project will design and
implement a toolchain for modeling and simulation at the
system level to make photonics accelerators functional and
programmable. The toolchain will automate the process of
generating system-level models of photonic modules with
varying levels of complexity and accuracy. The simulation
platform will model a complete computing system, including
multiple CPU cores, memory hierarchy, PNNs, and photonic
security primitives (PUFs-based). The platform will also cover
all computing stack layers, from hardware to application
software. To evaluate the security provisions of photonics
technology, the simulation platform will consider all software
security aspects at the system and application software layers.

The platform will be built around gem5 [14], [15]: a
state-of-the-art microarchitecture-level simulator widely used
in many studies [14]–[16]. It will be enhanced with recent
extensions supporting RISC-V-based systems modeling with a
rich set of accelerators and flexible interfaces. The platform’s
flexibility will ease the exploration of trade-offs between
security levels and corresponding performance, power con-
sumption, and reliability penalties.

NEUROPULS will also investigate the reliability and power
estimation of photonic hardware components. The NEU-
ROPULS simulation platform aims to provide a flexible in-
frastructure that enables the comparison of various photonic
accelerator parameters to determine neuromorphic hardware’s
power reduction and performance improvements. In addition,
the platform will focus on RISC-V CPU cores and customized
neuromorphic accelerators, along with their corresponding
software stack, to evaluate the reliability of the complete het-
erogeneous system and identify potential reliability issues that
different NN accelerators may face. Therefore, NEUROPULS
will create a simulation platform that is rapid, adaptable, and
modular. It will be constructed using the gem5 simulator as
its foundation and will support the evaluation of advanced NN
accelerators and PUFs.

VI. TARGETED USE-CASES

A. GNSS anti-jamming

Satellite-based navigation systems, called GNSS, provide
an accurate and reliable solution to position, velocity, and
time (PNT) estimation in a myriad of applications [17].
However, GNSS can be compromised by L-band inten-
tional/unintentional jamming interferences, which typically
overpower a GNSS receiver intending to deny its operation
[18]. Jamming episodes are not rare nowadays, making jam-
mers cheap to buy and/or easy to build [19], which threatens
safety-critical applications or critical infrastructures relying on
GNSS PNT. Therefore, interference management is crucial
to resilient GNSS usage, including detecting and classifying
jamming occurrences. In this context, it has been shown in
[20], [21] that ML models provide promising results, including
setups where those models are learned in a distributed feder-
ated learning manner [22]. NEUROPULS targets this use case
by enabling efficient NN-based classifiers to warn users of the
presence/type of jamming interference.

B. Autonomous driving

Trajectory prediction is fundamental to autonomous driving
frameworks such as Apollo [23] and Autoware [24]. Some tra-
jectory prediction systems build to different extents on RNNs.
For instance, Apollo uses some such networks as part of its
trajectory prediction system. Other implementations building
on Long Short-Term Memory (LSTM) are realized using
multi-input multi-output LSTM-based RNNs [25]. Therefore,
efficient RNN implementations bring new opportunities for
trajectory prediction in autonomous driving systems. NEU-
ROPULS will use its acceleration technology to explore the
efficiency of RNN-based trajectory prediction systems. The
aim is to start with the simpler RNNs part of Apollo, mainly
to test the approach’s viability, and then scale to more complex
LSTM-based RNNs to test the limits of the approach in the
context of trajectory prediction.

C. Anomaly detection in edge devices

As an example of in-network computing using the photonic
neuromorphic accelerator developed in the NEUROPULS
project, we will target security applications by investigating
the potential of NNs emulated by the photonic hardware to
perform anomaly detection in a resource-constrained edge
environment. Having these ultrafast neuromorphic accelera-
tors embedded at the Edge to flag anomalies would enable
identifying the malicious events where more expensive post-
processing would otherwise be required. Possible use cases
could be the prevention of IoT botnet, DDoS attacks [26],
[27], or in-vehicle network security [28]. By nature, anomaly
detection is event-driven. Consequently, it is potentially a good
match with the temporal information processing enabled by
SNNs [28], [29], one of the NN architectures investigated
during the NEUROPULS project. The aim is first to predict
the performance of a variety of promising anomaly detec-
tion algorithms when adapted to the constraints present in
photonic neuromorphic hardware using the hardware models



and simulation framework developed in the project, where we
will target benchmark tasks that will allow us to compare
simulated classification accuracy, predicted energy-efficiency
and problem size scalability with the reported performance
of existing state-of-the-art algorithms running on traditional
digital hardware as well as alternative emerging neuromorphic
accelerators [30].

VII. RELIABILITY AND SECURITY ASPECTS

In NEUROPULS, we will develop security layers at the
silicon level based on PUFs. More precisely, we will leverage
the already available technology for the photonic accelerator to
implement novel architectures for building CMOS-compatible
photonic PUFs. Such implementations are expected to be
more robust against ambient fluctuations, aging, side-channel
attacks, and machine-learning modeling than PUFs based on
electronic technologies. This is due to the unique properties
of PICs, such as lower dependence on temperature fluctua-
tions or EM interference. Most of their components, such as
waveguides, do not present aging issues nor signal leakages
throughout propagation (light is confined in a tight area
below dielectric layers), and a large number of degrees of
freedom (phase, polarization, amplitude, mode number, etc.)
is available to enhance system complexity [31].

Our research will investigate both so-called Weak PUFs and
Strong PUFs [32]: The Weak PUF approach will use photonic
PUF designs with very few challenges per PUF. A system-
specific secret key or a system-specific (secret key, public key)-
pair will be derived from the (noisy) responses of these Weak
PUFs. Key aspects here are the already mentioned long-term
stability of the responses, the use of optimal techniques for
key extraction and error correction, and the statistical inde-
pendence of the PUF responses for neighboring or adjacent
photonic Weak PUFs. To verify the latter, statistical tools like
the NIST suite will be employed [33]. Another important
aspect is the secure processing of the derived key within
the accelerator and the surrounding electronic system and
circuits.In the Strong PUF approach, a more complex photonic
PUF structure must and will be used. As required by Strong
PUFs, it shall have a very large number of challenge-response
pairs (CRPs) and a highly complex challenge-response (or
input-output) relation. Non-linear optical effects inside the
photonic PUF must be exploited in this context.

We will systematically test their response for complexity
to verify the sufficient complexity (and thus security) of
our photonic Strong PUF designs. Several existing Strong
PUF tests will be applied, and various new tests will be
developed simultaneously. They assess aspects such as the
higher-order non-linearities in the PUF-responses, challenge
bit sensitivity, or pseudo-randomness as measured by the NIST
suite [33]. Another key strategy for evaluating the security and
complexity of our photonic Strong PUFs is the application of
ML algorithms [34]. Given a relatively small set of PUF-CRPs,
we will assess whether ML algorithms can be trained to predict
other yet unknown CRPs. Critical figures here are the number
of CRPs used in the ML algorithm’s training phase, the

computational effort in the training phase, and the prediction
accuracy of the trained ML model. We will apply different
ML strategies, including the latest NNs and related techniques.
We stress that on the protocol and application side, the two
primitives of Weak PUFs and Strong PUFs shall be mixed and
interleaved, combining their mutual strengths: Strong PUFs
will allow identification and authentication of messages with
long-term or short-term digital keys in the system. Weak PUFs
can be employed to derive secret digital keys whenever needed,
at least avoiding the long-term presence of digital secrets in
the hardware [35].

Such a high level of security at the hardware level will
be exploited to secure the software level, i.e., the application
code that the RISC-V processor runs. This will be achieved by
designing well-defined APIs at the hardware-software interface
to let the software layer request security services from the
hardware layer. These services include encryption, decryption,
and digital signing tasks, based on secret cryptographic keys
that never leak to the software and thus to a potential malicious
analyst [36]. On top of this, strong software hardening solu-
tions would be developed, such as program obfuscation [37]
and tamper-detection [38] to limit malicious reverse engineer-
ing attacks to the software components.

VIII. CONCLUSIONS

The NEUROPULS project will address several research
areas across the supply chain, from material science and
photonic technologies to computing architectures, security lay-
ers, and high-level simulations. Three different platforms will
be developed: a silicon photonics-powered chip, an FPGA-
powered RISC-V-connected platform, and a complete simula-
tion ecosystem to demonstrate the neuromorphic accelerator
capabilities. The development of such platforms will be piv-
otal for the NEUROPULS project to showcase a low-power
secure accelerator based on an augmented silicon photonics
platform addressing three different use cases of interest for
edge computing: GNSS anti-jamming, autonomous driving,
and anomaly detection in edge devices. We will target two
orders of magnitude lower power consumption concerning
state-of-the-art technology for the selected use cases. Novel
security layers based on the developed CMOS-compatible
photonic platform will be developed by tightly integrating
security primitives, i.e., PUFs, and security software inter-
faces. Such integration will enable various security features,
which we will apply to the accelerator as stand-alone and
for specific use cases. The modular approach we propose in
NEUROPULS will inform us about the technology scaling
potential without relying solely on hardware prototypes but by
accurate system modeling using gem5-based simulators. The
project’s outcomes will foster an augmented interest in this
technology and spur novel research directions and investments
at a European level in photonics, which has been indicated
as a key enabling technology for Industry 4.0 and RISC-V
processors technology.
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