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Field-based Discretization of the 3-D Contrast
Source Inversion Method applied to Brain Stroke

Microwave Imaging
Valeria Mariano, Member, IEEE, Jorge A. Tobon Vasquez, Member, IEEE,

David O. Rodriguez-Duarte, Member, IEEE and Francesca Vipiana, Senior Member, IEEE

Abstract—The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination
with a finite element method solver for the reconstruction of the dielectric properties’ distribution in the head with the aim to
diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that
allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties’
reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial
guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured
data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain
stroke scenarios.

Keywords—microwave imaging, biomedical imaging, finite element methods, microwave antennas, electromagnetic fields, contrast
source inversion method, brain stroke.

I. INTRODUCTION

IN the medical world, the microwave imaging (MWI) tech-
nique is having a growing impact both in diagnosis and

therapy for different kinds of pathologies. Some examples are
detection of shoulder injuries [1], monitoring of heart-beat [2]
or respiration [3], breast cancer diagnosis [4]–[6]. In [7], MWI
is combined with hyperthermia for cancer therapy, while, in
[8], the MWI is used in order to monitor the increase of
temperature in regional hyperthermia treatment, and, in [9],
[10], it is combined together with ablation.

In the case of brain stroke imaging, the MWI underlying
principle is based on the dielectric contrast between the brain
tissues and the stroke area. Considering an ischemic stroke,
which is a condition caused by the occlusion of a blood vessel,
the dielectric properties of the affected area are lower than
the background (healthy brain), while the hemorrhagic stroke,
which is due to the rupture of a blood vessel, is characterized
by dielectric properties higher than those of the background.
This means that these two pathological conditions can be dis-
tinguished based on the dielectric contrast. A comprehensive
review on MWI system applied to brain stroke imaging is
reported in [11], which contains the last progress and provides
an analysis of the benefits and limitations of this technology.

Here, to investigate the capabilities of MWI technology
for brain stroke imaging, we use the MWI system described
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in [12] and [13]. In the used system, a fundamental role
is played by the antennas that surround the head to form
an helmet, acting as both transmitters and receivers. Starting
from the field recovered from the antennas that surround
the head, we retrieve information regarding the unknown
scattering body, solving an inverse ill-posed problem. This
kind of problem is usually treated via regularization methods
or specific optimization procedures. In this paper, the inverse
scattering problem is solved through an iterative non-linear
algorithm able to quantitatively reconstruct the distribution of
permittivity and conductivity in the domain of interest (DoI):
the contrast source inversion (CSI) method. In the medical
field, the CSI method has been also employed in combination
with magnetic resonance imaging (MRI) in order to compute
the distribution of the local absorption rate [14], in [5] for
breast cancer diagnosis, or in [15] for the tissues dielectric
properties evaluation starting from magnetic resonance data,
and in other applications such as in oil industry for determining
the electrical conductivity distribution between boreholes [16]
or in food industry for example in detection of moisture
hot-spots in grain bin as in [17]. The CSI method is, here,
combined with an in-house finite element method (FEM) code
[18]. After the creation of the numerical model of the scenario
under test and the generation of a non-uniform, unstructured
and conformal mesh composed by tetrhaedral cells, the FEM is
integrated with the CSI method for the solution of the inverse
problem. Besides, the whole model of the antenna together
with the coaxial feeding is modeled in the geometry allowing
a better estimation of the field in the DoI, but also of the
scattering parameters at the ports of the antennas. Then, a
novel discretization of the contrast source variables, initially
proposed in [19] just with synthetic data, is here compared
with the standard one via experimental data, measured with
the used MWI system for cases of brain strokes. Moreover,
a new approach is here presented to evaluate the initial guess
of the CSI algorithm, which is a worthy alternative to the
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Fig. 1. Schematic overview of the MWI system and its components: (a) laptop, (b) two-ports vector network analyzers (VNA), (c) switching matrix, (d)
switching control, (e) source power, (f) antennas helmet, and anthropomorphic phantom.

commonly used back-propagation technique. The paper starts
with a brief description of the MWI system and of the
realized anthropomorphic head phantom in Sect. II, while
Sect. III contains, first, an overview of the CSI method, then
the new approach to evaluate the initial guess, and finally
the description of the discretizations of the contrast source
variables. In Sect. IV, there are the results obtained with
measured data in a realistic case of study. Finally, Sect. V
contains a summary of the achieved goals and some possible
future steps.

II. MICROWAVE IMAGING SYSTEM AND
ANTHROPOMORPHIC HEAD PHANTOM

The system exploited for the experimental tests is depicted
in Fig. 1 with a schematic overview. The working frequency
range of the system has, as central frequency, 1GHz, as
detailed in [20]. Starting from the left, there is a laptop with a
script containing all the settings and the operations for the
acquisition of the data. Then, there is the vector network
analyser (VNA): here we use the P937XA 2-port VNA [21].
The VNA has just two ports so we need a switching matrix (in
the middle of Fig. 1) enclosing all the possible path to reach
the 22 antennas that surround the head. It contains electro-
mechanical switches and internal interconnections, made of
semi-rigid coaxial cables and designed in order to have the
same length for each path from the VNA ports to the antennas,
hence guaranteeing equal electric paths. It is fed by a source
power and is supported by a switching control that interfaces
the script with the switching matrix. On the right of Fig. 1, the
anthropomorphic phantom is shown together with a helmet
array of 22 flexible antennas covered by a thin layer of
matching medium with a relative permittivity around 20 at
1GHz [13]. Then, the phantom surrounded by antennas is
filled with a liquid which is a mixture of 39.9% of water,
59.7% of alcohol, and 0.4% of salt, with final dielectric
properties equal to a weighted average of the grey and white
matter ones: ϵbrain = 42 and σbrain = 0.72S/m at 1GHz. The

gray and white matter dielectric properties are extrapolated
from the IFAC-CNR database [22]. The phantom shape is
extracted from the Visible Human Project [23] and its CAD
model is shown, together with the antennas, in Fig. 2.

Fig. 2. CAD model of the head and the antennas: (a) front, (b) back view.

III. CONTRAST SOURCE INVERSION ALGORITHM

In this section, the exploited quantitative image reconstruc-
tion algorithm is described. To get to the core of this algorithm,
the definition of the involved variables is fundamental. In all
the following equations, the generic position vector in the
DoI is identified with r. The first variable is the dielectric
contrast χ(r) between the relative complex permittivity of the
background ϵb(r), and the scenario under test ϵr(r):

χ(r)
∆
=

ϵr(r)− ϵb(r)

ϵb(r)
(1)

Now, considering the system in Fig. 1, one antenna at a
time acts as transmitter and illuminates the DoI, while all the
remaining antennas act as receivers. The field produced by the
antenna t, with t = 1, . . . , T and T = 22, in the background
scenario, is called Einc

t (r), while the same variable becomes
Etot

t (r) in the scenario under test. The scattered field Esct
t (r),

produced by the presence of the target when the antenna
t transmits, is simply evaluated as the difference between
Etot

t (r) and Einc
t (r), and it is regulated by the following wave

equation:

∇×∇× Esct
t (r)− k2b (r)E

sct
t (r) = k2b (r)χ(r)E

tot
t (r), (2)
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where kb(r) = ω
√
µ0ϵ0ϵb(r) is the wave number in the

background medium, µ0 and ϵ0 are the free space permeability
and permittivity, and ω is the angular frequency. Looking at
the right hand side of (2), we can define the so-called contrast
source variable ωt(r) via the object equation:

ωt(r)
∆
= χ(r)Etot

t (r). (3)

The CSI method is an iterative algorithm based on the
minimization of a cost functional FCSI by updating, at each
iteration n, the values of the dielectric contrast, χ, and the
contrast sources, ωt. Before going into details of the cost
function, we have to define two different domains: the domain
S, that identifies the antennas’ ports, and the domain D, that
corresponds with the DoI which in this case is the brain. The
cost functional is composed by two parts: FS that computes
the error between the known measured quantity at the antennas
and the one calculated at the end of each iteration, and FD

that evaluates the error in the contrast sources, as follows:

FCSI {χ(r), ωt(r)} = FS {ωt(r)}+ FD {χ(r), ωt(r)} (4)

FS =

∑T
t=1

∥∥Esct
t (r)− LS{ωt(r)}

∥∥2

S∑T
t=1

∥∥Esct
t (r)

∥∥2

S

(5)

FD =

∑T
t=1

∥∥χ(r)Einc
t (r)− ωt(r) + χ(r)LD{ωt(r)}

∥∥2

D∑T
t=1

∥∥χ(r)Einc
t (r)

∥∥2

D

, (6)

where the symbols
∥∥·∥∥2

S
and

∥∥·∥∥2
D

are the L2-norm in the S and
D domains, respectively. LS and LD are the data and domain
operators, both having as input the contrast source ωt(r), and
the output is the scattered field on S and D, respectively [24].
They are defined as:

LX{ωt(r)} =

∫∫∫
D

−k2
b (r

′)ωt(r
′) ·Gb(r, r

′)d3r′ r ∈ X (7)

where X = S,D and Gb(r, r
′) is the Green’s function of the

considered reference scenario.

A. Initial Guess
Usually, the initial guess of the CSI algorithm is evaluated

through the back-propagation method [24]; here, we propose
a different procedure, based on the truncated singular values
decomposition (TSVD) technique [13], exploiting the symme-
try of the scattering matrix, [S], due to the reciprocity of the
system. As shown in Sect. IV, this approach allows to obtain a
better defined initial guess if compared with the one evaluated
via the classical back-propagation technique.

In the evaluation of the initial guess, we apply the Born
approximation, i.e. Etot

t ≃ Einc
t [25]. Now, considering a pair

of antennas m and n, the differential scattering parameters
∆Sm,n, i.e. the difference between the scattered parameters
in the scenario under test with respect to the background one,
can be computed applying a linear integral operator to the
dielectric contrast χ(r), as shown in the following equation:

∆Sm,n =
−jωϵb
2aman

∫∫∫
DoI

χ(r)Einc
m (r) · Einc

n (r) dr3. (8)

where am, an are the power waves at the antennas m and n.
A more compact way to write (8) is:

∆Sm,n = S{χ}. (9)

where S represents the integral scattering operator. Now, the
TSVD method is employed to invert the discretized version of
the scattering operator, and evaluate the discretized dielectric
contrast, [χ], from the measured scattering parameters, as:

[χ] =

L∑
l=1

1

σl

〈
[∆SV ]

T , [ul]
〉
[vl], (10)

where [ul], [vl] and σl are the left and right singular vectors
and the singular values of the discretized scattering operator,
respectively. L is the threshold for the truncation of the singu-
lar values, which is chosen in order to reach a balance between
the measurement inaccuracies and the information needed for
the reconstruction [12]. Finally, [∆SV ] is a column vector
containing the differences between the scattering parameters
measured in the scenario under test and those simulated by
the FEM in the background scenario. In the following, [∆SV ]
is also represented in matrix format, [∆S], being the rows and
the columns the considered antenna pairs. The measured data
has a range between −70 and −5 dB, we use an IF equal to
100Hz in the VNA, and, since the self scattering parameters
are the ones with the highest model error, we do not use them
in the imaging process as in [20]. The scattering parameters
are calibrated with respect to the simulated ones as described
in [26], i.e. multiplying each measured scattering parameters
by the ratio of the same parameter simulated and measured
in a known scenario. Before applying the TSVD, the upper
and lower triangular parts of [∆S] are considered separately
and symmetrized in order to obtain two different matrices,
as reported in Fig. 3: [∆SU ] and [∆SL]. The principle is
that the [∆S] matrix has to be symmetric due to the system
reciprocity: a loss of symmetry, even if very limited, represents
inaccuracies in the measurements. The proposed method is
used to minimize its impact in the initial guess generation
for the dielectric contrast. Then, for each obtained differential
scattering matrix, the dielectric contrast is evaluated via the
TSVD (10), and two different values for the dielectric contrast,
named [χU ] and [χL], are obtained. At this point, the data are
processed in order to reduce the noise and improve the quality
of the initial guess. The first step is to smooth the spike and
the sudden variations in the dielectric contrast distribution,
substituting each value in [χ] with the average of the initial
dielectric contrast values in the tetrahedra that share at least a
vertex with the considered one. At the end of this operation,
we have the new variables: [χ̃U ] and [χ̃L]. Last, the dielectric
contrast initial guess is evaluated putting together the results
obtained from the two triangular matrices keeping the common
information only, as follows:

[χ̄] =
|[χ̃L]|

max(|[χ̃L]|)
· |[χ̃U ]|
max(|[χ̃U ]|)

· [χ̃L] + [χ̃U ]

2
(11)

where the first two terms are normalized absolute values of
[χ̃U ] and [χ̃L], while the last term is their mean value. Then,
the discretized dielectric contrast can be assigned to any point
r of DoI as:

χ̄(r) = χ̄i with r ∈ Ci (12)
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where Ci is the i-th tetrahedron and χ̄i its corresponding
dielectric contrast. The dielectric contrast initial guess is:

χ0(r) =

{
0 |χ̄(r)|< |χT |
χ̄(r) elsewhere,

(13)

where χT is a selected percentage of the expected dielectric
contrast between the healthy head and the stroke area. The
kind of stroke can be determined looking at the permittivity
distribution: if the target has a permittivity higher than the
background, it is a hemorrhagic stroke, otherwise it is an
ischemic one. The second step is the evaluation of the initial
guess of the contrast source variables, ω0(r), through a mod-
ified object equation, i.e. using Einc

t (r) instead of Etot
t (r):

ω0,t(r)
∆
= χ̄0(r)E

inc
t (r). (14)

Fig. 3. Flowchart of the procedure for the initial guess evaluation.

B. Discretization of the Contrast Source Variables

This section contains the description of the two different
discretizations used to implement the CSI method via the FEM
solver. The proposed one is called “field-based” discretization,
while the standard one is called “contrast-based”. We start with
the discretization of the dielectric contrast that is considered
constant within each cell, so it is written as a linear combina-
tion of scalar coefficients and pulse functions:

χ(r) ∼=
K∑

k=1

χk pk(r), (15)

where K is the total number of cells in the mesh, and the pulse
function pk(r) is equal to 1 only within the k-th element. The
electric field radiated by each antenna t is written through a
linear combination of scalar coefficients and curl-conforming
vector basis functions Ne(r) with e = 1, . . . , E, and E is the

total number of edges in the mesh [27]. The spatial domain of
the function corresponds to the group of tetrahedra that share
the edge e, as depicted in Fig. 4 (a). Each basis function is
associated to an edge e of the discretized domain, indeed it
has a constant tangential component in the edge e and no
tangential component for the other edges of the tetrahedra
of its domain, as shown in Fig. 5 in a 2-D triangular cell
representation, for the sake of simplicity. The field can be

Fig. 4. Domain of definition of the vector basis functions (a), and of the
cell-based vector basis functions (b).

Fig. 5. Curl-conforming vectorial basis functions in a triangular element. a)
Function tangential to l1, b) function tangential to l2, c) function tangential
to l3.

expressed via the following linear combination

Eγ
t (r)

∼=
E∑

e=1

Eγ
t,e Ne(r), (16)

where γ can be the total, incident or the scattered field, and
Eγ

t,e are the corresponding coefficients.
In the standard contrast-based discretization, the contrast

source variable is described with the same basis functions of
the dielectric contrast, i.e. the pulse functions as follows

ωt(r)
∼=

K∑
k=1

ωt,k pk(r), (17)

where each vectorial coefficient, ωt,k, is evaluated via (3),
multiplying the dielectric contrast and the total field in the
barycenter rk of the tetrahedron k. Hence, as reported in
Fig. 6 (a), in each point of the mesh, the contrast source
variable is equal to the vector in the barycenter corresponding
to the field orientation in that point. Instead, in the proposed
field-based discretization, the total field is written via “cell-
based” vector basis functions Ñe,q(r), which are defined
starting from the previous ones via:

Ñe,q(r) = Ne(r) pe,q(r) (18)
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Fig. 6. Example of contrast source variable trend in a cell with the contrast-
based discretization (a), or with the field-based discretization.

where pe,q is a pulse function equal to one only in the
tetrahedron identified by the double index (e, q) and zero
otherwise. The local index q = 1, . . . , Qe select one of the
tetrahedra sharing the edge e. In this case, the vector basis
function Ñe,q(r) has a domain corresponding only with the
tetrahedron (e, q), as reported in Fig. 4 (b). In the proposed
discretization, the field in (16) is rewritten using the cell-based
vector basis functions (18) as:

Etot
t (r) ∼=

E∑
e=1

Etot
t,e

Qe∑
q=1

Ne(r)pe,q(r) =

E∑
e=1

Qe∑
q=1

Etot
t,e Ñe,q(r)

(19)
Now, we can write the formulation of the contrast source
substituting (15) and (19) in (3) as below:

ωt(r)
∼=

[
K∑

k=1

χk pk(r)

][
E∑

e=1

Qe∑
q=1

Etot
t,e Ñe,q(r)

]

=

E∑
e=1

Etot
t,e

K∑
k=1

Qe∑
q=1

χk pk(r)Ñe,q(r).

Since the index k and the double index (e, q) identify both an
element in the mesh, we can merge them using the (e, q) one
also for the dielectric contrast and the pulse function:

ωt(r)
∼=

E∑
e=1

Etot
t,e

Qe∑
q=1

χe,qpe,q(r) Ñe,q(r)

=

E∑
e=1

Qe∑
q=1

ωt,e,q Ñe,q(r). (20)

where ωt,e,q = Etot
t,e χe,q , and, since the domain of the function

Ñe,q(r) is already bounded to the element (e, q), the pulse
function pe,q is useless and hence removed. In this case, the
contrast source ωt(r) is written as a linear combination of the
vectorial basis functions of the field via scalar coefficients.
In this way, the contrast source keeps the same trend of the
field, as evident in Fig. 6 (b), and its value can change in any
cell point. Moreover, the proposed formulation simplifies the
implementation of the algorithm, in fact, since the contrast
source and the field are written with the same basis, the
update of the variables are just done considering the scalar
coefficients, therefore the algorithm uses only scalar variables
and scalar operators, and does not need the dyadic operators
used in the contrast-based discretization [24].

IV. EXPERIMENTAL RESULTS

In this section, the CSI method is applied to the data
measured with the MWI system described in Sect. II. The
pathological cases are created inserting a stroke phantom
in the head case, in different positions. Figure 7 (b) shows
the structure exploited during the experimental tests for the
positioning of the stroke phantom, reported in Fig. 7 (c), in
the head phantom, as depicted in Fig. 7 (a), which contains the
realized mixture (Sect. II). The upper part of the structure in
Fig. 7 is created in order to perfectly match the hole in the head
phantom. The stroke balloon is filled with a mixture composed
of water (66.4%), alcohol (33.0%), and salt (0.6%), that has
the same dielectric properties of the blood: ϵblood = 63.29 and
σblood = 1.63S/m at 1GHz [22].

Fig. 7. Phantoms: (a) upper view of the head phantom, (b) structure used to
position the balloon in the head phantom, (c) structure with the balloon.

In the following, we report the results obtained with two
study cases: stroke in the back-left (BL) side of the head
and in the middle-right (MR). Both the cases have a distance
from the top of the head phantom equal to 7.5 cm, while the
distance from the axis that divides the two brain hemispheres
is equal to 2.5 cm for the BL case, and to 2.0 cm for the
MR case. The chosen number of iterations in the CSI is
limited 100, as a trade-off between the quality of the final
reconstructions and the time to achieve them [19]; each
iteration takes around 7 minutes in our implementation using
an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz, 24 cores.
In all the considered cases, the corresponding cost function
has a monotonic decreasing behavior. Before going to the
obtained final reconstruction, Fig. 8 shows the permittivity
distribution of the initial guess obtained with the standard
back-propagation (a), and with the proposed TSVD-based
technique (b), which is able to better identify the stroke area.
In this case, the threshold χT (13) is equal to 0.06, which
corresponds to the 10% of the dielectric contrast between
the background and the hemorrhagic stroke region that is
highlighted in the reconstruction images with a white line.

The initial guess is one of the fundamental steps of the
CSI algorithm, indeed it strongly affects the final result: if the
initial guess does not contain enough information, the final
reconstruction does not converge to the expected scenario.
Since, in this case, the back-propagation does not detect any
stroke in the initial guess, as evident in Fig. 8 (a), the CSI
method is not able to reconstruct the stroke. Hence, we show
only the final results obtained using the initial guess evaluated
via the TSVD-based technique reported in Fig. 8 (b). Figure 9
shows the permittivity reconstruction in the three main cuts for
the two discretizations in the BL case: in Fig. 9 (a) the contrast-
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Fig. 8. Permittivity distribution of the initial guess: (a) back-propagation and
(b) TSVD-based technique.

based discretization and in Fig. 9 (b) the field-based one. Also,
the conductivity distributions are reported in Fig. 10. We can
observe that the field-based discretization is able to reach
higher values in the stroke region. Besides, the reconstruction
with the contrast-based discretization is more discontinuous,
indeed the “dotted” distribution of the permittivity and con-
ductivity is probably due to the worse resolution of the
discretization. In the second case of study (MR), for the sake

Fig. 9. Permittivity distribution in the 3 main cuts. Back-left case after 100
iterations with the contrast-based (a), and the field-based discretization (b).

Fig. 10. Conductivity distribution in the 3 main cuts. Back-left case after 100
iterations with the contrast-based (a), and the field-based discretization (b).

of brevity, we report the xy-plane view only: in Fig. 11 (a) and
(c) there are permittivity and conductivity reconstructions with
the contrast-based discretization, respectively, while 11 (b) and
(d) with the field-based discretization. Even in this case, the

field-based discretization reaches higher values in the stroke
region, and the reconstruction appears smoother than the one
obtained with the contrast-based dicretization. Comparing the
BL case with the MR one, it is evident that the dielectric
properties values in the stroke region obtained in the BL case
are closer to the expected ones. Probably, this is due to the
antennas configuration in the helmet: in the back-side a better
coverage is expected with respect to the front-side (Fig. 2).

Fig. 11. Middle-right case after 100 iterations: a) permittivity, c) conductivity
distribution with contrast-based; b) and d) with field-based discretization.

V. CONCLUSION AND PERSPECTIVES

In this work, an innovative way to discretize the vari-
ables in the CSI algorithm is exploited for the brain stroke
reconstruction using a MWI system. In the proposed field-
based discretization, the contrast source variables have a linear
variation within each tetrahedral cell. This feature allows to
reach reconstructed dielectric properties in the stroke area
closer to the expected ones if compered with the standard
contrast-based discretization. Moreover, at the beginning of
the CSI algorithm, we applied a customized technique for
the evaluation of the initial guess that is based on the TSVD
approach and exploits the reciprocity of the MWI system. This
method allows to obtain better initial guesses, and therefore
improved final results. With the proposed implementation, the
CSI algorithm is able, with the measured scattering param-
eters, to recognize the stroke position and shape, and get
stroke dielectric properties close to the expected ones. Next
steps of this work regard the application of the algorithm to
an extensive set of measured data in order to understand its
behavior with different cases of study, i.e. strokes of different
sizes, positions and also different type (ischemic), and then, the
use of a more realistic multi-tissue head phantom as described
in [28], [29]. Moreover, a possible implementation change that
could improve the performance is using a finer mesh for the
fields’ evaluation in the whole domain via the forward model,
and a coarser mesh for the operator exploited in the solution
of the inverse problem. Finally, in order to speed up the time
to achieve the final results, a method that can be used is the
one described in [30], [31], in which the domain under test is
decomposed in smaller subproblems particularly suitable for
parallel computing.
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