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Abstract 
In the present work, three methodologies for the estimation of the fatigue design P-S-N curves are compared. 

The modified Owen with the staircase method, a method based on the likelihood ratio confidence interval, 

and an original method based on the bootstrap approach are considered. Three experimental datasets are 

employed for the experimental validation, showing that the three methods permit to have a reliable 

estimation of the design curves and that the number of data and, accordingly, the test duration can be 

significantly reduced with the proper testing strategy. 

 

 
Keywords: fatigue design; design curves; likelihood ratio confidence interval; Maximum Likelihood; 

bootstrap approach. 
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1. INTRODUCTION 

Fatigue design is fundamental to guarantee the structural integrity of in-service components, since failures 

due to repeated cyclic loads represent the most common cause of failures [1]. Fatigue is a complex local 

phenomenon that involves the formation of cracks and their propagation up to the final fracture, with these 

phases affected by many different factors, like the material microstructure, the type of load, the specimen 

geometry, the presence of defects, and the environmental conditions [1]. Therefore, the design against 

fatigue failures can be complex and must take into account all the factors affecting the fatigue behaviour. 

The aim of the fatigue design is to avoid the crack initiation or propagation due to loads applied for the 

number of cycles the component is expected to withstand during its in-service life or before the programmed 

maintenance. Accordingly, the dependency between the applied stress and the fatigue life or the number of 

cycles to failure should be determined. Stress-Number of cycles (S-N) curves with different shapes depending 

on the experimental trend [2-6] are used to model this dependency. Moreover, depending on the failure 

origin, the models for the fatigue life should also consider the mechanisms of crack nucleation [7-11]. 

However, due to randomness associated with the fatigue phenomenon, the large experimental scatter 

should be properly modelled and taken into account when the S-N relationship is assessed [1, 2, 5, 12-14]. 

Otherwise, a safe design is not guaranteed. For this reason, the analysis of the fatigue results must be carried 

out in terms of Probabilistic-S-N curves (P-S-N), i.e., of S-N curves at different reliability levels. Ideally, the 

number of experimental data should be as large as possible to properly assess the experimental variability 

and scatter [15-19], but this is unpractical due to the high duration of fatigue tests. To take into account that 

the number of available fatigue data is generally limited, high-reliability P-S-N curves ensuring a safety margin 

with respect to failures, the so-called design curves, are used for the design of components. Depending on 

the industrial needs and policy, design curves are assessed in different ways [16, 18] and following different 

approaches. The research on the testing strategy and on models for the P-S-N curves is therefore of utmost 

interest in industrial applications.   

The experimental data in an S-N plot show different trends [3, 4]. In industrial applications, the trend showing 

linear decreasing trend ending with a final asymptote, the so-called fatigue limit, is of particular interest. 

Indeed, even if the occurrence of a fatigue limit has been put in discussion by many papers investigating the 

Very-High-Cycle Fatigue (VHCF) region [20-22], an asymptotic trend in the High-Cycle Fatigue (HCF) region is 

generally observed for different materials [6, 23-24] and can model the transition between different failure 

modes [6]: the surface failure mode in the HCF life range and the internal failure mode in the VHCF life range. 

Since most of the components are subjected to loads in the HCF life range, a model with a linear trend ending 

with an asymptote is appropriate in industrial applications and guarantees a safe design. 

This paper deals with the estimation of the fatigue design curve from experimental datasets showing a linear 

decreasing trend with a fatigue limit. A methodology based on the Likelihood ratio Confidence Intervals (LRCI) 

and an innovative formulation based on the parametric bootstrap approach (bootstrap) have been proposed 
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and compared with a standard method that is widespread among industries and is based on the modified 

Owen method [16, 18] for the finite life range and on the staircase method for the fatigue limit (O+SC in the 

following). According to [18], the design curve is assumed as the lower confidence bound of a high-reliability 

P-S-N curve. The LRCI and the bootstrap methods are based on the application of the Maximum Likelihood 

(ML) principle and on modelling the distribution of the finite fatigue life together with that of the fatigue limit 

[4, 25]. In this respect the application of the methods clearly differs from the available literature [26,27] and 

permits to consider in the analysis both failures and runout data (i.e., unfailed specimens at the end of the 

test), as recommended by International Standards [19]. An original method based on the parametric 

bootstrap approach has been also proposed for the estimation of the design curves. The applied bootstrap 

approach is shown to be of easy implementation and it differs from the bootstrap discussed in [28], where 

the confidence intervals were stratified by the stress-ratio. The effectiveness of the design curves estimated 

with LRCI, bootstrap and O+SC methodologies has been verified with experimental datasets obtained by 

testing, in air environment, a steel, an Alluminium alloy and a composite material. The main features, the 

strengths and the weaknesses of these methods have been analyzed and compared, focusing also on the 

influence of the numerousness of runout data. Suggestions and recommendations for optimized testing 

strategies for the design curves have been finally provided. 

 

2. STATISTICAL METHODS FOR THE DESIGN CURVES 

In this Section, the models for the assessment of the design curves are described in detail. In Section 2.1, the 

modified Owen [16-18] and the staircase methodologies are analyzed. The procedure for the estimation of 

the design curves through the LRCIs is described in Section 2.2, while Section 2.3 describes an innovative 

application of the bootstrap method for the assessment of the design curves. Finally, in Section 2.4, details 

on the implementation of the above-described methods are provided.  

In the following, 𝑁𝑓  is the number of cycles to failure and 𝑠𝑎 is the applied stress amplitude during a fatigue 

test. In the paper, with design curves we refer to the lower bound of the confidence interval of a high-

reliability quantile. According to [18], a design curve can be also indicated with the notation Rx𝑅CxC, i.e, the 

(1 − xC 100⁄ ) confidence bound of the (1 − x𝑅 100⁄ ) quantile of the P-S-N curve. For example, at a specific 

𝑁𝑓, the Rx𝑅CxC fatigue strength, 𝑠𝑎,Rx𝑅CxC
, corresponds to the fatigue strength above which the 

(1 − x𝑅 100⁄ ) quantile of the fatigue strength is expected with an xC 100⁄  confidence level. In the following, 

design curves and RxRCxC curves are interchangeably used. For the sake of clarity, moreover, with fatigue 

limit, we will refer to the stress amplitude associated to the horizontal asymptote on the S-N plot. If the 

estimated design curve does not show a clear asymptote, we will generically refer to the fatigue strength 𝑠𝑎 

at a specific 𝑁𝑓. 
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2.1. Design curves: Staircase and modified Owen methods. 

The staircase (SC in the following) method [29-31] is one of the most widespread methods for assessing the 

fatigue limit of specimens and its use is suggested in many International Standards in force and books (please 

refer to [15, 18] and Reference threin). More precisely, the objective of the SC method is the assessment of 

the fatigue strength at a specific 𝑁𝑓, corresponding to the selected runout number of cycles. In industrial 

applications, the SC is generally employed for tests at small stress amplitude (e.g., close to the 50% of the 

ultimate tensile stress of the tested material), with runout number of cycles above 106 cycles, to assess the 

horizontal asymptote of the P-S-N curve, i.e. the fatigue limit. On the other hand, the stress life relationship 

is generally assessed by assuming a power relationship between 𝑠𝑎 and 𝑁𝑓  (Basquin’s model) and by 

employing, for example, the modified Owen method [16, 18], as detailed in the following. For this reason, 

the fatigue strength estimated with the staircase method will be called fatigue limit in the following.  

Due to its wide diffusion, the SC methodology is only briefly recalled. Details on the formulas that have been 

considered are not reported here for the sake of brevity and since out of the scope of the present paper, 

focusing instead on the strengths and the weaknesses of this methodology. In particular, the procedure 

described in [18] is employed.  

The main advantage of the SC is that it allows to concentrate the experimental data close to the mean value 

of the fatigue limit to be estimated. The fatigue limit is assumed to follow a Normal distribution, with constant 

mean, 𝜇𝑥𝑙
, and standard deviation, 𝜎𝑥𝑙

. The first test should be carried out at a stress amplitude equal to 

𝑠𝑎,𝑖=1, being 𝑖 the test number, close to the expected value of the fatigue limit. If the specimen does not fail 

(runout specimen), the applied stress amplitude in the subsequent test, 𝑠𝑎,𝑖=2, is increased by a step 𝑑 

selected by the experimenter (𝑠𝑎,𝑖=2 = 𝑠𝑎,𝑖=1 + 𝑑). Otherwise, the stress amplitude of the second test is 

decreased by a quantity equal to the step 𝑑, 𝑠𝑎,𝑖=2 = 𝑠𝑎,𝑖=1 − 𝑑. This procedure should be repeated to have 

a sufficient number of data to reliably estimate the mean and the standard deviation of the fatigue limit 

distribution. According to [15, 18] and to the industrial practice, fifteen valid data are sufficient for a proper 

application of this methodology. The computation of the fatigue strength and of the standard deviation is 

based on the least frequent event (failure or runout). Moreover, for a proper application of the methodology, 

an almost equal number of runout and failures data should be experimentally obtained. The formula 

developed for the estimation of the fatigue limit and the standard deviation have been originally obtained in 

[32] by applying the ML principle. 

The procedure is of very simple implementation. On the other hand, it does not permit to perform more tests 

simultaneously, since the applied stress amplitude for the tests 𝑖 depends on the result of the test number 

𝑖 − 1. Therefore, tests on the same material cannot be performed “in parallel”, but they must be necessarily 

performed sequentially, and this could be a disadvantage for testing labs where multiple testing machines 

are available. The choice of the step is moreover fundamental: indeed, the step 𝑑 should be as close as 

possible to the standard deviation of the fatigue limit that has to be estimated. The initial guess of 𝑠𝑎,𝑖=1 is 
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also very important: indeed, the valid data are only those after the first stress inversion, i.e., after the first 

failure if the SC starts with a runout or after the first runout if the SC starts with a failure. Therefore, if the 

initial stress amplitude 𝑠𝑎,𝑖=1 is too small or not properly chosen, many useless runout data may be found 

before the first failure, with a high experimental cost. 

In the following and according to [18], the Rx𝑅CxC in the fatigue limit region, 𝑠𝑙,Rx𝑅CxC
, is computed according 

to Equation 1: 

 

𝑠𝑙,Rx𝑅CxC
= 𝜇𝑥𝑙

− 𝐾 ∙ 𝜎𝑥𝑙
, (1) 

 

where 𝐾 is a coefficient that permits the estimation of the one side lower bound tolerance limit for a normal 

distribution. In section 3, 𝐾 has been retrieved from Tables in [18, 33]. 

For the finite fatigue life range, i.e., for the life range where the stress amplitude shows a decreasing trend 

with respect to 𝑁𝑓  in the S-N plot, the Rx𝑅CxC curves have been estimated by applying the approximate 

Owen one-side tolerance limit [16, 18]. This approach permits to model the uncertainty associated with the 

regression analysis. Indeed, the power law (Basquin’s model) between 𝑠𝑎 and 𝑁𝑓  in a bilogarithmic S-N plot 

is modeled with a linear function, with parameters estimated through the application of the least square 

method [17-19]. The estimated parameters permit to assess the median (R50) P-S-N curve. The Rx𝑅CxC 

curves is estimated by shifting the median curve along the horizontal direction by a factor equal to 𝐾𝑂𝑤𝑒𝑛 ∙

𝜎𝑠, being 𝜎𝑠 the sample standard deviation and 𝐾𝑂𝑤𝑒𝑛 a multiplicative coefficient that permits to assess the 

Owen one side tolerance limit [18]. In other words, the median curve is shifted horizontally by a factor equal 

to 𝐾𝑂𝑤𝑒𝑛 ∙ 𝜎𝑠. In [18], an expression for computing the 𝐾𝑂𝑤𝑒𝑛 is provided. The 𝐾𝑂𝑤𝑒𝑛 factors tabulated in 

[34] for different sample sizes, reliability and confidence levels have been employed in the following. 

 

2.2. Design curves: Likelihood ratio Confidence Intervals 

In this Section, the methodology developed for estimating the LRCI is described. In order to model the 

continuous decreasing trend in the finite fatigue life region and an asymptotic trend in the infinite fatigue life 

region, the logarithm of fatigue life and the logarithm of the fatigue limit, respectively, are assumed to follow 

a Normal distribution, according to Equation 2: 

 

𝐹𝑌|𝑥 = 𝛷 (
𝑦−(𝑎+𝑏∙𝑥)

𝜎𝑌
) 𝛷 (

𝑥−𝜇𝑋𝑙

𝜎𝑋𝑙

), (2) 

 

being 𝛷(∙) the cumulative distribution function (cdf) of a standardized normal distribution, 𝑦 the logarithm 

of the number of cycles to failure 𝑁𝑓, 𝑎 and 𝑏 constant coefficients, 𝑥 = log10[𝑠𝑎], 𝜇𝑋𝑙
 the mean of the 

statistical distribution of the fatigue limit and 𝜎𝑌 and 𝜎𝑋𝑙
 the standard deviation of the finite fatigue life and 
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of the fatigue limit distributions, respectively. The mean of the fatigue life distribution is linearly dependent 

on the applied stress amplitude, whereas the mean of the fatigue limit distribution is assumed to be constant. 

The constant coefficients 𝑎 and 𝑏, 𝜇𝑋𝑙
, 𝜎𝑌 and 𝜎𝑋𝑙

 must be estimated from the experimental data. The 

parameter estimation is carried out by applying the ML principle, i.e., by maximizing the Likelihood function, 

𝐿[𝜽]: 

 

𝐿[𝜽] = ∏ 𝑓𝑌|𝑋=𝑥 [𝑦𝑖𝑓
; 𝑥𝑖𝑓

; 𝜃]
𝑛𝑓

𝑖𝑓=1
∙ ∏ (1 − 𝐹𝑌|𝑋=𝑥[𝑦𝑖

∗; 𝑥𝑗; 𝜃])
𝑛𝑟
𝑗=1 , (3) 

 

being 𝑓𝑌|𝑋=𝑥 the probability density function (pdf) of the fatigue life distribution, 𝑖𝑓 = 1. . 𝑛𝑠 the subscript 

referring to the 𝑖-th failed specimen, with 𝑛𝑠 the number of failures, 𝑗 = 1. . 𝑛𝑟 the subscript referring to the 

𝑗-th specimen, with 𝑛𝑟 the number of runout specimens, 𝑦𝑖
∗ the logarithm of the runout number of cycles 

and 𝜽 = (𝑎, 𝑏, 𝜎𝑌, 𝜇𝑋𝑙
, 𝜎𝑋𝑙

 ) the set of parameters to be estimated. For the sake of clarity, 𝑦𝑖𝑓
 and 𝑥𝑖𝑓

 are the 

logarithm of 𝑁𝑓  and the logarithm of the 𝑠𝑎 for the 𝑖𝑓-th failed specimen, whereas 𝑥𝑗 is the logarithm of the 

𝑠𝑎 for the 𝑗-th runout specimen. The set of parameters that maximize the 𝐿[𝜽] in Equation 3 corresponds to 

the ML estimate, 𝜽̃. 

The 𝛼𝑡ℎ quantile of the fatigue life, 𝑦𝛼𝑡ℎ
, can be easily estimated from Equation 2, by substituting 𝐹𝑌|𝑥 with 

𝛼𝑡ℎ and by solving Equation 2 with respect to 𝑥 for a selected 𝑦. With the same procedure, the 𝛼𝑡ℎ quantile 

of the fatigue strength, 𝑥𝛼𝑡ℎ
, can be obtained. The objective of this Section is to estimate the lower bound of 

a specific quantile of the P-S-N curve with the LRCI. An approximate (1 − 𝛽𝑡ℎ)% LRCI for 𝑥𝛼𝑡ℎ
 is given by: 

 

𝑃𝐿[𝜃1] =
max𝜽𝟐

[𝐿[𝜃1,𝜽𝟐]]

𝐿[𝜽̃]
≥ 𝑒−

𝜒2(1;1−𝛽𝑡ℎ)

2 , (4) 

 

being 𝑃𝐿[𝜃1] the Profile Likelihood function, 𝜃1 the investigated parameter (i.e., 𝜃1 = 𝑥𝛼𝑡ℎ
), 𝜽𝟐 the set of 

the other parameters in the model, 𝜒2(1; 1 − 𝛽𝑡ℎ) the (1 − 𝛽𝑡ℎ)-th quantile of a Chi-square distribution with 

1 degree of freedom.Indeed, the function −2 ∙ log(𝑃𝐿[𝜃1]) is asymptotically Chi-squared with 1 degree of 

freedom. The notation max𝜽𝟐
[𝐿[𝜃1, 𝜽𝟐]] indicates the Likelihood function 𝐿[𝜃1, 𝜽𝟐] computed by considering 

the set of parameters in the 𝜽𝟐 vector the maximizes 𝐿[𝜃1, 𝜽𝟐] for a given value of 𝜃1. It must be noted that 

the general formulation in Equation 4, which allows for estimating the approximate Confidence intervals for 

a parameter of interest, has been retrieved from the literature [27, 35, 36]. According to Equation 4, the 

stress amplitude at which the 𝑃𝐿[𝜃1] crosses the 𝑒−
𝜒2(1;1−𝛽𝑡ℎ)

2  value corresponds to the lower bound of 𝑥𝛼𝑡ℎ
 

for a specific 𝑁𝑓. If this procedure is repeated for the investigated life range (i.e., for different values of 𝑁𝑓), 

the lower bound of the P-S-N curve can be attained. For the sake of clarity, Equation 4 permits to estimate 
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the Rx𝑅CxC curves: the x𝑅 value corresponds to the (1 − 𝛼𝑡ℎ)% quantile of the P-S-N curve, whereas 

(1 − 𝛽𝑡ℎ) is equal to (2 ∙ xC − 1) (one side confidence interval).  

A method for the design curves based on the LRCI has been also developed in [26, 27]. In [37] the LRCIs have 

been computed starting from a model called “random fatigue limit model”. The diffusion of methodologies 

based on the LRCI is prevented mainly by the implementation complexity. However, according to [37], “they 

have actual coverage probabilities that are closer to the nominal values than do confidence intervals based 

on normal theory. The likelihood ratio based confidence bounds perform well even in small samples.” 

More in details, according to Equation 4, the 𝑃𝐿[𝜃1] must be a function of 𝑥𝛼𝑡ℎ
. From Equation 2, the 𝛼𝑡ℎ 

quantile of the fatigue strength is: 

 

𝛼𝑡ℎ  = 𝛷 (
𝑦𝛼𝑡ℎ

−(𝑎+𝑏∙𝑥𝛼𝑡ℎ
)

𝜎𝑌
) 𝛷 (

𝑥𝛼𝑡ℎ
−𝜇𝑋𝑙

𝜎𝑋𝑙

). (5) 

 

From Equation 5, the constant coefficient 𝑎 can be easily obtained: 

 

𝑎 = 𝑦𝛼𝑡ℎ
− 𝛷−1 (

𝛼𝑡ℎ

𝛷(
𝑥𝛼𝑡ℎ

−𝜇𝑋𝑙
𝜎𝑋𝑙

)

) ∙ 𝜎𝑌 − 𝑏 ∙ 𝑥𝛼𝑡ℎ
. (6) 

 

By substituting 𝑎 in Equation 6 with 𝑎 in Equation 2, the Profile Likelihood function becomes a function of 

𝑥𝛼𝑡ℎ
 (i.e.,  𝜃1 = 𝑥𝛼𝑡ℎ

 in Equation 4) and the lower bound of 𝑥𝛼𝑡ℎ
 can be easily obtained from Equation 4, with 

𝜽𝟐 = (𝑏, 𝜎𝑌, 𝜇𝑋𝑙
, 𝜎𝑋𝑙

 ). Equation 6 may yield infinite values when 
𝛼𝑡ℎ

𝛷(
𝑥𝛼𝑡ℎ

−𝜇𝑋𝑙
𝜎𝑋𝑙

)

≥ 1. To avoid this criticality, an 

expression for 𝜇𝑋𝑙
 as a function of 𝑥𝛼𝑡ℎ

 can be alternatively obtained from Equation 5: 

 

𝜇𝑋𝑙
= 𝑥𝛼𝑡ℎ

+ 𝛷−1 (
𝛼𝑡ℎ

𝛷(
𝑦𝛼−(𝑎+𝑏∙𝑥𝛼𝑡ℎ

)

𝜎𝑌
)

) ∙ 𝜎𝑋𝑙
. (7) 

 

By replacing 𝜇𝑋𝑙
 in Equation 7 with 𝜇𝑋𝑙

 in Equation 2, the Profile Likelihood function in Equation 4 becomes 

a function of 𝑥𝛼𝑡ℎ
 and, by considering 𝜽𝟐 = (𝑎, 𝑏, 𝜎𝑌, 𝜎𝑋𝑙

 ), the lower bound of 𝑥𝛼𝑡ℎ
 can be easily obtained. 

Details on the procedure implemented for estimating the design curves with the LRCI are provided in Section 

2.4.  
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2.3. Design curves: bootstrap method 

The third investigated methodology originally implements the parametric bootstrap approach [38]. With this 

technique, starting from a known statistical model, a large number of datasets is randomly simulated. For 

each generated dataset, the parameter estimation is repeated, in order to get information on the statistical 

variability of the parameters of interest [38]. The model in Equation 2, with the parameters 𝜽 substituted by 

their ML estimates 𝜽̃, is assumed as the model for the population. Starting from this model, 𝑛𝑠 random 

datasets are simulated.  The simulation of the datasets is the critical step in the application of the bootstrap 

approach. The simulated datasets must replicate as much as possible the information carried by the 

experimental dataset, to eliminate or limit any spurious effect in the simulation phase. At present, to the 

authors’ best knowledge, a general method for the bootstrap simulation of the fatigue datasets has not been 

proposed in the literature yet. In the present paper, the simulated datasets have been generated by 

replicating the original experimental dataset in terms of runout number of cycles, number of stress levels, 

and number of replications for each stress level. This should ensure a correct bootstrap replication of the 

original experimental dataset. The number of datasets that must be simulated for a reliable estimation is 

discussed in Sections 2.4 and 3. For each simulated dataset, the parameters are estimated by applying the 

ML principle and the 𝛼𝑡ℎ = (1 − 𝑥𝑅 100⁄ ) quantile P-S-N curve is obtained, i.e., the 𝑥(1−xR 100⁄ ) values are 

estimated for different values of 𝑁𝑓. Finally, for each 𝑁𝑓, the 𝑛𝑆 values of 𝑥(1−xR 100⁄ ) are sorted in ascending 

order. The (1 − xC 100⁄ ) confidence bound for the (1 − xR 100⁄ ) P-S-N curve, the Rx𝑅CxC curve, is obtained 

by considering, for each 𝑁𝑓, the 𝑛𝑆 ∙ (1 − xC 100⁄ ) ordered value of the sorted 𝑥(1−xR 100⁄ ). By repeating this 

operation for each investigated 𝑁𝑓, the design curve can be finally built. The main weakness of this approach 

is that ML estimates 𝜽̃ are assumed as the actual parameters of the population, but this is not ensured and 

it may lead to large errors if 𝜽̃ is far from 𝜽. Furthermore, the estimation time can be large. Indeed, as the 

number of simulated datasets increases, the computation time increases, too. A tradeoff between the 

number of simulated datasets and the estimation effectiveness is necessary, in order to conclude the 

estimation process in a reasonable time. 

 

2.4. Implementation of the investigated methods 

The estimation of the design curves, especially with the LRCI and with the bootstrap method, must 

necessarily be carried out through a proper programming strategy. In this Section, details on the 

implementation of the three investigated methods are provided. 

The estimation of the design curves with the SC and the modified Owen methods is quite straightforward 

and it has been carried out by following the guideline reported in [18]. A Matlab script has been created for 

automatizing this procedure. 

On the other hand, the estimation of the design curves with the LRCI is more complicated. A Matlab script 

has been created. The ML estimates of the unknown parameters, 𝜽̃, has been carried out with the function 
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fminsearch implemented in Matlab and based on the Nelder–Mead simplex algorithm [39]. For each 𝑁𝑓  in 

the range of interest, the solution to the Equation 4 must be found. From a graphical point of view, the 

solution to Equation 4 corresponds to the points for which the 𝑃𝐿[𝜃1] function is equal to the value 

𝑒−
𝜒2(1;1−𝛽𝑡ℎ)

2 . To find this solution, the following procedure has been implemented: 

 

1. For each investigated 𝑁𝑓, the fatigue strength at the quantile of interest is computed by solving 

Equation 2 with 𝜽 = 𝜽̃. For 𝑥̃𝛼𝑡ℎ
= 𝑥𝛼𝑡ℎ

(𝜽̃), the 𝑃𝐿[𝑥̃𝛼𝑡ℎ
] function in Equation 4 must be equal to 1. 

2. 𝑃𝐿[𝑥𝛼𝑡ℎ
] in Equation 4 is computed starting from 𝑥𝛼𝑡ℎ

= 𝑥̃𝛼𝑡ℎ
 and by decreasing 𝑥𝛼𝑡ℎ

 with steps 

equal or smaller than 2 MPa, depending on the investigated material. The parameter estimation is 

computed with the function fminsearch. Equation 6 is employed for the estimation of the 𝑃𝐿[𝑥𝛼𝑡ℎ
]. 

However, if Equation 6 provides an infinite value or cannot be solved, Equation 7 is automatically 

considered by the implemented algorithm. 

3. This procedure is stopped when 𝑃𝐿[𝑥𝛼𝑡ℎ
] is below the value 𝑒−

𝜒2(1;1−𝛽𝑡ℎ)

2  and close to 0 (below a 

threshold of 9 ∙ 10−3 value). The estimated 𝑃𝐿[𝑥𝛼𝑡ℎ
] points are finally interpolated with a Piecewise 

Cubic Hermite Interpolating Polynomial (PCHIP). 

4.  The 𝑥𝛼𝑡ℎ
 value that satisfies Equation 6 (𝑥𝛼𝑡ℎ,𝐿𝑅𝐶𝐼

) is the value for which the difference between the 

estimated interpolating PCHIP and the 𝑒−
𝜒2(1;1−𝛽𝑡ℎ)

2  value is minimum. This procedure is 

automatically repeated to find the 𝑥𝛼𝑡ℎ,𝐿𝑅𝐶𝐼
 for each investigated 𝑁𝑓. 

Figure 1 shows an example of the 𝑃𝐿[𝑥𝛼𝑡ℎ
] function and helps to understand the steps followed for the 

estimation of the lower bound of the fatigue strength with the LRCI method. 

 

 

Figure 1: procedure followed to find the lower bound of the fatigue strength with the LRCI method. 
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A script in Matlab has been also developed to estimate the design curves with the bootstrap method. The 

core of the bootstrap method is the simulation of the random datasets, starting from the initial statistical 

model. The ML estimates 𝜽̃ of the parameters 𝜽 is firstly estimated. Then, 𝑛𝑏 (with 𝑛𝑏 equal to the number 

of actual experimental tests) random values of 𝛼𝑡ℎ,𝐵 (in the range from 0 to 1) are generated. Thereafter, for 

each experimental stress amplitude 𝑥𝑖 (with 𝑖 ranging from 1 to 𝑛𝑏), a random value of the logarithm of 𝑁𝑓, 

𝑦𝑖,𝐵, is estimated by solving Equation 2 with respect to 𝑦𝑖,𝐵 for  𝑥 = 𝑥𝑖  and for 𝛼𝑡ℎ = 𝛼𝑡ℎ,𝐵. If the simulated 

𝑦𝑖,𝐵 is infinite or it is larger than the experimental runout number of cycles, 𝑦𝑟, then 𝑦𝑖,𝐵 is set equal to 𝑦𝑟. 

By repeating these steps 𝑛𝑏 times, a simulated dataset that mimics the original experimental dataset in terms 

of runout number of cycles, number of stress levels, and number of replications for each stress level is finally 

obtained. This simulation procedure is automatically repeated 𝑛𝑠 = 1000 times in Matlab to get 𝑛𝑠 

simulated datasets and, for each of them, the (1 − xR 100⁄ ) P-S-N curve is estimated by applying the ML 

principle. The design curves are finally obtained as described in Section 2.3. 

 

3. EXPERIMENTAL VALIDATION 

In this Section, the three investigated methodologies are compared and validated with three datasets. In 

Section 3.1, the experimental activity and the materials considered for the validation are described. In Section 

3.2, the median P-S-N curves are estimated to validate the implemented estimation procedures. In Section 

3.3, the design curves are compared, to highlight the differences between the three methodologies. In 

Section 3.4 the influence of runout specimens is investigated, by gradually reducing the number of runout 

specimens from the original datasets. In Section 3.5, finally, the capability of the three investigated 

methodologies to model the fatigue response is discussed. 

 

3.1. Experimental validation: material datasets 

The strengths and the weaknesses of the investigated methodologies for the estimation of the S-N curves 

have been verified and compared with three experimental datasets obtained at the CRF lab. All the datasets 

have been obtained with tests at three or four stress levels for estimating the finite fatigue life range and by 

applying the SC for the infinite fatigue life range. For each stress level, at least four specimens have been 

tested.  

The first tested material is a TRIP assisted bainitic steel TBC600Y980T. Fully reversed tension-compression 

tests in air enviroment at a loading frequency of 50 Hz were carried out on hourglass specimens, with runout 

set at 5 ∙ 106 cycles. Fifteen specimens were used for the staircase and seventeen specimens for the finite 

life range. The second analyzed dataset was obtained with fully reversed tension-compression tests in air 

enviroment (loading frequency of 150 Hz) on hourglass specimens made of the Aluminum alloy G-

AS7C3,5GM (runout 𝑁𝑓  at 5 ∙ 107 cycles). For this material, nineteen specimens were used for the staircase 
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and twenty-four for the finite life range. Finally, tension-compression fatigue tests in air enviroment at a 

stress ratio equal to 0.1 were carried out on the composite material Polynt SMC LP 2512 R33 (runout 𝑁𝑓  at 

1 ∙ 106 cycles and loading frequency in the range [3 − 10] Hz). Fifteen data were used for the staircase, 

whereas twenty data were used for the finite life range. It is worth noting that finite and infinite life data 

have been considered together for the estimation of the design curves with the LRCI and with the bootstrap 

method. When the modified Owen and the SC methods have been employed, the P-S-N curves have been 

obtained by truncating the linear function for the finite life range at 𝑁𝑓,𝑡, being 𝑁𝑓,𝑡 the intersection between 

the linear function for the finite fatigue life and the horizontal line for the fatigue limit at the same quantile. 

In the following, the ordinate axis of the S-N plots has been normalized for confidential reasons. Moreover, 

it must be noted that a linear decreasing trend with fatigue limit is valid and can be reliably considered for 

modelling the stress-life relationship of experimental datasets obtained through tests in air environment. 

Otherwise, the assumption of a fatigue limit can be non-conservative, with the experimental data showing a 

continuously decreasing trend without an asymptotic behavior in the HCF region. 

 

3.2. Experimental validation: Median P-S-N curves 

Fig. 1 shows the median curves, R50C50 curve, estimated with the three investigated methodologies for the 

three tested materials. In particular, Fig. 2a is for the TBC600Y980T steel (“steel” in the following), Fig. 2b is 

for the G-AS7C3,5GM Aluminium alloy (Al alloy in the following), and Fig. 2c is for the composite material 

Polynt SMC LP 2512 R33 (Polynt composite in the following). In the following figures, “O+SC” refers to the 

curves estimated with the Modified Owen (O) method for the finite fatigue life range and with the staircase 

(SC) for the infinite life range; LRCI refers to curves estimated with the LRCI methods; Bootstrap refers to the 

curves estimated with the Bootstrap method.  

 

  
(a) (b) 
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(c) 

Figure 2: comparison of the median curve to verify the effectiveness of the implemented procedures for 

parameter estimation: a) TRIP assisted bainitic steel TBC600Y980T; b) Aluminum alloy G-AS7C3,5GM; c) 

Polynt SMC LP 2512 R33. 

 

According to Fig. 2, the differences between the estimated median curves are limited, regardless of the 

material. The curves tend to overlap, with a similar slope in the finite life region and the same median fatigue 

limit value. As expected, the transition between the finite fatigue life region is smooth for the curves obtained 

through approaches based on the ML principle, whereas it shows a stepped trend for the curve obtained 

with the O+SC. The median P-S-N curves estimated with the bootstrap method overlap the median curve 

estimated with the ML approach, thus highlighting that the number of simulated datasets, i.e. 1000 datasets, 

is appropriate. This has been further verified in Fig. 3: Fig. 3a shows the median curve for the Polynt material 

estimated with the bootstrap method by considering 1000 datasets and 10000 datasets and the median 

curve estimated with the ML approach. 

 

Figure 3: influence of the number of simulated datasets with the bootstrap method (median P-S-N curve for 

the Polynt material). 

 

According to Fig. 3, 1000 simulated datasets permit to properly estimate the median P-S-N curves, with no 

differences with the curve estimated with 10000 datasets and that estimated with the ML. Accordingly, in 
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the following analysis, the estimation of the design curves with the bootstrap method has been carried out 

by simulating 1000 datasets, since 10000 simulated datasets do not improve the results, but significantly 

increase the computation time.  

 

3.3. Experimental validation: Design curves 

In this Section, the design curves are compared. In particular, the R90C90 curves, of interest for industrial 

applications, have been estimated with the three investigated methodologies. Fig. 4 compares the R90C90 

curves for the three analyzed materials: Fig. 4a is for the TBC600Y980T steel, Fig. 4b is for the G-AS7C3,5GM 

Aluminium alloy, and Fig. 4c is for the Polynt SMC LP 2512 R33 composite material. 

 

  
(a) (b) 

 
(c) 

Figure 4: comparison of the R90C90 curve to verify the effectiveness of the parameter estimation: a) TRIP 

assisted bainitic steel TBC600Y980T; b) Aluminum alloy G-AS7C3,5GM; c) Polynt SMC LP 2512 R33. 

 

According to Fig. 4, the design curves estimated with the three investigated methods are below the 

experimental failures, apart from 1 datapoint for the steel and the Polynt material and two datapoints for 

the Aluminum alloy. A more conservative choice of the R or C values would ensure a larger safety margin 

with respect to failures for the three methodologies. In the finite life region, the design curves are close and 
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have similar trends and slopes, with the LRCI design curves slightly below the other design curves. Close to 

the transition point, i.e., the ideal point that discriminates between the finite fatigue life region and the 

infinite fatigue life region, the curve estimated with the O+SC approach is below the other curves. This can 

be justified by considering that this point is estimated by combining two approaches and two separate 

estimations for the finite and the infinite fatigue life range, whereas with the other methods the transition 

between these two life ranges is smoother since a unique model for both regions is considered. The 

difference between the three approaches increases in the infinite life range. The fatigue limits computed 

with the SC+O and the bootstrap methods overlap for the steel and the Aluminium alloy. On the other hand, 

for the Polynt material, the fatigue limit estimated with the Bootstrap method is the largest. In general, the 

R90C90 fatigue limit estimated with the LRCI is the smallest for the three investigated materials, with 

differences ranging from 0.9% for the steel up to about 3.4% for the composite Polynt. It is worth noting 

that it is not possible to assess which methodology is better or permits for a more reliable estimation, since 

the real values of the population are not known. However, general conclusions can be drawn. In the finite 

life region, the three investigated methodologies provide similar trends with limited differences, whereas the 

difference tends to increase in the infinite life range, with the fatigue limit estimated with the LRCI generally 

below those estimated with the other two methodologies.  

A further analysis on the design curves for the Polynt material has been carried out. Indeed, according to Fig. 

4, the design curve estimated with the Bootstrap method shows a stepped transition between the finite and 

the infinite fatigue life. This trend can be justified by analyzing the 1000 simulated datasets (Fig. 5a) and the 

corresponding estimated R90 curves (Fig. 5b). 

  
(a) (b) 

Figure 5: analysis of the simulated datasets for the estimation of the design P-S-N curves of the composite 

Polynt with the bootstrap method: a) 1000 simulated datasets; b) 1000 estimated P-S-N curves. 

 

According to Fig. 5b, depending on the simulated dataset (Fig. 5a), the trend of the estimated curve changes. 

Indeed, the simulated curves can show a smooth transition between the finite and the infinite, a stepped 

transition or a continuous decreasing trend. Accordingly, by considering that the curves with a stepped 
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transition are the curves close to the lower bound of the confidence interval, the transition between the two 

life ranges for the R90C90 curve can be more stepped than that of the median curve (Fig. 2). The number of 

simulated datasets has been also increased to verify if it influences the trend of the curve, but no differences 

between the curves estimated with 1000 and 10000 datasets have been found. 

 

3.4. Experimental validation: influence of runout specimens on the design curves 

In the present Section, the influence of runout data on the design curves estimated with the investigated 

methodologies is verified. Runout specimens are important data in the analysis of the fatigue response. 

Indeed, they are the most time-consuming experimental tests. If the loading frequency is not high, as for 

composite materials, the time needed to obtain a runout can be high. Depending on the model and on the 

estimation method, they can be discarded or not considered in the analysis. For example, the least square 

method does not permit to consider runout data, missing the information they contain. With the SC method, 

at least 6 − 8 runout data must be experimentally found, and this could significantly increase the test 

duration. These considerations highlight the importance of exploiting and maximizing the information 

contained in runout data and, at the same time, of minimizing their numerousness, thus increasing the test 

efficiency without affecting the design curve reliability. Accordingly, a tradeoff between the number of 

runout specimens to be considered for a safe estimation of the design curves and for reducing the test 

duration must be found.  

Two analyses have been carried out in the following: in the first analysis, the number of runout specimens 

has been gradually reduced by removing, from the original datasets, all the runout specimens above a defined 

threshold (Section 3.4.1). In Section 3.4.2, a subset of the data used for the SC has been considered and the 

Modified staircase method in [17] has been used for the computation of the fatigue limit. 

 

3.4.1. Influence of runout specimens: removal of runout data below a threshold 

In the first analysis, the number of runout specimens is gradually reduced. In particular, all the runout data 

below a defined threshold are eliminated from the SC datasets. Figure 6 helps to understand the procedure 

followed. 
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Figure 6: analysis of the influence of the runout specimens: removal of the runout data below a defined 

threshold from the SC dataset. 

 

According to Fig. 6, the runout stress amplitudes, 𝑠𝑎𝑅, are arranged in ascending order. Thereafter, starting 

from the smallest runout stress amplitude, 𝑠𝑎𝑅,1, all the runout data below or equal to 𝑠𝑎𝑅,1 are removed 

from the SC dataset. Thereafter, according to Figure 6, the second subset is obtained by removing from the 

SC dataset  all the runout data below or equal to 𝑠𝑎𝑅,2. This procedure is repeated until at least one runout 

data is available in the subset. If no runout data are available, the procedure is stopped. The design curves 

with the LRCI and the bootstrap methods are estimated by considering the reduced datasets and following 

the procedures described in Section 2. On the other hand, since the staircase method cannot be applied if 

the number of valid data is below 15 (or if the data have not been collected according to the prescribed 

sequential procedure [18, 31]), the parameters of the distribution of the fatigue limit have been estimated 

by applying the ML Principle [31]. It must be noted that in the analyzed subsets, the remaining failures are 

concentrated near the fatigue limit, thus facilitating the estimation. This situation is unlike in real tests, since 

only with the SC approach runout and failure data can be concentrated near the fatigue limit. However, this 

analysis permits to estimate a fatigue limit that can be compared with those estimated with the other two 

methods. 

Fig. 7 shows the design curves estimated by considering the failures and the runout data above the 0.87 (Fig. 

7a) and the 0.88 (Fig. 7b) values for the investigated steel material. In the following, O+ML refers to the 

design curves obtained with the Modified Owen method for the finite life range and with the ML approach 

or the infinite life range [31]. 
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(a) (b) 

Figure 7: influence of the numerousness of runout data on the design curves (R90C90) estimated with the 

three investigated methodologies for the steel material: a) dataset without runout data below the 0.87 value; 

b) dataset without runout data below the 0.88 value. 

 

Table 1 summarizes the results of this analysis. If a clear asymptotic trend is not found, the fatigue strength 

at the runout number of cycles has been considered.  

 

 

 

 

Table 1: summary of the analysis on the influence of runouts on the design curves of the investigated steel 

material. 

 All data 
1st subset 

(0.87 threshold) 
2nd subset 

(0.88 threshold) 

Saved runout specimens 0 2 6 

Left runout specimens 8 6 2 

Time saved 0 
2 days 

8 hours 
6 days 

23 hours 

Fatigue limit O+ML 0.86 0.88 0.86 

Fatigue limit LRCI 0.86 0.85 0.78 

Fatigue limit Bootstrap 0.86 0.86 0.80 

 

According to Fig. 7 and Table 1, by considering the 0.87 threshold, the fatigue limit slightly increases if 

computed with the O+ML approach, it slightly decreases by applying the LRCI approach, whereas it does not 

change if computed with the bootstrap method. The design curves computed with the LRCI approach are still 

below the other curves. Two runout specimens are removed from the analysis, with a saved testing time 
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larger than two days. On the other hand, when only the runout data above the 0.88 threshold are considered, 

the design curves estimated with the LRCI approach and the bootstrap methods do not show an asymptotic 

trend, whereas they show a continuous decreasing trend with a slope similar to that of the design curve 

computed with the O+SC approach. With the O+ML method, the presence of an asymptote is assumed, even 

if the experimental data do not show a clear fatigue limit. On the other hand, with the LRCI and the bootstrap 

methods, the trend of the curves is not assumed, but depends on the experimental data. Or better, an 

asymptotic trend cannot fit the experimental data with the selected confidence level. In Table 1 the fatigue 

strength at the runout number of cycles is compared with the fatigue limit estimated with the O+ML method. 

This explains the large differences between the lower bound of the fatigue limit estimated with the three 

methods. It must be noted that the trend found with the LRCI and the bootstrap methods (Fig. 6) does not 

demonstrate that the tested material is not characterized by an asymptotic trend, but, on the contrary, that 

the available data do not permit to assess if the curve shows an asymptotic trend with the selected 

confidence level. 

Fig. 8 shows the design curves estimated by considering all failures and runout data above the 0.4 (Fig. 8a), 

the 0.53 (Fig. 8b), the 0.57 (Fig. 8c) and 0.60 (Fig. 8d) thresholds for the investigated Al material.  

 

  

(a) (b) 

  

(c) (d) 
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Figure 8: influence of the runout data numerosity on the design curves (R90C90) estimated with the three 

investigated methodologies for the Al material: a) runout specimens above 0.4; b) runout specimens above 

0.53; c) runout specimens above the 0.57; d) runout specimens above 0.60. 

 

Table 2 summarizes the results of the analysis on the influence of runout specimens on the design curves. 

 

Table 2: summary of the analysis on the influence of runout data on the design curves of the investigated Al 

material. 

 All data 
1st subset 

(0.40 threshold) 

2nd subset 

(0.53 threshold) 

3rd subset 

(0.57 threshold) 

4th subset 

(0.60 threshold) 

Saved runout specimens 0 1 2 6 9 

Left runout specimens 10 9 8 4 1 

Time saved 0 
3 days 

20 hours 

7 days 

17 hours 

23 days 

3 hours 

43 days 

17 hours 

Fatigue limit O+ML 0.51 0.51 0.56 0.53 0.50 

Fatigue limit LRCI 0.51 0.51 0.49 0.30 0.22 

Fatigue limit Bootstrap 0.52 0.52 0.52 0.39 0.24 

 

According to Figs. 8a and 8b and to Table 2, by removing less than two runout specimens at small stress 

amplitude, the lower bound of the fatigue limit computed with the LRCI and the Bootstrap is not strongly 

influenced, with a null or a limited variation. However, due to the high runout number of cycles (5 ∙ 107), the 

testing time is significantly reduced, with the test duration reduced by almost 8 days. On the other hand, the 

fatigue limit computed with the O+ML method significantly increases (about 10% increment). By considering 

the runout above the 0.57 threshold, the LRCI and the bootstrap methods still fit the data with a model that 

includes an asymptote, but the estimated fatigue limits are significantly below the fatigue limit computed 

with the O+ML approach. On the other hand, for the fourth subset, only one runout is available and the 

dataset does not contain enough information to assess if the curve shows an asymptotic behaviour with high 

confidence. The fatigue limit estimated with the O+ML is less affected by the runout numerousness. This 

could be justified by considering that failures are concentrated near the fatigue limit. In real tests, it is unlikely 

or rather hard to concentrate failures close to the fatigue limit, without obtaining runout data. However, this 

proves that the fatigue limit can be properly estimated with the ML by considering datasets with a number 

of runout data smaller than that required by the SC approach. 

Fig. 9 shows the design curves estimated by considering all the failures and the runout specimens above the 

0.4 (Fig. 9a), the 0.45 (Fig. 9b) and the 0.5 (Fig. 9c) value for the investigated composite Polyint materials. 
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(a) (b) 

 

(c) 

Figure 9: influence of runout specimens on the design curves (R90C90) estimated with the three investigated 

methodologies for the composite Polynt material: a) runout specimens above 0.4; b) runout specimens above 

0.45; c) runout specimens above the 0.50. 

 
Table 3 summarizes the results of the analysis on the influence of runout data on the design curves of the 

investigated composite Polynt material. 

 

Table 3: summary of the analysis on the influence of runouts on the design curves of the investigated 

Polynt material. 

 All data 
1st subset 

(0.40 threshold) 

2nd subset 

(0.45 threshold) 

3rd subset 

(0.50 threshold) 

Saved runout specimens 0 1 3 8 

Left runout specimens 9 8 6 1 

Time saved 0 
1 day 

16 hours 

4 days 

23 hours 

13 days 

6 hours 

Fatigue limit O+ML 0.44 0.44 0.47 0.41 

Fatigue limit LRCI 0.42 0.42 0.40 0.30 

Fatigue limit Bootstrap 0.45 0.45 0.43 0.33 



 

22 
 

 

According to Fig. 9a and to Table 3, as for the steel and the Al material, the removal of one runout at small 

stress amplitude has no influence on the lower bound of the fatigue limit, but the testing time can be 

significantly reduced (about 2 days). On the other hand, as the number of runout data is reduced, the lower 

bound of the fatigue limit tends to decrease (Fig. 9b) and it is not found in Fig. 9c with the LRCI and the 

bootstrap methods. Accordingly, the fatigue strength computed at the runout number of cycles is 

significantly smaller than the fatigue limit computed with the O+ML method, whose variation is limited.  

The analysis carried out in this Section proved that the number of runout specimens can be reduced even 

below seven, as required by the SC approach. However, for the datasets characterized by a limited number 

of runout data (less than five, depending on the dataset), the design curves estimated with the LRCI and the 

Bootstrap approaches do not show a clear asymptotic trend. This means that there are no sufficient proofs 

to model an asymptotic trend with high confidence. By separately estimating the finite fatigue life trend with 

the modified Owen method and trend in the infinite life range with the ML, an asymptotic trend is assumed 

and thus modeled. The estimated lower bound of the fatigue limit is slightly affected by the runout 

numerousness and it does not vary too much with respect to that estimated with the complete SC dataset, 

provided that the experimental failures are concentrated close to the asymptote of the curve (improbable 

experimental occurrence). 

 

3.4.2 Influence of runout specimens: fatigue limit estimated with the “Modified staircase method” 

In this Section, a second analysis on the influence of runout specimens is carried out. Fig. 10 shows the 

procedure followed to reduce the number of runout specimens in the SC dataset. 

 

 

Figure 10: procedure for reducing the number of runout specimens in the SC datasets, with the fatigue limit 

estimated with the Modified staircase method [4]. 
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According to Fig. 10, two subsets are considered. The first subset considers the first six data obtained with 

the SC approach, whereas with the second subset the first ten data in the SC dataset are included. The 

modified staircase method defined in the ISO standard [17] has been applied to compute the lower bound 

of the fatigue limit from the data contained in these subsets. According to [17], this procedure can be applied 

on datasets collected following the SC sequential procedure. The datasets can contain less than fifteen 

specimens required by the SC approach, provided that the standard deviation of the fatigue limit to be 

estimated is known. Therefore, with the procedure followed in Fig. 10, the modified staircase method can be 

applied. In the following, the standard deviation of the fatigue limit is assumed equal to the standard 

deviation estimated with the SC approach by considering the whole dataset. This ensures the application of 

this method. Moreover, the lower bound of the fatigue limit is estimated according to Equation 1: the 

multiplicative 𝑘 coefficient has been retrieved from the “Statistical Tables” in [17]. 

Fig. 11 shows the design curves estimated with the investigated approaches for the steel material: Fig. 11a is 

for the first subset and Fig. 11b is for the second subset.  

 

  

(a) (b) 

Figure 11: analysis of the influence of runout specimens on the design curves of the steel material, by 

considering two reduced subsets and estimating the fatigue limit with the [17]; a) first subset (6 data); b) 

second subset (10 data). 

 

Table 4 summarizes the results of the second analysis on the influence of runout specimens on the design 

curves of the investigated steel material. In the following, the “Saved time” has been computed by 

considering both the failures and runout removed. 
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Table 4: summary of the second analysis on the influence of runout data on the design curves of the 

investigated steel material. 

 All data 6 data 10 data 

Saved runout specimens 0 4 2 

Left runout specimens 9 4 6 

Saved time 0 
5 days 

1 hours 

2 days 

15 hours 

Fatigue limit O+ML 0.86 0.86 0.87 

Fatigue limit LRCI 0.86 0.88 0.86 

Fatigue limit Bootstrap 0.86 0.88 0.87 

 

According to Fig. 11 and to Table 4, for both the investigated subsets, the three models show a decreasing 

trend ending with an asymptote. The variation of the fatigue limit is limited and close to that obtained with 

the whole dataset. Even with a number of data smaller than that required for a proper application of the 

staircase method, it is thus possible to assess an asymptotic trend with high confidence, with more than five 

days of tests saved. 

Fig. 12 shows the design curves estimated with the investigated approaches for the Al material: Fig. 12a is 

for the first subset and Fig. 12b is for the second subset. 

 

  

(a) (b) 

Figure 12: analysis of the influence of runout specimens on the design curves of the Al material, by 

considering two reduced subsets and estimating the fatigue limit with the [17]; a) first subset (6 data); b) 

second subset (10 data). 

 

Table 5 summarizes the results of the second analysis on the influence of runout specimens on the design 

curves of the investigated Al material. 
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Table 5: summary of the second analysis on the influence of runouts on the design curves of the 

investigated Al material. 

 All data 1st subset 2nd subset 

Saved runout specimens 0 7 5 

Left runout specimens 10 3 5 

Saved time 0 
24 days 

2 hours 

16 days 

3 hours 

Fatigue limit O+ML 0.51 0.48 0.51 

Fatigue limit LRCI 0.51 0.53 0.53 

Fatigue limit Bootstrap 0.52 0.56 0.54 

 

According to Fig. 12 and Table 5, the reduction of the dataset numerousness does not affect the shape of the 

design curves, with the three models showing a linear decreasing trend ending with an asymptote. The LRCI 

and the Bootstrap approaches provide similar values for the fatigue limit, with the latter providing the highest 

values. The differences between the lower bound of the fatigue limit computed with the three investigated 

methodologies tend to reduce as the number of data increase (2nd subset). The saved time is significant. For 

the first subset, i.e., by considering 6 data, about 24 days of tests are saved.  

Finally, Fig. 13 shows the design curves estimated with the investigated approaches for the composite Polynt 

material: Fig. 13a is for the first subset and Fig. 13b is for the second subset. 

 

  

(a) (b) 

Figure 13: analysis of the influence of runout specimens on the design curves of the composite Polyint 

material, by considering two reduced subsets and estimating the fatigue limit with the [17]; a) first subset (6 

data); b) second subset (10 data). 

 

Table 6 summarizes the results of the second analysis on the influence of runout specimens on the design 

curves of the investigated composite Polynt material. 
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Table 6: summary of the second analysis on the influence of runouts on the design curves of the 

investigated composite Polyint material. 

 All data 6 data 8 data 

Saved runout specimens 0 5 3 

Left runout specimens 9 3 5 

Saved time 0 
7 days 

7 hours 

3 days 

24 hours 

Fatigue limit O+ML 0.44 0.43 0.44 

Fatigue limit LRCI 0.42 0.42 0.46 

Fatigue limit Bootstrap 0.45 0.48 0.49 

 

According to Fig. 13 and Table 6, the trend already found for the other tested material is confirmed. Indeed, 

by considering the two datasets, a model with an asymptotic trend is found to be appropriate for the 

experimental data. The time saved is up to about eight days with the first subset. The bootstrap method 

provides the largest values of the lower bound of the fatigue limit, whereas the lower bound of the fatigue 

limit estimated with the LRCI approach is the smallest by considering the first subset and above the value 

computed with the O+ML by considering the second subset. 

To conclude, a general trend cannot be inferred from this analysis. However, in four out of six cases, the 

lower bound of the fatigue limit estimated with the bootstrap method tends to be largest, but this depends 

on the dataset and on the distribution of the data in the S-N plot. Moreover, differently from the analysis 

carried out in Section 3.4.1, an asymptotic trend at the end of the finite life range has been always found. In 

this second analysis, a set of data is concentrated close to the median fatigue limit and at least two runout 

specimens for each subset of data have been considered, highlighting the importance of an appropriate 

testing design and of runout data to discriminate if the experimental dataset shows an asymptotic or a 

continuous decreasing trend. Moreover, this analysis confirms that the runout numerousness can be limited, 

or better, optimized with a proper test design, without affecting the results. 

 

3.5 Discussion 

The results of the analysis carried out in previous Sections are here summarized and discussed. In general, 

the O+SC method is of simple implementation and the design curves can be easily assessed through the 

application of the least square method for the finite fatigue life range and by applying simple formulas for 

the infinite life range. On the other hand, the LRCI and the Bootstrap approaches for the estimation of the 

lower bound of the P-S-N curves require a more difficult implementation. For the LRCI approaches, an 

optimization algorithm should be used and an automated iterative procedure should be implemented. 

Moreover, optimization algorithms implemented in commercial software, like the fminsearch algorithm in 

Matlab®, required an initial guess of the parameters to be estimated. A not-appropriate choice of these initial 
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values can affect the final estimation, i.e., a local minimum in place of the global minimum of the Likelihood 

function can be found. This complexity concerning the implementation of the LRCI method has limited its use 

in the analysis of fatigue data [37]. Moreover, the optimization process should be repeated iteratively in 

order to properly estimate the 𝑃𝐿[𝜃1] function (Equation 4), and this affects the computational time. 

However, with the proper programming strategy, the estimation time can be limited (e.g., less than five 

minutes for more than fifty points in the considered life range). On the other hand, one of the major 

weaknesses associated with the bootstrap method is the “computational time” for the estimation of the 

design curves. Indeed, according to Section 3.2, at least 1000 datasets should be simulated and, for each of 

them, the P-S-N curves are estimated through an optimization process and by numerically solving Equation 

2 (e.g., with the fzero function in Matlab), thus affecting the computational time. Accordingly, even if the 

implementation of the methodology is not that complicated, i.e., the procedure for the parameter estimation 

with the ML principle is implemented one time and then repeated iteratively and automatically, the time for 

the estimation of the design curve can be larger than fifteen minutes, depending on the computational 

power. 

The investigated methods have proved to be effective in the estimation of the linear decreasing trend in the 

finite life region and of an asymptotic trend in the infinite fatigue life range. In the finite fatigue life range, 

the trend has been found to be similar, with the slope of the curve being very close. On the other hand, in 

the infinite life range, the LRCI method has proved to be the most conservative, since the lower bound of the 

fatigue limit has been found to be always below that computed with the other methodologies when the 

whole datasets have been considered. However, since the real value of the fatigue limit is not known, i.e., 

the constant coefficients have been estimated by considering the experimental sample and not the entire 

population, it cannot be concluded that the LRCI method provides the most conservative estimation, but only 

that the estimated LRCI design curves are generally below those estimated with the other investigated 

methods. It is must be noted that the objective of the SC method is to assess the fatigue strength at the 

runout number of cycles [18, 32], but, in industrial applications, it is used in combination with the Owen 

method to assess the fatigue limit, i.e., of the asymptotic trend of the curve.  

Another important aspect to be discussed is the capability of the models to assess the real trend of the 

experimental data in the S-N plot. The three investigated approaches can model a linear decreasing trend 

ending with an asymptote. However, with the O+SC approach, this trend is always found, since the 

parameters of the distribution of the fatigue life in the finite and infinite region are estimated separately and 

a fatigue limit is forcibly assumed. On the other hand, with the LRCI and the Bootstrap approaches,  based 

on the model in Equation 2, the parameter estimation is carried out by considering the whole dataset, 

without separating it in subsets for the finite and the infinite fatigue life region. These approaches, based on 

the ML principle, are more flexible and can adapt to the experimental datasets. For example, as shown in 

Section 3.4.1, the estimated design curves can show a linear decreasing trend with or without a fatigue limit, 
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depending on the analyzed dataset. This does not mean that the investigated material has not a fatigue limit, 

but that a linear decreasing trend is more appropriate for the experimental data with the selected high 

reliability and confidence. This represents an important strength of the methods based on the ML principle 

that do not force the design curves to end with an asymptotic trend.   

The above-analyzed results provide interesting indications on the testing strategy to be followed and on the 

runout numerousness. As discussed above, with the O+SC an asymptote at the end of the curve is assumed, 

even if a continuous decreasing trend is more appropriate for the experimental data. In general, if 

experimental failures occur at a number of cycles to failure significantly smaller than the runout number of 

cycles, the design curves estimated with the LRCI and the Bootstrap show an asymptotic trend. In order to 

discriminate if a linear trend ending with an asymptote properly fits the experimental data, the experimental 

campaign should be properly designed. Indeed, Section 3.4.2 has proved that the sequential approach 

proposed in the SC permits to verify the occurrence of a fatigue limit and that less than fifteen data provide 

reliable results. For example, with six data, among which at least two runout data at two stress levels, the 

lower bound of the fatigue limit close to that obtained with the whole dataset has been found, but the testing 

time has been significantly reduced. For the application of the modified SC method [17] with less than fifteen 

data, the step should be as close as possible to the standard deviation of the fatigue limit and should be 

known before the tests. These parameters are generally not known before the tests and should be verified 

after the tests. On the other hand, with the LRCI and the Bootstrap methods, there are no restrictions or 

rules to be followed and the experimental tests should be carried out without the need of assuming material 

parameters before the tests. For example, an optimized and suggested testing strategy would involve 

collecting less than ten data following a sequential approach to verify the occurrence of a fatigue limit and 

thereafter performing tests in the finite life range according to the International Standards [17]. 

One of the weaknesses of the LRCI and the Bootstrap approaches is that an analytical solution for the design 

curves is not obtained, and a closed-form equation for the design curve cannot be estimated, as for the O+SC 

method. This would prevent the use of the design curves estimated with the LRCI and the Bootstrap 

approaches in finite element code that have implemented a Basquin’s model for the finite fatigue life range. 

However, this criticality can be easily overcome, for example, by interpolating the data points for the lower 

bound curves estimated with the LRCI and the Bootstrap approaches in order to find the best linear fit for 

the finite fatigue life range.  

Table 7 summarizes the results of the analyses carried out in the paper, ranking the properties and the 

characteristics of the investigated methodologies with the symbol +.  
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Table 7: Strengths and weaknesses of the investigated methodologies. 

 
Ease of 

estimation 

Computational 

time 

Indications on 

the real trend 

Limitations/a 

posteriori 

verifications 

Use for FE 

code 

O+SC ++++ ++++ + + ++++ 

LRCI + ++ ++++ ++++ +++ 

Bootstrap ++ + ++++ ++++ +++ 

 

In particular, “++++” indicates a high level for the investigated property (or a strength of the methodology), 

whereas “+” indicates a low level (or a weakness). 

 

4. CONCUSIONS AND OBSERVATIONS 

In the paper, three methodologies for the estimation of the fatigue design curves from experimental data 

showing a linear decreasing trend ending with an asymptote, i.e., the so-called fatigue limit, have been 

compared. The design curves showing this trend are of particular interest in industrial applications for 

components subjected to loads in the High-Cycle Fatigue (HCF) life range. In the paper, the design curve is 

the lower confidence bound of a high-reliability quantile P-S-N curve. The design curves estimated with the 

modified Owen (finite life range) and the staircase method in the infinite life range (O+SC), by considering 

the likelihood ratio confidence interval of a specific quantile P-S-N curve (LRCI) and with a method based on 

the bootstrap approach (bootstrap in the following) were compared. The investigated methodologies and 

their effectiveness were validated with experimental datasets obtained by testing three different materials: 

a steel, an Alluminium alloy and a composite material. It is worth noting that the results obtained in the paper 

provide useful indications for the design of fatigue tests and on the strength and the weaknesses of the three 

investigated methodologies, but a larger number of datasets, experimental or simulated, are necessary to 

reliably generalize the main findings of this work. 

 

The following conclusions and observations can be drawn: 

a) The three methods have proved effective in modelling the P-S-N curves, with the median curves 

found to be in agreement with the experimental data. The O+SC methodology is of easy 

implementation and the design curves can be easily obtained according to well-established 

procedures. The implementation of the LRCI approach is rather complicated and a proper iterative 

algorithm must be developed and implemented. The implementation of Bootstrap method is 

simpler, but the random simulation of at least 1000 datasets requires a computational time 

significantly larger than that required by the other investigated methods. 
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b) In the finite fatigue life region, the three investigated methods have provided similar trends and 

slopes of the curve. On the other hand, the lower bound of the fatigue limit estimated with the LRCI 

has been found in general below that estimated with the other investigated methodologies. It is not 

possible to establish which methodology permits a more reliable estimation of the P-S-N curve, since 

the real design curve is not known. 

c) Generally, when the O+SC methodologies have been employed, an asymptotic trend of the design 

curves at small stress amplitude was assumed and modeled. Otherwise, the modified Owen method 

was enough to assess the stress-life relationship, without a time-consuming staircase. However, 

depending on the dataset, this assumption can be risky, since the experimental data can show a 

continuously decreasing trend without a fatigue limit. On the other hand, with the LRCI and the 

Bootstrap methodologies, the employed general model can adapt to the experimental data and 

model the linear decreasing trend both with or without a final asymptote, without any a-priori 

assumptions on the data trend.  

d) The influence of the runout numerousness has been also investigated. Runout specimens are the 

most time-consuming data and significantly affect the testing time. Accordingly, the information they 

contain should be fully exploited and maximized. Runout data have been found to be fundamental 

to assess if a model with a fatigue limit is appropriate for the investigated dataset. In particular, at 

least one runout data at two different stress amplitudes should be experimentally found to verify the 

occurrence of a fatigue limit with high reliability or confidence. However, it has been also shown that 

the number of runout data can be reduced with respect to that required for the application of the 

SC method, significantly limiting the testing time. 

e) With the LRCI and the Bootstrap methodologies, there is no need to verify the testing parameters 

after the tests (e.g., with the SC approach the employed step is to be verified after the tests) and all 

the experimental results can be considered together, without the need of differentiating the datasets 

for the finite and the infinite life range. This ensures more freedom in the design of the experimental 

activity. With the LRCI and the Bootstrap methodologies, a procedure that requires less than ten 

specimens (six can be appropriate) tested with a sequential approach, to verify the occurrence of the 

fatigue limit, and tests in the finite life range according to the indications provided by International 

Standards would permit to estimate design curves with a limited testing time. 
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