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Abstract

Enabling On-Device Learning (ODL) for Ultra-Low-Power Micro-Controller Units (MCUs) is a key step for post-deployment
adaptation and fine-tuning of Deep Neural Network (DNN) models in future TinyML applications. This paper tackles this challenge
by introducing a novel reduced precision optimization technique for ODL primitives on MCU-class devices, leveraging the State-
of-Art advancements in RISC-V RV32 architectures with support for vectorized 16-bit floating-point (FP16) Single-Instruction
Multiple-Data (SIMD) operations. Our approach for the Forward and Backward steps of the Back-Propagation training algorithm
is composed of specialized shape transform operators and Matrix Multiplication (MM) kernels, accelerated with parallelization and
loop unrolling. When evaluated on a single training step of a 2D Convolution layer, the SIMD-optimized FP16 primitives result up
to 1.72× faster than the FP32 baseline on a RISC-V-based 8+1-core MCU. An average computing efficiency of 3.11 Multiply and
Accumulate operations per clock cycle (MAC/clk) and 0.81 MAC/clk is measured for the end-to-end training tasks of a ResNet8
and a DS-CNN for Image Classification and Keyword Spotting, respectively – requiring 17.1 ms and 6.4 ms on the target platform
to compute a training step on a single sample. Overall, our approach results more than two orders of magnitude faster than existing
ODL software frameworks for single-core MCUs and outperforms by 1.6 × previous FP32 parallel implementations on a Continual
Learning setup.

Keywords: Parallel Computing, Computer Architecture, Open Source Software, Open Architecture Platforms, Deep Learning

1. Introduction

In recent years, the Internet-of-Things (IoT) ecosystem has
been enriched by tiny battery-powered devices that can capture
and locally analyze the sensed data [1, 2]. Notable examples in-
clude smart cameras for face recognition [3], nano-drones with
autonomous navigation capabilities [4], hearable aids featuring
noise cancelling [5], wearable healthcare devices [6] or smart
agriculture [7] systems, and more. To cope with the severely
constrained energy budget and the form factor requirements,
these smart devices rely on MicroController Units (MCUs) as
their main computational unit for processing the data coming
from the tightly coupled sensors. Differently from more capable
engines such as edge GPUs or mobile-class CPUs (e.g., ARM
Cortex-A multi-cores), MCUs present a power envelope lower
than a few hundred mW to comply with battery-powered oper-
ation. On the other side, running complex processing pipelines,
i.e., based on modern Deep Neural Networks (DNNs), on these
platforms can be extremely challenging because of the limited
compute and memory budget, which typically amounts to only
a few MBs of on-chip memory [8].

Email addresses: davide.nadalini@polito.it,
d.nadalini@unibo.it (Davide Nadalini),
manuele.rusci@esat.kuleuven.be (Manuele Rusci),
lbenini@iis.ee.ethz.ch (Luca Benini), f.conti@unibo.it (Francesco
Conti)

The commonly adopted design flow to bring DNN inference
models to low-power MCUs is composed of an initial training
phase, typically performed in a GPU-equipped data-center ma-
chine, followed by the deployment of the frozen trained model
on the end-point device. This rigid scheme, indicated as train-
once-deploy-everywhere, has started to be questioned because
of the lack of robustness observed when testing smart devices
in the real world. A major error source concerns the nature of
the data sensed in the field that differs substantially from the
training data, e.g., when a device is sensing an unknown en-
vironment not well-represented in the train set [9]. Because
of this mismatch, the prediction accuracy can be drastically re-
duced compared to the accuracy scored on the test dataset used
at design time. Transfer Learning [10] or recently proposed
Continual Learning [11] techniques address this issue by fine-
tuning the trained DNN, i.e., updating the model coefficients,
over new data coming from a new domain. Unfortunately, these
adaptive solutions cannot scale if relying on external servers for
the training tasks, considering that every individual device can
face a different domain that may be subjected to rapid changes.

To address this challenge, we focus on the On-Device Learn-
ing (ODL) paradigm [12]. According to this, end-point devices
rely on the local compute capacity for the (incremental) learn-
ing task rather than running inference-only workloads. Instead
of continuously exchanging data and parameters between nodes
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and a central server for the DNN model updates, the ODL pol-
icy reduces communication costs and lowers the workload on
the server side. Additionally, ODL brings benefits to bypass
major privacy concerns: local execution prevents the sharing of
personal (labeled) data to third-parties cloud services used for
the training process.

All these points motivate us to address the fundamental re-
search question concerning the feasibility of On-Device Learn-
ing on low-end IoT devices powered by tiny edge devices
such as MCUs. We refer to a learning scheme using the
Back-Progagation (BP) algorithm, a gradient-based optimiza-
tion strategy typically used for DNN training. Several recent
works targeting resource constrained devices addressed this
problem by introducing hard restrictions to the BP algorithm.
The TinyOL framework[13] and the STM32 NanoEdge AI Stu-
dio1, for example, enable learning on MCU by updating the
parameters - i.e. fine-tuning - either of only the last layer of
the deployed DNN, or in limited scenarios, with respect to in-
field data. Here, the BP computation leverages full-precision
floating-point (FP32) arithmetic. The rest of the model, pre-
viously quantized to low-bitwidth, is kept frozen. Restricting
training to the last layer drastically reduces the expressiveness
of the method, i.e., the complexity of what can be learned, lim-
iting the overall effectiveness. On the other hand, Tiny Training
Engine [14] applies gradient scaling to use 8-bit arithmetic for
the backward pass in combination with a sparse weight update
logic. This approach covers the entire network but still com-
promises between the training complexity and its efficacy; the
algorithm cannot have, therefore, the same general applicabil-
ity as conventional BP. Only a recent work, AIfES2, has focused,
instead, on deploying the full BP algorithm on MCU. This li-
brary covers several full-precision operators, emphasizing com-
pleteness at the expense of speed, as it does not support any op-
timization for multi-core execution, optimal loop unrolling, and
half-precision floating-point execution.

In this work, we explore the feasibility of Back-Propagation-
based ODL on an ultra-low-power device from a novel per-
spective, providing an in-depth exploration of software-based
optimization strategies to accelerate the full BP algorithm for
multi-core MCUs at the frontier of the State-of-the-Art. First,
we propose a comprehensive computational analysis of the ba-
sic primitives required for training a DNN on an MCU, decom-
posing them in shape transform operations (e.g., Im2Col) com-
bined with Matrix Multiplications (MM) – essentially, extend-
ing to training the work conducted by Lai et al. [15] for DNN in-
ference. Second, leveraging recent advances in MCU architec-
ture design, we deploy our work on a 22nm silicon embodiment
of the Parallel Ultra Low Power (PULP) platform [16], Green-
Waves GAP-9, which is a RISC-V multi-core design with sup-
port for SIMD-accelerated half-precision (16-bit) floating-point
(FP16). We ascertain whether the architectural improvements
related to parallelism, reduced precision, and SIMD translate

1STM32 NanoEdgeAI: https://www.st.com/en/development-
tools/nanoedgeaistudio.html

2AIfES for Arduino: https://github.com/Fraunhofer-
IMS/AIfES for Arduino

to proportional improvements in performance and energy ef-
ficiency, compared both to a single-core highly optimized full-
precision floating-point (FP32) baseline tested on the same plat-
form and on a single commercial STM32 MCU. In particu-
lar, we design a set of optimized software primitives leverag-
ing FP16 arithmetic, which is nowadays widely adopted on
the server side for efficiently training DNN models without ac-
curacy penalties with respect to FP32 [17, 18, 19]. Further-
more, the choice of the specific FP16 format can be tuned by
the user in accordance with the target device’s specifications
(e.g., Vega [16], which supports both IEEE FP16 and Bfloat16).
Finally, to investigate whether the proposed optimization can
make ODL feasible in realistic use cases, we consider the class-
incremental Continual Learning case study proposed by Pelle-
grini et al. [20], and we compare, in terms of latency and energy
consumption, the solutions obtained using AIfES – the most
complete MCU training framework currently available – and
the proposed library.

In detail, this work makes the following contributions to-
wards the State-of-the-Art for MCU-based ODL:

• We analyze the training primitives for a DNN, focusing on
the Conv2D case, and derive foundational abstractions for
the basic operators, discussing the impact of data layout
(channel-height-width / CHW vs. height-width-channel /
HWC) on the underlying computational structure.

• We introduce latency-optimized software primitives for
MM kernels exploiting loop unrolling, parallelization, and
SIMD FP16 and introducing transposed MM (MMT ) and
Im2Row transformations to minimize transposition over-
heads in SIMD-vectorized MM.

• We analyze in detail the latency impact of transform op-
erators needed by every training kernel and quantify the
impact, in terms of latency, on the learning task.

• We assess the execution latency and the energy consump-
tion of our primitives on individual DNN layers, com-
paring baseline and optimized layers on the target Green-
Waves GAP9.

• We explore optimized MM primitives, inspired by the
same principles, on an STMicroelectronics STM32L4 to
provide a further testing point for our approach.

• We compare the training of the end-to-end case study
proposed by Pellegrini et al. [20] between our proposed
framework on GAP9 and AIfES on STM32L4.

Our optimized MM functions, which are the core kernels of
the proposed ODL primitives, achieve a peak performance of
7.89 MAC/clk on GAP9 when leveraging FP16 SIMD instruc-
tion and 8-core parallelism, 1.91× faster than the FP32 counter-
part. When benchmarking a complete training step of a Conv2D
layer, the computational efficiency reduces to 6.62 MAC/clk be-
cause of the overhead of the shape transform functions, which
impact 12.5% of the computational time. Such overhead is mit-
igated by using an HWC data layout, which is 11% faster than a
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CHW-based implementation. Overall, a latency of 17.1 ms and
6.4 ms is accounted to run the forward and backward steps for a
ResNet8 for Image Classification, and a DS-CNN for Keyword
Spotting on a GAP9 SoC clocked at 370MHz while consuming
60.5 mW on average. Our evaluation of a Continual Learning
case study shows that our solution results 1.63× and 767× faster
than previous solutions based on, respectively, FP32 training
primitives running on the same platform and a single-core MCU
using the open-source AIfES library.

To foster future research on MCU-based On-Device
Learning, we release the code of our library as open-
source software at: https://github.com/pulp-platform/
pulp-trainlib.

2. Related Work

2.1. On-Device Learning on Tiny Edge Devices
To review the existing techniques, we first analyze

lightweight ad-hoc methods for ODL. Secondly, we describe
the existing ODL applications and implementations targeting
MCU devices.

2.1.1. Restrictions to Backpropagation
Several works, which we summarized in Table 1, address the

ODL problem by focusing on the reduction of the computa-
tional burden of the Backpropagation (BP) algorithm, by apply-
ing specific restrictions or directly replacing BP with a proxy.
Focusing on time series analysis for Anomaly Detection, De
Vita et al. [21] extended the functionalities of STMicroelec-
tronic’s X-CUBE-AI3 by introducing support for On-Device
Training of Echo State Networks. The method was tested on
an STM32 MCU featuring less than 100 kB of memory occu-
pation. To enable lightweight transfer learning, TinyOL [13]
proposes to insert a single trainable layer on top of a frozen
and quantized model. This extra layer is trained in a few mil-
liseconds using ARM-Cortex-equipped Arduino boards in both
supervised and unsupervised setups. Similarly, Train++ [24]
implemented ODL for on-device targets but targeted shallow
single-layer networks for binary classification problems. To
reduce the memory footprint of the activations tensors for the
training task, TinyTL [22] proposes to limit the backpropaga-
tion to biases only. Within a transfer learning context, this ap-
proach can reduce the memory requirements by up to 12.9×
with respect to training also the weight parameters at the cost of
an extra custom residual layer for preserving the accuracy level.
These works only train a subset of the weight parameters to pre-
vent the implementation of costly Backpropagation algorithms
on resource-constrained MCUs. In contrast, we address this
challenge by developing an optimized software methodology
that exploits advanced multi-core MCU designs with reduced-
precision FPU support.

To bring ODL to resource-constrained devices lacking FPU
support, PocketNN [25] presented a training methodology to

3STM X-CUBE-AI: https://www.st.com/en/embedded-software/x-cube-
ai.html

exploit integer-only computation based on Direct Feedback
Alignment [32]. To reach the same goal, Tiny Training Engine
(TTE) [26] combined gradient tensors pruning via offline cali-
bration and a novel Quantization-Aware strategy for scaling the
gradient magnitude and fitting the limited integer range. Thanks
to this approach, the authors demonstrated a training procedure
for low-end MCUs leveraging 8-bit computation kernels. In
contrast to these approaches, our work does not impose mod-
ifications or custom training algorithms for the learning pro-
cess for ODL, nor does it require an additional offline calibra-
tion procedure. Rather, we support and accelerate the canonical
and commonly used Backpropagation to broaden the scope of
ODL without paying accuracy degradations due to limited inte-
ger ranges [33].

2.1.2. ODL Implementations for MCUs

Table 2 reports the works addressing the application and
implementations of complete Backpropagation on Ultra-Low-
Power MCUs. Targeting the problem of noise domain shift in
audio keyword spotting, Cioflan et al. [27] propose to increase
the accuracy of their classification model using On-Device Do-
main Adaptation (ODDA). Thanks to this strategy, they could
achieve an accuracy improvement by 1.43% at a memory cost
of only 1.47 MB; still, the latency higher than 100s prevented
real-time application. Giménez et al. [28] used simple DNNs
composed of Fully-Connected layers to learn in-the-field sim-
ple audio commands in several milliseconds with tiny MCUs.
The same authors [29] later extended this approach to a dis-
tributed setup using Federated Learning [34, 35]. This method
presents a memory footprint of less than 256 kB but requires a
training latency of several hundreds of seconds for a full feder-
ated update. These works focused on the applications of ODL
rather than addressing performance optimization, as we con-
sider in our work.

In contrast, a small group of works targeted the design of a
complete training framework for ODL on MCUs. AIfES by
Fraunhofer IMS is currently a state-of-the-art library for ODL
on Arduino and ARM Cortex-based MCUs, supporting Fully-
Connected and Convolutional layers and a variety of activation
functions, optimizers, and commodity functions for training.
They rely on CMSIS-DSP MM kernels for latency-optimized
ODL. PULP-TrainLib [31] is an ODL framework for RISC-V
Multicore MCUs, featuring a set of FP32 performance-tunable
training primitives of Fully-Connected and Convolutional lay-
ers. To find the fastest configuration for each training step
and DNN layer, PULP-TrainLib employs an Autotuner to se-
lect the fastest MM algorithm. Ravaglia et al. [23] exploited
an early prototype of the PULP-TrainLib to demonstrate Con-
tinual Learning (CL) for image recognition on MCUs. In this
work, we leverage the PULP-TrainLib templates and extend
them with novel latency-optimized software primitives that take
advantage of multi-core RISC-V MCUs with FP16 SIMD sup-
port. To the best of our knowledge, our design results in the
fastest ODL library for MCU targets.

3
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Table 1: On-Device Learning Methods for Ultra-Low-Power Devices

ODL Method Target Task Retrainable Layers Variations to Backpropagation Target Device Data Type
De Vita [21] Anomaly Detection ESN layer Custom Echo State Network (ESN)

for time series
STM32 boards FP32

TinyOL [13] Image Classification Only last layer Extra custom trainable layer on bot-
tom of a frozen DNN

Arduino Nano 33 BLE FP32

TinyTL [22] Image Classification All (biases only) Bias training only (reduction in ac-
tivation size)

Generic embedded device FP32

Ravaglia [23] Image Classification Last N layers Continual Learning with quantized
Latent Replays

Vega [16], STM32L4 FP32

Train++ [24] Binary Classification All Custom incremental learning algo-
rithm for binary classification

ARM Cortex-equipped
MCUs, ESP32

FP32

PocketNN [25] Image Classification All Integer-Only Direct Feedback
Alignment (no Backprop)

Generic edge device INT8

Tiny Training Engine
[26]

Image Classification /
General Purpose All (quantized) Automatic gradient scaling to fit

INT8 precision + gradient pruning
STM32F746, Other MCUs INT8

Table 2: Backpropagation-Based On-Device Learning Implementations on MCUs

ODL Implementation Target Task Retrainable Layers Kernel Optimizations Target Device Data Type
ODDA [27] Keyword Spotting All None Vega [16], Raspberry PI-4B,

Snapdragon 888
FP32

Giménez [28, 29] Keyword Spotting All (Fully-
Connected)

None Arduino Nano 33 BLE, Ar-
duino Portenta H7

FP32

AIfES [30] General Purpose All Matrix Multiplication
(ARM CMSIS-NN)

Arduino boards, ARM
Cortex-M cores

FP32

PULP-TrainLib [31] General Purpose All Matrix Multiplication
(FP32)

RISC-V Multicore MCUs,
STM32 boards

FP32

This Work General Purpose All Matrix Multiplication,
Im2Col/Im2Row (FP16)

RISC-V Multicore MCUs,
MCUs with FP16 SIMD
FPU

FP16

2.2. HW Support for Reduced Precision

The opportunity to accelerate the computation by exploit-
ing low-bitwidth precisions is fostering the research commu-
nity, pushing for new HW concepts and MCU sub-systems. In
this context, J. Lee et al. [36] presented LNPU, a Sparse DNN
Processor which allows Fine-Grained Mixed Precision between
FP16 and FP8 to enable on-chip training. LNPU features 16
sparse Deep Learning cores, orchestrated by a single Central
Core, a SIMD core, and a RISC controller, with a power con-
sumption of 43.1 to 367 mW, at an operational frequency of
50 and 200 MHz, respectively. Furthermore, LNPU features
a peak efficiency of up to 25.3 TFLOPS/W, while processing
inputs with 90% of sparsity. Targeting RISC-V cores as the
main computational cores, F. Montagna et al. [37] present a
multi-core transprecision computing cluster that aims at mini-
mizing the power consumption of near-sensor applications. The
authors combine hardware sub-word vectorization and a dedi-
cated interconnect to efficiently share multiple Floating Point
Units (FPUs) among up to 16 parallel cores while providing
a complete software infrastructure to enable efficient parallel
programming. In terms of performance, their solution achieves
a peak performance of 2.9 GFLOPS with a power consump-
tion of 43 mW, which is compatible with the low-power envi-
ronment. Other works focus on general-purpose strategies to
provide Reduced Precision on Ultra-Low-Power SoCs. Among
the RISC-V4 MCU architectures, D. Rossi et al. [16] presented

4RISC-V International: https://riscv.org/

Vega, a ten-core System-on-Chip (SoC) based on the Parallel
Ultra-Low Power (PULP) platform5. Vega’s cores are equipped
with a set of floating-point units (FPU) capable of dealing with
different floating-point formats, as wide as 32-bit and Single-
Instruction Multiple-Data (SIMD) 16-bit, as well as two pro-
grammable Machine Learning accelerators. Thanks to these
features, Vega achieves a State-of-the-Art performance of up to
129 GFLOPS/W for FP16 computations. In this paper, we refer
to this HW concept to design a set of software primitives opti-
mized to exploit the Reduced Precision FPUs for DNN training
tasks. On the other side, the recently introduced ARMv8.1-M6

enabled FP16 processing as part of the new Helium M-Profile
Vector Extension (MVE), which allows up to 15× speedup on
Machine Learning applications and 5× speedup on DSP, with
respect to ARMv8 instructions. However, to the best of our
knowledge, no off-the-shelf MCU equipped with ARM MVE is
yet available on the market.

2.3. BLAS Optimization of DNN Training Primitives
Many Machine Learning and Deep Learning workloads can

be computationally expressed in terms of Basic Linear Alge-
bra Subroutines (BLAS), and Matrix Multiplication (MM) in
particular [38]. The problem of BLAS optimization for Deep
Learning applications is the target of several works concern-
ing server-side applications. Approximate methods can be em-

5PULP Platform: https://pulp-platform.org/
6ARMv8 M-Profile Architecture: https://developer.arm.com/Architectures/M-

Profile%20Architecture
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ployed to speed up the computation of MM kernels. In this con-
text, Osawa et al. [39] proposed to apply Low-Rank Approxi-
mation to reduce the computational burden on convolutions in
server applications. With their approach, they have shown up to
25× performance improvement on the wide matrices of server
applications while maintaining a negligible accuracy loss. The
cost of MM kernels in Convolutional and Fully-Connected lay-
ers can be reduced by means of software approaches like the
Strassen algorithm [40]. With this aim, Tschannen et al. [41]
modified the Strassen algorithm, introducing a method capable
of learning fast approximations of MM algorithms for the end-
to-end execution of DNNs. With their approach, the authors
claimed a 99.5% reduction in the total number of multiplica-
tions in image classification models without accuracy drops.

Hardware-Software solutions are common in the acceleration
of computationally-intensive tasks. In the effort to optimize
General Matrix Multiplication (GEMM) with multiple data
precision, Moss et al. [42] provided support for a hardware-
software GEMM framework based on an Intel HARPv2 proces-
sor, which is able to accelerate DNN models like AlexNet by up
to 4× using a mixed CPU+FPGA approach. With a similar ap-
proach, Juan et al. [43] presented a multi-threaded approach of
MM for Deep Learning applications. In their approach, they ex-
ploited a 16-bit integer precision and the hardware SIMD capa-
bilities of ARM Cortex-A processor to extend the BLIS frame-
work. Thanks to their integer vectorized approach, they ob-
tained a 20% speedup with respect to FP32 models like AlexNet
or VGG16 while saving 25% energy.

The acceleration of MM workloads in MCUs is often del-
egated to SIMD integer computation due to the hard restric-
tions in terms of memory, computation, and power. In this
context, ARM CMSIS-NN[15] presented a method to exploit
fixed-point quantization in the form of INT16 and INT8 data
to accelerate convolutions by 4.6× on ARM Cortex-M proces-
sors equipped with integer SIMD hardware. Similarly, PULP-
NN [44] provided a method to accelerate integer MM kernels
on multicore RISC-V MCUs, exploiting SIMD integer com-
putation. Thanks to their approach, they showed up to 15.5
MAC/clk in INT8 format on eight parallel RISC-V cores. Sim-
ilar to many previous works, we rely on common linear algebra
kernels, i.e., MM, to solve our problem but, differently from
others in this context, we focus on on-device learning based on
the backpropagation algorithm with a reduced-precision capa-
ble MCU system.

3. Background

This section reviews the BackPropagation (BP) algorithm,
a gradient-based DNN optimization technique commonly used
for DNN training. Let us consider a DNN model composed of
N layers. Every layer operates a non-linear function fi(·), i =
0, ..,N − 1 parameterized by the coefficient tensor Wi, that is
learned during the training process.

During the Forward (FW) pass, which corresponds to the
DNN inference phase, the model’s input data X0 propagates
layer-by-layer through the composite function { f0 ◦ f1 ◦ · · · ◦

Figure 1: Training steps of a Convolution layer with a single input/output chan-
nel: a) Forward (FW) step; b) Weight Gradient (BW-WG) step, to compute the
gradient of the weights; c) Input Gradient (BW-IG) step, which back-propagates
the prediction error to the previous layer. We indicate as wi the filter elements.
We refer to the notation introduced in [45].

fN−1}. In the case of convolutional layers, the layer-wise opera-
tion of the FW step can be expressed as:

Yi = Wi ∗ Xi (1)

where ∗ denotes the cross-correlation operator (commonly de-
noted as convolution), and Xi and Yi are the input and output
activation feature maps, respectively. Note that Xi ≡ Yi−1. We
omit the bias term for simplicity. Fig. 1–a) visually represents
the FW step of a Convolution layer, operating on a single fea-
ture map. To visually describe this layer, we refer to the nota-
tion introduced in [45]. The output of the last layer YN−1 rep-
resents the DNN model prediction, e.g., the class scores in case
of a classification task.

To train a DNN model, a loss function L is used to estimate
the classification error with respect to the ground-truth labels
of a set of labelled data, i.e., the train set. The BP algorithm
has the purpose of backward propagating the prediction error to
compute the gradients of the loss function with respect to the
parameters of every layer’s weights Wi, i.e., ∇LWi = dWi. Once
the latter is computed, an optimization procedure, such as the
Stochastic Gradient Descent (SGD), updates Wi according to a
certain learning rate η, e.g. Wi ← Wi + η · dWi.

The Backward (BW) step consists of an application of the
gradient’s chain rule to compute dWi. Starting from the network
output, the gradient∇LYN−1 is first calculated as the derivative of
the prediction error with respect to the model output. This value
is backpropagated into the DNN model to compute the Interme-
diate Gradient (IG) tensors, denoted as dXi. As for the FW case,
note that dYi−1 = dXi. For a convolutional layer (Fig.1–c)), the
IG tensors are computed as:

dXi = dYi ∗ δYi/δXi = dYi ∗WR
i (2)

This operation is referred to as BW-IG step. Note that, for con-
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Table 3: Acronyms and Symbols

Acronym Meaning
X, dX Input activation and gradient of a DNN layer
W, dW Weight data and gradient of a DNN layer
Y, dY Output activation and gradient of a DNN layer

Im2Col Image-to-Column Operator
Im2Row Image-to-Row Operator

B-T Block-Transpose Operator (weights only)
Tr Matrix Transposition Operator

MM Matrix Multiplication
MMT Row-Row Matrix Multiplication

volutional layers, δYi/δXi corresponds to the Wi tensor, oppor-
tunely transformed to WR

i by inverting the element order, as
described in Sec. 5.4. The output gradient dYi may need to be
padded to produce an output vector dXi with the correct size.
Following the same differentiation rule, the weight gradient dWi

is computed during the BW-WG step (Fig.1–b):

dWi = δYi/δWi ∗ dYi = Xi ∗ dYi (3)

In the case of convolutional layers, δYi/δWi is equivalent to
the Xi activation tensor computed during the FW pass.

In the rest of the paper, we narrow down the scope to the
workload analysis and implementation of individual layers.
Hence, for simplicity of notation, we omit the index i when re-
ferring to individual tensors. Tab. 3 summarizes the used sym-
bols.

4. ODL kernels

For convolutional DNNs - i.e. DNNs whose layers mainly
consist of Convolutions - the layer-wise training primitives
(FW, BW-IG, BW-WG steps) reduce to convolutions as de-
scribed, respectively, by Eq. 1, 2, 3. Previous works [15, 44]
showed that FW convolutions could be reshaped as Matrix Mul-
tiplications (MMs) after applying a shape transformation (e.g.
Im2row or Im2col described below) operator to the input ac-
tivation tensor. In this section, we discuss how to extend this
concept to the BW steps when targeting execution on low-end
MCUs. It is important to remark that we consider a batch size
of 1 for the training task, which is equivalent to computing the
weight gradients in a sample-by-sample streaming fashion.

As a template for most DNN operators, we consider a 2D
Convolution (Conv2D7) layer with weight shape CO ×CI × kh ×

kw, where CO is the number of output channels, CI is the num-
ber of input channels, and kh × kw is the spatial filter size. Input
and output activations (and gradients) are 3-dimensional ten-
sors, featuring two spatial dimensions (H and W) and a channel
dimension (CI channels for X and dX and CO channels for Y
and dY). We consider the two commonly used data layouts,

7We refer to the Pytorch’s Conv2d notation.

Figure 2: Matrix representation of a FW step of a Conv2D layer with with
HWC data layout. The input size is HI = 3, WI = 3, CI = 2. The weight
tensor is kw = kh = 2, Ci = 2 and Co = 3. The input tensor is transformed with
Im2Row before performing the Matrix Multiplication.

denoted as CHW and HWC, that differ for the ordering of the
tensor dimensions in memory. The CHW convention presents
the channel size as the outermost dimension, while the HWC
convention stores the channel dimension as the innermost. In a
matrix form, a CHW tensor is reshaped as a matrix with C rows
and H×W column, where elements in a row are stored contigu-
ously in memory. A HWC tensor is obtained by transposing the
CHW matrix, i.e., a (H×W)×C sized matrix. On the other hand,
weight tensors (and gradients) are 4-dimensional tensors, fea-
turing CO as the outermost dimension. The spatial filter sizes
kh and kw and the input channels CI are shuffled in the inner
dimensions according to the chosen layout: in case of HWC,
the filter sizes are sorted as (CO, kh, kw,CI), while in CHW as
(CO,CI , kh, kw). Although input, weight, and output tensors of
an individual layer could feature different memory layouts, in
the following we only consider homogeneous schemes where
all tensors are formatted as HWC or CHW.

Fig. 2 analyzes in detail the FW step of a Conv2D with HWC
layout. The input tensor X is initially stored in matrix form.
Then, the Image-to-Row (Im2Row) shape transform function
copies the values under the moving window of the convolu-
tion filter (of size kh × kw × CI) to a new matrix Im2Row(X)
of size (HO ×WO) × (kh × kw × CI). The result of the convolu-
tion is then computed by means of a Matrix Multiplication be-
tween the Im2Row(X) matrix and the weight tensor, also stored
in a matrix form. Differently from X, the weight tensor W is
stored in matrix form by placing the elements of each filter in
the columns, with adjacent CO elements.

More in detail, the Im2Row copies data chunks of size kw×CI

from the matrix X with HWC layout to the destination matrix.
On the contrary, with an input featuring a CHW layout, the
chunk size of the Im2Row data transfer is reduced to the kw ele-
ments that are stored contiguously in memory. A strided access
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Figure 3: ODL training primitives of a Conv2D Layer. On the left, the non-
optimized HWC expressions of the Conv2D training primitives for ODL; on
the right, the same expressions in CHW format.

Figure 4: Workflow of the Block-Transpose (B-T) operator applied to a HWC
weight matrix of size 3 × 2 × 2 × 2.

is performed to load the next elements that fall under the weight
filter. The different memory layouts are key for impacting the
efficiency of the Im2Row transform function, as discussed in the
experimental section and, in particular, when the datatype is set
to FP16.

In case of CHW, the expression of the FW step is adapted,
as shown in the top of Fig. 3, to produce a transposed out-
put matrix with respect to the HWC case. Differently from
the HWC expression: (i) operands are transposed and (ii) the
MM switches the operand order. To handle the transposition
of the input activation X, the Im2Row operator is replaced with
the Image-to-Column (Im2Col) operator, where elements un-
der the filter are copied on a column of the destination ma-
trix. In terms of performance, similar considerations to the
ones drawn for Im2Row also hold for Im2Col. In general, the
resultant Im2Row(X) (or Im2Col(X)) matrix features a mem-
ory footprint larger than X because every element of the input
tensor contributes to the computation of multiple output val-
ues. The memory requirements of an Im2Row/Im2Col exceed-
ing the available memory can be reduced using tensor tiling -
i.e., instead of processing the full tensor, multiple partial sub-
tensors can be copied in sequence in a temporary buffer, using
the transform operators, and processed at minimal computation
overhead with respect to processing the full tensor [46].

In addition to the FW step of the Conv2D layer, Fig. 3 vi-

Figure 5: PULP SoC Architecture with 8 RISC-V Cores. The PULP Clus-
ter is equipped with 4 shared Mixed Precision Floating Point Units (FPUs) to
compute FP32 and FP16 operations.

sually shows the core operations of BW training primitives op-
erating on tensors with HWC e CHW layouts. In the plot, we
denote the Matrix Multiplications, which implement each train-
ing step as FW-MM for the forward step and BW-WG-MM and
BW-IG-MM for the backward steps. Similarly to the FW, the
BW-WG convolution is turned into a Matrix Multiplication to
compute the weight gradient dW. This step takes as inputs the
activation input X, stored after the FW pass, and the gradient
vector dY . Note that the dY tensor has the same size of Y .
Differently from the FW-MM, the Im2Col transform is applied
over the X tensor with an HWC layout. Im2Row(X) is instead
used for CHW. Lastly, the BW-IG step is reshaped into a Matrix
Multiplication (BW-IG-MM) between the output gradient dY
and the weight tensor W. Differently from the other steps, the
BW-IG step requires the weight tensor to be transformed using
a Block-Transpose (B-T) operator before feeding the BW-IG-
MM. Fig. 4 illustrates the workflow of the B-T operator applied
to a weight matrix W. First, the kh × kw elements of the filters
are placed in reverse order, i.e., the reversed-order matrix WR

i of
Eq. 3; second, the weight input and output channels are block-
transposed: elements belonging to the same input channel are
transposed into rows.

5. ODL on a MultiCore MCU with FP16 support

This section describes our design methodology for latency-
optimized ODL software kernels targeting a multi-core plat-
form with HW support for reduced-precision FP16 SIMD in-
structions.

5.1. The PULP Platform
Fig. 5 shows the RISC-V-based Parallel Ultra-Low Power

(PULP) platform targeted by our approach [16], as embodied in
Greenwaves GAP9 SoC. The system features an MCU domain,
namely the PULP SoC region (depicted in light blue in the fig-
ure), which includes a single RISC-V core for control-related
tasks, and a Cluster domain (in yellow) with 8+1 RISC-V cores
to accelerate compute-intensive tasks. All the cores support
the RV32IMFC ISA, extended with DSP-oriented instructions,
like post-increment load/store instructions and 2-level hardware
loops. Every CPU is also granted access to a mixed-precision
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Figure 6: a) Pseudo-code of the FP32 non-unrolled (1×1) naı̈ve MM algorithms
that we refer to as baseline; b) and c) show the difference between the memory
access patterns of a MM (b) and MMT (c) kernels. MMT favours SIMD loads
and MAC instructions, as B matrix elements are adjacent in memory. Row
elements of the matrices are stored adjacent, while column elements have a
stride equal to the row length one each other.

Floating Point Unit (FPU), operating full-precision (FP32) and
half-precision (FP16) floating-point instructions. More in de-
tail, every FPU can process 1× FP32 MAC in a single clock
cycle or 2 MAC/clk if using FP16 SIMD instructions.

From a system-level viewpoint, the PULP SoC features a
multi-level memory hierarchy with up to 2 MB of L2 SRAM,
directly accessible by the MCU core in a single clock cycle, and
an on-chip non-volatile MRAM memory of up to 4MB. On the
Cluster side, an L1 data-scratchpad memory with a size of up to
256 kB is shared among the multiple cores. The Cluster DMA
can be used to efficiently copy data between the L1 and the L2
memories in the background of the CPUs operation. Data in
the L1 memory can be accessed in a single clock cycle by the
cluster cores.

In our setup, we consider the 8+1-core PULP Cluster for the
acceleration of the DNN training primitives. Out of the total
9 cores, the first 8 are devoted to parallel computation and can
access 4 shared mixed-precision FPUs. The 9-th core, instead,
acts as a Cluster Controller: this core is in charge of program-
ming the Cluster DMA and dispatching parallel tasks to the
other 8 compute cores.

5.2. Matrix Multiplication Optimization
As highlighted in Section 4, the MM algorithm is the compu-

tation core of the ODL primitives. Therefore, we first study the
acceleration of the MM on the targeted platform using either
FP32 or FP16 datatypes.

Let us consider a generic matrix multiplication with A ∈
RN×K and B ∈ RK×M inputs and C ∈ RN×M as output. A and

B are stored in memory as arrays. The elements of a row (K
in case of A) are adjacent in memory. Conversely, successive
column elements (N in case of A) are stored with a stride equal
to the row length. Fig. 6–a) shows the pseudo-code of a naı̈ve
MM implementation that uses 3 nested for loops and a time
complexity of O(N × K × M). For every iteration of the inner
loop, the CPU operates a MAC between elements loaded from
the A and B arrays. Our baseline implementation assumes data
stored in low-level memory, i.e., the L1 memory of the PULP
cluster. Hence, elements from A and B arrays are loaded in a
single clock cycle by the Cluster cores.

Fig. 6–b) shows the memory access pattern to compute the
dot product between a row vector of matrix A and a column
vector of matrix B. While the elements from a row of the ma-
trix A are accessed from a contiguous memory area, strided ac-
cesses are required to load the elements belonging to a column
of the matrix B. If we consider that every element is a FP16
number, the access pattern of this Row-Column Dot-Product is
inefficient in loading columns, as it cannot use 32-bit load/store
instructions to load two FP16 elements in one single-clock in-
struction. This motivates us to consider an MMT operator that
expects the second operand B in a transposed form according
to:

MM(A, B) = MMT (A,Tr(B)) (4)

where Tr() is the transpose operator. Differently from the MM
baseline, the MMT performs a series of dot-products between
the row vectors of A and Tr(B). As a major benefit, this Row-
Row Dot Product scheme, which is depicted in 6–b), gains a
sequential memory access pattern by design both for the matrix
A and matrix B, favoring the usage of SIMD FP16 load/store
instructions. On the other side, the transposition of the B ma-
trix represents a potential computation overhead. However, this
extra cost can be cancelled by transposing the B matrix be-
fore the deployment on the target platform, when possible, e.g.,
transposing the matrix of weight values. This cost can also be
absorbed by the shape transform operator of the ODL train-
ing primitives, i.e., by replacing an Im2Col function with an
Im2Row or vice versa. This strategy will be discussed in fur-
ther detail in Section 5.4.

5.3. Loop Unrolling and Parallelization

As proposed in [31], we exploit loop unrolling and paral-
lelization to speed up the MM and MMT kernels. Loop un-
rolling maximizes the data reuse of loaded elements. We refer
to an unrolling factor of U × V to indicate a MM kernel that
computes U × V elements of the output matrix C within the in-
ner loop. A MM with a higher unrolling factor presents a lower
number of instructions by using fewer load operations. If the
MM dimensions are not divisible by the unrolling factors, an-
cillary leftover loops take care of the remainders using a naı̈ve
non-unrolled strategy.

Fig. 7–a) shows the pseudo-code of an FP32 MM with a 2×4
unrolling. This kernel computes 8 partial results of the output
matrix C within the innermost loop, obtained from the 2 × 4
MAC operations. In this case, the CPU loads only 6 values
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Figure 7: Pseudo-code of optimized MM algorithms: a) shows an FP32 MM
with 2×4 unrolling; b) presents an FP16 1×2 MMT which makes use of SIMD
to load adjacent A and B row elements. While performing the same amount of
MAC instructions per iteration, SIMD MMT allows to reduce by 43% the inner
loop instructions.

instead of 16 because every element from the A and B arrays is
reused 4 and 2 times, respectively. Hence, the utilization of the
MAC units in the innermost loop increases from 33% to 57% if
compared to a naı̈ve implementation (Fig. 6–a) - i.e. the number
of MAC instructions in the inner loop is increased in exchange
for less load instructions. Fig. 7–b) shows the pseudo-code of
an FP16 MMT exploiting 1×2 loop unrolling. Thanks to the
SIMD instructions, the inner loop computes 4 MAC at the cost
of 3 load operations, reaching the same MAC utilization of the
previous FP32 kernel but with a lower unrolling factor.

Lastly, we exploit the multi-core architecture of the PULP
Cluster and the native parallelism of the MM computation. The
parallelization strategy that we adopt splits the iterations of the
outermost loop dimensions with respect to the available cores
(8 in our case). Thanks to this, the execution throughput gains a
parallel speedup that increases almost linearly with the number
of parallel cores. For instance, a naı̈ve FP32 MM with 32 × 32-
shaped matrices parallelized on 8 RISC-V cores shows a paral-
lel speed-up of up to 7.47 vs. a theoretical limit of 8.

5.4. FP16 ODL Primitives

The design of the FP16 ODL primitives is based on the soft-
ware templates of the PULP-TrainLib [31]. As this library only
included CHW FP32 training kernels, we i) extended it with
the shape transform operators for both HWC and CHW lay-
outs and ii) introduced FP16 primitives. In the remainder of the
discussion, we focus mainly on the Conv2D case, but similar
considerations and design strategies have been applied to the
main other layers composing typical DNNs.

Fig. 8 graphically depicts our FP16 ODL training primitives
for a Conv2D layer with an HWC data layout that exploits the
MMT kernels. Differently from FP32, we replace the MM with

Figure 8: ODL matrix expressions of the FP16 training primitives of a Conv2D,
which make use of the MMT kernels.

MMT to fully benefit from row-by-row SIMD Dot Products. To
amortize the computational cost of the transpose operator re-
quired by Eq. 4, we store the weight parameters of our HWC
primitives in transposed form to comply with the layout re-
quired by MMT kernels. This choice impacts the BW-WG step:
the produced weight gradient dW must also be transposed for a
convenient update of the weight tensor. For this reason, we fur-
ther transpose the BW-WG-MM expression and feed Tr(dY).
This additional transform has a negligible impact on the execu-
tion costs since it brings a latency overhead lower than 5%.

Tab. 4 provides a summary of the operations for the FP32
and FP16 ODL training primitives. We consider Conv2D and
PointWise Layers. More in detail, the table highlights the trans-
forms and MM kernels for the FW, BG-WG, and BW-IG steps
when an HWC or a CHW layout is used. Differently from
the FP32 Conv2D operations that use MM kernels (reported in
Fig. 3), the FP16 Conv2D implementations make use of MMT

and shape transform functions to transpose the B operand.
Unlike other cases, the primitives for FP16 HWC require the

weights to be stored in memory in a transposed form (see Eq.
4). In the table, we denote this weight tensor as WT . Because
of this transformation, the HWC FW and BW-IG steps feature
the same order of operands of the FP32 counterpart in the con-
volution expression. Conversely, the operands of the FP16 BW-
WG step are switched to produce a transposed weight gradient,
which can be directly summed to WT during the weight update
phase. On the contrary, FP16 Conv2D CHW primitives do not
require to store the weights in transposed form. In this case, the
transposition of B can be obtained, instead, by replacing each
Im2Row operator with Im2Col and vice versa.

Despite the fact that we only discussed the Conv2D case,
our ODL kernel design methodology can be used for every
convolutional DNN layer. As a notable example, Tab. 4 also
lists the internal operations for the training steps of a Pointwise
(PW) Convolution, which is frequently used for DNN models,
e.g., DepthWise Separable layers [47]. Given a filter size of
kw = kh = 1, the ODL steps do not include any Im2Col or
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Table 4: On-Device Learning operations for FP32 and FP16 Conv2D and PW Conv layers. A and B denote the first and second operand of the used MM kernel. WT

indicates a tensor already transposed in memory. Tr(W) transpose instead the operand at runtime.

Conv2D - HWC MM Kernel A (1st Operand) B (2nd Operand) PW Conv - HWC MM Kernel A (1st Operand) B (2nd Operand)
FP32 FW Im2Row(X) W FP32 FW X W
FP32 BW-WG MM Im2Col(X) dY FP32 BW-WG MM Tr(X) dY
FP32 BW-IG Im2Row(dY) B-T(W) FP32 BW-IG dY Tr(W)
FP16 FW Im2Row(X) WT FP16 FW X WT

FP16 BW-WG MMT Tr(dY) Im2Col(X) FP16 BW-WG MMT Tr(dY) Tr(X)
FP16 BW-IG Im2Row(dY) B-T(WT ) FP16 BW-IG dY Tr(WT )

Conv2D - CHW MM Kernel A (1st Operand) B (2nd Operand) PW Conv - CHW MM Kernel A (1st Operand) B (2nd Operand)
FP32 FW W Im2Col(X) FP32 FW W X
FP32 BW-WG MM dY Im2Row(X) FP32 BW-WG MM dY Tr(X)
FP32 BW-IG B-T(W) Im2Col(dY) FP32 BW-IG Tr(W) dY
FP16 FW W Im2Row(X) FP16 FW W Tr(X)
FP16 BW-WG MMT dY Im2Col(X) FP16 BW-WG MMT dY X
FP16 BW-IG B-T(W) Im2Row(dY) FP16 BW-IG Tr(W) Tr(dY)

Im2Row transforms. On the contrary, the weights are trans-
posed during the BW-IG step. Similarly to Conv2D primitives,
the FP16 HWC primitives require to store transposed weights
and to swap the operands in the BW-WG step. CHW primi-
tives, instead, only transpose the B operand. Furthermore, an
additional transposition is required in the FP16 CHW FW step,
unlike HWC.

6. Experimental Results

6.1. Implementation Details

We evaluate our software design on a RISC-V-based Multi-
Core MCU, Greenwaves Technologies’ GAP9. This platform
embodies an instance of the PULP Platform with a 9-core Clus-
ter equipped with 4 shared FPUs and HW support for SIMD
FP16 instructions. In our implementation, input (output) data
and gradients are stored in the large off-cluster L2 memory and
are copied to (from) L1 using the Cluster DMA before (af-
ter) the computation of each training step. The Im2Col and
Im2Row transform functions are operated by the cluster cores
to gain data load/store parallelism; the destination matrix, also
placed in the L1 memory, feeds the MM kernel. When the FP16
datatype is used, the amount of data to be copied is reduced by
2× with respect to FP32, leading to faster shape transform op-
erators. Padding can introduce a large overhead because of the
extra additional control instructions located in the inner loop
of the copy to check for for zero-insertion. For example, an
Im2Col operator applied to an input activation of size 8 × 8 × 1
may suffer up to a 60% cycle increase in case of a 3 × 3 filter.
Larger input channel sizes help reducing this overhead.

6.2. FP16 and FP32 Optimized Matrix Multiplications

First, we study the performance of the optimized MM kernels
on the targeted platform. Fig. 9 shows the throughput expressed
as a ratio between the amount of MAC and the measured clock
cycles, i.e., MAC/clk. An increase of MAC/clk score corre-
sponds to a faster execution. We analyze single-core runs of
multiple-sized MM and MMT functions featuring different un-
rolling factors for both FP16 and FP32 datatypes. For every set-
ting, we report the upper bound limit (yellow bar), accounted

by excluding from the cycle count any instructions but MAC,
loads, and stores. For comparison purposes, we also benchmark
our FP32 MM kernels on an STM32L4 MCU.

The FP32 MM baseline without loop unrolling (marked as
1 × 1 in the plot) presents an average throughput of 0.24
MAC/clk for all three considered cases. The same performance
is measured for the transposed form MMT because the latency
spent to access and process 32-bit data is the same. This is up
to 2.4× faster than the same kernel running on the STM32L4
device, thanks to the build tools, which fully exploit the under-
lying hardware by leveraging post-increment load/store instruc-
tions and hardware loops to reduce the iteration overheads. Us-
ing 2 × 4 loop unrolling, the throughput of MM kernels further
increases by 2.11× with respect to the baseline. Compared to
an equivalently unrolled STM32L4 porting, this is also 2.36×.
Further increasing the unrolling factor is detrimental: the regis-
ter file pressure of unrolling requires frequent register spilling
in the stack, leading to severe slow-down effects.

Introducing FP16 SIMD vectorization and MMT kernels, a
maximum speed-up of 1.91× is measured vs. the fully un-
rolled FP32 case, reaching a top performance of 1.07 MAC/clk.
For both the analysed unrolling factors, the performance varies
across the matrix sizes but is generally superior to FP16 MM
kernels. When the innermost K dimension is large (e.g., Fig. 9-
a), the MMT with 2 × 4 loop unrolling shows a ∼25% perfor-
mance gain, which leads to performance near the theoretical
upper bound. This condition is common in the deep layers of
convolutional models, featuring a relatively large number of
channels (e.g., more than 8 input and output channels and a
spatial size of 8). When K is small, the gain is less substantial
but still present (∼6% in Fig. 9-c). The reason for this effect
is that innermost loops with more iterations positively impact
the execution of unrolled MM and MMT kernels, amortizing
the overhead introduced by the result accumulation and store
instruction of the outer loops.

6.3. Conv2D ODL Primitives

In this section, we evaluate the primitive-level optimizations
introduced in Sec. 5. Tab. 5 reports the shapes of the four
Conv2D layers and a PointWise layer under analysis. The sizes
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Figure 9: MAC/clk of different MM kernels on both an STM32L476RG and 1 RISC-V core. All cases perform 32768 MAC. Thanks to vectorization, we achieve a
top 25.17% performance gain. However, the structure of the FP16 MM kernels limits the performances if K is small due to the accumulation of the inner product
introduced by the intermediate loop.

are chosen as portions - or tiles - of several input and weight
tensors that fit layers from the ResNet8 model in Fig. 13. In
particular, CONV1, CONV2 and CONV3 are possible tiles of
Layer 2 and 3, featuring large H × W size and C size. Con-
versely, CONV4 is a possible tile of the input layer, while PW
CONV represents Layer 9 of the ResNet8 model. In these ex-
periments, FP32 layers use the MM kernels, while FP16 ones
employ MMT . A HWC data layout is adopted.

Fig. 10 shows the latency for a complete training, which con-
sists of the FW and BW steps with respect to a single data point,
of the considered layers when leveraging 8-core processing.
Measurements are shown in terms of normalized latency, mea-
sured in clock cycles, with respect to the total number of MAC
(cycles/MAC). A lower score indicates a smaller latency. On
the top row, we highlight the latency breakdown among the FW,
BW-IG, and BW-WG phases, while on the bottom rows, we
provide a detailed report of the internal operations: MM/MMT

kernels, Tr/B-T transpose operators, Im2Col/Im2Row, and the
DMA transfers between the L1 and L2 memories.

For every layer shape, the training step is dominated by
the MM kernels in a fully-unrolled version. When applied
to Conv2D training, FP32 2 × 4 MM kernels achieve up to
3.66 MAC/clk when executing both FW and BW-IG steps of
CONV1. In the same case, FP16 2 × 4 SIMD MMT kernels
achieve 6.63 MAC/clk, outperforming by 1.81× the FP32 ker-
nels on 8 parallel cores. A similar result has already been ob-
served for the single-core case (Fig. 9).

In case of a single FW or BW step, FP16 SIMD optimizations
of the MMT kernel achieve up to 1.72× performance increase,
as observed for the CONV1, CONV2, CONV3 and PW CONV
scenarios. This speedup is uniform across all the training steps.
Only for CONV4, the usage of FP16 SIMD brings a slower ex-
ecution than the FP32 computation. In this corner case, both
the innermost loop and the external loops feature a reduced size
because of the single channel of the input image, preventing the
kernel from exploiting acceleration opportunities given by the
loop unrolling. Instead, a leftover subroutine is invoked to han-
dle the operation, slowing down the process. This infrequent
case may appear in the first layer of a model; a kernel without
loop unrolling or using FP32 should be preferred in this case.
However, when considering a full model design, e.g., ResNet8,
this type of layer has a very limited impact on the on the total

computation time, i.e., less than 3% on a ResNet8.
The percentage of latency related to MM and MMT kernels

with respect to the total latency depends on the layer’s size.
In particular, a larger channel size increases the weight tensor
size and, therefore, the impact of DMA transfers. On the con-
trary, large H and W sizes increase the computation intensity.
These effects result in a total execution latency that is domi-
nated by more than 76% on average by MM/MMT kernels with
shapes like CONV1. In other cases like CONV2 and CONV3,
instead, MM/MMT kernels impact the 68% of the latency due to
increased DMA activity (CONV2, due to larger weight tensor
size compared to CONV1) and shape transformation (CONV3,
due to larger activation tensor size) overheads. These extra
costs determine a slight decrease in the performance of the ODL
primitives, whose latency is increased by up to 11% even with
large channel and spatial sizes. The throughput of the MM ker-
nels is substantially reduced, as already observed, in the case
of small channel sizes, like for CONV4. In the case of a PW
CONV, the compute efficiency reaches 4.76 MAC/clk in FP16
on average, 4.5% less than CONV1; the MM/MMT represents
84% of the total latency.

The execution of the Conv2D ODL primitives is also highly
influenced by the Im2Col and Im2Row operators, which can
represent a large overhead during each training step. The im-
pact of these shape transform operators is particularly relevant
when the sizes of the input and output tensors widely exceed the
size of the weight tensor. In the case of CONV3 and CONV4
with FP32 data type, these overheads represent on average the
19% and 33% of the total latency cost, respectively. On the
contrary, layers with smaller input and output tensor sizes are
less impacted by the compute cost of these shape transforms.
The latency due to Im2Col/Im2Row operators is reduced by
1.2× thanks to the FP16 SIMD. This depends on the capabil-
ity to move two contiguous data elements with a single 32-
bit load/store. This speedup is almost constant for each layer
shape, including the corner cases as CONV4. On the other side,
Im2Col/Im2Row operators are not used by the PointWise layer
PW CONV because of the 1 × 1 filter size.

In the baseline FP32 implementation of Conv2D primitives,
the B-T operator typically represents less than 3% of the total
latency of a training step, depending on the amount of input and
output channels. FP16 optimizations introduce additional trans-
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Figure 10: Training Latency (top row) of four 2D Convolution layers, namely CONV1–4 and a PointWise Convolution layer, namely PW CONV, whose shapes
are reported in Tab. 5. Measurements are expressed in terms of cycles/MAC. A latency breakdown of the total performances is provided in the bottom rows (lower
results are faster).

Table 5: Tile Shapes of ResNet8 Conv2D and PointWise Layers

Layer CI HI WI kh kw CO HO WO

CONV1 16 8 8 3 3 16 8 8
CONV2 16 4 4 3 3 32 4 4
CONV3 8 16 16 3 3 8 16 16
CONV4 1 8 8 3 3 16 8 8

PW CONV 32 8 8 1 1 64 8 8

position operators in the ODL primitives, to fully exploit MMT

kernels (Tab. 4). This extra overhead is however limited to 4%
at most in typical layer and tile sizes, reaching 8% only for
CONV4 where the impact of the MM/MMT reduces. In case of
PW CONV, no B-T operator is required (Tab. 4). Extra latency
costs are however accounted for the transpose operators, reach-
ing up to 4% and 6% of the total workload for, respectively, the
FP32 and FP16 format.

Lastly, DMA data transfers between L2 and L1 memory rep-
resent 7% of the execution time in typical tile shapes, like
CONV1 and CONV3. Given the large channel size, CONV2
features an increased weight tensor size with respect to CONV1
and CONV3. This increases the DMA latency, which reaches
up to 14% of the total time. DMA transfers may occupy up
to 20% in corner cases like CONV4. When FP16 is used, the
time to transfer data is reduced by 1.6× with respect to FP32
on average, thanks to the halved memory footprint. In case of
PW CONV, both FP32 and FP16 DMA transfers are responsi-
ble for at most the 12% of the total latency, representing the
prime overhead.

6.4. Energy Evaluation

In this section, we evaluate the energy consumption of the
layer primitives of Tab 5. To this aim, we measure the power
consumption of the building components of the training steps
on a GAP9 SoC featuring a supply voltage of 0.8 V and a run-
ning clock frequency of 370 MHz. The energy profile is then
calculated by taking into account the latency of the primitives
shown in Figure 10. Fig. 11 shows the power costs (in mW) of
CONV 1-4 and PW CONV. We break down the contributions
from the different components (MM, DMA and the transform

operators) either for the FP32 and FP16 kernels. The power
consumption is plotted after averaging the measurements across
the training steps; a low variance was observed because of the
similar workload composition.

The average power consumption of CONV 1-4 reaches up to
63.6 mW for both FP32 and FP16. This is a result of the promi-
nence of MM/MMT operators (70% of the total latency), whose
consumption surpasses 66 mW in FP32 and 59 mW in FP16.
When it comes to FP16, the MMT kernels have a lower power
consumption, suggesting that the hardware is not being fully
utilized due to a reduction of the parallel efficiency of FP16
MMT kernels. The maximum speedup is limited to 6.23 on 8
cores. This is due to the matrix shapes of each training step in
FP16, which does not offer favorable parallelization schemes.
This effect can also be observed in terms of MAC/clk: if a theo-
retical MAC/clk of 7.13 is expected (2× the FP32 performance
on the same layer), only a 6.37 MAC/clk is measured on the
FP16 primitives. This 12% difference is reflected in the de-
crease of power consumption.

The FP32 and FP16 Im2Row/Im2Col operators feature an av-
erage power consumption of 55.3 mW. The similar cost of these
operators indicates a similar activity of the hardware units. In
the case of PW CONV, the average power consumption approx-
imates 60 mW, in line with CONV 1-4. In this case, the power
consumption due to Tr/B-T entirely depends on transposition
operators, which consume 69.4 mW on average independently
of the datatype. Both CONV 1-4 and PW CONV feature similar
power consumption for both MM kernels and DMA transfers.
These latter represent the smallest power overhead, as their con-
sumption is as little as 33.5 mW on average.

When analyzing the energy consumption, we account for a
minimum of 4 µJ in the case of a full FP32 training step of
CONV4, and a maximum of 25.4 µJ for CONV1. In the case of
FP16, the range goes from 3.8 µJ for CONV4 (corner case with
a latency similar to FP32) and 17.4 µJ for CONV3. Reflecting
the latency breakdown observed in Fig. 10, the transform oper-
ators (i.e., Im2Col/Im2Row and Tr/B-T) of CONV 1-3 reach up
to the 18.6% of the single training steps in FP32 and 27.3% in
FP16. The same operators in the CONV4 consume up to the
47% of the total, because of the reduced channel size of the in-
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Figure 11: Average Power analysis of CONV 1-4 and PW CONV, whose la-
tency analysis was presented in Fig. 10. Results are presented in mW.

Figure 12: Comparison of CHW and HWC formats for a Conv2D layer of the
same size with both FP32 and FP16. The considered Conv2D has the same
shape of Fig. 10’s CONV1.

put activation, which makes the BW-IG Im2Row/Im2Col more
impacting and limit the maximum performance of MM/MMT

kernels.

6.5. Conv2D HWC/CHW Layout Comparison
Fig. 12 shows a comparison of the performances achieved

with both HWC and CHW formats on the same Conv2D shape
(CONV1). In the case of FP32 training primitives, MM kernels
are on average responsible of the largest share of the execution
time for each training step, both in the case of CHW primi-
tives (81%) and of HWC primitives (83%). FP32 DMA trans-
fers and transpositions present the same latency since data can
be accessed and manipulated element-by-element, disregard-
ing vectorization. However, the contribution coming from the
Im2Col/Im2Row operators is reduced by 36% using the HWC
format. This depends on the structure of HWC Im2Col and
Im2Row algorithms, which load and reshape kh × kw × Ci ten-
sor elements in each iteration of the inner loop. On the con-
trary, CHW operators manipulate only kh × kw elements for ev-
ery iteration, leading to larger reshaping overheads due to ad-
ditional control instructions. Furthermore, the HWC format al-
lows slightly faster execution of MM kernels in some cases.
This depends on the shape of the involved matrices, which can
allow larger sizes on the N dimension. In turn, this may enable
larger chunks when parallelizing outer loops on multiple cores.
Overall, FP32 HWC-shaped Conv2D kernels show up to 6%
faster latency with respect to CHW.

Figure 13: ResNet8 (top) and DS-CNN (bottom) model architectures including
the shapes of the activation tensors and layer types.

Table 6: Latency on GAP9 for a complete training step of ResNet8 and DS-
CNN models and comparison with top inference-only scores on MCUs.

ResNet 8 DS-CNN
GAP9 Training [This work] FP32 FP16 FP32 FP16
Total Clock Cycles [Millions] 11.9 6.3 4.3 2.4
% MM 0.73 0.74 0.71 0.75
latency GAP9@240MHz [ms] 49.5 26.3 17.7 9.9
latency GAP9@370MHz [ms] 32.1 17.1 11.5 6.4

In the case of FP16 primitives, MMT kernels occupy 68%
of the latency of CHW primitives. The dominance of MMT

kernels is largely increased in the case of HWC kernels since
MMT occupies 78% of the latency. The impact of DMA trans-
fers is the same in both FP32 and FP16. In terms of MMT ker-
nels, both CHW and HWC formats have similar performance
since both formats provide similar matrix shapes in each train-
ing step. In the HWC case, FP16 Im2Col and Im2Row kernels
achieve 2× faster performance than in the CHW case, thanks to
fully vectorizable data accesses (see Fig. 2), impacting the over-
all training step latency only by 12%. In the CHW case, transfer
chunks are smaller than in HWC, yielding larger overheads im-
pacting as much as 24% the overall latency. In absolute terms,
CHW FP16 Im2Col/Im2Row algorithms suffer a 32% slowdown
with respect to FP32 due to poorer vectorization. Instead, the
same FP16 HWC operators prove to be 1.25× faster than FP32.
Therefore, FP16 SIMD execution in HWC data format proves
to be 11% faster than CHW in the same data precision.

6.6. End-To-End TinyML Model Training

In this section, we apply the proposed methodology to the
layers of complete TinyML models - a ResNet8 for Image Clas-
sification and a DS-CNN for Audio Keyword Spotting, whose
architectures are represented in Fig. 13. For both models, we
estimate the latency for running a training step on a single input
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sample (i.e., batch size of 1) using our FP16 or FP32 primi-
tives. We use an HWC format to implement the model layers;
only DepthWise Convolutions are represented in memory using
a CHW layout.

From a memory viewpoint, we consider storing the acti-
vation tensors, the weights and their gradients in the on-chip
L2 RAM memory. The total memory footprint of the FP32
ResNet8 amounts to 893 kB and reaches 772 kB in the case
of the DS-CNN model. These costs are reduced by 2× if the
FP16 datatype is used, dropping to 443 kB and 386 kB, respec-
tively. On the other side, the FP32 and FP16 versions maximize
the utilization of the L1 memory buffer, which we limit to 64
kB for storing the tensor tiles. E.g., In the case of ResNet8,
the computation of the FP32 FW step of the Layer 2 can be
split into 32 tiles, each one featuring a memory cost of 47 kB.
Thanks to the 2x compression of FP16, the number of channels
per tile is doubled: the workload splits into 16 tiles with a re-
quirement of 53 kB per tile. A similar tiling logic is proposed
for the other layers and the DS-CNN layers.

Tab. 6 shows the latencies measured on GAP9 in terms of
clock cycles. In the case of the ResNet8 model, the overall
training time is dominated by Conv2D layers (up to 98%) for
both FP32 and FP16 formats. The Pointwise layers, instead,
represent up to 2.3% of the workload. Using the FP16 primi-
tives accelerates the training time by 1.88× vs. the FP32 imple-
mentation. Yet, the MM operator presents the largest execution
time, up to 74% of the total training time. Moreover, these ker-
nels show high efficiency (4.2 MAC/clk on average for MM in
Resnet8) because large tile size can be considered, similarly to
CONV1 and CONV2 of Fig. 10. The Im2Row/Im2Col shape
transforms (up to 14% for FP16), and the DMA transfers (7%)
constitute the other most expensive tasks. On the other side,
the workload of the DS-CNN is dominated by the 5× Depth-
wise Separable Convolutions, and in particular, the PointWise
layers, which take more than 54% of the computation in both
FP32 and FP16.

Running on GAP9 clocked at 370MHz, a complete training
step of ResNet8 and DS-CNN takes, respectively, 17.1 msec
and 6.4 msec. This result paves the way for real-time ODL on
low-end MCUs using the canonical backpropagation algorithm.
Considering a data streaming scenario, the ResNet8 and the DS-
CNN models can sustain the throughput of, respectively, image
sensor acquisition (typically 10-30 fps for embedded applica-
tions) and audio frame processing every 0.5s used for Keyword
Spotting. This also holds when GAP9 works in low-power
mode, 240MHz@0.65V, but the average power consumption of
the training task reduces to 27.18 mW, 2.23× lower than work-
ing at full speed. Given the existing slack between the training
latency and typical sensor data rate, we speculate on the feasi-
bility of a real-time mini-batch-based ODL framework that we
will investigate in future work.

6.7. Continual Learning on MCU case-study

Lastly, we evaluate our design in a class-incremental Contin-
ual Learning approach proposed by Pellegrini et. al. [20]. A
MobileNet128 trained on a 10-class image classification task

Table 7: Latency and Energy Evaluation for Continual Learning on MCUs

Platform Latency (s) Energy (J)

Aifes[30] STM32L4 @ 80 MHz
DW21 236655 DW21 7739
DW23 142157 DW23 4649
LIN27 102.4 LIN27 3.35

PULP-TrainLib[31] Greenwaves GAP9 @ 370 MHz
DW21 504.1 DW21 32.24
DW23 303.8 DW23 19.43
LIN27 0.89 LIN27 0.06

This Work Greenwaves GAP9 @ 370 MHz
DW21 308.5 DW21 18.68
DW23 185.9 DW23 11.26
LIN27 0.89 LIN27 0.06

learns to recognize a new class after acquiring 100 image sam-
ples of the new objects, without forgetting previously learned
classes. The new data are labelled and mixed with 500 pre-
stored embeddings of the other classes. This data set is used to
fine-tune the last layers of the MobileNet128 for learning the
11-th class; an SGD optimization is applied over 8 epochs.

Table 7 compares our solution with other State-of-the-Art
ODL frameworks to solve the task. More in detail, we esti-
mate the latency and the energy consumption to train the weight
parameters of the last 7 layers (up to layer DW21), the last 5
layers (DW23), or only the last layer (LIN27). For compar-
ison purposes, we consider the most mature ODL software li-
braries for MCU: AIfES [30], targeting an STM32L476RG, and
PULP-TrainLib [31], which targets multi-core RISC-V MCUs
but only supports FP32 ODL kernels.

When fine-tuning multiple layers, our solution demonstrates
to be up to 1.6× and 767× faster than PULP-TrainLib on GAP9
and AIfES on an STM32L4 MCU, respectively. While the
first is motivated by the shift from FP32 to FP16, the sec-
ond large gap depends on multiple factors: the different ISA
and CPU micro-architecture (∼2.4×), the reduced precision
(∼1.6×), the 8-core parallelization (∼7.5×), the GAP9 clock
frequency higher than STM32 (∼4.6×) and our HW/SW op-
timization that we estimate to contribute ∼6×. Conversely,
the gain is reduced when retraining only the last layer. FP16
fully-connected training primitives are not yet fully optimized
with SIMD vectorization; in this case, our solution achieves the
same performance level as the FP32 implementation of PULP-
TrainLib. Moreover, our design is 292.02 × more energy ef-
ficient compared to AIfES; the lower gain compared with the
performance speedup is due to GAP9’s higher power consump-
tion than an STM32L4 at maximum speed. Thanks to the pro-
posed technique, the adaptation time for highly accurate Con-
tinual Learning solutions [20] is reduced from whole days (en-
tirely infeasible!) to 3-5 minutes, depending on the embedding
layer depth (DW21 or DW23).

7. Conclusion

In this paper, we introduced a novel methodology to optimize
the execution of DNN primitives for On-Device Learning on
multi-core MCU powered by FP16 SIMD FPUs. We proposed
a strategy to reshape the training kernels into Matrix Multipli-
cation operators. Furthermore, we provided an efficient imple-
mentation of the MM kernel exploiting FP16 SIMD instructions
and we defined the needed transform functions for the different
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steps of the training algorithm. When benchmarked on a Con-
tinual Learning scenario, our solution deployed on a multi-core
RISC-V MCU was demonstrated to be more than two orders
of magnitude faster than the other proposed ODL library for
single-core MCUs. To foster future research on MCU-based
On-Device Learning, we release the code of our library as open-
source software at: https://github.com/pulp-platform/
pulp-trainlib.
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