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A B S T R A C T

In the field of sustainable energy and alternatives to fossil fuels, wave energy is generating an increasing
interest due to its untapped potential. However, the levelised cost of energy of wave energy systems is
still not able to compete with other renewable technologies, mainly due to high costs associated with their
conversion process. In this context, the development of energy-maximising control strategies plays an important
role towards the economic viability of wave energy technology, by optimising the overall energy conversion,
hence contributing towards minimising the associated cost of energy. State-of-the-art control systems for wave
energy converters are mostly model-based, exploiting control-oriented models of the device to compute the
applied control actions with a limited computational burden. Nevertheless, these representations of the system
are simplified, and often based upon unrealistic assumptions, such as small motion around the zero equilibrium
position, which are inherently invalidated during device operations and that can lead to large uncertainties,
resulting in suboptimal power absorption. For these reasons, in this paper, a purely data-driven control strategy
is developed. This strategy exploits random forests (RFs) and deep neural networks (DNNs) to gradually learn from
real experiences towards an optimal proportional–integral control action. These structures are used as surrogate
models (built upon the data coming from past experiences) to converge to the optimal control parameters in a
surrogate-optimisation-like manner. To manage the exploration and exploitation needs of controllers based on
this approach, a learning strategy is developed and presented. Some considerations are made on the choice of
the input features of the surrogate structures, which deeply affect the control strategy learning results. To assess
the performances of both the control and learning strategies, one year of operations has been simulated under
control settings guided by the proposed data-driven approach, showing also the potential capabilities that the
adoption of RFs and DNNs has in learning, even in sea conditions with a limited number of occurrences.
1. Introduction

In the context of an increasing interest on sustainable solutions
to the problem of rising energy demand, wave energy represents a
promising resource, due to its mainly untapped potential (Terrero
González et al., 2021). Devices aimed at absorbing energy from ocean
waves are called wave energy converters (WECs). These attempt to
convert the wave motion into electrical energy, exploiting different
conversion principles (Czech and Bauer, 2012). In contrast to other
offshore energy technologies, wave energy has not yet still reached
technological maturity nor a commercialisation stage, mainly due to the
absence of a definitive conversion concept (Guo and Ringwood, 2021a;
Trueworthy and DuPont, 2020), able to extract energy efficiently in
a wide variety of operating conditions. Among the challenges that
must be overcome in the development of wave energy systems, the
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definition of an efficient control strategy plays a role of paramount
importance (Ringwood, 2020). Suitable control strategies are respon-
sible of maximising the energy absorption (Ringwood et al., 2014),
continuously adjusting the WEC action to the wave resource whose
characteristics are continuously changing (Reguero et al., 2015).

Most of the control strategies developed for WECs are model-based,
since they exploit a previously formulated control-oriented model of the
system to compute the associated control action. This model allows
the achievement of several functionalities, like wave force estima-
tion (Peña-Sanchez et al., 2020b), and consequent prediction (Peña-
Sanchez et al., 2020a), enabling the adoption of popular predictive
control approaches (Faedo et al., 2017). However, the formulation of
control-oriented models often relies on several simplifications, in order
141-1187/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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to reduce the computational and representational burdens associated
with their adoption, and to allow real-time operations on physical
hardware. These simplifications are often associated with small motion
(i.e., linearised) assumptions about the zero equilibrium, neglecting the
complexity associated with WEC nonlinearities (Penalba et al., 2017),
like viscosity effects (Wang et al., 2018), internal machinery dynam-
ics (Penalba and Ringwood, 2019; Xuhui et al., 2019), or mooring
contributions (Palm et al., 2016; Paduano et al., 2020). Even if linear
hydrodynamic modelling can be quite accurate (see, e.g., Stansby et al.
2017)), the application of control actions computed on the basis of
inearised models (especially whenever internal mechanical systems are
nvolved) invalidates, in general, the linearity assumptions adopted to
ompute such simplified descriptions, resulting in the so-called WEC
odelling paradox (Windt et al., 2021): Energy-maximising control in-
eed tends to increase the WEC motion, moving far from the linearised
perational space. This phenomenon leads to non-representative syn-
hesis of even simple control structures (Carapellese et al., 2022a). In
he attempt of solving this issues, some novel approaches have been
roposed to formulate WEC nonlinear models in a control-oriented
ashion (Faedo et al., 2022b). However, model-based strategies are still
ffected by uncertainties given by the mismatch between real and mod-
lled device (Farajvand et al., 2023), and, if this uncertainty is not taken
nto account during control synthesis, the resulting controllers could
erform suboptimally. Moreover, WEC devices are supposed to operate
or long time spans. During this period, because of ageing effects or
iofouling phenomena on the hull, the WEC dynamics can change, and
onsequently the difference between original model and real device can
ncrease, further leading to suboptimal performance. These consider-
tions motivate the adoption of data-driven control strategies, which
ase their synthesis on real data, and not on WEC models (i.e., they are
odel-free).

.1. Contributions and paper positioning

Considering the discussion provided in Section 1, this paper presents
data-driven control strategy able to gradually learn from the experi-

nces that the real WEC faces over time. To achieve this, two different
pproaches are presented. The first approach adopts deep neural net-
orks (DNN) to describe the knowledge gathered by the device, and

o continuously learn towards optimal actions. The second approach
mploys a random forest (RF) to achieve the same objective. To the best
f authors’ knowledge, this is the first time RFs have been exploited in
he field of WEC control. Both DNN and RF are adopted for their capa-
ilities to synthesise all the information provided by real experiences
n different conditions, in an attempt to find a generalised and accurate
escription of the effects that the controller has on device productivity
n different sea conditions. This relationship is modelled by DNNs and
Fs, also called in this context metamodels, purely on the basis of data.

It is important to highlight that the metamodels are not attempting to
model in any way the device dynamics, but only its consequences on
the previously mentioned relationship. In the proposed control strategy,
the metamodel is used to optimise the control action for any given sea
state. Furthermore, the paper introduces also a learning strategy, which
suitably balances the two goals of data-driven control strategies (Pasta
et al., 2022): exploration and exploitation. Finally, with the purpose of
fully exploit the capabilities of DNNs and RFs, an analysis related to the
selection of the features employed as metamodel inputs is performed,
highlighting the influence that proper feature selection has on final
learning performance.

To assess the performance of the proposed control strategy, an
extensive numerical test is performed. More in particular, the controller
is employed to maximise the power absorption of a Pendulum Wave
Energy Converter (PeWEC) (Pozzi et al., 2018; Sirigu et al., 2020). This
has been modelled with a fully-nonlinear dynamical representation for
its internal mechanical system, and is subject to irregular waves taken
2

from a validated sea states dataset from a candidate deployment site in a
the Mediterranean Sea obtained from ERA5 global reanalysis (Hersbach
et al., 2020). In order to assess also the capabilities of the controller
during the learning period, simulations of one year length are per-
formed, considering a concatenation of wave conditions which reflects
the real deployment site data. To the best of authors’ knowledge, this is
the first time a learning-based controller has been tested so extensively
in wave energy field, demonstrating the learning capabilities in a com-
plete set of waves which includes even sea states with low occurrences
(standard analysis are done only on few conditions, without considering
in the learning evaluation the sea state changes). It is important to
highlight that the proposed controller design and analysis aim at more
general applications that go beyond the control of PeWEC (which
effectively represents only a single case study), and that the outlined
procedure can be straightforwardly applied to other WECs.

1.2. Paper structure

The remainder of the paper is organised as follows. In Section 2,
the basic working principles of wave energy conversion are presented,
with a particular attention to PeWEC, and to the characteristics of
the model adopted in the presented analysis. Section 3 is aimed at
presenting the general formulation of the WEC optimal control problem
(OCP), with a brief description of the issues that characterise this type
of control application. In Section 4, the proposed data-driven control
strategy is described, highlighting the role of the learning strategy
in the algorithm. In Section 5, the concept of metamodel is detailed,
and the basic notions related to DDNs and RFs and their training are
presented (in Section 5.1 and Section 5.2, respectively). Considerations
on the role of possible additional input features are formulated in
Section 5.3. Section 6 is devoted to the comparison, in terms of pro-
ductivity performance, of the proposed strategy (considering both DNN
and RF metamodels, with and without additional input features), with a
model-based counterpart. In Section 6.1, the year long simulation setup
is presented, while Section 6.2 details the corresponding numerical
results. Finally, in Section 7, conclusions are drawn on the learning
capabilities of the proposed control strategy, providing a number of
considerations on the choice of type of metamodel and input features.

2. WEC modelling

Under the umbrella of wave energy converters, devices based on
different working principles have been proposed (Guo and Ringwood,
2021b). Among them, it is possible to make a distinction between point
absorbers (Guo et al., 2022), oscillating water columns (Rosati et al.,
2022), terminators (Salter, 1974), and attenuators (Yemm et al., 2012).
Within the most popular solutions, point absorbers comprise a moored
hull, whose motion is activated by action of the surrounding wave field.
The energy is thus extracted by one or more device motions by means of
the so-called power take-off (PTO) system, aimed at properly acting on
the device in the attempt of absorbing the wave energy. The equation
of motion, describing such type of devices, can be formulated (Falnes,
2002) as1:

𝑀𝑥̈ = 𝑓𝑟(𝑥̇) + 𝑓ℎ𝑟(𝑥) + 𝑓𝑒𝑥𝑐 (𝜂) + 𝑓𝑎𝑑𝑑 (𝑥, 𝑥̇, 𝑥̈, 𝜂) − 𝑓𝑢, (1)

where 𝑀 ∈ R𝑛×𝑛 is the generalised inertia matrix for the 𝑛 degrees-of-
freedom (DoFs) device, 𝑥 ∶ R+ → R𝑛 is the generalised displacement
vector (which takes into account the displacement in all the DoFs),
𝜂 ∶ R+ → R is the wave elevation, 𝑓𝑟 ∶ R𝑛 → R𝑛 represents
radiation effects,2 𝑓ℎ𝑟 ∶ R𝑛 → R𝑛 describes the hydrostatic restoring

1 From now on, the dependence on time 𝑡 is dropped when clear from the
ontext.

2 In the simulation model employed in this study (Eqs. (1) and (3)), the
adiation terms follow the standard Cummins’ equation formulation, i.e. these
re modelled in terms of an associated convolution operator (Cummins, 1962).
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Fig. 1. Simplified schematics of the PeWEC device.

forces, 𝑓𝑒𝑥𝑐 ∶ R → R𝑛 is the excitation force contribution, while
𝑓𝑎𝑑𝑑 ∶ R𝑛 × R𝑛 × R𝑛 × R → R𝑛 includes any additional effects, arising
from mooring systems, mechanical transmissions, reaction forces, and
PTO dynamics. Finally, the term 𝑓𝑢 ∶ R → R𝑛 represents the control
action applied to the WEC. The additional contributions in 𝑓𝑎𝑑𝑑 can
include nonlinear relationships. It is important to highlight also that
the terms in Eq. (1), apart from the dependence from displacements,
velocities, and accelerations, depend upon two external terms, which
are the wave elevation 𝜂, and the control contribution 𝑓𝑢. For this
reason, every controller aimed at maximising the absorbed energy must
properly take into account the wave contribution through an estimation
process (Peña-Sanchez et al., 2020b) or considering statistical synthetic
information of the wave signal (Pasta et al., 2022).

In this paper the PeWEC technology is considered as a case study.
PeWEC is a pitching-resonant WEC, consisting of a floating hull, moored
to the seabed by a catenary mooring system (Pozzi et al., 2017;
Paduano et al., 2021). Enclosed inside the hull, a pendulum system
is installed and hinged to the PTO. The waves facing the hull generate
a pitching motion, and the consequently induced pendulum swinging
movement is damped by the PTO actuation system to extract energy.
A simplified schematic of the PeWEC device is shown in Fig. 1.

In case of moorings designed to self-align with the wave direction,
the floater DoFs can be reduced to surge, heave, and pitch. In this way,
the PeWEC DoFs vector becomes:

𝑥 =
[

𝑥𝑓 , 𝑧𝑓 , 𝛿𝑓 , 𝜀
]𝖳 =

[

𝑥tot,𝑓 , 𝜀
]𝖳, (2)

where 𝑥𝑓 , 𝑧𝑓 , 𝛿𝑓 , and 𝜀 are the surge, heave, pitch displacements, and
the pendulum swinging angle, respectively, while 𝑥tot,𝑓 = [𝑥, 𝑧, 𝛿]𝖳. The
floater motion follows the equation:

𝑀𝑓 𝑥̈tot,𝑓 (𝑡) = 𝑓𝑟(𝑥̇) + 𝑓ℎ𝑟(𝑥) + 𝑓𝑒𝑥𝑐 (𝜂) + 𝑓𝑝𝑒𝑛𝑑
(

𝑥(𝑡), 𝑥̇(𝑡), 𝑥̈(𝑡), 𝑓𝑢,𝑝
)

, (3)

where 𝑀𝑓 ∈ R3×3 is the inertia matrix of the PeWEC floater, while
𝑓𝑝𝑒𝑛𝑑 ∶ R3 × R3 × R3 × R → R3 are the reaction forces that the moving
pendulum discharges on the hull, and 𝑓𝑢,𝑝 is the PTO control action
on the pendulum system. As it can be noticed, the control action 𝑓𝑢
is not directly applied to any floater DoF, while its effects are part of
the pendulum reaction forces. In this way, the overall dynamics of the
WEC are controlled by means of the actuated pendulum motion. These
reaction forces are a consequence of the pendulum dynamics, which can
3

Fig. 2. Bode plot associated to the dynamics of the considered PeWEC system.

be described in terms of the following equation (Pozzi et al., 2018):
(

𝐼𝑦 + 𝑚𝑙2
)

𝜀̈ − 𝑚𝑙 cos(𝛿𝑓 + 𝜀)𝑥̈𝑓 + 𝑚𝑙 sin(𝛿𝑓 + 𝜀)𝑧̈𝑓
+

(

𝐼𝑦 + 𝑚𝑙2 − 𝑚𝑑𝑙 cos(𝜀)
)

𝛿𝑓 − 𝑚𝑑𝑙 sin(𝜀)𝛿̇2𝑓
+ 𝑚𝑔𝑙 sin(𝛿𝑓 + 𝜀) + 𝑓𝑢,𝑝 = 0,

(4)

where 𝐼𝑦 and 𝑚 are the inertia around the pendulum baricentric axis,
and its mass, respectively, 𝑙 and 𝑑 are the pendulum length and the
distance between its hinge and the floater centre of mass, while 𝑔 is
the gravity acceleration constant. The pendulum motion is responsible
of the reactions on the hull 𝑓𝑝𝑒𝑛𝑑 = [𝑓𝑝𝑒𝑛𝑑,𝑥, 𝑓𝑝𝑒𝑛𝑑,𝑧, 𝑓𝑝𝑒𝑛𝑑,𝛿]𝖳, which are
exerted through its hinge and are formulated as:

𝑓𝑝𝑒𝑛𝑑,𝑥 = − 𝑚𝑑 cos(𝛿𝑓 )𝛿𝑓 − 𝑚𝑙 cos(𝛿𝑓 + 𝜀)
(

𝛿𝑓 + 𝜀̈
)

+ 𝑚𝑑 sin(𝛿𝑓 )𝛿̇2𝑓 − 𝑚𝑙 sin(𝛿𝑓 + 𝜀)
(

𝛿̇𝑓 + 𝜀̇
)2,

𝑓𝑝𝑒𝑛𝑑,𝑧 =𝑚𝑑 sin(𝛿𝑓 )𝛿𝑓 − 𝑚𝑙 sin(𝛿𝑓 + 𝜀)
(

𝛿𝑓 + 𝜀̈
)

+ 𝑚𝑑 cos(𝛿𝑓 )𝛿̇2𝑓 − 𝑚𝑙 cos(𝛿𝑓 + 𝜀)
(

𝛿̇𝑓 + 𝜀̇
)2,

𝑓𝑝𝑒𝑛𝑑,𝛿 =𝑓𝑝𝑒𝑛𝑑,𝑥𝑑 cos(𝛿𝑓 ) − 𝑓𝑝𝑒𝑛𝑑,𝑧𝑑 sin(𝛿𝑓 ) + 𝑓𝑢,𝑝.

(5)

As it is possible to notice from Eqs. (4)–(5), the mechanical terms
related to the pendulum dynamics are characterised by several non-
linearities. To provide a model convenient for model-based control
synthesis, the system of equations describing PeWEC is linearised under
the assumptions of small oscillations about 𝛿𝑓 ≈ 0 and 𝜀 ≈ 0 (Gioia
et al., 2022). This assumption enables the adoption of linearised equa-
tions, and consequently a transfer function representation. As the main
aim of these models is that of optimal control synthesis, the main
input–output relationship that has to be studied is the one related
to the axis of conversion (Faedo et al., 2022a), i.e., from the control
action (𝑓𝑢,𝑝 in the considered PeWEC case), to the related velocity (𝜀̇
in PeWEC), as explained in Section 3 (in particular in Eqs. (6)–(8)).
A Bode plot of such relationship, adopting the linearised equations
of the considered PeWEC, is reported in Fig. 2. As it is possible to
observe, the system dynamics are characterised by two main resonance
conditions, one related to the hydrodynamics of the hull in pitch (first
mode at 1.05 rad/s), and a second one at higher frequencies (second
mode at 2.07 rad/s), which is the result of the pendulum dynamics.
The represented transfer function in Fig. 2 is the one adopted in this
paper to synthesise the model-based benchmark controller, following
an impedance-matching approach (Faedo et al., 2022a).

3. WEC optimal control problem

In wave energy conversion, the control strategy is responsible for
the proper selection of the action that has to be applied by the PTO
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to maximise the power absorption. Moreover, control systems are used
to suitably adjust to the marine environment, which is continuously
changing, hence preventing the system from falling in possibly dan-
gerous operational conditions. To achieve these objectives, the process
of control synthesis requires the solution of an optimal control problem
(OCP) of the energy-maximisation type. More specifically, if mechanical
energy is considered, the performance function  to be maximised is
he average absorbed power 𝑃𝑎𝑏𝑠 over a certain time interval  = [𝑎, 𝑏],
hich can be formulated as 3:
(

𝑓𝑢
)

= 1
𝑇 ∫

𝑓𝑢(𝑡)𝖳𝑥̇(𝑡)𝑑𝑡, (6)

where 𝑇 = 𝑏− 𝑎. Hence, in the general case, the WEC OCP can be fully
written as4

opt
𝑢 = arg max

𝑓𝑢

(

𝑓𝑢
)

,

s.t.:
WEC dynamics (1).

(7)

n the PeWEC case, where a single actuator (and consequent absorption
oF) is available at the pendulum hinge, Eq. (6) is rewritten as:
(

𝑓𝑢,𝑝
)

= 1
𝑇 ∫

𝑓𝑢,𝑝(𝑡)𝜀̇(𝑡)𝑑𝑡. (8)

Several approaches have been adopted to develop strategies able to
suitably solve the WEC OCP. A classical approach is the one called
impedance-matching (IM) (Ringwood et al., 2014; Faedo et al., 2020),
based on an equivalent circuit of the excited WEC system model. Other
model-based approaches have been applied to solve the WEC OCP.
Among them, the most popular are model predictive control (Li and
Belmont, 2014; Faedo et al., 2017), pseudo-spectral control (Garcia-
Violini and Ringwood, 2021), moment-based control (Faedo et al., 2018,
2021), linear quadratic Gaussian (LQG) (Scruggs et al., 2013; Scruggs
and Nie, 2015), and LiTe-Con (Garcia-Violini et al., 2020; Carapellese
et al., 2022b). Even if some attempts have been made to ‘robustify’
these strategies (e.g., in Faedo et al. (2019), Zhang and Li (2023)),
model-based approaches are inherently sensitive to the uncertainty
associated to the mismatch between the control-oriented model and the
real system (Ringwood et al., 2020; Pasta et al., 2023), with respect
to hydrodynamics (Farajvand et al., 2021). This possible drawback
of model-based control motivates the investigation of data-driven ap-
proaches (Pasta et al., 2022; Moens de Hase et al., 2021). Among
these, some of the most popular ones within the wave energy field
are extremum seeking (Garcia-Rosa et al., 2012; Parrinello et al., 2020),
reinforcement learning (Anderlini et al., 2016, 2018), and maximum
power point tracking (Amon et al., 2012; Xiao et al., 2016). Some
attempts at employing other strategies based on the concept of ‘control
by learning’ have been made in Anderlini et al. (2017), exploiting
neural networks, and in Gioia et al. (2022), Shi et al. (2019), employing
Gaussian Process Regression. These latter approaches are also defined
surrogate optimisation-like (Pasta et al., 2022), because of their similarity
with surrogate-based optimisation algorithms in the field of global opti-
misation of computationally expensive functions (Forrester and Keane,
2009). In this context, this paper presents a surrogate optimisation-like
WEC control strategy, which employs DNNs and RFs in the process, and
adopts a predefined learning strategy to properly balance the trade-off
between exploration and exploitation.

3 The definition in (6) is presented in the general case with 𝑛 available
controllable actuators, one for every DoF.

4 Other formulations of the OCP can be found, with this latter subject also
to motion or control action constraints (Bacelli and Ringwood, 2013).
4

a

Table 1
Learning strategy design parameters.

Variable Description

𝛥𝑇𝑒 Occurrence scatter 𝑇𝑒 discretisation bin
𝛥𝐻𝑠 Occurrence scatter 𝐻𝑠 discretisation bin.
𝑇𝑠𝑠 Sea state re-evaluation period
𝑇𝑚𝑖𝑛 Minimum exploration time
𝑇𝑒𝑣𝑎𝑙.  evaluation period
𝑇𝑢𝑝𝑑𝑡. Metamodel update period
𝛼𝑔𝑟. 𝜖𝑔𝑟. slope
𝛽𝑔𝑟. 𝜖𝑔𝑟. heat parameter
𝛾𝑔𝑟. 𝜖𝑔𝑟. centre horizontal position
𝛿𝑔𝑟. Minimum exploration 𝜖𝑔𝑟. parameter

4. Proposed data-driven strategy

As discussed in Section 3, a data-driven control strategy based on
an analogy with surrogate optimisation algorithms is proposed in this
paper. In particular, the presented strategy is used to learn, in each sea
state condition 𝑆𝑇𝑒 ,𝐻𝑠

=
[

𝑇𝑒,𝐻𝑠
]𝖳 (thus defined by the energetic period

𝑇𝑒, and significant height 𝐻𝑠), the optimal parameters of a reactive
control law:

𝑓𝑢,𝑝(𝜃, 𝜀, 𝜀̇) = 𝜃𝖳
[

𝜀̇
𝜀

]

, (9)

with control law parameters 𝜃 =
[

𝜃1, 𝜃2
]𝖳 ∈ R2, i.e., PTO damping

and stiffness, respectively. It is important to notice that the same
parametrisation is often adopted in the IM approach to interpolate the
optimal response of the system at a given excitation frequency. For
this reason, in the performance comparison presented in Section 6, the
controller employed as a model-based benchmark (i.e. reference) is syn-
thesised by means of IM interpolation (Faedo et al., 2022a; Ringwood
et al., 2014), which is indeed the standard practice in WEC control
applications (Falnes, 2002). This choice is performed to maintain the
same control parametrisation (Eq. (9)) in both the data-driven and
model-based control strategies, providing a level playing field in terms
of controller complexity. In the proposed data-driven approach (whose
main design parameters are presented in Table 1), two main steps are
present and continuously iterated:

1. The creation (and consequent periodical update) of a metamodel
𝑓 ∶ R2 × R2 → R, (𝑆𝑇𝑒 ,𝐻𝑠

, 𝜃) ↦ 𝑓(𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃), aimed at

approximating the (unknown) relationship  ∶ R2 × R2 →
R, (𝑆𝑇𝑒 ,𝐻𝑠

, 𝜃) ↦ (𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃). This latter tries to approximate

the objective function  = 𝑃𝑎𝑏𝑠 (average absorbed power by
the device), which, considering the control action defined as
in Eq. (9) and explicitly accounting for the contribution of
waves through the sea state, is consequently re-parameterised
in terms of 𝑆𝑇𝑒 ,𝐻𝑠

, and the applied control parameters 𝜃. The
approximation 𝑓 obtained with the metamodel is created (and
periodically updated every 𝑇𝑢𝑝𝑑𝑡.) on the basis of the stored 𝑝𝑎𝑠𝑡,
𝑆𝑝𝑎𝑠𝑡, and 𝜃𝑝𝑎𝑠𝑡, which contain the past values of absorbed power,
sea states, and applied control parameters, respectively.5

2. The choice of the control parameters 𝜃 to be applied in the sea
state 𝑆𝑇𝑒 ,𝐻𝑠

. This is done balancing the actions of exploration
(needed, especially in the initial stages, to build a suitable
approximation 𝑓), and exploitation (to maximise the outcome
in terms of absorbed energy). This trade-off, and consequent
learning strategy, is managed by means of the greediness function
𝜖𝑔𝑟. ∶ R → R, 𝑁𝑒𝑥𝑝. ↦ 𝜖𝑔𝑟.(𝑁𝑒𝑥𝑝.), which, as a function of the
number of experiences faced in a certain sea state 𝑁𝑒𝑥𝑝. ∶ R2 →
R, 𝑆𝑇𝑒 ,𝐻𝑠

↦ 𝑁𝑒𝑥𝑝.(𝑆𝑇𝑒 ,𝐻𝑠
), defines the probability of applying an

exploration action.

5 Considered 𝑛 experienced actions, 𝑝𝑎𝑠𝑡, 𝑆𝑝𝑎𝑠𝑡, and 𝜃𝑝𝑎𝑠𝑡 are build and
rdered such as the 𝑖th row of each of these matrices represents the variables
ssociated to the 𝑖th experience, i.e.,  ∈ R𝑛×2, 𝑆 ∈ R𝑛×2, and 𝜃 ∈ R𝑛×2.
𝑝𝑎𝑠𝑡 𝑝𝑎𝑠𝑡 𝑝𝑎𝑠𝑡
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Fig. 3. Logistic sigmoid function adopted to define the greediness function 𝜖𝑔𝑟..

s it has been stressed above, apart from the metamodel approximation
unction, two main functions strongly influence the behaviour of the
ontrol strategy in terms of choices of control parameters. The first
ne is 𝑁𝑒𝑥𝑝.(𝑆𝑇𝑒 ,𝐻𝑠

), which counts the experiences that the strategy
tself faces in a certain area of the sea state scatter. In particular, since
𝑒𝑥𝑝. plays a central role in the definition of the choices made by

he greedy function, and the metamodel approximation 𝑓(𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃)

s unique for all sea states (i.e., a single function is built for all 𝑆𝑇𝑒 ,𝐻𝑠
,

hus merging the knowledge 𝑓 has in contiguous sea state conditions,
nd exploiting consequently such information, in contrast to, e.g., Gioia
t al. (2022), Shi et al. (2019)), it would not be useful to count
eparately the experiences for each 𝑆𝑇𝑒 ,𝐻𝑠

. Instead, the domain of these
wo variables is divided in non-overlapping subsets considering bins
f width 𝛥𝑇𝑒 and 𝛥𝐻𝑠, respectively, and the number of experiences
s counted for each cell of the resulting grid for 𝑆𝑇𝑒 ,𝐻𝑠

. In this way,
𝑇𝑒 and 𝛥𝐻𝑠 are design parameters of 𝑁𝑒𝑥𝑝.(𝑆𝑇𝑒 ,𝐻𝑠

), which returns the
mount of past experiences in the sea state subset to which 𝑆𝑇𝑒 ,𝐻𝑠
elongs.

The other function of paramount importance in the learning process
s 𝜖𝑔𝑟.(𝑁𝑒𝑥𝑝.), which describes the probability of exploration that must
e adopted in a sea state cell, considering the amount of past experi-
nces around this wave condition. This greediness function is designed
s a logistic sigmoid function (Cramer, 2004), given by the equation:

𝑔𝑟.(𝑁𝑒𝑥𝑝.) = −
𝛼𝑔𝑟.

1 + 𝑒−𝛽𝑔𝑟.(𝑁𝑒𝑥𝑝.−𝛾𝑔𝑟.)
+ 𝛿𝑔𝑟., (10)

here 𝛼𝑔𝑟. modulates the height of the sigmoid, 𝛽𝑔𝑟. is the so-called
heat parameter’, which changes the slope of the sigmoid (the higher
𝑔𝑟. is, the more the function tends to a Heaviside step function),
𝑔𝑟. defines the horizontal position of the central point of the logistic
unction, while 𝛿𝑔𝑟. controls the exploration ratio value at 𝑁𝑒𝑥𝑝. → ∞.

representation of such function is reported in Fig. 3 (with 𝛼𝑔𝑟. =
.02, 𝛽𝑔𝑟. = 3.9 ⋅10−3, 𝛾𝑔𝑟. = 740, and 𝛿𝑔𝑟. = 1.11, as in the numerical

case study in Section 6). As it can be noticed, the design of such
logistic function (10) allows to guarantee a certain minimum amount
of exploration (e.g., the 100 experiences required to reach a probability
lower than 1), and to enforce a persistent degree of exploration on the
long run, to allow the adaptation of the metamodel to the changes that
could affect the system dynamics due to ageing (if properly coupled
with a forgetting process in the management of past experiences 𝑝𝑎𝑠𝑡,
𝑆 , and 𝜃 ).
5

𝑝𝑎𝑠𝑡 𝑝𝑎𝑠𝑡
A schematic representation of the control algorithm general work-
flow is shown in Fig. 4.6 After an initialisation stage, in which the
parameters related to the past experiences are set up, the strategy
chooses, in the measured sea state condition, if an action aimed at
exploring or exploiting has to be pursued. It is important to notice that,
in the very first stages after deployment (when the current time 𝑡 is less
than a suitably defined minimum time 𝑇𝑚𝑖𝑛), the only allowed action is
exploration. Whenever an exploration action is applied, the parameters
𝜃 ∈ 𝛩 are chosen quasi-randomly (following a Sobol’s sequence (Bratley
and Fox, 1988)) from a uniform distribution 𝖴𝛩, where 𝛩 = [𝜃, 𝜃̄]
represents the limited set over which 𝜃 could be chosen (with 𝜃 =
[𝜃1, 𝜃2]

𝖳 lower bounds, and 𝜃̄ = [𝜃̄1, 𝜃̄2]𝖳 upper bounds), i.e.,:

𝜃 = Sobol
(

𝖴𝛩
)

. (11)

The choice of a Sobol’s sequence to define the quasi-random action is
motivated by the benefits that a low-discrepancy exploration poten-
tially has in building a metamodel with a ‘well-distributed’ training
set (Tuffin, 2004). Once the control is defined,  is evaluated. As men-
tioned in Section 4, in this paper, the adopted performance function
is the average absorbed power over the time a single 𝜃 configura-
tion is applied. This time length 𝑇𝑒𝑣𝑎𝑙., in irregular wave conditions,
has a strong influence over the variability of the measured absorbed
power (Merigaud and Ringwood, 2018; Pasta et al., 2021), and conse-
quently on the data adopted by the metamodel. We decided to consider
a period of 10 min in the evaluation of  (i.e., 𝑇𝑒𝑣𝑎𝑙. = 10 minutes).
After the control action is applied, and the performance function has
been evaluated, 𝑝𝑎𝑠𝑡, 𝑆𝑝𝑎𝑠𝑡, and 𝜃𝑝𝑎𝑠𝑡 are updated. Here, it is possible
to define a maximum amount of experiences (each one represented
by a row of 𝑝𝑎𝑠𝑡, 𝑆𝑝𝑎𝑠𝑡, and 𝜃𝑝𝑎𝑠𝑡), after which, the strategy starts to
forget the eldest ones. In the assessments presented in Section 6, this
value has been set to 100 experiences for each sea state condition. As
it can be seen in Fig. 4, the defined control parameters are not applied
for the entire (supposed) time length of the faced sea state (which is
re-measured every 𝑇𝑠𝑠). A shorter evaluation time can be considered,
and a time counter variable 𝑡𝑠𝑠 is adopted to check whenever the time
between a sea state measurement and the subsequent elapses. In this
way, during the same sea state time window 𝑇𝑠𝑠, multiple experiences
can be achieved. Whenever instead, after the evaluation of 𝜖𝑔𝑟., an
exploitation action has to be chosen, the control parameters are defined
as:

𝜃⋆ = arg max
𝜃∈𝛩

𝑓(𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃), (12)

where, in this way, 𝜃⋆ corresponds to the optimal value of 𝜃 found
by maximising the approximated value 𝑓 given by the metamodel.
The optimisation process is performed by means of a genetic algo-
rithm (Thakur et al., 2014). It is important to highlight that Eq. (12)
defines only the first exploitation action adopted in the time window
between two sea state evaluations, as it can be appreciated by the
algorithm work-flow scheme in Fig. 4. In fact, after the first exploitation
action, for the remaining time within the measured sea state, an ‘ex-
ploration around 𝜃⋆’ is performed. This results in an exploration action
over the bounded set 𝛩⋆ = [(1− 𝜖

2 )𝜃
⋆, (1+ 𝜖

2 )𝜃
⋆] which contracts as the

mount of experiences grows:

= Sobol
(

𝖴𝛩⋆
)

. (13)

As it can be seen in Eq. (13), the same assumptions made for the
explorative actions in Eq. (11), are here employed. Moreover, the set

6 From there on, the notation Sobol(𝖣) is adopted to refer to a value
chosen from a distribution 𝖣 over the set  and employing a Sobol’s sequence
quasi-random choice (Tuffin, 2004). Considering the variable 𝛼 ∈ R𝑛, the
otation  = [𝛼, 𝛼̄] has been employed to refer to a bounded box set defined

by the set of constraints 𝛼 ≥ 𝛼, and 𝛼 ≤ 𝛼̄, where 𝛼 and 𝛼̄ are lower and upper
bounds of 𝛼, respectively.
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Fig. 4. Schematic representation of the work-flow of the proposed control algorithm. Following the choice of the action to be adopted (yellow node in the algorithm scheme)
y means of the greediness function, the control parameters are defined either in an exploration (orange branch) or exploitation (green branch) manner, respectively. When a
ufficient amount of time 𝑇𝑢𝑝𝑑𝑡. has passed, the metamodel is updated accordingly.
over which the control can be chosen is centred in the previously found
𝜃⋆, and its extent depends upon the value of 𝜖𝑔𝑟.(𝑁𝑒𝑥𝑝.). This is done in
the attempt of having an higher exploration of the set of parameters
around the optimum, whenever the amount of experiences upon which
the metamodel adopted to compute 𝜃⋆ is trained is low (to better
approximate the area around the supposed optimum).

5. Metamodel structures

As stressed in Section 4, one of the key elements in the proposed
control strategy is the metamodel. The definition of the structure
adopted to approximate the function to optimise is of paramount im-
portance for the convergence of the algorithm to the effective optima,
and for the full exploitation of the information given by the collected
data. In practice, a structure is used to map the input features  ∈
R𝑛 into the approximated value 𝑓. To do that, in this paper, two
different structures are adopted: DNN and RF. Sections 5.1 and 5.2 are
devoted to provide a brief introduction to the formulation of these two
6

types of models, and their training process. The mapping (𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃) ↦

 = 𝑔 (𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃) between sea state, control parameters, and the

corresponding input features is described in Section 5.3, together with
its relevance and relationship with the metamodel structures.

5.1. Deep neural networks

DNNs are computational models with a structure inspired by bi-
ological considerations on animal brains. They are constituted by a
combination of lower level entities, neurons, connected by weights, and
are able to transform a set of inputs, generating a corresponding set of
outputs, modified, eventually, through a non-linear relationship. The
DNN goal is to approximate a target function. For this reason, the DNN
itself can be seen as a map 𝑓DNN( , 𝛾𝑤,𝑏), whose output 𝑦DNN is aimed
at approximating the target function. DNNs used in an approximation
context are said to have an optimal configuration of their parameters
𝛾𝑤,𝑏 (weights, and possible biases) once they are able to reproduce

with minimum error the shape of the target function. The process of
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Fig. 5. Schematics of an example of DNN structure of feed-forward type. Architecture
nd activation functions (Rectified Linear Unit, ReLU, hyperbolic tangent, tanh) reflect
he ones adopted in this study.

ptimisation of such parameters is called training of the network. A
raphical representation of an example of DNN structure is given in
ig. 5.

As it is possible to see from such representation, from a macroscopic
oint of view, neural networks consist of different layers. The input
ayer is that containing the neurons related to the input features  . It

is made by a number of neurons equal to the number of inputs. The
output layer, instead, is related to the targets (or outputs). It comprises
a number of neurons that correspond to the number of outputs. The
output neurons are aimed at finalising the relationship connecting
previous layers and inputs, shaping the outputs into a function as close
as possible to the desired one. Eventually, it is possible to incorporate
other layers, different from those devoted to inputs and outputs, which
act as a link between these two layers. These are called hidden layers.
The main characteristic of hidden layer neurons is that their input is
the output of another neuron, and, at the same time, their output is the
input for another neuron entity. The DNN fundamental entities (i.e., the
neurons) internally implements the relationship:
{

𝑑𝑖 = 𝑤𝖳
𝑖−1𝑦̂DNN,𝑖−1 + 𝑏𝑖−1,

𝑦̂DNN,𝑖 = 𝑔𝑎𝑐𝑡,𝑖
(

𝑑𝑖
)

,
(14)

where 𝑑𝑖 ∈ R𝑛DNN,𝑖 represents the partial output of the 𝑖th layer of
he DNN (with 𝑛DNN,𝑖 number of neurons of the 𝑖th layer), 𝑤𝑖 ∈
R𝑛DNN,𝑖−1×𝑛DNN,𝑖 the 𝑖th layer weight matrix, 𝑏𝑖 ∈ R𝑛DNN,𝑖 represents the
biases7 at 𝑖th layer, 𝑦̂DNN,𝑖 ∈ R𝑛DNN,𝑖 is the output of 𝑖th layer, and the
function 𝑔𝑎𝑐𝑡,𝑖 ∶ R𝑛DNN,𝑖 → R𝑛DNN,𝑖 is the activation function of the 𝑖th
ayer (here, for the sake of simplicity of exposition, it is assumed that
ll neurons in a layer have the same activation function as in standard
eed-forward DNNs). The choice of the activation function determines
he type of nonlinearity that is implemented by the DNN itself, hence
eing a design parameter.

In this study, a neural network with 5 hidden layers are adopted.
mong these layers, the first 4 have 32 neurons each, and the last has
nly one neuron. Regarding the activation functions, the first 4 hid-
en layers adopt the Rectified Linear Unit (ReLU) activation function,
hile the last hidden layer implements a hyperbolic tangent (tanh)

unction. The output layer linearly scales the resulting output. The
raining is carried out adopting a mini-batch approach coupled with
he Adaptive Moment Estimation (Adam) optimiser (Kingma and Lei Ba,
015), using a mini-batch size of 64, to increase the generalisation
apabilities of the DNN metamodel (Keskar et al., 2017). The hyper-
arameters defining the DNN structure (number of layers and neurons,
atch size), have been defined through an extensive analysis of the

7 The weights 𝑤𝑖 and the biases 𝑏𝑖, together constitute the network param-
eters 𝛾𝑖 for 𝑖th layer. All parameters of all the layers together, constitute the
network parameters 𝛾 .
7

𝑤,𝑏
Fig. 6. Schematics of an example of regression trees constituting a RF.

performance of a trained network with an set of data coming from
sample pilot simulations, in the attempt to minimise the approximation
error, while reducing the network complexity. In order to deal properly
with the different scales that the input features  can have, the input
layer implements a z-score normalisation (Milligan and Cooper, 1988).
During the training process, the available data are divided in training,
validation, and test set (with percentages of 70%, 20%, and 10% of the
full available dataset, respectively).

5.2. Random forests

RFs are a particular version of the bootstrap aggregation technique,
which employs a large ensemble of not correlated regression trees, and
then averages them to obtain an estimated prediction function (Hastie
et al., 2009, Chapter 15). The fundamental elements, i.e., the regression
trees, are structures which, starting from the input features, generate
a series of branches, creating different paths dependent on the input
values that all terminate into different target outputs (Breiman et al.,
2017). An example of aggregation of regression trees, aggregated to
constitute a RF, is shown in Fig. 6. As it can be noticed, the single
regression tree comprises two main elements: leaves and internal nodes.
The leaves (also called terminal nodes) partition the output space in
regions, and their output value is the average of the data employed
in the training stage that fall in that part of the output space. The
conditions that split the output space are defined by the internal nodes.
Each of them is defined in terms of an inequality (i.e., the splitting rule),
whose validity guides the ‘output flow’ in the proper leaf direction. The
splitting rule is formulated as:

𝑥 ≥ 𝑘 , (15)
𝐴,𝑖 𝐴,𝑖
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where 𝑥𝐴,𝑖 is the element of  considered in the 𝑖th internal node of the
th tree of the forest, while 𝑘𝐴,𝑖 is the parameter defining the splitting

ule of such node.
The training stage of RFs is the combination of the concepts of boot-

trap aggregation and non-correlationship of the internal regressors
i.e., the trees). Each tree is trained separately, following a top-down
reedy recursive binary splitting for the definition of the splitting
ules. During the training of a single tree, the first step is the random
efinition of training datasets. This is done by randomly sampling with
eplacement from the full training dataset (i.e., bootstrap sampling),
reating a training dataset which has less data and, possibly, less
nformation about the process to be approximated. For this reason,
he single trees built on the basis of such sampled training datasets
re also called weak trees (or weak learners). Training a regression
ree consists of the definition of the splitting rules, which define the
ree branches. Due to the high complexity that such choices can have,

single optimisation of the entire tree structure is not possible. For
his reason, each node is optimised separately, starting from the first
plitting definition and progressing towards the leaves. In RFs, the
ptimisation of the splitting rule of each node is done following three
teps:

1. Random definition of the pool of elements of  that are can-
didates in the definition of the splitting rule. Adopting a ran-
dom approach makes the trees obtained in this way uncor-
related (Hastie et al., 2009, Chapter 15), avoiding the same
features to be considered in the first branches in all the trees
(which are the more significant ones). Considering, for example,
the 𝑖th node of the 𝐴th tree of a RF with input features  , the
candidate input features 𝐴,𝑖 considered in the computation of
the splitting rule 𝑥𝐴,𝑖 ≥ 𝑘𝐴,𝑖 are usually composed by a number
of features 𝑛𝑡𝑟𝑒𝑒

(Hastie et al., 2009, Chapter 15):

𝑛𝑡𝑟𝑒𝑒
= ceil(

√

𝑛 ), (16)

where 𝑛 is the amount of features in  , and 𝑛𝑡𝑟𝑒𝑒
is rounded

up to the next integer by the ceiling function.
2. Having selected the set of candidate features 𝐴,𝑖 in the defini-

tion of the splitting rule, elements 𝑥𝐴,𝑖 and 𝑘𝐴,𝑖 are chosen to
minimise the mean squared error that the tree would have on a
validation dataset, with the such node definition.

3. The process is repeated adding new nodes, until each leaf de-
scribes an output space which includes a number of training data
below a certain threshold. At that point, the regression tree is
fully trained.

In this study, random forests made up of 50 trees are employed,
together with a maximum leaf dimension of 10 data points. Similarly
to the DNNs case, these hyper-parameters have been chosen after an
extensive analysis of the performance of a trained RF with a set of
sample pilot data, trying to minimise the approximation error, while
reducing the forest complexity. The available dataset has been divided
into training and validation sets, with a ratio of 70% and 30%, re-
spectively, to maintain the same training set percentage employed with
DNNs. As the uncorrelationship of the single trees of the forest is given
by the random choice of the candidate selection, and the number of
considered features is regulated by Eq. (16), the definition of the input
features (and, possibly, of additional ones) is of paramount importance
in the random forest performance.

5.3. Choice of the input features

As discussed in Sections 5.1 and 5.2, the input features  are inputs
ed to the metamodels, upon which the approximation 𝑓(𝑆𝑇𝑒 ,𝐻𝑠

, 𝜃)
of the target function is obtained. The mapping 𝑔 linking 𝑆𝑇𝑒 ,𝐻𝑠

and
with  (as introduced in Section 5) is employed to add additional

eatures to the ones available in the training of the metamodels em-
loyed by the control strategy. This has different benefits. The first one
8

s related to the nonlinearities that can be included by such operation
n the final metamodel structure. Indeed, through 𝑔 , is possible to
xplicitly add additional nonlinear terms inside the structure (e.g.,
onlinear functions or products between the inputs), which, in the
nd, can consequently increase the degree of complexity the resulting
etamodel has, potentially enhancing its capabilities in describing

he unknown function  (Kuhn and Johnson, 2019; Heaton, 2016).
oreover, as discussed in Section 5.2, RFs strongly benefit from the

resence of additional available inputs, since these increase the number
f features available to uncorrelate the weak trees (the bigger the pool
f available information, the more different and ‘informed’ are the
ingle weak trees constituting the RF). Indeed, the number of input
eatures employed by each single weak tree 𝑛𝑡𝑟𝑒𝑒

, as shown in Eq. (16),
epends upon the number of forest input features 𝑛 . Similarly, DNNs
erformance benefits from feature construction and the consequent
dditional features availability (Piramuthu, 1996; Piramuthu et al.,
998).

In this study, we compare the effect of adding additional input fea-
ures has on the capability of approximating , and in the consequent
nergy production. To do so, two different input feature definitions are
mployed8:

no Add. Feat(𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑒
𝐻𝑠
𝜃1
𝜃2

⎤

⎥

⎥

⎥

⎥

⎦

, (17)

with Add. Feat(𝑆𝑇𝑒 ,𝐻𝑠
, 𝜃) =
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⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇𝑒
𝐻𝑠

𝜃1
𝜃2
𝑇 2
𝑒

𝐻2
𝑠

𝜃21
𝜃22

log10(𝑇𝑒) log10(𝐻𝑠)

log10(𝑇𝑒) log10(𝜃1)

log10(𝑇𝑒) log10(−𝜃2)

log10(𝐻𝑠) log10(𝜃1)

log10(𝐻𝑠) log10(−𝜃2)

log10(𝜃1) log10(−𝜃2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

As it can be seen in Eq. (17)–(18) the number of features 𝑛 considered
changes from 4 to 14. Moreover, the additional features present in
with Add. Feat include the square of each single feature, and add infor-
mation on the product between these, by considering the combinations
the product between logarithms. This is done to avoid an excessive
contribution of 𝜃 on the product, by scaling everything logarithmically.
Indeed, the values adopted for the control parameters span9 from 𝜃 =
[0.2 ⋅ 105,−9 ⋅ 105]𝖳 to 𝜃̄ = [1.2 ⋅ 105,−200]𝖳, and, for this reason, have a
different order of magnitude with respect to 𝑇𝑒 and 𝐻𝑠, whose values go
from 0.5 s and 0 m, to 10 s and 5 m respectively. Inside the logarithms,
𝜃2 has been considered changed in sign, since it assumes only negative
values (this term is used to reduce the inherent stiffness of the system
due to the presence of the pendulum).

8 From now on, the metamodels employing  = no Add. Feat are called ‘no
dd. Feat’, while those adopting  = with Add. Feat are ‘with Add. Feat’.
9 The boundaries 𝜃 and 𝜃̄ of the control parameters have been chosen after

a preliminary analysis with a simplified version of the PeWEC model, to avoid
an excessive (or too tight) exploration space of 𝜃.
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6. Performance comparison

To assess the learning capabilities and the performance of the
proposed strategy, we perform a simulation of one year of learning, and
computing the Expected Annual Energy Production (EAEP) trend over the
year. To do that, following the choice of a deployment site, a validated
sequence of sea states (obtained from ERA5 global reanalysis (Hersbach
et al., 2020)) is considered, and the corresponding wave forces applied
to the WEC devices are computed and simulated, applying every 10 min
a control action according to the proposed strategy. Then, every two
days of simulation of the learning year:

1. The learning simulation is stopped, and the optimal control
parameter 𝜃⋆ for each sea state is computed, forcing an exploita-
tion action which follows Eq. (12).

2. For the purpose of better evaluating the learning performance,
once 𝜃⋆ is computed for each sea state, this is applied in 50
simulations per sea state, each one with a different wave real-
isation of the wave contribution. This has been done to evaluate
the variability of the energy production due to the stochastic
components characterising the wave (Merigaud and Ringwood,
2018). The results of these simulations are not considered in
the experience datasets 𝑝𝑎𝑠𝑡, 𝑆𝑝𝑎𝑠𝑡, and 𝜃𝑝𝑎𝑠𝑡 employed in the
metamodel training.

3. Considering the 50 realisations per sea state, 50 values of the
EAEP are computed as:

EAEP𝑖 =

3600 ⋅ 24 ⋅ 365
100

𝑁𝑤
∑

𝑤=1
𝑂𝑐𝑐%𝑤

𝑃𝑎𝑏𝑠𝑖

(

𝑆𝑇𝑒 ,𝐻𝑠𝑤
, 𝜃⋆(𝑆𝑇𝑒 ,𝐻𝑠𝑤

)
)

,
(19)

where EAEP𝑖 is the EAEP computed using the 𝑖th wave realisa-
tions, 𝑤 is the index spanning the 𝑁𝑤 sea states with non-zero
occurrence percentage 𝑂𝑐𝑐%𝑤

, while 𝑃𝑎𝑏𝑠𝑖

(

𝑆𝑇𝑒 ,𝐻𝑠𝑤
, 𝜃⋆(𝑆𝑇𝑒 ,𝐻𝑠𝑤

)
)

is the average absorbed power in 𝑆𝑇𝑒 ,𝐻𝑠𝑤
wave conditions when

the control configuration 𝜃⋆(𝑆𝑇𝑒 ,𝐻𝑠𝑤
) is applied and the 𝑖th reali-

sation of such wave simulated. This index represents the annual
productivity that would be reached by the device if, from the
instant in which is computed, the learning process is stopped,
and only exploitation actions are applied.

4. The learning simulation is restarted from the point in which it
was stopped.

The year simulation is performed adopting the proposed control strat-
egy and employing four different types of metamodels:

• DNN no Add. Feat.: DNN metamodel employing  = no Add. Feat,
• DNN with Add. Feat.: DNN metamodel employing  =
with Add. Feat,

• RF no Add. Feat.: RF metamodel employing  = no Add. Feat,
• RF with Add. Feat.: RF metamodel employing  = with Add. Feat.

The results of the EAEP over the learning year are compared with
the EAEP obtained, employing in each sea state, control parameters 𝜃
computed following an IM approach to interpolate the optimal response
in the frequency corresponding to 𝑇𝑒 and adopting the linearised model
of PeWEC (Gioia et al., 2022). This approach, as discussed within
Section 4, is considered as the model-based reference controller.

6.1. Simulation setup

In the performance assessment, to replicate realistic wave condi-
tions, a target deployment site has been chosen in the Mediterranean
Sea. In particular, the coast in front of Alghero, in the Northwestern
side of Sardinia, Italy, is considered. To perform one year of simu-
lation, the validated sea state sequence provided by ERA5 (Hersbach
et al., 2020) over 2018 has been adopted. The sea states occurrence
9

scatter generated by such sequence is shown in Fig. 7. This figure also
Table 2
Design parameters adopted in the learning
strategy.

Design parameter Value

𝛥𝑇𝑒 0.5 s
𝛥𝐻𝑠 0.25 m
𝑇𝑠𝑠 1 h
𝑇𝑚𝑖𝑛 4 days
𝑇𝑒𝑣𝑎𝑙. 10 min
𝑇𝑢𝑝𝑑𝑡. 2 days
𝛼𝑔𝑟. 1.02
𝛽𝑔𝑟. 3.9 ⋅10−3

𝛾𝑔𝑟. 740
𝛿𝑔𝑟. 1.11

Fig. 7. Occurrence scatter of the sea states (as a function of significant height 𝐻𝑠
and energy period 𝑇𝑒) characterising the site of Alghero, Italy, obtained from ERA5
data (Hersbach et al., 2020).

graphically shows the bins employed by the learning strategy to define
𝑁𝑒𝑥𝑝.(𝑆𝑇𝑒 ,𝐻𝑠

), which are 𝛥𝑇𝑒 = 0.5s, and 𝛥𝐻𝑠 = 0.25 m respectively,
chosen to guarantee that most of the corresponding cells a number of
annual occurrences that allows also exploitation actions (and not only
the initial exploration). The remainder of the design parameters defin-
ing the learning strategy are presented in Table 2. The simulation model
employed is the one developed by the nonlinear equations described
in Section 2, and the design parameters of the PeWEC device are the
ones presented in Carapellese et al. (2022b). It is important to highlight
that this model acts as the real unknown system, which is different
from the control-oriented linearised model employed to synthesise the
IM model-based benchmark control. In the simulation, the wave input
contributions have been generated considering a Pierson–Moskowitz
spectral density function (SDF) (Pierson and Moskowitz, 1964) and
following the Random Amplitude Scheme described in Merigaud and
Ringwood (2018).

6.2. Results

The first analysis of the results is related to the trends that the
EAEP has with the different kinds of metamodels and considered input
features. To do that, every two days of simulation, the average, highest
and lowest EAEP values among the 50 ones computed considering
the different wave realisations are considered. These are presented in
Fig. 8, where the coloured solid lines represent the average trends
adopting the proposed strategy with the different metamodels and set of
input features, compared with the average productivity result obtained
with the parameters coming from the model-based IM approach (in
dotted black line). The shaded area represents the EAEP values included
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Fig. 8. One year learning simulation: Expected annual energy production EAEP results given by the adoption of different types of metamodels (deep neural networks DNN, and
random forests RF) coupled with input features considering or not additional features.
between the highest and lowest EAEP realisation values. As it can be
appreciated from such graphs, apart from the strategy employing the
RF without added features, all the metamodels enable EAEPs that are
consistently above their model-based counterpart. Moreover, the adop-
tion of additional features makes the proposed strategy able to reach
a worst case productivity which is higher than the best one obtained
with the model-based IM, as Fig. 8a and 8b highlight with both DNN
and RF metamodels. At the end of the simulations, the best EAEP
obtained by the proposed strategy adopting the different metamodels
are 158 MWh/yr (+16.2%), 155 MWh/yr (+14.8%), 147 MWh/yr
(+8.1%), and 141 MWh/yr (+3.7%) for the RF with additional features,
DNN with additional features, DNN without additional features, and
RF without additional features, respectively. Another consideration
that can be made is related to the production obtained adopting the
proposed control strategy in early learning stages. As it can be seen,
DNN metamodels without added features are not able to perform well
in the early stages, since the initial expected production is lower than
20 MWh/yr, while the other configurations all begin with productivities
around 85 MWh/yr. The choice of the metamodel coupled with the
employed features influences also the ‘learning speed’ of the algorithm.
As highlighted by Fig. 9, which summarises the learning process of
all the presented approaches, RFs with additional features are the
fastest to outperform the model-based productivity (after around 60
days), while the rest of the strategies take about 100 days to reach
enough knowledge achieve such benchmark value. The effect of the
additional features in speeding up the learning process is more evident
whenever RF metamodels are adopted, since the difference in slope
of the EAEP trend is milder without the additional features. These
have also a positive impact on the long run, as, with both DNN and
RF, allow convergence to higher values of EAEP. These results are all
10
Fig. 9. One year learning simulation: Comparison between the proposed strategy with
different metamodel and features combination and the model-based equivalent obtained
through IM approach and linearised model.

consequences of the different capabilities in approximating  that the
metamodels have.

The metamodel approximation 𝑓 depends upon the ability of
the metamodel in exploiting the past experience data, and correctly
describing the shape of the mapping between 𝑆𝑇𝑒 ,𝐻𝑠

, 𝜃 an average
absorbed power 𝑃 . Figs. 10, 11, 12 and 13 show the evolution of the
𝑎𝑏𝑠
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Fig. 10. Metamodel approximation of 𝑃𝑎𝑏𝑠 over the learning year: DNN with no additional features case (𝑇𝑒 = 6 s, 𝐻𝑠 = 1 m).
Fig. 11. Metamodel approximation of 𝑃𝑎𝑏𝑠 over the learning year: DNN with additional features case (𝑇𝑒 = 6 s, 𝐻𝑠 = 1 m).
metamodel approximation of the average absorbed power 𝑃𝑎𝑏𝑠 over the
year of simulation. In these figures, the sea state has been fixed to 𝑇𝑒 =
6 s, and 𝐻𝑠 = 1 m, which is an average sea state in terms of occurrences
in the Alghero deployment site, and that also has an energetic period
around the PeWEC hull resonance one. In these figures, the optimal
value (i.e., 𝜃⋆ in that sea state at that point of the learning simulation)
is represented by a yellow star. As it can be seen from Fig. 10, the
adoption of DNN metamodels without additional features is not able
to describe well the map to which the other metamodels converge.
In fact, it starts ‘converging’ towards such a map after 40 days, in
11
contrast to what achieved by the other configurations. Adoption of
additional features in  results in a better description of the target
relationship, especially after the 40th day. Before, indeed, as Fig. 11
shows, at the 6th day, the metamodel describes a second peak (in the
left-upper side of the graph) which is not present whenever the learning
process converges to better approximations. Regarding the RF cases,
as it is possible to see, the adoption of additional features enhances
the approximation of the metamodel from early stages. Comparing the
6th day approximation, it is possible to notice that the effect of the
additional features on the metamodel approximation in case of less



Applied Ocean Research 140 (2023) 103749E. Pasta et al.
Fig. 12. Metamodel approximation of 𝑃𝑎𝑏𝑠 over the learning year: RF with no additional features case (𝑇𝑒 = 6 s, 𝐻𝑠 = 1 m).
Fig. 13. Metamodel approximation of 𝑃𝑎𝑏𝑠 over the learning year: RF with additional features case (𝑇𝑒 = 6 s, 𝐻𝑠 = 1 m).
available data is in ‘smoothing’ the map described by the approximation
itself, and consequently enhancing the obtained result. This is partic-
ularly evident comparing the 6th day map with the 40th day one in
the case of RF metamodel without additional features. At the 6th day,
the expected absorbed power changes abruptly in the neighbourhood
of 𝜃2 = −8 ⋅ 105 [Nm/rad], while this steep change is mitigated at the
40th day. All these phenomena affect the final energy production over
the learning year, making the two configurations (DNN and RF) with
additional features the best candidates to be applied in the proposed
control strategy.
12
The final analysis is related to the comparison between the optimal
𝜃⋆ computed with the proposed strategy (with the two best configu-
rations) and the parameters computed following the model-based IM
approach. The maps describing the control parameters at the end of the
learning year and the IM ones are presented in Fig. 14. As it can be seen
from this figure, the control parameters with the proposed approach are
almost equal whenever DNN and RF are employed (especially in the
area around 𝑇𝑒 = 6 s). On the contrary, they differ significantly from
those computed employing the linearised model of the device. This can
be explained by the presence of nonlinear effects in the model adopted
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Fig. 14. Comparison of the optimal control parameters 𝜃⋆ for the impedance-matching-based (IM) controller, and data-driven strategies based on deep neural networks (DNN) and
random forests (RF), after a year of learning.
in the learning stage, which acts as an additional viscous damping (as
also seen in the dynamical analysis of a similar device in Carapellese
et al. (2022a), the absence of this sort of damping in a linearised model
leads to the overestimation of device motions). As a consequence, the
control computed on the basis of the nonlinear system employs higher
values of damping and stiffness control parameters.

7. Conclusions

Aiming to ameliorate the effect of modelling uncertainty in the
performance of model-based WEC control procedures, in this paper, a
data-driven control strategy which adopts RFs and DNNs in its learning
process has been proposed. This strategy, inspired by surrogate opti-
misation algorithms, employs such structures (called metamodels) to
approximate the relationship between sea state and control parameters
with average absorbed power on the basis of measured data only.
Through this approximation, and a developed learning strategy able
to manage the trade-off between exploration and exploitation, this
model-free controller is able to converge to the optimal parameters
of a reactive control law, enhancing the device energy absorption.
We analysed the effects that the choice of input features has in the
approximation capabilities that these metamodels have, and on the
consequent device productivity. To assess the performance of the pro-
posed strategy employing different combinations of metamodels and
input features, simulations of one learning year are performed on a
nonlinear simulation model of PeWEC (employed here to simulate the
real unknown system, different from the linearised one employed as
the control-oriented counterpart), computing the trend that the EAEP
has over the learning process. The results show average productivity
improvements up to +16.2% and +14.8% (RF-based and DNN-based
approaches, respectively) with respect to the model-based counterpart
employing an IM-based control synthesised on the basis of a linearised
model, being able to converge to more effective control parameters
for the real WEC system. Further studies will include performance
assessment of the proposed technique in experimental environments.
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