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Abstract. Egocentric action recognition is becoming an increasingly re-
searched topic thanks to the rising popularity of wearable cameras. De-
spite the numerous publications in the field, the learned representations
still suffers from an intrinsic “environmental bias”. To address this issue,
domain adaptation and generalization approaches have been proposed,
which operate by either adapting the model to target data during training
or by learning a model able to generalize to unseen videos by exploiting
the knowledge from multiple source domains. In this work, we propose
to adapt a model trained on source data to novel environments at test
time, making adaptation practical to real-world scenarios where target
data are not available at training time. On the popular EPIC-Kitchens
dataset, we present a new benchmark for Test-Time Adaptation (TTA) in
egocentric action recognition. Moreover, we propose a new multi-modal
TTA approach, which we call RNA++, and combine it with a new set
of losses aiming at reducing classifier’s uncertainty, showing remarkable
results w.r.t. existing TTA methods inherited from image classification.
Code available: https://github.com/EgocentricVision/RNA-TTA.

Keywords: egocentric action recognition · test-time adaptation

1 Introduction

In the last years, the technological advances in the field of wearable devices led to
a growing interest in egocentric vision due to the possibility to capture informa-
tion about how humans perceive the world and interact with the environment,
without the need of a fixed recording system. The first person perspective un-
locks a variety of applications, including wearable sport cameras, human-robot
interaction, and human assistance. Contrary to traditional third-person views,
the recording equipment is worn by the observer and it moves with her, posing
new issues such as ego-motion, occluded objects, and significantly more varia-
tions in lighting, perspective, and environment.

The recent release of the EPIC-Kitchens large-scale dataset [8], as well as the
contests that accompanied it, has sparked interest in more efficient architectures

⋆ The authors equally contributed to this work.
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capable of dealing with these issues. Despite the numerous publications in the
field [32], egocentric action recognition still has one major flaw that remains
unsolved, known as “environmental bias” [39]. This problem arises from the
network’s heavy reliance on the environment in which the activities are recorded,
which inhibits the network’s ability to recognize actions when they are conducted
in unfamiliar (unseen) surroundings. In general, this problem is referred to in
the literature as domain shift, meaning that a model trained on a source labeled
dataset cannot generalize well on an unseen dataset, called target. Usually, it
is addressed by reducing the problem to an unsupervised domain adaptation
(UDA) setting [25], where an unlabeled set of samples from the target is available
and used to learn and adapt the model to the target distribution.

However, the UDA scenario is not always realistic, as (i) the target domain
should be known a priori and (ii) the target data should be available at training
time. To overcome those limitations, authors of [29] proposed an alternative
solution which simply leverages the shared knowledge from multiple sources
available during training to learn a representation that is able to generalize to
any unseen domain, regardless of the possibility to access target data – known
as Domain Generalization (DG) setting.

Differently from previous works, in this paper we investigate a solution that
focuses on performing adaptation during testing. The proposed approach is based
on the simple assumption that the samples received by the network during testing
can be considered as a hint of the target distribution. Thus, we seek to adapt
a pre-trained model to new videos coming from the test set. To best of our
knowledge, this approach, known as Test-Time Adaptation (TTA), has never
been examined in an egocentric context before. Indeed, its use in this context
is even more relevant, as (i) since online adaptation does not require additional
parameters, it increases the portability on multiple devices and its access to
diverse users and (ii) as test data is not required to be stored, it respects privacy
concerns; this is of crucial importance in the case of the first person videos as
anonymization is more difficult than stardard third person videos or images [38].

In this work, we present a new benchmark for multi-modal TTA in egocen-
tric action recognition on the well-known EPIC-Kitchens dataset. Moreover, we
propose a new TTA approach, called RNA++, which extends RNA-Net [29], a
recent multi-modal DG method, to operate on different video clips at test time.
We further combine it with a new set of losses meant to reduce the classifier’s
confusion on test data. Results show the effectiveness of multi-modal learning
in enhancing the ability of the model to adapt to new data and further validate
the effectiveness of the proposed methods.

2 Related Works

2.1 Egocentric Action Recognition

The community’s interest for First Person Action Recognition (FPAR) has quickly
grown in recent years. FPAR’s architectures are generally inherited from third-
person literature [43,23,3]. However, due to the complexity of the setting, the
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multi-modal approach is the most popular technique, consisting in combining
traditional visual RGB data with motion data, such as optical flow [3,25,43,36,10,19].
However, as shown in [7], the use of optical flow limits the application of several
methods in online scenarios, pushing the community either towards single-stream
architectures [49,7,28], or to investigate alternative modalities, e.g., audio [20,19]
or event data [31]. This work is the first one exploiting audio modality, jointly
with its visual counterpart, in a test-time adaptation scenario.

2.2 Cross-Domain Action Recognition

Under the Unsupervised Domain Adaptation (UDA) setting, an unlabeled set
of samples from the target is available for adaptation during training. Most of
the approaches have been designed for image classification tasks [11,24,22,13].
Recently, many works started to analyze UDA for video classification tasks
[5,25,17,27,35,21]. Those use adversarial learning with temporal attention [27,5],
multi-modal cues [25], clip order prediction [6] or contrastive losses [35,21].

The Domain Generalization (DG) setting, instead, aims at finding a repre-
sentation able to generalize to any unseen domain, regardless of the possibility
to access target data at training time. Existing approaches in DG are mostly
designed for image data [40,9,2]. Only one work investigated the DG setting in
third person action recognition [46]. Recently, authors of [29] proposed a solution
to this problem in first person action recognition, by proposing a feature-level
solution which exploits the collaboration of audio-visual signals.

In this work, we further explore the possibility to adapt the model directly on
test data under a test-time adaptation setting. While the latter has been widely
explored on image data [37,42,48,26,33], only one work explored the possibility
to adopt it on videos [1]. In this work, we take a step ahead by extending the
setting to the egocentric action recognition scenario.

3 Problem Formulation

Test-Time Adaptation (TTA) for Action Recognition. This setting con-
sists in learning the target distribution using just the unlabelled videos available
during test. Due the capability of wearable devices to capture data in a variety
of situations and surroundings, the target distribution is extremely variable and
hard to generalize to using DG techniques. Moreover, the availability of a set of
target data to learn the unseen distribution from during training, as well as the
continuous access to source data to re-train the model on novel environments,
are both impracticable in this case, making the Source Free DA and UDA set-
tings unfeasible. In this work, we propose TTA as an intriguing and significant
setting that has yet to be investigated in the egocentric literature. Indeed, it
allows to optimize the network on test data during inference by introducing an
additional, but negligible w.r.t. standard training, inference cost (Table 1).

Under the video setting, two aspects have to be considered, (i)multi-modality,
which translates in a multi-modal input x = (xv

i , x
a
i ), where we denote with v and
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Table 1. Adaptation settings differ by the data and losses used during train and test.
The terms xs and ys refer to the labeled distribution, known as source, while xt the
unlabelled one, known as target. Our TTA setting only needs the target data xt.

Setting Source Target Train Loss Test Loss

Unsupervised Domain Adaptation (UDA) xs, ys xt L(xs, ys)+ L(xs, xt) -
Domain Generalization (DG) xs, ys - L(xs, ys) -
Source-Free DA - xt L(xt) -
Test-Time Adaptation (TTA) xs, ys xt - L(xt)

a the visual and audio modality respectively, and with i the i-th sample, and (ii)
temporality, consisting in having an input xm

i composed of k clips representing
different temporal positions within the video, i.e., xm

i = {xm
i1, ..., x

m
ik}.

Problem Setting. We assume a model trained on different source domains
{S1, ...,Sn}, where each S = {(xs,i, ys,i)}Ns

i=1 is composed of Ns source samples

with label space Ys known, and a target domain T = {xt,i}Nt

i=1 of Nt target
samples whose label space Yt is unknown. The main assumptions is that the
label space is shared, Ys = Yt. Our objective is to perform test-time adaptation
by adapting the model trained on source data to samples available at test time.
During the forward pass, each modality input (xv

i , x
a
i ) is fed to a separate feature

extractor, F v and F a respectively (Figure 1). The resulting features fv = F v(xv
i )

and fa = F a(xa
i ) are then passed to the separate classifiers Gv and Ga, whose

outputs correspond to distinct score predictions (one for each modality). The
final prediction results from the combination of the different modality predictions
of each clip (late fusion), followed by the average prediction over all the clips.

4 Test-Time Adaptation for Action Recognition

In this section, we describe the proposed approach, consisting in the extension of
RNA-Net to the TTA scenario (RNA++) and its combination with losses aiming
at reducing the classifier’s uncertainty on test data (Class Relative (CR) losses).

4.1 Multi-Modal Test-Time Adaptation

A very recent work [29] showed that exploiting the multi-modal nature of videos
allows one to exploit the shared knowledge available from multiple sources to
build a model able to generalize to unseen data. The same strategy has also been
shown to be effective as an adaptation technique when using unlabeled target
data [30]. In particular, authors of [29] brought to light that the discrepancy be-
tween the two modalities’ mean feature norms inhibits the network from learning
equally from the two during training, i.e., the network privileges the modality
with greater feature norm, while penalizing the other. This causes the final model
to perform sub-optimally in comparison to the uni-modal one, a problem which
has also been shown in [44]. Authors of [29] address it by proposing an audio-
visual loss which minimizes the discrepancy between the two modalities’ feature
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Fig. 1. Unlabeled test visual xv
k and audio xa

k inputs for the k-th clip are fed to the
respective feature extractors F v and F a. The LRNA++ loss operates at feature-level
by balancing the relative feature norms of the two modalities. The latter is combined
with Class Relative losses LCR, namely LMCC , LCENT or LIM losses.

norms during training, in order to better exploit multi-modal learning and thus
leading to better generalization results.

This problem, referred to as the “norm-unbalance problem”, still exists at
test-time, negatively affecting the final prediction. In fact, the latter is biased
towards the modality with greater feature norm [47], reducing the potentiality
of having multiple modalities. For these reasons, in this work, we extend the
proposed Relative Norm Alignment (RNA) loss to re-balance the mean feature
norms of the two modalities during testing. This loss, which we call RNA++, is
designed to deal with the multi-clip nature of the test phase and it is defined as

LRNA++ =

(
E[h(Xv

k )]

E[h(Xa
k )]

− 1

)2

, (1)

where h(Xm
k ) = (∥·∥2 ◦ fm

k )(Xm
k ) indicates the L2-norm of the features fm

k ,
E[h(Xm

k )] = 1
N

∑
xm
ik∈Xm

k
h(xm

ik) with k the k-th clip of the m-th modality and

N denotes the number of samples of the test set Xm
k = {xm

1k, ..., x
m
Nk}.

4.2 Class Relative losses

By operating at feature level, the RNA++ loss promotes the cooperation between
the two modalities, increasing the robustness of their final embeddings and, as
a result, leading to a more robust classifier which is less affected by the domain
shift. However, as the RNA++ loss is not backpropagated through the classifier, it
focuses only on the multi-modal embeddings and ignores the classification layer’s
uncertainty on target data. To tackle this weakness, a natural choice might be to
introduce in our multi-modal framework the standard entropy loss [13], which is
commonly used to minimize prediction uncertainty. However, the entropy term
alone is insufficient to provide stability, as a trivial solution is the one in which
the predicted single-class samples may prevail over the others [12,45], especially
when dealing with unbalanced datasets. It has also been proven that the entropy
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loss is not able to correctly measure the “class confusion” between correct and
ambiguous classes [18]. As a result, this classifier’s prediction uncertainty tends
to introduce noise in the multi-clip prediction, as wrong clip predictions might
dominate the correct one. Based on these considerations, minimizing the entropy
is not sufficient to reduce the uncertainty of the final classifier on test samples.
Thus, we re-purpose losses that bring attention to the relation between all per-
class predictions in order to reduce uncertainty and we refer to them as Class
Relative losses (CR losses). It follows a detailed description of these methods.

Minimum Class Confusion (MCC). This loss [18] minimizes the inter-
class confusion on test data so that no samples are ambiguously classified into
two classes at the same time. It is formalized as:

LMCC =
1

|C|

|C|∑
j=1

|C|∑
j′ ̸=j

|C̃jj′ | (2)

where C is the number of classes and C̃jj′ measures the confusion between each
class pair (j, j′). The latter is derived from the Class Correlation term Cjj′ ,
which is defined as:

Cjj′ = ŷT.jWŷ.j′ (3)

where we denote with ŷ.j′ the j-th column of the probability matrix Ŷij , which

represents probability of the i-th samples to belong to the j-th class. Ŷij is ob-

tained by summing the audio and visual probability matrices Ŷ a
ij and Ŷ v

ij respec-
tively. The diagonal matrix W is used to re-weight Cjj′ in order to emphasize

the class with the highest class ambiguity. Finally, C̃jj′ is obtained by category
normalization of the Cjj′ value as in [41].

Information Maximization (IM). The objective of IM loss [12,34,14] is
to make test-time predictions individually certain and globally diverse to avoid
trivial solutions caused by entropy minimization alone. Indeed, it combines a
conditional entropy term and a diversity term:

Ldiv = −Ex∈X

C∑
c=1

σc(h(x)) log σc(h(x)) +

C∑
c=1

p̄c log p̄c (4)

where h(x) = Gv(F v(xv)) + Ga(F a(xa)) is the C-dimensional output of each
sample, summed over each modality input, and p̄ = Ex∈X [σ(h(x))] is the mean
of the softmax outputs for the current batch.

Complement Entropy (CENT). Considering our setting where multiple
clip predictions are considered during test, the CENT loss aims at neutraliz-
ing the negative effects of incorrectly predicted clips on the final prediction.
It accomplishes this by “flattening” the predicted probabilities of “complement
classes”, i.e., all classes except the predicted one. As a result, when several clip
predictions are considered, the voting process’ noise is reduced. We refer to this
loss as “complement entropy” objective, as it consists in maximizing the entropy
for low-confident classes rather than minimizing it for the most confident one,
as standard entropy minimization does. Given the k-th clip, it is defined as:
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LCENT =
1

N

N∑
i=1

H(ŷic̄) = − 1

N

N∑
i=1

C∑
j=1,j ̸=p

(
ŷij

1− ŷip
log

ŷij
1− ŷip

) (5)

where N is the total number of samples in the batch, ŷip represents the pre-
dicted probability of the class p with the higher score for the i-th sample, i.e.,
ŷip = maxj(ŷij), and H(·) is the entropy function computed on the prediction of
complement classes ŷic̄ (c̄ ̸= p). The formulation is similar to the one in [4], and
we extend it to operate in an unsupervised fashion. In our multi-modal setting,
ŷij results from the sum of audio and visual predictions ŷaij and ŷvij respectively.

5 Exprimental Results

In this section, we first introduce the dataset and the experimental setup, fol-
lowed by a brief overview of the baseline methods used (Section 5.1). Finally, we
present the experimental results (Section 5.2).

5.1 Experimental Setting

Dataset. We use the EPIC-Kitchens-55 dataset [8] and we adopt the same
experimental protocol of [25], where the three kitchens are handpicked from the
32 available. We refer to them here as D1, D2, and D3 respectively.

Input. For RGB, during inference, 5 equidistant clips of 16 frames are fed
to the network. During adaptation, we apply random crops, scale jitters and
horizontal flips for data augmentation, while at pure inference time only center
crops are applied. Regarding aural information, we follow [19] and convert the
audio track into a 256 × 256 matrix representing the log-spectrogram of the
signal. As for visual information, 5 equidistant audio clips in correspondence to
the visual ones are used during both adaptation and inference.

Implementation Details. Our network is composed of two streams, one
for each modality m, with distinct feature extractor Fm and classifier Gm. The
RGB stream uses I3D [3] as in [25]. The audio feature extractor uses the BN-
Inception model [15] pretrained on ImageNet, which proved to be a reliable
backbone for processing audio spectrograms [19]. Each Fm produces a 1024-
dimensional representation fm which is fed to the classifier Gm, consisting in
a fully-connected layer that outputs the score logits. Then, the two modalities
are fused by summing the outputs. During adaptation, the network is optimized
with a batch size of 32, SGD optimizer with momentum 0.1, and weight decay
1e−7. We optimized the learning rate lr ∈ {1e−2, 1e−3, 1e−4, 1e−5}, loss weights
α, β, γ, δ, ϵ1 ∈ {1, 0.1, 0.5, 0.01}, and optimization steps n ∈ {1, ..., 10} for all
methods, reporting the accuracy scores averaged on three different runs. The
code is implemented using Pytorch framework and the models are trained using
Intel(R) Core(TM) i7-9800X CPU and two GPUs Titan RTX (24 GB).

1 α, β, γ, δ, ϵ are the weights of RNA++, MCC, ENT, IM and CENT losses respectively.
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Baseline Methods. We adapted the most popular image-based TTA meth-
ods to our video scenario. Those are:

– Prediction-time BN: authors of [48,26,33] proved that either updating
[48,33] or replacing [26] batch normalization statistics µ and σ2 with the
ones from test data during inference achieves good adaptation results. In
our experiments, we do not entirely replace the source statistics, but we
rather update them with the ones from the target.

– TENT [42]: the adaptation is performed by optimizing the modulation pa-
rameters γ and β of the Batch Normalization (BN) layers by minimizing the
entropy loss [13]. The normalization statistics µ and σ2 are initialized on
source data and updated for each layer in turn, during the forward pass, on
test data batch statistics. We also tried a different variation of TENT, which
we refer to as TENT-C, where we also optimize the classifier.

– T3A [16]: it is a backpropagation-free method which adjusts the classifier
at test-time. In particular, it creates a pseudo-prototype for each class using
online test data and the classifier pre-trained source, and then classifies each
test sample basing on its distance to the pseudo-prototype.

5.2 Results

In this section, we evaluate TTA results by considering both (i) a network which
has been trained on multiple source domains (DeepAll) and (ii) a network which
has been trained with RNA-Net [29], a method which aims to improve generaliza-
tion results by exploiting audio-visual correlations at feature level. On the two,
we evaluate three different approaches: (i) baseline methods, which are stan-
dard image-based TTA methods which we adapted to our setting, (ii) RNA++,
the extension of RNA loss to operate at feature level on test data and (iii) Class
Relative (CR) losses, which are losses operating at prediction level.

Baseline methods. We show in Table 2 and Table 3 the effects of applying
existing TTA methods, namely BN [48,33], TENT [42], and T3A [16]. Despite its
simplicity, BN shows a consistent improvement over both the DeepAll and RNA-
Net baselines. This proves that the feature distribution varies greatly from source
to target domains, an thus simply updating batch normalization statistics with
the ones from target data is effective in coping with the domain shift. Both TENT
and TENT-C improve over the baselines, showing that methods inherited from
the image-based domain scale well to our multi-modal action recognition setting.
TENT-C achieves slightly better results than TENT, proving that optimizing the
classifier parameters using target data is effective in improving generalization.
Both techniques benefit from having a model that has been pre-trained using a
multi-modal DG strategy, since the improvement on RNA-Net is more consistent
than the improvement on DeepAll.

However, the improvements are limited and slighty lower than the one ob-
tained by BN, confirming the difficulties of this task in the egocentric context
and the importance of this new benchmark to promote future reaseach in this
new field. We can further notice that, differently from the others approches,
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Table 2. Top-1 Accuracy (%) of different test-time adaptation methods in a Multi-
Source DG scenario when applied to a DeepAll baseline. Di, Dj → Dk indicates that
we trained on Di and Dj and we tested on Dk.

D2, D3 → D1 D3, D1 → D2 D1, D2 → D3 Mean Gain

DeepAll 51.34 43.22 41.07 45.21 -

BN [48,33] 50.82 44.14 43.91 46.29 +1.08
TENT [42] 49.86 42.99 43.96 45.60 +0.39
TENT-C [42] 49.83 43.07 44.00 45.63 +0.42
T3A [16] 40.28 36.86 39.24 38.79 −6.42

RNA++ 50.79 43.91 43.87 46.19 +0.98
ENT 51.81 43.60 43.33 46.25 +1.04
MCC 52.09 44.06 43.11 46.42 +1.21
IM 50.38 43.68 44.40 46.15 +0.94
CENT 51.10 43.30 44.84 46.41 +1.20

ENT+RNA++ 50.86 43.60 43.91. 46.12 +0.91
MCC+RNA++ 51.88 44.06 44.00 46.65 +1.44
IM+RNA++ 51.95 43.52 44.44 46.64 +1.43
CENT+RNA++ 50.58 43.45 45.42 46.48 +1.28

Table 3. Top-1 Accuracy (%) of different test-time adaptation methods in a Multi-
Source DG scenario when applied to RNA-Net baseline.

D2, D3 → D1 D3, D1 → D2 D1, D2 → D3 Mean Gain

RNA-Net [29] 55.75 46.67 50.53 50.98 -

BN [48,33] 57.56 46.90 52.04 52.17 +1.18
TENT [42] 54.18 47.43 53.29 51.63 +0.65
TENT-C [42] 54.28 47.89 53.24 51.81 +0.83
T3A [16] 49.69 41.15 34.58 41.81 −9.17

RNA++ 57.56 46.90 52.00 52.15 +1.17
ENT 57.46 46.51 52.09 52.02 +1.04
MCC 57.70 47.05 52.04 52.26 +1.28
IM 57.46 47.13 52.09 52.23 +1.25
CENT 57.53 47.43 52.31 52.42 +1.44

ENT+RNA++ 57.29 46.67 52.04 52.00 +1.02
MCC+RNA++ 57.63 46.90 52.04 52.19 +1.21
IM+RNA++ 57.56 47.20 52.18 52.31 +1.33
CENT+RNA++ 57.67 47.51 52.18 52.45 +1.47

T3A does not scale to this setting. Indeed, this is explainable by the fact that
the dataset used is strongly unbalanced, and a method which exploits a per-
class pseudo-prototype representation could lead to sub-optimal results making
prediction of classes with fewer samples almost impossible.

RNA++. In Table 2 and Table 3 we illustrate the effects of minimizing
RNA++ at test-time. It can be seen that RNA++ outperforms the baseline
DeepAll and RNA-Net by 0.98% and 1.17% respectively, showing that re-balancing
the mean feature norms of the two modalities on test samples further improves
the adaptation ability of the network. It can be noticed also that starting from
the robust initialization of RNA-Net to perform the rebalancing operation, it
helps the RNA++ to be more effective at test time. However the limited im-
provement of RNA++ over existing techniques, particularly when compared to
BN, highlights its need to be guided by a loss that acts on the final prediction.
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CR losses. We show the performance of the entropy loss w.r.t. CR losses
in Table 2 and Table 3. When applying the entropy loss, we fine-tune all the
network. The entropy loss surpasses both DeepAll and RNA-Net baselines and
yields results comparable to all existing TTA approaches. Except for one case,
the proposed CR losses (MCC, IM, and CENT losses) surpass the entropy loss.
This proves the limitation of entropy loss in this context (see Section 4.2) and
highlights the benefits of using losses which take into account all the predictions.

Combining RNA++ with CR losses. When further combining those
losses with RNA++, performance increase on both settings in almost all con-
figurations. This confirms the effectiveness of fine-tuning the network through
a loss which operates not only on features but also on predictions. Indeed, the
combination of RNA++ with CR losses proved to be the most effective technique.

The combination of RNA++ with the entropy loss does improves over RNA++

alone, while on the other side the combination of it with CR losses outperforms
RNA++ in all cases. This provides additional evidence to support the mentioned
limits of entropy (see Section 4.2) in the TTA scenario.

6 Conclusions

In this work, we investigate the test-time adaptation setting for audio-visual
egocentric action recognition. We propose a new benchmark for this context,
showing the performance of current image-based test-time adaptation algorithms
which we adapted to the video domain. Moreover, we propose RNA++, a new
test-time adaptation approach which extends RNA-Net, a recent multi-modal
domain generalization method. Finally, we prove the importance of combining it
with a set of losses meant to further reduce classifier’s uncertainty on test data.
We regard our work as a starting point for future research into new settings that
allow action recognition algorithms to be applied in real-world scenarios.

Acknowledgements. This work was supported by the CINI Consortium through

the VIDESEC project .
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