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Robust Coordination of Linear Threshold Dynamics
on Directed Weighted Networks

Laura Arditti, Giacomo Como, Member, IEEE, Fabio Fagnani, and Martina Vanelli

Abstract—We study dynamics in a network of interact-
ing agents updating their binary states according to a time-
varying threshold rule. Specifically, agents revise their state
asynchronously by comparing the weighted average of the current
states of their neighbors in the interaction network with possibly
heterogeneous time-varying threshold values. Such thresholds
are determined by an exogenous signal representing an external
influence field modeling the different agents’ biases towards one
state with respect to the other one. We prove necessary and
sufficient conditions for global stability of consensus equilibria,
robustly with respect to the (constant or time-varying) external
field. Our results apply to general weighted directed interaction
networks and build on super-modularity properties of certain
network coordination games whose best response dynamics
coincide with the linear threshold dynamics. In particular, we
introduce a novel notion of robust improvement paths for such
games and characterize necessary and sufficient conditions for
their existence.

Index terms: Linear threshold dynamics, coordination
games, network games, network robustness, best response
dynamics, robust stability.

I. INTRODUCTION

Robustness, meant as the ability of a system to maintain its
performance under a range of different operating conditions,
is undoubtedly a fundamental issue that has long been studied
in control [2]. While playing a key role in several domains,
robustness and the related notion of resilience have lately
become central in multi-agent and network systems, such
as infrastructure systems [3]–[6], financial networks [7]–[10],
as well as social and economic networks [11]–[14]. In such
contexts, robustness is typically presented as the capability of
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the system to react to localized perturbations by absorbing
their effect locally and preventing the global propagation of
cascading failures that could prove detrimental for the whole
system. A characteristic feature that has been recognized is
that the topology of the interconnection pattern is a key
factor determining the robustness or fragility of such network
systems [15]–[19].

In this paper, we focus on linear threshold dynamics (LTD),
a prototypical family of nonlinear network systems first intro-
duced in [20] for fully mixed populations of agents and later
extended in various directions [21]–[24]. While LTD can be
defined in different ways, their core structure consists of a
set of agents identified with nodes of an interaction network
that strategically change their binary state (±1) according to a
threshold rule. Specifically, agents adopt state +1 if and only
if the fraction of their neighbors in the interaction network
that do so is greater than or equal to a certain exogenous
threshold. Various studies of LTD models [21], [25]–[29] have
concerned topological conditions guaranteeing or preventing
full contagion (i.e., convergence to a configuration where all
agents are in state +1) starting from an initial condition of
relatively few agents in state +1. Most of these studies concern
random networks of a specific type. A remarkable exception
is [21] that introduces the concept of cohesiveness of a subset
of nodes in a network, through which one can in principle
characterize the extent of a spreading phenomenon.

In the literature, LTD models are typically modeled as
closed systems without explicit input or output signals. The
basic challenge of this paper is to study LTD intrinsically
equipped with an external field modeling a possibly node-
specific influence from the external environment. As in the
classical LTD models without external field the asymptotic
outcomes are always consensus equilibria, our analysis con-
centrates on when a possibly time-varying external filed can
modify this behavior. Precisely, our results are of two types:

• robust stability results showing that the LTD converges
to a consensus for every possibly time-varying external
field taking values in a certain range;

• control results showing that a suitable control signal is
capable of preventing the system from reaching consensus
by steering it to a different polarized configuration or by
forcing persistent oscillations.

Such behaviors will depend on the topology of the interaction
network (building on suitable generalizations of the concept
of cohesiveness) and the constraints on the input signal.

LTD can be interpreted as the best response dynamics in
a network game whereby agents choose strategically between
two states and their payoff is an increasing function of the

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371882

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

number of their neighbors choosing the same state. Such
games are known as network coordination games and rep-
resent one of the most studied models describing network
systems with interactions of strategic complements type [30],
[31]. They find numerous applications in modeling social and
economic behaviors like the emergence of social norms and
conventions or the adoption of new technologies [32]–[36].

Optimal seeding and other intervention problems for net-
work coordination games have been studied in [37] and, in
the more general setting of super-modular games, in [38], [39].
Our goal is different in this paper, as we are mainly interested
in understanding the resilience of the system against external
attacks. Recently, vulnerability of network coordination games
against adversarial attacks has been investigated in [40], [41],
while [1], [42], [43] study games with a mix of coordinating
and anti-coordinating players, and [44] proposes network coor-
dination games as a micro-foundation for community structure
in networks.

Our analysis strongly relies on the interpretation of the LTD
as a type of best response dynamics of an underlying network
coordination game. We then build on super-modularity of
such games, i.e., the increasing difference property [45], [46].
Specifically, the convenience for a player to switch from a
state to an alternative state is monotone in the fraction of
players in their neighborhood already playing the alternative
state. Such property continues to hold true under the influence
of an external field. A variation of the external field modifies
the threshold of the agents, in extreme cases transforming them
into stubborn agents, i.e., agents whose best response is always
the same state, regardless of her fellow agents’ states.

In particular, we study conditions under which a system
converges to a consensus equilibrium, independently from the
values taken by an external field. As it turns out, two con-
ditions need to be satisfied for such robust stability property
to hold true. The first condition, to be referred to as robust
indecomposability, is a generalization of the lack of cohesive
partitions [32] to parametrized families of heterogeneous net-
work coordination games. It is equivalent (see Theorem 3)
to the lack of co-existent equilibria, i.e., equilibria that are
not consensus configurations, for any value of the external
field within a certain range. On the other hand, the second
condition guarantees that the external field is incapable of
creating stubborn agents for both states. While the necessity of
these two conditions for convergence to a consensus is quite
intuitive, the proof of sufficiency is more involved and resides
on the possibility to find improvement paths for the game
that are robust to modifications of the external field. This is
achieved in Theorem 4 that is one of our main results and uses
in a crucial way the super-modularity of the game.

The rest of the paper is organized as follows. We report
some basic notation in the remaining part of this section. In
Section II we present the problem. We introduce the LTD
with external field and the fundamental concept of indecom-
posability (Definition 1). We then state two main results on
the asymptotic behavior of such model, Proposition 1 and
Theorem 1, and we illustrate the outcomes through a number
of examples and simulations. Section III is completely devoted
to the analysis of network coordination games, especially the

structure of their set of Nash equilibria that play a crucial
role in our study of the LTD and the reachability and stability
results that we gain from super-modularity properties. Section
IV-A contains the core technical part of the paper. In particular,
Theorem 4 contains robust reachability and stability results
for network coordination games that are the fundamental
ingredients to then prove Theorem 1. The paper is completed
with a Section of conclusions.

A. Notation

For a finite set I, we consider vector spaces RI equipped
with the partial order

x ≤ y ⇔ xi ≤ yi, ∀i ∈ I .

We use the notation x ⪇ y when x ≤ y and xi < yi for some
i in I. A function f : RI → RJ is referred to as monotone
nondecreasing (nonincreasing) if it preserves (reverses) the
partial order ≤, i.e., if f(x) ≤ f(y) (f(x) ≥ f(y)) for every
x ≤ y. For a vector x in RI , |x| in RI stands for the vector
with entries (|x|)i = |xi| for every i in I. The symbol 1
indicates a vector with all entries equal to 1.

II. PROBLEM STATEMENT AND MAIN RESULTS

Throughout the paper, we model networks as (finite directed
weighted) graphs G = (V, E ,W ), with set of nodes V , set of
directed links E ⊆ V × V , and weight matrix W in RV×V

+ ,
whose entries are such that Wij > 0 if and only if (i, j) ∈ E .
We do not allow for the presence of self-loops, equivalently,
we assume that the weight matrix W has zero diagonal. We
refer to the graph as undirected in the special case when the
weight matrix W = W ′ is symmetric, so that there is a link
(i, j) directed from node i to node j in E if and only if there
is also the reverse link (j, i) directed from node j to node i
in E and both links have the same weight Wij = Wji.

For a graph G = (V, E ,W ) and a subset of nodes S ⊆ V ,
we denote by

wS
i =

∑
j∈S

Wij

the S-restricted out-degree of a node i in V . In the special case
when S = V coincides with the whole node set, we simply
refer to wi = wV

i as the out-degree of a node i in V and let
w = W1 be the vector of out-degrees.

The nodes of the network represent interacting agents. Every
agent i in V is endowed by a binary time-varying state Xi(t).
A link (i, j) in E is meant as directed from its tail node i
to its head node j. The presence of a link (i, j) indicates a
direct influence of agent j on agent i, with its weight Wij to
be interpreted as a measure of such influence. Let A = {±1}
be the binary state set of each agent, and let X = AV be
the configuration space: a configuration x in X is a vector
whose entries xi represent the states of the single agents. The
constant vectors x = ±1 will be referred to as consensus
configurations. On the other hand, we shall refer to every x
in X \ {±1} as a co-existent configuration.

We consider asynchronous time-varying (ATV) linear
threshold dynamics (LTD) on a network G = (V, E ,W ),
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whereby agents i in V update their binary state Xi(t) in A
as described below. For a nonempty set of vectors H ⊆ RV ,
let h(t) in H for t ≥ 0 be an exogenous signal modeling a
time-varying external field. Let every agent i in V be equipped
with an independent rate-1 Poisson clock.1 If agent i’s clock
ticks at some time t ≥ 0,2 then agent i modifies her current
state Xi(t

−) into a new state Xi(t) such that

Xi(t) =


+1 if

∑
j WijXj(t) + hi(t) > 0

Xi(t
−) if

∑
j WijXj(t) + hi(t) = 0

−1 if
∑

j WijXj(t) + hi(t) < 0 .

(1)

The update rule above can be rewritten in the following
equivalent way. For i in V and time t ≥ 0, let

ri(t) =
1

2
− hi(t)

2wi
, (2)

be a time-varying threshold for agent i. Also, for a configura-
tion x in X , let

w−
i (x) =

∑
j:xj=−1

Wij , w+
i (x) =

∑
j:xj=1

Wij , (3)

be the aggregate weight of links pointing from agent i to agents
in state −1 and, respectively, to those in state +1. Then, (1)
is equivalent to

Xi(t) =


+1 if w+

i (X(t−)) > wiri(t)

Xi(t
−) if w+

i (X(t−)) = wiri(t)

−1 if w+
i (X(t−)) < wiri(t) ,

(4)

i.e., if agent i gets activated at time t ≥ 0, then: (a) she updates
her state Xi(t) to +1 if the weighted fraction w+

i (X(t−))/wi

of her out-neighbors currently in state +1 is above the time-
varying threshold ri(t) (equivalently, if the weighted fraction
w−

i (X(t−))/wi of her out-neighbors in state −1 is below the
complementary threshold 1− ri(t)); (b) she updates her state
Xi(t) to −1 if w+

i (X(t−))/wi is below ri(t); or (c) she keeps
her current state Xi(t) = Xi(t

−) if w−
i (X(t−))/wi = ri(t).

If we stack the agents’ states in a vector X(t) in X , then
X(t) is a continuous-time inhomogeneous Markov chain on
the configuration space X . In the rest of the paper, we focus
on the asymptotic behavior of the ATV-LTD X(t) on a graph
G = (V, E ,W ) with external field h(t), as described above.

Specifically, we shall determine necessary and sufficient
conditions for almost sure convergence (i.e., convergence with
probability one) to a consensus configuration. In particular,
our main result concerns robust convergence to consensus for
ATV-LTD on a graph G when the external field h(t) is an
arbitrary (unknown) signal whose range is a hyper-rectangle
in the form

H = {h : h− ≤ h ≤ h+} =
∏
i∈V

[
h−
i , h

+
i

]
, (5)

1The assumption that all Poisson clocks have rate 1 is made merely for the
sake of simplicity of the exposition. In fact, it is not hard to show that all
results in the paper continue to hold true as stated in the more general setting
where every agent i’s Poisson clock has rate λi > 0.

2Observe that, with probability 1, no two agents’ clocks will ever tick at the
same time t. In fact, the updating mechanism could have been equivalently
formulated assuming that updates occur at the ticking of a global rate-|V|
Poisson clock and that each time such global clock ticks one agent is sampled
uniformly at random from V and made update her action according to the
threshold rule described in the main text.

1

2

3

4

5

Fig. 1: The network considered in Example 1.

for two (known) vectors h− and h+ in RV such that h− ≤ h+.
The conditions for robust almost sure convergence to con-

sensus of the ATV-LTD will be determined in terms of graph-
theoretic properties of G. In particular, we have the following
definition.

Definition 1. Let h− and h+ in RV be two vectors such
that h− ≤ h+. Then, a graph G = (V, E ,W ) is (h−, h+)-
indecomposable if for every nontrivial binary partition of the
node set

V = V+ ∪ V− , V+ ∩ V− = ∅ , V+ ̸= ∅ , V− ̸= ∅ , (6)

there exist s in {−,+} and a node i in Vs such that

ws
i + shs

i < w−s
i , (7)

where ws
i = wVs

i . In the special case when h− = h+ = h, we
shall more briefly refer to the graph G as h-indecomposable.

The following example illustrates the notion of indecom-
posability introduced in Definition 1 above in a simple case.

Example 1. Consider the graph G = (V, E ,W ) displayed
in Figure 1, with set of nodes V = {1, 2, 3, 4, 5} and weight
matrix

W =


0 1 0 0 0
0 0 1 1 1
1 0 0 0 1
0 1 0 0 1
0 1 1 1 0

 .

The out-degree vector is then w = W1 = (1, 3, 2, 2, 3) .
(i) First, we verify that G is 0-indecomposable. To see it,

first notice that if, for some s in {−,+}, either Vs = {i} for
some i in V or Vs = {i, j} for some i ̸= j in V such that
(i, j) /∈ E , then we have ws

i = 0 < 1 ≤ w−s
i , so that (7) is

satisfied. It is then sufficient to consider binary partitions as
in (6) where, Vs = {i, j} for some s in {−,+} and i ̸= j in V
such that both (i, j) and (j, i) belong to E . This leaves us with
four possibilities, corresponding to the four undirected links
in the graph: (a) for Vs = {2, 4}, we have that 5 ∈ V−s and
ws

5 = 2 > 1 = w−s
5 so that (7) is satisfied; for Vs = {2, 5},

we have that 4 ∈ V−s and ws
4 = 2 > 0 = w−s

4 so that (7) is
satisfied; (c) for both Vs = {3, 5} and Vs = {4, 5}, we have
that 2 ∈ V−s and ws

2 = 2 > 1 = w−s
2 so that (7) is satisfied.

(ii) Second, we verify that G is not δ1-indecomposable.
Indeed, let us fix V− = {2, 4, 5} and V+ = {1, 3}. Then,
w+

1 + 1 = 1 = w−
1 , w−

2 = 2 > 1 = w+
2 , w+

3 = 1 = w−
3 ,

w−
4 = 2 > 0 = w+

4 , and w−
5 = 2 > 1 = w+

5 , so that (7) is
violated by every i in Vs and s in {−,+}.
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(iii) Now, we show that G is not (h−, h+)-indecomposable
for h− = (0,−1, 0, 0, 0) and h− = (0, 0, 0, 0, 1). Indeed, let
us fix V− = {1, 2, 3} and V+ = {4, 5}. Then, we have that
w−

1 − h−
1 = 1 > 0 = w+

1 , w−
2 − h−

2 = 1 + 1 = 2 = w+
2 ,

w−
3 −h−

3 = 1 = w+
3 , w+

4 +h+
4 = 1 = w−

4 , and also w+
5 +h+

5 =
1 + 1 = 2 = w−

5 , so that (7) is violated by every i in Vs and
s in {−,+}. In contrast, it can be verified that G is both
h−-indecomposable and h+-indecomposable in this case.

(iv) Finally, let h− = 0 and h+ = (0, 2, 0, 0, 2). We now
show that G is (h−, h+)-indecomposable. To verify that, first
notice that if Vs = {i} for some s in {−,+} and i in V ,
then ws

i + shs
i = shs

i < wi = w−s
i , so that (7) is satisfied.

Similarly, if 1 ∈ Vs and 2 ∈ V−s, then ws
1 + shs

1 = 0 <
1 = w−s

1 . Moreover, if {2, 5} ⊆ Vs for some s in {−,+},
then (7) is satisfied by every i in V−s ∩ {1, 4}. This leaves us
with four possibilities: (a) V− = {1, 2, 3} and V+ = {4, 5};
(b) V− = {1, 2, 4} and V+ = {3, 5}; (c) V− = {4, 5} and
V+ = {1, 2, 3}; (d) V− = {3, 5} and V+ = {1, 2, 4}. In both
cases (a) and (b), we have w−

2 − h−
2 = 1 < 2 = w+

2 so that
(7) is satisfied, whereas in both cases (c) and (d), we have
w−

5 − h−
5 = 1 < 2 = w+

5 so that (7) is satisfied. Therefore, G
is (h−, h+)-indecomposable.

Our first result, stated below, shows that (h−, h+)-
indecomposability of the graph G is indeed a necessary con-
dition for robust convergence to a consensus configuration of
ATV-LTD when the external field h(t) is a arbitrary signal
whose range is the hyper-rectangle (5). First we state a very
simple concept: a configuration x∗ in X is called absorbing
for the ATV-LTD, if X(t∗) = x∗ for some t∗ ≥ 0 implies that
X(t) = x∗ for every t ≥ t∗.

Proposition 1. Let G = (V, E ,W ) be a graph. For two vectors
h− and h+ in RV such that h− ≤ h+, let H be as in (5). If G
is not (h−, h+)-indecomposable, then there exist h∗ in H and
a co-existent configuration x∗ in X \{±1} such that x∗ is an
absorbing configuration for the ATV-LTD on G with constant
external field h(t) = h∗.

Proof. That the graph G is not (h−, h+)-indecomposable
means that there exists a nontrivial binary partition of the node
set as in (6) such that

ws
i − w−s

i + shs
i ≥ 0 ,

for all i in Vs and s in {−,+}. The above can be rewritten as

s(w+
i − w−

i + hs
i ) ≥ 0 . (8)

Now, let h∗ in RV be a vector with entries

h∗
i =

{
h−
i if i ∈ V−

h+
i if i ∈ V+ ,

and let x∗ in X be a configuration with entries

x∗
i =

{
−1 if i ∈ V−
+1 if i ∈ V+ .

Clearly, h− ≤ h∗ ≤ h+, so that h belongs to H. Moreover,
the fact that V− ̸= ∅ ̸= V+ and V− ̸= V ̸= V+ implies that

x∗ ̸= ±1 is a co-existent configuration. The inequality in (8)
then implies that

x∗
i

(∑
j
Wijx

∗
j + h∗

i

)
= x∗

i

(
w+

i − w−
i + h∗

i

)
≥ 0 , (9)

for every i in V . Now, let X(t) evolve according to the
LTD on G with constant external field h(t) = h∗ and initial
configuration X(0) = x∗. It then follows from (1) and (9) that
X(t) = x∗ for every t ≥ 0, thus proving the claim.

Example 2. Consider the graph G shown in Figure 1 and
let h− = (0,−1, 0, 0, 0) and h− = (0, 0, 0, 0, 1). As verified
in Example 1, G is not (h−, h+)-indecomposable, so that
Proposition 1 implies the existence of a vector h∗ such that
h− ≤ h∗ ≤ h+ and of a co-existent configuration x∗

in X \ {±1} such that x∗ is a fixed point for the LTD
on G with constant external field h(t) = h∗. Specifically,
in this case we can take h∗ = (0,−1, 0, 0, 1) and x∗ =
(−1,−1,−1,+1,+1).

While Proposition 1 states that, if the graph G is not
(h−, h+)-indecomposable, robust convergence to a consensus
configuration is not ensured for the ATV-LTD on G, the
following result establishes necessary and sufficient conditions
for robust convergence to a consensus configuration when the
graph G is (h−, h+)-indecomposable.

Theorem 1. Let G = (V, E ,W ) be a graph. For two vectors
h− and h+ in RV such that h− ≤ h+, let H be as in (5). If
G is (h−, h+)-indecomposable, then the ATV-LTD on G with
any external field h(t) ∈ H for t ≥ 0 is such that, for every
initial configuration X(0) in X , with probability 1 there exists
t∗ ≥ 0 such that

(i)
X(t∗) ∈ {±1}; (10)

and
(ii) if w≥− h− and w≥h+, then

X(t) ∈ {±1} , ∀t ≥ t∗ ; (11)

(iii) if w≥− ah−a and w ≱ ah−a for some a = ±1, then

X(t) = a1 , ∀t ≥ t∗ . (12)

Moreover:
(iv) if w ≱ −h− and w ≱ h+, then there exists a signal

h(t) ∈ H for t ≥ 0 such that, for every initial
configuration X(0) in X , with probability 1 the ATV-
LTD on G with external field h(t) visits both consensus
configurations +1 and −1 infinitely often.

Proof. See Section IV-B.

Theorem 1 (i) is to be interpreted as a converse to
Proposition 1, as it states that, if the graph G is (h−, h+)-
indecomposable, then the set of consensus configurations is
reached in finite time with probability 1 from every initial
configuration X(0). Theorem 1 (i) and Proposition 1 together
guarantee that (h−, h+)-indecomposability of the network is
a necessary and sufficient condition for global robust reacha-
bility of the set of consensus configurations for the ATV-LTD.
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Moreover, because of the form of the update rule (1) the
condition w ≥ −h− implies that the consensus configuration
+1 is absorbing. Symmetrically, the condition w ≥ h+ implies
that the consensus configuration −1 is absorbing. Hence, point
(ii) of Theorem 1 states that if, both w ≥ −h− and w ≥ h+,
then for every initial configuration X(0) in X , the ATV-LTD
gets absorbed in finite time in one of these two consensus
configurations. In fact, the probability with which X(t) is
absorbed in the consensus configuration +1 rather than in −1
will depend on the initial configuration X(0), the graph G,
and the particular external field h(t).

On the other hand, let us consider the case a = +1 in
point (iii) of Theorem 1 (the case a = −1 being com-
pletely symmetrical). Then, as discussed above, the condition
w ≥ −h− ensures that the consensus configuration x∗ = +1
is absorbing. On the other hand, the condition w ≱ h− is
equivalent to the existence of some agent i in V such that
wi < h−

i . From the form of the update rule (1), we then
deduce that any such agent i will switch her action to +1 the
first time she gets activated and will stick to Xi(t) = +1 ever
after. Point (iii) of Theorem 1 then states that with probability
1 all other agents will follow such agent i and switch to state
+1 in a cascade until the absorbing consensus configuration
+1 is reached in finite time.

Finally, in contrast to points (i)-(iii), point (iv) of Theorem 1
does not describe a robust behavior. Rather, the two conditions
w ≱ −h− and w ≱ h+ ensure that there exist two (not
necessarily distinct) agents i and j in V such that wi < −h−

i

and wj < h+
j , respectively. This implies that agent i will

always switch to −1 the first time she gets activated under
the external field h−, while agent j will always switch to
+1 the first time she gets activated under the external field
h+. Point (ii) of Theorem 1 states that, by manoeuvring the
external field h(t) within its range H, one is able to make the
system oscillate infinitely often between the two consensus
configurations.

The proof of Theorem 1 is one of the main contributions of
this paper. The key technical challenges are twofold: on the
one hand, we are considering LTD with time-varying external
field h(t) and seeking robustness results with respect to
h(t), on the other hand, considering weighted directed graphs
prevents one from appealing to potential games arguments. We
will address these challenging by first focusing on the special
case of LTD with constant external field and studying it from
a super-modular game theory perspective in Section III. We
will then introduce and characterize the key notion of robust
improvement path in Section IV-A and finally apply it to prove
Theorem 1 in Section IV-B.

Example 3. Consider once again the graph G shown in Figure
1 and let h+ = (0, 2, 0, 0, 2). As is shown in Example 1, G
is (0, h+)-indecomposable. Hence, since w ≥ −h− and w ≥
h+, Theorem 1 (ii) implies that the ATV-LTD on G with any
external field 0 ≤ h(t) ≤ h+ for t ≥ 0 gets absorbed with
probability 1 in finite time in a consensus configuration.

In Figure 3, we simulated the dynamics of N(t) =
∑

i Xi(t)
for different initial conditions when the external field is h(t) =
(0, h2(t), 0, 0, h5(t)) with h2 and h5 as in Figure 3 (notice
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Fig. 3: In the upper panel, dynamics of N(t) =
∑

i Xi(t) for
the graph in Figure 1 and h(t) = (0, h2(t), 0, 0, h5(t)) with
h2 and h5 as in the lower panel. ATV-LTD get absorbed in
consensus configurations for different initial conditions (see
Example 3).

that 0 ≤ h(t) ≤ h+). ATV-LTD dynamics get absorbed in
consensus configurations.

Example 4. Consider the graph G shown in Figure 2,
with node set V = {1, . . . , 7} and out-degree vector w =
(3, 1, 3, 3, 3, 3, 3). Let

h− = (α, 0, . . . , 0) , h+ = (β, 0, . . . , 0) ,

for α ≤ β in R. Then, for every nontrivial binary partition
as in (6), let s in {−,+} be such that 1 ∈ V−s. If 2 ∈ Vs,
then ws

2 + shs
2 = 0 < 1 = w−s

2 , so that (7) is satisfied. On
the other hand, for j = 2, . . . , 6, if {1, . . . , j} ⊆ V−s and
j + 1 ∈ Vs, then ws

j+1 + shs
j+1 ≤ 1 < 2 ≤ w−s

j+1, so that (7)
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Fig. 4: In the upper panel, dynamics of N(t) =
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i Xi(t) for
the graph in Figure 2 and h(t) = (h1(t), 0, 0, 0, 0) with h1

as in the lower panel. ATV-LTD get absorbed in consensus
configurations for different initial conditions (see Example 4
with α = −2 and β = 1).
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i Xi(t) for
the graph in Figure 2 and h(t) = (h1(t), 0, 0, 0, 0) with h1 as
in the lower panel. ATV-LTD get absorbed in the consensus
configuration x∗ = +1 for different initial conditions (see
Example 4 with α = 3 and β = 5).
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Fig. 6: In the upper panel, dynamics of N(t) =
∑

i Xi(t) for
the graph in Figure 2 and h(t) = (h1(t), 0, 0, 0, 0) with h1

as in the lower panel. ATV-LTD fluctuate for different initial
conditions (see Example 4 with α = −3.1 and β = 3.1).

is satisfied. This proves that G is (h−, h+)-indecomposable for
every α ≤ β. Now consider three different cases.

If −3 ≤ α ≤ β ≤ 3, so that w ≥ −h− and w ≥ h+,
then Theorem 1 (ii) ensures that, with probability 1, X(t)
gets absorbed in finite time in one of the two consensus
configurations (see Figure 4).

On the other hand, if 3 < α ≤ β, so that w ≥ −h− and w ≱
h−, then Theorem 1 (iii) ensures that, with probability 1, X(t)
gets absorbed in finite time in the consensus configuration
x∗ = +1 (see Figure 5).

Finally, if α < −3 and β > 3, so that w ≱ −h− and w ≱
h+ then Theorem 1 (iv) ensures that there exists a time-varying
signal h− ≤ h(t) ≤ h+ such that, with probability 1, X(t)
fluctuates forever between the two consensus configurations
visiting both of them infinitely many times (see Figure 6).

III. LTD WITH CONSTANT EXTERNAL FIELD

In this section, we study the special case of an LTD with
a constant external field. We refer to it as to an asynchronous
linear threshold dynamics A-LTD. As we shall see, in this spe-
cial case, the absorbing points of the A-LTD can be interpreted
as the (pure strategy Nash) equilibria of an underlying network
coordination game and the convergence can be studied purely
in terms of the improvement paths of such a game. We shall
provide a full characterization of such equilibria and of the
asymptotic behavior of the corresponding A-LTD in terms of
graph-theoretic properties of the network.
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A. LTD and coordination games

We start with the formal introduction of a network coordi-
nation game.

Definition 2. For a graph G = (V, E ,W ) and a vector h
in RV , the (network) coordination game on G with external
field h is the game with player set V , whereby every player
i in V has binary action set A = {±1} and utility function
ui : X → R specified by

ui(x) = xi

∑
j∈V

Wijxj + hixi . (13)

Notice that the utility of a player i increases when her neigh-
bors play the same action as her, thus modeling interactions of
strategic complements. The external field hi represents the bias
of player i in choosing an action over its alternative. Indeed,
the sign of external field hi determines which is the best action
for player i in the absence of any network influences.

As customary in game theory, for a configuration x in X
and a player i in V , we let x−i in X−i = AV\{i} stand for
the configuration of all players except for player i. We shall
then use the common abuse of notation ui(x) = ui(xi, x−i)
for the utility perceived by player i in configuration x. The
best response correspondence for a player i in V is defined as

Bi(x−i) = argmax
xi∈A

ui(xi, x−i) .

An action a in A is dominant (strictly dominant) for a player
i if a ∈ Bi(x−i) (Bi(x−i) = {a}) for every x−i in X−i. A
player i having a strictly dominant action a is referred to as
an a-stubborn agent. A (pure strategy Nash) equilibrium is a
configuration x∗ in X such that

x∗
i ∈ Bi(x

∗
−i) , ∀i ∈ V .

The set of equilibria is denoted by X ∗
h . An equilibrium x∗ is

strict if Bi(x
∗
−i) = {x∗

i } for every i in V .
The following statement gathers a few simple results on

coordination games.

Lemma 1. Consider the coordination game on a graph G =
(V, E ,W ) with external field h in RV . Then, for every i in V ,

(i) the utility function can be written as

ui(x) = xi

(
hi + w+

i (x)− w−
i (x)

)
, (14)

where w+
i (x) and w−

i (x) are defined as in (3);
(ii) for every configuration x in X

xi ∈ Bi(x−i) ⇐⇒ ui(x) ≥ 0 ; (15)

(iii) the best response correspondence has the threshold form

Bi(x−i) =


{+1} if w+

i (x) > riwi

{±1} if w+
i (x) = riwi

{−1} if w+
i (x) < riwi ,

(16)

where ri =
1
2 − hi

2wi
is the threshold of player i;

(iv) action a = ±1 is a strictly dominant strategy if and only
if ahi > wi.

Proof. (i) This is a consequence of the definitions of w+
i (x)

and w−
i (x).

(ii) This follows from the equivalent form (14) in (i).
(iii) By substituting the identity w−

i (x) = wi −w+
i (x) into

(14), we have that

ui(x) = xi

(
hi + 2w+

i (x)− wi

)
,

from which (16) follows directly.
(iv) This follows directly from item (iii).

Comparing the form of the best response (16) with the
evolution of the ATV-LTD X(t) described in (4), we can notice
that jumps occur only when the activated agent i can strictly
increase its utility and that the evolution indeed corresponds
for i to choose its unique best response action. We now
introduce a related classical game theoretic concept, that of
improvement path, that exactly captures this phenomenon.

Definition 3. Given two configurations x and y in X and
a nonnegative integer l, a (length-l) path from x to y is an
(l + 1)-tuple of configurations (x(0), x(1), . . . x(l)) such that
x(0) = x, x(l) = y, and for every k = 1, 2, . . . , l, there exists
a player ik in V satisfying

x
(k)
−ik

= x
(k−1)
−ik

, x
(k)
ik

̸= x
(k−1)
ik

. (17)

The l-tuple (i1, i2, . . . , il) is referred to as the sequence of
active players. The path is called

• monotone if x(0) ⪇ x(1) ⪇ · · · ⪇ x(l);
• anti-monotone if x(0) ⪈ x(1) ⪈ · · · ⪈ x(l).
• an improvement path (I-path) if

uik(x
(k)) > uik(x

(k−1)) , k = 1, 2, . . . , l . (18)

In other words, a path is any sequence of configurations
such that two consecutive configurations differ in just one
component, corresponding to a single agent modifying its own
action. In monotone paths, players can modify their actions
from −1 to +1 only, conversely only modifications from +1
to −1 are allowed in anti-monotone paths. In a I-path, the
agent modifying its action always increases its utility. Notice
that, by convention, the singleton (x) is to be considered as
an I-path of length 0 from x to x.

When there exists an I-path from a configuration x to a
configuration y, we say that y is I-reachable from x and use
the notation x → y. If y is reachable from x by a monotone or
anti-monotone I-path, we will use the notation x ↑ y and x ↓ y,
respectively. Observe that all these relations are reflexive and
transitive.

Definition 4. A subset of configurations Y ⊆ X is called
• globally I-reachable if for every x ∈ X there exists some

configuration y ∈ Y that is I-reachable from x;
• I-invariant if for every y ∈ Y and z ∈ X that is I-

reachable from y, we have that z ∈ Y;
• globally I-stable if it is globally I-reachable and I-

invariant.

The next result explicitly connects the previous notions to
the asymptotic behavior of an A-LTD.

Proposition 2. Let X(t) be an A-LTD on a graph G =
(V, E ,W ) with constant external field h in RV . Consider a
subset Y ⊆ X . Then,
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(i) Y is globally I-reachable if and only if for every initial
configuration X(0) in X , with probability 1 there exists
t∗ ≥ 0 such that X(t∗) ∈ Y;

(ii) Y is I-invariant if and only if for every initial configura-
tion X(0) in Y , X(t) ∈ Y for every t ≥ 0;

(iii) Y is globally I-stable if and only if for every initial
configuration X(0) ∈ X , with probability 1 there exists
t∗ ≥ 0 such that X(t) ∈ Y for every t ≥ t∗.

Proof. (i) It follows from comparing the form of the best
response in (16) with the evolution of the ATV-LTD X(t)
described in (4) that X(t) can have a transition from a
configuration x in X to another configuration y in X if and
only if there exists i in V such that x−i = y−i, yi ̸= xi, and
Bi(y−i) = {yi}. Then, by [47, Theorem 1.2.2], we have

P(∃t ≥ 0 : X(t) = y |X(0) = x) > 0 ⇔ x → y

This implies that a subset of configurations Y is globally I-
reachable if and only if P(∃t : X(t) ∈ Y|X(0) = x) > 0 for
every x in X . A standard result in the theory of finite-state
Markov chains establishes that this last condition is actually
equivalent to the fact that P(∃t : X(t) ∈ Y|X(0) = x) = 1
for every x ∈ X .

(ii) Y is invariant if and only if for every y ∈ Y there is no I-
path from y leading outside of Y . By previous considerations,
this is equivalent to saying that the process X(t) initialized in
X(0) = y can not deterministically leave the set Y .

(iii) This point follows from (i) and (ii).

We notice that every equilibrium x∗ ∈ X ∗
h , by definition,

forms an I-invariant subset, so that it constitutes an absorbing
point for the LTD: if X(0) ∈ X ∗

h , then X(t) = X(0) for every
t, deterministically.

B. Coordination games as super-modular games

A key property of coordination games is that pure Nash
equilibria always exist and form a globally I-reachable subset
of configurations. This, together with other properties that will
be needed in our future derivations, are consequence of the fact
that such games possess the so called increasing difference
property that is, for every player i, its utility variation when
its action changes from −1 to +1

ui(1, x−i)− ui(−1, x−i) = 2

∑
j∈V

Wijxj + hi

 (19)

is a monotone nondecreasing function of the configuration x−i

of the other players. Games with such a property are called
super-modular and have received a considerable amount of
attention in the literature [30], [31], [45], [46]. A first direct
yet crucial consequence of the increasing difference property
(19) is the following. For every x−i in X−i, define

B+
i (x−i) = maxBi(x−i) B−

i (x−i) = minBi(x−i) .

Then, it holds the following.

Lemma 2. For every player i in V , both B+
i (x−i) and

B−
i (x−i) are monotone nondecreasing in x−i.

To state other consequences of the increasing difference
property, we need to introduce some further notation. For two
vectors x and y in RI , the (entry-wise) supremum x ∨ y in
RI and infimum x ∧ y in RI have entries, respectively,

(x∨ y)i = max{xi, yi}, (x∧ y)i = min{xi, yi} , ∀i ∈ I .

We use the notation ∨L and ∧L to indicate the supremum
and infimum, respectively, of a non empty subset L ⊆ RI .
The next result characterizes properties of monotone and anti-
monotone I-paths.

Lemma 3. For x, y, z in X , the following relations hold true:

(i) x ↑ y, x ↑ z ⇒ x ↑ (y ∨ z)

(ii) x ↓ y, x ↓ z ⇒ x ↓ (y ∧ z)

(iii) x ↑ y, x′ ≥ x ⇒ x′ ↑ (y ∨ x′)

(iv) x ↓ y, x′ ≤ x ⇒ x′ ↓ (y ∧ x′)

(v) x → y ⇒ x ↑ y′, x ↓ y′′ for some y′′ ≤ y ≤ y′.

Proof. (i) Let (y(0), y(1), . . . y(l)) and (z(0), z(1), . . . z(r)) be
two monotone I-paths from x to y and z, respectively. Let
(i1, . . . , il) and (j1, . . . , jr) be the two corresponding se-
quences of active players. Let (js1 , . . . , jsk) be the subse-
quence of (j1, . . . , jr) consisting of exactly those players that
are not in the sequence (i1, . . . , il). We claim that the sequence
(x(0), . . . , x(l+r)) defined by

• x(h) = y(h) for h = 0, . . . , l,
• x(h+l) = x(h+l−1) + 2δjsh for h = 1, . . . , k

is a monotone I-path from x to y ∨ z. By construction, it is
a monotone path. Moreover, x(h+l−1) ≥ z(sh−1) for every
h = 1, . . . , k. Since {+1} = Bjsh

(z(sh−1)), by Lemma 2,
{+1} = Bjsh

(x(h−1+l)). This implies that it is an I-path.
(ii) The proof is completely analogous to that of (i).
(iii) Let (x(0), x(1), . . . , x(l)) be a monotone I-path from

x to y with set of active players (i1, . . . , il). Consider the
subsequence (is1 , . . . , isk) of those players for which x and
x′ coincide. Then, (x(0) ∨ x′, x(is1 ) ∨ x′, . . . , x(isk ) ∨ x′) is
a monotone I-path from x′ to y ∨ x′. Indeed, notice that, by
construction, x(isk )∨x′ = x(l)∨x′ = y∨x′. We only need to
show that it is an I-path. Since (x(ish ) ∨ x′)−ish

≥ x
(ish )

−ish
and

using the increasing difference property (19) we obtain that

0 ≤ uish
(x(ish ))− uish

(x(ish−1))

≤ uish
(x(ish ) ∨ x′)− uish

(x(ish−1
) ∨ x′) .

(iv) The proof is completely analogous to that of (iii).
(v): If x ↑ y, then y ∨ x = y. If x ↓ y, then x ≥ y and

y∨x = x. In both cases the result is evident. The general case
can be proven by induction on the length of a minimal I-path
from x to y. Indeed, by definition of an I-path, for sure we
can find an intermediate configuration z for which one of the
two possible cases hold: x ↑ z → y or x ↓ z → y. In the first
case, using the induction hypothesis z ↑ y′ ≥ y, we obtain
by transitivity that x ↑ y′ ≥ y. In the second case, using the
induction hypothesis z ↑ y′ ≥ y and point (iii) with x ≥ z,
we obtain that x ↑ (x∨ y′) ≥ y. Similarly we prove the other
relation.
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We introduce two maps f+, f− : X → X on the configu-
ration space, respectively defined by

f+(x) =
∨
{y ∈ X |x ↑ y}

f−(x) =
∧
{y ∈ X |x ↓ y} (20)

for every x in X . Thanks to Lemma 3, we have that f+(x)
(f−(x)) represent the maximal (minimal) configuration that
is I-reachable from x by a monotone (anti-monotone) path.
Notice that both sets in the righthand side expressions of
(20) are nonempty as they contain the configuration x. The
following gathers a number of properties relating equilibria of
coordination games with the behavior of the maps (20).

Proposition 3. Consider the coordination game on a graph
G = (V, E ,W ) with external field h in RV . Then,

(i) f+ and f− are monotone nondecreasing maps;
(ii) a configuration x in X is an equilibrium if and only if

f+(x) = x = f−(x) ;

(iii) for every configuration x in X , f−(f+(x)) ∈ X ∗
h and

f+(f−(x)) ∈ X ∗
h are, respectively, the greatest and least

Nash equilibria that are I-reachable from x;
(iv) the set of equilibria X ∗

h is nonempty and

x∗ = f+(−1), x̄∗ = f−(1)

are, respectively, the least and the greatest element in
X ∗

h ;
(v) X ∗

h is globally I-stable.

Proof. (i): It follows from Lemma 3 (i) that x ↑ f+(x) for
every configuration x in X . If x′ ≥ x, Lemma 3 (iii) yields
x′ ↑ f+(x) ∨ x′. Therefore f+(x′) ≥ f+(x) ∨ x′ ≥ f+(x).
The proof for f− is analogous.

(ii) coincides with the definitions of equilibrium.
(iii) Put X+ = {x ∈ X | f+(x) = x}. We notice that for

every x ∈ X , f+(x) ∈ X+. Moreover, X+ is closed with
respect to anti-monotone I-path. Namely, if x ∈ X+ and x ↓ y,
then also y ∈ X+. To see this, by induction, it is sufficient to
prove it when x and y are connected by an anti-monotone I-
path of length 1, namely there exists i ∈ V such that yi < xi,
y−i = x−i, and Bi(y) = {−1}. If y ̸∈ X+, then it would
exists z ∈ X and a player j ∈ V such that zj > yj , z−j = y−j ,
and Bj(y) = {+1}. Evidently j ̸= i and from Lemma 3 (iii)
applied to y ↑ z and x ≥ y we would obtain x ↑ x ∨ z. Since
by construction x ∨ z ̸= x, this would imply that f+(x) ̸= x
contrarily to the assumption that x ∈ X+. Similarly, X− =
{x ∈ X | f−(x) = x} is closed with respect to monotone
I-path. Notice that X ∗

h = X+ ∩ X−.
Consider now y = f−(f+(x)). Being in the image of f−,

necessarily y ∈ X−. On the other hand, since f+(x) ∈ X+,
by the fact that X+ is closed with respect to anti-monotone
I-path, we have that also y ∈ X+. Hence y is an equilibrium.
The argument for f+(f−(x)) is completely analogous.

If now y in X ∗
h is any equilibrium reachable from x, namely

x → y, by Lemma 3 (v) it follows that x ↑ y′ ≥ y. By
definition of f+(x) we have that f+(x) ≥ y′ ≥ y. Therefore,
by point (i), we have that

f−(f+(x)) ≥ f−(y) = y ,

with the last equality above following from point (ii). Simi-
larly, we can show that f+(f−(x)) ≤ y. This concludes the
proof of point (iii).

(iv) It follows from point (iii) that x∗ = f+(−1) =
f+(f−(−1)) is a Nash equilibrium. If x∗ ∈ X ∗

h is any other
Nash equilibrium, using the monotonicity of f+ (see point (i))
and the trivial fact that f−(x∗) ≥ −1 we obtain that

x∗ = f+(f−(x∗)) ≥ f+(−1) = x∗

An analogous argument proves that x̄∗ = f−(1) is the greatest
Nash equilibrium.

(v) By definition, X ∗
h is invariant, while global reachability

follows from point (iii).

The fact that X ∗
h is globally I-stable implies that the A-LTD

X(t) is absorbed in finite time in the set of Nash equilibria
of the underlying coordination game. Formally, we have the
following result.

Theorem 2. Let X(t) be the A-LTD on a graph G =
(V, E ,W ) with constant external field h in RV . Then, with
probability 1, there exists t∗ ≥ 0 such that

X(t) ∈ X ∗
h , ∀t ≥ t∗ .

Proof. The claim follows directly from Proposition 2 (iii) and
Proposition 3 (v).

C. Pure Nash equilibria of coordination games

By virtue of Theorem 2, in order to shape our analysis of the
asymptotics of the process X(t) and, in particular, determine
the conditions that guarantee the convergence to a consensus,
we need to analyze the set of Nash equilibria X ∗

h . This is done
in the remaining part of this section.

We first set some notation. Let

X •
h = X ∗

h ∩ {±1} , X ◦
h = X ∗

h \ {±1} ,

indicate, respectively, the subsets of consensus and co-existent
equilibria of the coordination game on G with external field
h. We then introduce the following notion.

Definition 5. A coordination game on a graph G with external
field h is

• regular if |X •
h | = 2;

• biased if |X •
h | = 1; more precisely, for a = ±1, the

coordination game is a-biased if X •
h = {a1};

• frustrated if |X •
h | = 0.

Notice that, in a frustrated coordination game, neither of
the consensus configurations is an equilibrium. Since X ∗

h is
never empty, a frustrated coordination game always admits at
least one co-existent equilibrium. In contrast, when the game
is not frustrated (either regular or biased) at least one consen-
sus configuration is an equilibrium. Besides consensus, there
might or might not exist co-existent equilibria. To distinguish
these cases, the following further classification proves useful.
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Definition 6. A coordination game on a graph G with external
field h is

• unpolarizable if X ◦
h = ∅;

• polarizable if X ◦
h ̸= ∅.

The set of equilibria of an unpolarizable regular coordina-
tion game contains both consensus configurations ±1 and no
other configurations, whereas unpolarizable biased coordina-
tion games admit a single (consensus) equilibrium: x∗ = +1
in the positively biased case and x∗ = −1 in the negatively
biased one. On the other hand, polarizable coordination games
always admit co-existent equilibria possibly in addition to
consensus ones (if they are regular or biased). In the sequel,
we shall identify necessary and sufficient conditions for a
coordination game to be regular, biased, or frustrated, and for
it to be polarizable or unpolarizable.

We now introduce two sets that will play a key role in our
analysis:

Sa(h) = {i ∈ V | ahi > wi} , a = ±1 . (21)

By Lemma 1 (iii), Sa(h) coincides with the set of players for
which a is a strictly dominant action, i.e., the set of a-stubborn
agents. The following simple result relates the presence of a-
stubborn players with that of the consensus equilibrium −a1.

Lemma 4. Consider a coordination game on a graph G =
(V, E ,W ) with external field h and let x∗(h) and x∗(h) be
its least and greatest equilibria, respectively. Then,

(i) x∗(h) = −1 ⇔ S+1(h) = ∅ ⇔ h ≤ w
(ii) x∗(h) = +1 ⇔ S−1(h) = ∅ ⇔ h ≥ −w

Proof. If x∗(h) = −1, then there cannot be +1-stubborn
players, i.e., S+1(h) = ∅, so that h ≤ w. On the other hand,
if h ≤ w, then, using the threshold form of the best response
in Lemma 1 (ii), we deduce that −1 is an equilibrium,
namely x∗(h) = −1. This proves (i), while (ii) can be proven
analogously.

In fact, Lemma 4 directly implies the following result.

Proposition 4. Let G be a graph with out-degree vector w.
Then, the coordination game on G with external field h is:

(i) regular if and only if

−w ≤ h ≤ w ; (22)

(ii) a-biased for a = ±1 if and only if

w ≥ −ah , w ≱ ah ; (23)

(iii) frustrated if and only if

w ≱ −h , w ≱ h . (24)

Remark 1. The necessary and sufficient conditions in Propo-
sition 4 can be readily interpreted in terms of the presence
of stubborn agents, as introduced in Section III-A. In fact,
Lemma 4 implies that (22) is equivalent to the fact that no
player is stubborn, (23) is equivalent to the existence of at least
one a-stubborn agent but no −a-stubborn agents, and (24)
is equivalent to the existence of both +1- and −1-stubborn
agents. Hence, Proposition 4 states that a coordination game

is regular if and only if there are no stubborn agents, biased
if and only if it contains stubborn agents of one type only, and
frustrated if it contains stubborn agents of both types.

In contrast to the relative simplicity of the characterization
above, necessary and sufficient conditions for polarizability
of coordination games as per Definition 6 are in general
more involved and rely on the notion of indecomposability
introduced in Definition 1.

Proposition 5. The coordination game on a graph G with
external field h is unpolarizable if and only if G is h-
indecomposable.

Proof. Let s in {±}. Given any configuration x∗ in X , for
any player i such that x∗

i = s1, from (14) we can write that

ui(x
∗) = s(hi + w+

i (x
∗)− w−

i (x
∗))

= s(hi + sws
i (x

∗)− sw−s
i (x∗))

= shi + ws
i (x

∗)− w−s
i (x∗) .

(25)

We now argue as follows. If the coordination game on G with
external field h is polarizable, then there exists an equilibrium
x∗ ̸= ±1. From (25) and Lemma 1 (i) we derive that, for
every s and i such that x∗

i = s1,

shi + ws
i (x

∗)− w−s
i (x∗) ≥ 0 .

Let Vs
x∗ denote the subset of agents playing action s1 in x∗.

This implies that relatively to the nontrivial binary partition
V = V+

x∗ ∪ V−
x∗ , (7) is violated for every i in Vs

x∗ and s in
{±}. Hence, G is not h-indecomposable.

On the other hand, if G is not h-indecomposable, then by
Proposition 1 there exists a co-existent absorbing configuration
x∗of the LTD on G with constant external field h. Such x∗ in
X ◦

h is a co-existent equilibrium of the coordination game on
G with external field h, which is then polarizable.

Remark 2. Given a graph G = (V, E ,W ) and r in [0, 1], a
subset of nodes S ⊆ V is called r-cohesive [32] if

wS
i ≥ rwi , ∀i ∈ S , (26)

and r-closed if its complement V \ S is (1 − r)-cohesive.
Notice that, using the identity wi = ws

i + w−s
i , condition

(7) in the special case h− = h+ = h can be rewritten as
2ws

i < wi − shi . In the special case when players have
homogeneous thresholds ri = r in [0, 1], equivalently when
the external field is proportional to the node degree vector, i.e.,
h = (1− 2r)w, (7) is equivalent to ws

i < rwi. Hence, in this
special case, h-indecomposability of a graph G is equivalent to
the non-existence of nonempty proper subsets of nodes S that
are both r-cohesive and r-closed. In this sense, Proposition
5 generalizes [48, Proposition 9.7] to coordination games on
weighted directed graphs with heterogeneous thresholds.

Example 5. Let G = (V, E ,W ) be a graph with two nodes
V = {1, 2} connected by two directed links of weight W12 =
w1 and W21 = w2, respectively. Consider a coordination
game on G with external field h = (h1, h2).

As illustrated in Figure 7, by Proposition 4, the coordination
game is: regular if |h| ≤ w (white region); +1-biased if h ≥
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h1
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+1-biased

−1-biased

regular h1

h2

w1-w1

w2

-w2

-

-

pol.

pol.

unpol.

Fig. 7: Classification of two-player coordination games as in
Example 5, based on Proposition 4 and 5.

−w and h ≰ w (dark gray region); −1-biased if h ≤ w
and h ≱ −w (light gray region); frustrated if h1 > w1 and
h2 < −w2 or h1 < −w1 and h2 > w2 (dotted region).

On the other hand, Proposition 5 ensures that the coordi-
nation game on G is unpolarizable if and only if one of the
following holds true: (i) h < w, (ii) h > −w, (iii) |h1| < w1,
(iv) |h2| < w2, as illustrated in Figure 7. Notice that, for
the special case of only two-players, the coordination game is
polarizable if and only if it is frustrated.

Biased unpolarizable coordination games can be character-
ized in an equivalent simpler form.

Proposition 6. The coordination game on a graph G with
external field h has the unique equilibrium x∗ = a1 for a in
{±1} if and only if the following conditions are both satisfied:
(a) w ≱ ah;
(b) every non-empty subset R ⊆ V \ Sa(h) contains some

node i such that

wR
i < w

V\R
i + ahi . (27)

Proof. (Only if) Assume that the coordination game is a-
biased and unpolarizable. Then, condition (a) follows from
Proposition 4 (ii). Also, this implies that Sa(h) ̸= ∅. To prove
(b), assume by contradiction that there exists a non-empty
subset R ⊆ V \ Sa(h) such that

wR
i ≥ w

V\R
i + ahi , (28)

for every i in R and let x in X be a configuration such that
xi = a for every i in V \ R and xi = −a for every i in R.
Notice that (28) and (25) imply that ui(x) ≥ 0, so that, by
Lemma 1 (i), −a = xi ∈ Bi(x−i), for every i in R = V−a

x .
If a = +1 (a = −1), this implies that there are no monotone
(anti-monotone) I-paths of positive length starting at x, so that
in particular fa(x) = x. Then, by Proposition 3 (iii), we get
that

x∗ = f−a(x) = f−a(fa(x))

is an equilibrium. Now, notice that on the one hand x∗
i = −a

for every i in R (since xi = −a and x∗ = f−a(x)), on
the other hand x∗

i = a for every i in Sa(h) (since those are
stubborn players). Hence, x∗ is a co-existent equilibrium, thus
contradicting the assumption that the game is unpolarizable.
Therefore, if the coordination game is a-biased and unpolar-
izable, both conditions (a) and (b) must be satisfied.

(If) Given any player i in V \ Sa(h), from the application
of (27) with R = {i} we obtain that

ahi + wi ≥ ahi + w
V\R
i > wR

i ≥ 0 .

Since ahi + wi > ahi − wi ≥ 0 for every i in Sa(h), we
deduce that ah + w ≥ 0. Together with assumption (a), by
Proposition 4 (ii), this yields that the game is a-biased. We
finally prove that the game is unpolarizable. By contradiction,
suppose there exists a co-existent equilibrium x∗. Necessarily
x∗
i = a for every i in Sa(h). Put R = V−a

x∗ and notice that
(25) yields

0 ≤ ui(x
∗)

= −ahi + w−a
i (x∗)− wa

i (x
∗)

= −ahi + wR
i − w

V\R
i

for every i in R thus contradicting condition (b). The proof
is then complete.

Remark 3. In the special case h = (1 − 2r)w considered
in Remark 2, i.e., when players have homogeneous thresholds
ri = r in [0, 1], (27) is equivalent to wR

i < (1 − r)wi, so
condition (b) of Proposition 6 reduces to the non-existence
of (1 − r)-cohesive subsets of V \ Sa(h). In the literature
[32], such property is referred to as the set V \ Sa(h) being
uniformly not (1 − r)-cohesive. In this sense, Proposition 6
generalizes [48, Proposition 9.8] to coordination games with
heterogeneous thresholds.

We conclude this section with the statement below, gather-
ing some results on global I-stability of consensus equilibria
for coordination games that directly follow from the analysis
just developed.

Corollary 1. For a graph G with out-degree vector w,
consider the coordination game on it with external field h.
Assume that G is h-indecomposable and that |h| ≤ w. Then,
X ∗

h = {±1}.

Proof. Proposition 4 (i) implies that when |h| ≤ w, the game
is regular so that the two consensus configurations −1 and +1
are both equilibria. Since G is h-indecomposable, Proposition
5 guarantees that the game is unpolarizable. Then, the set of
equilibria is X ∗

h = {±1}.

If we combine Corollary 1 and Theorem 2, we obtain the
following result, that provides sufficient conditions for the A-
LTD with constant external field h in RV to be absorbed in
finite time in a consensus configuration.

Corollary 2. Let X(t) be the A-LTD on a graph G =
(V, E ,W ) with constant external field h in RV . Assume that G
is h-indecomposable and that |h| ≤ w. Then, with probability
1, there exists t∗ ≥ 0 such that

X(t) ∈ {±1} , ∀t ≥ t∗ .

The generalization of such result to a time-varying external
field h(t) is not straightforward. The analysis of the general
case is carried on in the next section and leads to the proof of
Theorem 1.

IV. ROBUST STABILITY

In this section, we first introduce and characterize robust
versions of the notions introduced in Definitions 5 and 6 and
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we generalize the results in Section III-C. We then combine
the robust analysis of the set of Nash equilibria of coordination
games with the reachability and stability properties of super-
modular games proved in Section III-B. This is done in
Theorem 4 and will pave the way to the proof of Theorem
1 on the asymptotic behavior of the ATV-LTD.

A. Robustness network coordination

For a graph G = (V, E ,W ) and a set of vectors H ⊆ RV , we
say that a property of the coordination game on G is satisfied
H-robustly if it is satisfied for every external field h in H.
In what follows we concentrate on the special case when, for
two vectors h− and h+ in RV such that h− ≤ h+, the set
H is the hyper-rectangle in (5). In this case, verifying that
certain properties are H-robustly satisfied can be significantly
simplified with respect to checking the property for every
single value of h in H. Below we report results in this sense,
starting with the following robust version of Proposition 4.

Corollary 3. Let G be a graph with out-degree vector w
and let H be as in (5) for two vectors h− ≤ h+. Then, the
coordination game on G is:

(i) H-robustly regular if and only if

w ≥ h+ , w ≥ −h− ; (29)

(ii) H-robustly a-biased for an action a = ±1 if and only if

w ≥ −ah−a , w ≱ ah−a ; (30)

(iii) H-robustly frustrated if and only if

w ≱ −h+ , w ≱ h− .

Another interesting property is the robust unpolarizability, to
be interpreted as the resilience of a coordination game against
getting co-existent equilibria. By virtue of Proposition 5, this
can equivalently be expressed as a robust indecomposability
of the graph G. However, it is useful to reformulate this in a
form analogous to Definition 1, as in the following result.

Theorem 3. Let G = (V, E ,W ) be a graph and let H be as in
(5) for two vectors h− ≤ h+. Then, the following conditions
are equivalent:
(a) the coordination game on G is H-robustly unpolarizable;
(b) G is H-robustly indecomposable;
(c) G is (h−, h+)-indecomposable.

Proof. Clearly, equivalence between conditions (a) and (b)
directly follows from Proposition 5. We shall now prove
equivalence between conditions (a) and (c).

First, assume that the coordination game on G is not H-
robustly unpolarizable, i.e., there exists an external field h in
H such that the set of equilibria X ∗

h contains a co-existent
configuration x∗ ̸= ±1. Notice that h−

i ≤ hi ≤ h+
i implies

that x∗
i hi ≤ sih

si , where si = sgn(x∗
i ), for every player i in

V . Then, Lemma 1 (i) and (ii) imply that

0 ≤ ui(x
∗)

= x∗
i hi + x∗

iw
+
i (x

∗)− x∗
iw

−
i (x

∗)

≤ sih
si + wsi

i − w−si
i .

Hence, there exists no node i in V satisfying (7) for the
nontrivial binary partition V = V+

x∗ ∪ V−
x∗ . This proves that

condition (c) is not satisfied.
On the other hand, if condition (c) is not satisfied, then

Proposition 1 implies that there exist h∗ in H and a co-
existent configuration x∗ in X \ {±1} such that x∗ is an
absorbing configuration for the A-LTD on G with constant
external field h∗. Because of the equivalence (ii) in Proposition
2, it follows that x∗ ∈ X ◦

h∗ , so that the coordination game on
G with external field h∗ is polarizable, hence condition (a) is
not satisfied.

We now focus on the stability results in Corollary 1,
for which, besides their straightforward robust generalization,
some deeper consequences can be derived as reported below.
These results build on the stability properties gathered in
Proposition 3 and will in turn prove instrumental for the
analysis carried on in next section.

Theorem 4. Let G = (V, E ,W ) be a graph of order n = |V|
and let H be as in (5) for two vectors h− ≤ h+. Assume that
G is H-robustly indecomposable. Then,

(i) for every configuration x in X there exists an H-robust
I-path from x to {±1} of length at most n. In particular,
{±1} is H-robustly globally I-reachable;

(ii) if condition (29) holds true, then {±1} is H-robustly
globally I-stable;

(iii) if there exists an action a = ±1 such that (30) holds
true, then there exists an H-robust I-path from every
configuration x in X to a1. In particular, in this case,
the set {a1} is H-robustly globally I-stable.

Proof. (i) In the proof, we will make use of the maps f+ and
f− defined in (20) for different values of the vector h and
this dependence will be captured in the notation f+(·, h) and
f−(·, h).

Given an arbitrary configuration x in X , consider the
external field hx in H with entries

hx
i = hxi

i , i ∈ V ,

and let

x = f+(f−(x, hx), hx) , x = f−(f+(x, hx), hx) .

By Proposition 3 (iii), the above are, respectively, the least and
greatest equilibria of the coordination game on G with external
field hx that are I-reachable from configuration x. As the graph
G is H-robustly indecomposable, it follows from Theorem 3
that the coordination game on G is H-robustly unpolarizable.
Since hx ∈ H, this implies that the coordination game on G
with external field hx is unpolarizable, so that its equilibria x
and x are both consensus configurations. Since clearly x ≤ x,
there are three possible alternative cases:
(a) x = x = +1;
(b) −1 = x < x = +1;
(c) x = x = −1.

In both cases (a) and (b) we have

+1 = x = f−(f+(x, hx), hx) = f+(x, hx) .
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This implies that there exists a monotone path γ from x to
+1 that is an I-path for the coordination game on G with
external field hx. Since in any monotone path only players
originally playing action −1 can get activated, and since h−

i =
hx
i for every such player, we have that γ is also an I-path for

the coordination game on G with external field h−. A direct
monotonicity argument then shows that γ is also a monotone
I-path for the coordination game on G with any external field
h in H.

Similarly, in both cases (b) and (c) we have

−1 = x = f−(f+(x, hx), hx) = f−(x, hx) ,

so that by an argument completely analogous to the one
developed above we can find an H-robust anti-monotone I-
path from x to −1. The proof of point (i) is then completed by
the observation that the length of monotone and anti-monotone
paths is never larger than n.

(ii) By Corollary 3 (i), we have that X ∗
h = {±1} for every

h ∈ H. Result then follows from Proposition 3 (v).
(iii) By Corollary 3 (ii), we have that X ∗

h = {a1} for every
h ∈ H. The same argument used in (i) to prove the existence
of an H-robust I-path to {±1} leads to the existence of an
H-robust I-path from every configuration x in X to a1. We
complete the proof using again Proposition 3 (v).

B. Proof of Theorem 1

We now apply the results of Section IV-A to prove Theorem
1. Recall that the ATV-LTD X(t) on a graph G = (V, E ,W )
with external field h(t) is a continuous-time inhomegeneous
Markov chain X(t), whereby agents i in V get activated at
the ticking of independent rate-1 Poisson clocks and, when
activated at time t ≥ 0, they modify their state according to
the update rule (1).

We shall denote by Λ(t) in RX×X the transition rate matrix
of the continuous-time Markov chain X(t), whose entries
Λxy(t) stand for the transition rates from configuration x in X
to configuration y in X at time t ≥ 0. Notice that Λ(t) depends
on the external field h(t) and for this reason it is time-varying.
We have that Λxy(t) = 0 whenever x and y differ in more
than one entry, reflecting the fact that with probability 1 no
two agents will modify their action simultaneously. On the
other hand, if there exists i in V such that x−i = y−i and
xi ̸= yi, then

Λxy(t) =

{
1 if yi(

∑
j Wijxi + hi(t)) > 0

0 if yi(
∑

j Wijxi + hi(t)) ≤ 0 .

Finally, the diagonal entries of Λ(t) are nonpositive and such
that every row sum is zero, i.e., Λxx(t) = −

∑
y ̸=x Λxy(t).

Notice that the form of the update rule (1) of the ATV-LTD
implies that the following uniform bounds hold true for the
transition rates of X(t) at any time t ≥ 0:

Λxy(t) > 0 ⇒ Λxy(t) ≥ 1 , ∀x, y ∈ X , (31)∑
y ̸=x

Λxy(t) ≤ n , ∀x ∈ X , (32)

where we recall that n = |V| is the number of agents.

(i) For every initial profile X(0) = x(0), Theorem 4 (i) guar-
antees the existence of an H-robust I-path (x(0), x(1), . . . x(l))
of length l ≤ n from x(0) to the set of consensus configurations
{±1}. Consider now the discrete-time jump chain [47, p. 87]
associated to X(t), defined by

Y (k) = X(Tk) , k = 0, 1, . . .

where 0 = T0 < T1 < T2 < . . . are the random times
when the value of X(t) changes. Using (31) and (32), we
can estimate the probability that the ATV-LTD follows this
path at some time as

P
(
Ys+1 = x(1), . . . , Ys+l = x(l)

∣∣∣Ys = x(0)
)
≥ 1/nl ≥ 1/nn

for every s ≥ 0. This implies that

P(Ys+k ̸∈ {±1} ∀k = 1, . . . , n |Ys = x(0)) ≤ 1− 1/nn .

A standard induction argument now yields that, for every
initial condition x(0) in X and for every h = 1, 2, . . . ,

P(Ys ̸= ±1∀s = 0, . . . , hn |X(0) = x(0)) ≤ (1− 1/nn)h .

and thus also

P(Ys ̸= ±1∀s = 0, . . . , hn) ≤ (1− 1/nn)h .

Let now T±1 = inf{t ≥ 0 : X(t) ∈ {±1}} be the (possibly
infinite) first time that X(t) is a consensus configuration. Then,

P(T±1 < +∞) = 1− lim
h→+∞

P(Ys ̸= ±1∀s = 0, . . . , hn)

≥ 1− lim
h→+∞

(1− 1/nn)h

= 1 ,

thus proving that, with probability 1, the set of consensus
configurations {±1} is reached in finite time.

(ii) It follows from Corollary 3 (i) that the coordination
game on G is H-robustly regular, namely both consensus
configurations are equilibria for every h ∈ H. This implies
that Λxy(t) = 0 for every x ∈ {±1}, y ̸= x, and t ≥ 0. This
yields (ii).

(iii) Applying Theorem 4 (iii) and argueing as in the proof of
point (i) we show that the all-a configuration a1 is reached in
finite time with probability a, i.e., Ta1 = inf{t ≥ 0 : X(t) =
a1} satisfies

P(Ta1 < +∞) = 1 .

Since a1 is an equilibrium for every h ∈ H, as in the proof of
(ii) we obtain that a1 is an absorbing point for the ATV-LTD.

(iv) By assumption, there exist two players i and j in V such
that wi < h+

i and wj < −h−
j . Since i ∈ S+(h

+) and G is
H-robustly indecomposable, Corollary 1 implies that X ∗

h+ =
{+1} is globally I-stable for the coordination game on G with
external field h+. This implies that, for every τ > 0, the ATV-
LTD on G with an external field h(t) such that h(t) = h+ for
all t in [0, τ), is such that

α+ = min
x∈X

P(X(τ) = +1|(X(0) = x)) > 0 .

Analogously, since j ∈ S−(h
−) and G is H-robustly inde-

composable, we get that the coordination dynamics with an
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external field that is constant h(t) = h− in the interval [0, τ)
is such that

α− = min
x∈X

P(X(τ) = −1|(X(0) = x)) > 0 .

For the ATV-LTD with periodic piece-wise constant external
field defined as follows

h(t) =

{
h+ if 2kτ ≤ t < (2k + 1)τ k ∈ Z+

h− if (2k + 1)τ ≤ t < (2k + 2)τ k ∈ Z+ ,

we then have that

P(X((2k+1)τ) = +1, X((2k+2)τ) = −1|X(2kτ) = x) ≥ α ,

for every k ∈ Z+ and x ∈ X , where

α = α+α− > 0 .

It then follows that with probability 1 there exist infinitely
many nonnegative integer values of k such that

X((2k + 1)τ) = +1 , X((2k + 2)τ) = −1 ,

thus proving that X(t) keeps fluctuating forever.

V. CONCLUSION

We have studied asynchronous time-varying linear threshold
dynamics on general weighted directed graphs of interacting
agents, equipped with an external field modeling exogenous
interventions or individual biases towards specific actions. We
have proved necessary and sufficient conditions for global
stability of consensus equilibria, robustly with respect to the
(constant or time-varying) external field.

A key step in our analysis has consisted in the introduction
of novel robust notions of improvement and best response
paths. Our analysis has strongly relied on super-modularity of
coordination games, but also their peculiar threshold structure
of best response correspondences. Extension of such concepts
and results to more general super-modular games is a chal-
lenging problem that deserves further investigation.
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