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Abstract—In recent years, an exponential upsurge in the global
proliferation of Real-Time Communications (RTC) applications
has been witnessed, due to the prosperous development of net-
works and further fueled by the ramifications of the COVID-19
pandemic. Consequently, the imperative for development of in-
telligent, resilient, and scalable network infrastructures and tech-
nologies has grown significantly. Real-time bitrate prediction could
play a crucial role, offering network observability and bolstering
proactive system management. By accurately forecasting bitrate, it
becomes possible to implement improvements at either application
level or network level, such as swift and appropriate bandwidth
adaptation. In this paper, we propose a novel Transformer-based
deep learning framework called BitFormer designed to predict
the short-term bitrate. Our work is based on extensive traffic
data collected under various conditions using two prevalent RTC
applications, and our model relies solely on packet-level informa-
tion, which contains the fundamental traffic characteristics and
facilitates effortless feature extraction. Through comprehensive
evaluations and comparisons, we achieve a superior accuracy of
74% in identifying peak bitrates, while simultaneously ensuring
commendable overall performance.

Index Terms—Networking, packet level, Real-time communica-
tions, RTP, machine learning, deep learning.

I. INTRODUCTION

Real-time communications (RTC) have emerged as a pivotal
element in contemporary society, supporting applications such
as video-conferencing and streaming to play a vital role in
both professional and recreational domains. The unprecedented
popularity of RTC applications in recent years can be attributed
to the surging demand for entertainment and improved lifestyles
in the post-pandemic era, coupled with the widespread adoption
of remote work [1]. As RTC services continue to rapidly evolve,
the market has become saturated with a plethora of compet-
ing applications [2], benefitting from the global expansion of
network infrastructures, increased bandwidth availability, and
advancements in 5G technologies. Most applications employ
Real-Time Transport Protocol (RTP) [3] over User Datagram
Protocol (UDP), while web browsers rely on the widely adopted
standard, WebRTC1, an open-source framework atop RTP.

In this context, there is a burgeoning interest in develop-
ing advanced and intelligent network technologies to enhance
network performance and Quality of Experience (QoE). No-
tably, bandwidth management assumes a significant aspect in
RTC, encompassing crucial functionalities such as throughput
measurement, bandwidth allocation, dynamic transmission ad-
justments, and traffic prioritization [4], [5], [6], [7]. In light
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1https://webrtc.org/

of this, bitrate prediction for traffic flows holds immense
potential, proffering a proactive system that yields manifold
benefits: i) Optimized bandwidth allocation and utilization can
be achieved through precise bitrate estimation, thereby avoid-
ing both over-provisioning and underutilization of network
capacity; ii) Adaptive streaming and transcoding can enhance
the QoE by dynamically adjusting media quality, resolution,
or encoding settings based on the predicted bitrate, ensuring
optimal content delivery; iii) Network congestion management
can be effectively performed by predicting bitrate requirements,
enabling preemptive actions such as traffic shaping, prioritiza-
tion, or rerouting to mitigate or prevent congestion issues; iv)
Resource planning becomes more efficient as service providers
and network operators leverage predicted bitrate information to
assess and allocate the necessary network resources. However,
bitrate prediction is an arduous task, particularly in the context
of RTC due to dynamic and ever-changing network traffic,
limited computational resources, and time constraints.

In this paper, we present BitFormer, a novel Transformer-
based Deep Learning (DL) Neural Network (NN), that exclu-
sively leverages packet-level information for bitrate prediction
within a future time window of 500 ms, endeavoring to
overcome inherent challenges in the problem. The utilization
of packet-level information offers the advantage of minimal
extraction efforts, making it suitable for lightweight network
devices like edge routers. Additionally, the sequential nature of
packet flows bears resemblance to Natural Language Processing
(NLP) problems, which have been revolutionized by the game
changer - Transformer [8], enabling the proposed model to
exhibit promising capabilities in capturing the dynamic and
intrinsic patterns of networks. Furthermore, our streamlined
and simplified architecture provides computational efficiency
and reduced time consumption.

Our work is grounded in abundant real videoconferencing
traffic collected on client sides with diverse network connec-
tions. We formulate a regression problem and compare the
performance with respect to a simple baseline and multiple pop-
ular techniques, from an adaptive filter to traditional Machine
Learning (ML) and DL approaches. Specifically, our focus lies
on the prediction performance of peak values, which are critical
in RTC as they represent the bottlenecks of packet flows.
Consequently, BitFormer demonstrates enhanced performance,
exhibiting satisfactory results overall and particularly excelling
in predicting peak values. Additionally, our proposed solution
is envisioned to function as a software module for end-users
or network devices such as media servers, establishing an AI-
based, RTC-aware, comprehensive, and proactive traffic mon-



itoring and management system. It enables application-level
observability at the network control plane, empowering efficient
and informed decision-making, and incorporates a feedback
mechanism to promptly notify time-varying conditions.

II. RELATED WORK

In this section, we provide an overview of relevant literature
pertaining to bitrate and packet-level prediction.

Bitrate prediction, also known as bandwidth or throughput
prediction, has garnered attention in academic research. A
Recursive Least Squares (RLS) [9] filter was introduced in [10]
to predict bandwidth for video calls in cellular networks, and
a Random Forest (RF) [11] framework was developed in [12]
to predict cellular link bandwidth in 4G Long Term Evolution
(LTE) networks. The authors in [13] leveraged public datasets
of general Internet traffic and adopted multiple ML algorithms,
extracting features from aggregated packets to perform short-
term bandwidth prediction. Additionally, Long Short-Term
Memory (LSTM) [14] model has been explored in [15], where
real-time mobile bandwidth prediction was investigated using
a LSTM model enhanced by Bayes model fusion. Meanwhile,
in [16], [17], [18], the focus was on Adaptive Bitrate (ABR)
for HTTP-based video streaming. Tree-based models and DL
frameworks were proposed for throughput prediction and inte-
grated into ABR algorithm to optimize QoE.

Unlike time-series prediction, which leverages historical
temporal data, packet-level prediction hinges on fine-grained
features derived from packets that typically exhibit irregular
granularity and implicit correlation with the targets. Authors
in [19] employed multitask DL approach to utilize packet-
level information for predicting packet-level characteristics.
They investigated multiple DL techniques and compared the
performance against Markov chain and RF regressor. Packets
with 3 predicted and 3 exogenous parameters were arranged
in a sequential way to perform sliding window prediction.
Furthermore, Transformer was explored in both [20] and [21].
The former work classified real-time network flow types (video,
conference, and download), by proposing FlowFormer, an en-
semble architecture of LSTM and CNN with attention-based
encoders. Particularly, packet information like payload length
was collected and compared with predefined thresholds to be
aggregated into categorized bins, and packet quantities in such
bins were calculated as features. The latter study attempted
to model and generalize network dynamics through Trans-
former, based on packet-level information (e.g., timestamps).
The authors implemented the general architecture except that an
additional hierarchical aggregation layer preceding the encoder
was added to condense lengthy sequence and concatenate
older and recent packets. They undertook an end-to-end delay
prediction to pre-train the model and envisioned a replaceable
decoder for other tasks.

To the best of our knowledge, our work represents a pioneer-
ing effort in employing Transformer-based architecture with
packet-level information to predict bitrate in RTC. Notably, our
study adopts a per-flow approach, concentrating on the analysis
of RTP packets collected from diverse connections. Our model

has a streamlined architecture, efficiently leveraging a minimal
set of packet-level information as features. Consequently, the
need for resource-intensive processes such as intricate feature
extraction, extensive aggregation, and complex calculations
is eliminated, contributing to the lightweight nature of our
proposed framework.

III. PROBLEM STATEMENT

In this section, we start by presenting the motive behind
our approach. Subsequently, we formulate the problem and
introduce the dataset used to accomplish the objective.

A. Underlying motive & Feature selection
The rationale of selecting packet-level information for bitrate

prediction is threefold: i) Packets embody the finest granularity
and serve as the most fundamental element within networks,
encapsulating the rapidly-changing dynamics and essential na-
ture of network traffic [22]. ML models trained on such fine-
grained features possess a greater likelihood of capturing the
underlying patterns, thereby facilitating a more precise predic-
tion; ii) The acquisition of packet-level information requires
minimal effort in terms of feature extraction, especially in
the context of RTC, given the possible constraints imposed
by limited time and computational resources. On top of that,
our approach relies exclusively on packet header elements,
circumventing potential complications due to packet encryption
and enabling a more streamlined workflow with prompt access
to relevant information; iii) Packets are readily accessible
across the network, affording the possibility of holistic network
observability rather than relying solely on the client-side. This
enables the prospect of performing bitrate prediction within the
network, contributing to the improvement of overall network
performance.

In this context, we select 5 elements of the RTP packet as
features for bitrate prediction. They are: i) Frame length, the
packet total length including all its headers and data; ii) RTP
timestamp, the timestamp field present in the RTP header; iii)
Inter-arrival time, the time elapsed between the arrivals of two
consecutive packets; iv) Sequence number, a 16-bit value that
is used to identify and order the RTP packets; v) RTP marker,
a single-bit field used to indicate the last packet of a specific
media unit. Frame length serves as a spatial component, which
directly indicates the impact of packet size and transmitted bits
in the past, endowing the model with the capability to operate
in an autoregressive manner. RTP timestamp and inter-arrival
time represent temporal components, providing insights into
the timing patterns and enabling the model to discern temporal
dependencies and dynamics that might influence the bitrate pre-
diction. Sequence number and RTP marker contribute to RTP
event components, reflecting the potential impact of specific
network events, e.g., packet loss (based on the inconsistency
between sequence numbers).

B. Problem formulation
The primary objective is to predict the bitrate within the next

500 ms using packet-level information. Assuming at a time
instant t, we formulate a regression problem as follows:



R̂t = f(xt,1, xt,2, ..., xt,n, ..., xt,1023, xt,1024)

with n ∈ [1, 1024],

x = (xframe length, xRTP timestamp, xinter-arrival time,

xsequence number, xRTP marker),

(1)

where t is the current moment and R̂t is the bitrate in the
subsequent 500 ms time window starting from time t and
ending at t + 500 ms. xt,n represents the feature vector of
nth previous packet before time t, and it encapsulates the
corresponding packet information constituted by a tuple of the
5 elements. We aim at developing an ML model to learn a
function f(·), which performs the regression task and maps
our input vectors x of previous 1024 packets to the bitrate R̂.

C. Dataset

In our work, we collect packet traces from 72 real video
teleconferences, using two RTC applications, Webex and Jitsi
Meet, and store them in pcap format. All calls comprise 2
to 6 participants, engaging in a connection of WiFi, mo-
bile, or Ethernet, and the cumulative duration is approx-
imately 70 hours. The traffic is collected on client sides
and only incoming streams are considered. We adhere to a
common definition of an RTP flow - a tuple composed of
(ipsrc, ipdst, portsrc, portdst, ssrc, typepayload), and split
the traffic on a per-flow basis. For each RTP flow, we system-
atically extract the necessary information of packets following
chronological order, and for each packet, we consider the 5
aforementioned elements. Based on the problem formulation,
we start with the initial 1024 packets of a flow, calculating the
bitrate within the subsequent 500 ms time window, by summing
up the frame lengths of all packets in said window. Afterwards,
we progress forward by 500 ms, assimilating new packets but
discarding old ones to satisfy the stipulation of 1024 packets,
and we iterate this procedure until consuming the entire flow.
An illustration is available in the workflow part of Figure 1.
Consequently, we obtain a sequence of bitrates in consecutive
time windows, each accompanied by the historical information
of its preceding 1024 packets. To provide context, 1024 packets
denotes an average traffic duration of nearly 12.1 s (18.8 s for
audio and 6.1 s for video). The selection of such a quantity
stems from the pursuit of encompassing sufficient character-
istics pertaining to various media types while endeavoring
to strike a balance between an elongated duration including
extraneous information and a shorter duration potentially omit-
ting crucial details in proximity to the target. Nonetheless,
leveraging the Transformer attention mechanism empowers us
to autonomously discern the significance of individual packets,
thereby harnessing their inherent values.

IV. METHODOLOGY

In this section, we introduce our proposed Transformer-based
DL model as well as benchmarks. Then, we present the model
development and evaluation process.

A. ML models

The architecture of BitFormer is illustrated in Figure 1.
The model takes 1024 entries, each representing the critical
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Bitrate

Workflow

BitFormer: model architecture

Sequence of packet information

Sequence of embedded features

Sequence of
encoded features

Linear
layer

P

Frame
length

RTP
timestamp

Inter-arrival
time

Sequence
number RTP marker

× 1024

Time

Positional Encoding

Fig. 1: BitFormer: workflow and model architecture.

TABLE I: Summary of other considered models.

Category Model

Naive baseline* Moving Average (MA) [23]

Adaptive filter** Recursive Least Squares (RLS) [9]

ML method Random Forest (RF) [11] regressor

DL method
Multi Layer Perceptron (MLP) [24]
Long- and Short-term Time-series network (LSTNet) [25]
Long Short-Term Memory (LSTM) [14]

* A simple MA approach, which calculates the average bitrate in the past 5 s (10
time windows) as the predicted bitrate for each target sample.

** Other more sophisticated adaptive filters like Kalman filter, or popular au-
toregressive algorithms like ARIMA are intentionally excluded due to their
relatively demanding computational requirements for model updates, which may
be prohibitive in the context of RTC with a granularity of 500 ms.

information of a packet, as input. This information is fed
into the initial linear layer, namely packet embedding layer, to
expand the 5 elements of each packet to longer embedded fea-
tures. After applying positional encoding, the embedded feature
sequence is processed by a single layer of Transformer encoder
to generate a sequence of encoded features, utilizing multi-
head attention mechanism to learn latent patterns, adapt to
traffic dynamics, and grasp network fate. Additionally, instead
of implementing a Transformer decoder, we directly average
the outputted features of each sequence sample, simplifying
the architecture and aggregating the encoded features to distill
feature essence, and then pass through a linear layer, producing
a scalar value, i.e., the predicted bitrate. To compare the
performance, we also consider a broad spectrum of domains,
implementing several other approaches that appeared in related
works as benchmarks, as outlined in Table I.

B. Model development & evaluation

In order to derive a generalized solution and avoid data
infiltration among RTP flows, we intentionally partition the 72
pcap files into 50, 10, and 12, and for each group of files, we
randomly extract flows to form training (1,000,000 samples of
bitrate), validation (100,000) and test (300,000) datasets.

Furthermore, we deliberately introduce slight modifications
to the problem formulation in order to comprehensively assess



the performance and analyze the influence of packet-level
information. First, the problem can be also formulated as a
conventional time series prediction one, in which historical time
series samples are used to predict a future value. To achieve
this, we construct the datasets in an alternative way, retaining
the prediction targets but substituting previous packet features
with preceding 20 bitrates (20 500-ms time windows) in 10 s,
which roughly aligns with the aforementioned average traffic
duration of 1024 packets. Second, it is intuitive to raise a
concern regarding the redundancy of packet-level information,
since the bitrate is calculated based on frame length, which
leads to a theoretically strong correlation between the target
bitrate and its previous frame lengths, and may render other fea-
tures unnecessary. Therefore, in addition to the models training
on all packet-level features, we also explore the scenario where
only frame length is included. In the former case, we implement
MA, RLS, RF, MLP, and LSTM, while in the latter case,
LSTNet, LSTM and BitFormer are considered. Consequently,
we develop 11 models in total and evaluate the results through
Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) between predicted
values and ground truths for the test dataset.

More importantly, despite the dynamic nature of bitrates over
time, the overall variation could be minor. Figure 2 illustrates
the Empirical Cumulative Distribution Function (ECDF) of
bitrates in 10 randomly selected RTP flows (left figure) and the
autocorrelation of the entire bitrate sequence (right figure). The
ECDF demonstrates a steep ascent for most flows, indicating
that the majority of bitrates within an individual flow tend to
concentrate around a particular value2. The autocorrelation of
the entire sequence exhibits a remarkably high value (>0.9),
even when shifted by 20 time instants into the future. Both
observations highlight the overall stability of bitrates with
moderate variations, rendering the prediction less crucial for
normal values with minimal fluctuations but more significant
for ultra-high peak values. Our objective of bitrate prediction
holds the implication of prioritizing peak values for a number
of reasons. Understanding peak bitrates is crucial for capacity
planning and service provisioning. Accurately predicting and
accounting for peaks enables optimal allocation of network
resources, preventing bottlenecks during high-demand periods.
Limited and shared network resources are susceptible to bi-
trate peaks, which can negatively impact network activities,
causing delays, increased latency, and reduced performance.
Additionally, the peak bitrate directly affects media quality,
with exceeding bandwidth or system capacity leading to packet
loss, degraded audio/video, buffering, and diminished QoE.

To this end, besides the overall performance, we also specif-
ically evaluate the models for critical bitrates. In particular, we
extract the top 10% bitrates as peak values for each RTP flow.
As a result, the problem can be framed as a binary classification
task: if the predicted value surpasses 90% of the corresponding

2Only 10 flows are displayed in the ECDF plot for the sake of a clear
visualization, and we have confirmed a similar pattern across the dataset.
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Fig. 2: Bitrate characterization.

peak value, it is deemed a solid prediction3, otherwise the
prediction is considered poor. We adopt both numerical metrics
and classification accuracy to evaluate the performance.

V. EXPERIMENTAL RESULT

In this section, we present the experimental outcomes and
discuss the performance for peak values. Table II presents all
results regarding the entirety and peaks for each model.

We first focus on the overall results, comparing the metrics
in time series prediction and packet-level prediction with all
packet features. While RF outperforms the others, our proposed
BitFormer exhibits a comparable performance, with the 2nd

best MAPE but moderately larger errors for MSE and MAE.
However, all resulting MSEs and MAEs are relative acceptable
with minor differences among models. This could be attributed
to the dominance of stationary bitrates with slight fluctuations
in the traffic (evident in Section IV-B). The predictability of
such patterns allows all models to capture the basic trend
effectively, yielding a considerable number of small errors that
overshadow the differences in their general performance. This
observation is further justified by the statistically respectable
performance of the naive baseline, MA. In this context, Bit-
Former, which aims to prioritize peak values, may exhibit
slightly more aggressive predictions, resulting in marginally
large deviations for normal values.

Moving forward to peak values, BitFormer stands out with
its remarkable performance, boasting the highest accuracy
(64.3%), nearly 6% higher than the 2nd best (58.2%). On top
of that, the lowest MAE as well as MAPE and the decent MSE
indicate a precise prediction rather than a simple overestima-
tion, unlike LSTNet with 57.4% accuracy but higher errors,
e.g., 15.0% MAPE. Interestingly, all three models with packet-
level features produce advanced outcomes for peak values
with respect to time series prediction, which demonstrates the
superiority of packet-level information in identifying critical
bitrates, and meanwhile, BitFormer further harnesses such
merits to outperform others. Moreover, a typical example of
an RTP flow is presented in Figure 3, which depicts the
difference between ground truth and predicted bitrates for each
model. In general, all models can follow the overall trend,
adapting to abrupt changes. Although most of them perform

3The prediction does not have to be identical to the ground truth of a peak.
It is reasonable to assign a margin of 10%, e.g., for a peak bitrate of 1 Mbps, a
prediction of 0.9 Mbps (1 Mbps×(1−10%)) could be considered satisfactory.



TABLE II: Model results: performance comparison of overall bitrate and peak values.

Problem Time series prediction Packet level prediction

Feature Previous bitrates All packet features Only frame length

Model MA RLS RF MLP LSTM LSTNet LSTM BitFormer LSTNet LSTM BitFormer

MSE 0.0094 0.0136 0.0064 0.0076 0.0094 0.0106 0.0104 0.0099 0.0796 0.0865 0.0457
MAE 0.0330 0.0338 0.0285 0.0318 0.0350 0.0422 0.0373 0.0377 0.1173 0.1306 0.0902

MAPE 12.8% 12.1% 10.7% 12.7% 15.1% 17.7% 12.4% 11.3% 38.2% 41.4% 28.3%

MSEpeak 0.0266 0.0291 0.0206 0.0256 0.0376 0.0278 0.0420 0.0279 0.1498 0.1755 0.1096
MAEpeak 0.0724 0.0686 0.0652 0.0735 0.0854 0.0663 0.0829 0.0604 0.1611 0.1919 0.1475

MAPEpeak 15.2% 14.5% 13.4% 14.4% 16.4% 15.0% 14.4% 12.1% 28.1% 31.2% 28.7%
Accpeak* 49.1% 54.4% 55.7% 50.1% 45.6% 57.4% 58.2% 64.3% 56.2% 54.3% 47.2%

* Accuracy of solid prediction for peak values =
Numberpredicted value≥peak value×90%

Numberpeak
× 100%.

decently for normal values, they tend to underestimate the
plateau. Fortunately, BitFormer excels in accurately predicting
peak values without penalizing others. Additionally, the only
comparable one is RLS, but with a closer glance, BitFormer
still demonstrates superior performance. More importantly, the
awfully inferior performance (the rightmost part of Table II)
with magnitude-level degradation from models trained only
with frame length for packet-level prediction explicitly proves
and emphasizes the significance of packet-level information,
further reinforcing the contribution of all the components that
possess internal correlation to model traffic dynamics.

At this stage, it is important to acknowledge that the per-
formance for other models seem abnormal for conventional
time series prediction problems [26], [27] due to the following
reasons: 1) We develop pre-trained models without model
update in most cases, and the packet flows in different datasets
are extracted from different pcaps, which creates obstacles
for model adaptation; 2) The real-time nature of the prob-
lem, with a granularity of 500 ms, imposes constraints on
the implementation of more sophisticated and computationally
expensive state-of-the-art models, such as Autoformer [28]; 3)
The prevalence of stable bitrates limits the model to learn
patterns associated with critical values, which resembles the
dilemma in imbalanced ML [29]; 4) In the context of RTC,
it is reasonable to assume a weak long-term correlation, and
short-term information with less available features might not
be sufficient for accurate time series prediction. More impor-
tantly, the packet-level prediction does not strictly adhere to
a time series but rather an ordinary sequence, which intrin-
sically lacks a constant interval, not to mention the absence
of periodicity and other perceivable patterns. These aspects
can also be viewed as intrinsic difficulties in our problem.
However, our proposed model, incorporating multi-head atten-
tion mechanism, possesses the capability to capture intricate
patterns within different components of packets and uncover
their correlation with future bitrate dynamics by exploiting the
entire sequence in one single shot, enabling a global perspective
for the final prediction. This empowers BitFormer to effectively
address these issues and adapt to abrupt changes for peaks,
outperforming the other models.

Additionally, we also investigate the performance of pre-
dicting bitrates within different future time horizons, 300 and
1000 ms. Herein, we only implement RF with the best overall

TABLE III: Results for different predicted time window.

Granularity 300 ms 1000 ms

Model RF BitFormer RF BitFormer

MSE 0.0135 0.0162 0.0048 0.0092
MAE 0.0445 0.0512 0.0215 0.0325

MAPE 14.6% 14.2% 12.3% 12.5%

MSEpeak 0.0464 0.0445 0.0167 0.0257
MAEpeak 0.1037 0.0966 0.0502 0.0476

MAPEpeak 16.6% 15.4% 11.9% 10.1%
Accpeak 43.8% 49.6% 63.5% 73.8%

performance in the previous scenario to compare BitFormer.
For RF in time series prediction, we maintain the duration (10
s) to be considered in the past, including 33 historical bitrates
as features for the 300 ms case and 10 for the 1000 ms case.
As for BitFormer, we still consider 1024 packets but adjust the
time shift to align with the predicted time window of either 300
or 1000 ms. Table III showcases all the results. It is noteworthy
that BitFormer still demonstrates proficiency in handling peak
values without sacrificing overall performance, which coincides
with the 500 ms scenario, further consolidating and justifying
the consistent and versatile advantage of our proposed model.
Comparing performance across different time horizons (Table II
and III), 1000 ms results in the best behaviour for both models,
with lowest errors in most cases and a staggering accuracy of
73.8%, not to mention the longer predicted time window, which
affords a higher degree of freedom for system management
to implement optimized policies. This could originate from
the possible smoothing-out of transient bitrate variations in
a shorter duration, facilitating a more stable prediction. It is
noteworthy that the duration of predicted windows adopted in
our case is a typical choice in the context of RTC to swiftly
response to network dynamics. Although we have not assessed
the algorithm’s real-world implementation at this point, we still
envision its feasibility. To provide a preliminary insight, the
time required for a single prediction in a CPU environment
(Intel(R) Xeon(R) Gold 6140) is merely 13.5ms ± 160µs,
which does not even factor in any potential optimizations.

VI. CONCLUSION

In this paper, we predict bitrate in the short-term future for
RTC traffic by proposing a novel DL model named BitFormer,
which partially incorporates a Transformer architecture and
solely utilizes RTP packet-level information. To ensure the
versatility and robustness of our solution, we base our work
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Fig. 3: Bitrates in an example of RTP flow (blue: ground truth, red: predicted value).

on ample real RTC traffic collected under various scenarios
and compare our model against numerous technologies. Our
proposed framework provides the merits of ease of feature
extraction and delicate model architecture to tackle the con-
straints in RTC. As a result, BitFormer provides satisfactory
overall performance and preeminent outcomes for peak values,
highlighting the importance of packet-level information and
illustrating the feasibility of modeling traffic dynamics. In
future work, packet-level information can be further exploited,
transplanting the logic to unleash the potential for predicting
other RTC traffic metrics.
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