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A B S T R A C T

This paper proposes a high-order two-dimensional (2D) finite element model for the analysis of isotropic, nearly
incompressible hyperelastic material structures based on a decoupled Neo–Hookean strain energy function.
The model is based on the Carrera Unified Formulation (CUF) , which allows to automatically implement
different kinematics by using an opportune recursive notation. The principle of virtual work and a finite
element approximation are exploited to obtain the nonlinear governing equations. Considering the three-
dimensional full Green–Lagrange strain components and given the material Jacobian tensor, the explicit forms
of tangent stiffness matrices of unified plate elements are presented in terms of the fundamental nuclei, which
are independent of the theory approximation order. Several problems of soft material plates under uniform
pressure are investigated, including a silicone rubber clamped plate and a simply supported plate made of
biological material. The proposed model is compared with literature results including those coming from
experiments and numerical solutions. The numerical investigation demonstrated the validity and accuracy
of the proposed methodology for the analysis of hyperelastic plates.
. Introduction

Structures made of hyperelastic soft materials are widely used in
ifferent engineering fields, from aerospace to biomedical. Some ex-
mples are represented by neurosurgery in the biomedical field [1],
n the diagnosis of breast cancer by differentiating healthy tissues
rom diseased ones [2], and in the description of the behaviour of
he arteries [3,4]. In the mechanical and aerospace fields, hyperelastic
aterials are exploited to produce devices characterized by unique

lastic properties, such as pressure sensors [5], optical composites used
or optical transmittance [6], devices that exploit Soft Electroactive
aterials (SEAM) for conversion of mechanical energy into electrical

nergy such as Wave Energy Converter (WEC) able to convert wave
nergy into electrical energy through a membrane of dielectric mate-
ial [7,8]. From a physical point of view, structures can undergo large
eformations where the elastic constitutive equations lose validity.
n addition, some structures have a very small linear region of the
onstitutive model, thus they have nonlinear behaviour.

In these years, researchers developed different strain energy func-
ion models to describe the strong nonlinear behaviour that this type
f structures usually show during services. The most used model is the
eo–Hookean one. It derives from the molecular theory that the mea-

ured material is modelled as a network of a long chain of molecules
hat are bound at a few points. Therefore, the elastic energy of the
etwork will be the sum of the energies of the individual chains [9].

∗ Corresponding author.
E-mail address: alfonso.pagani@polito.it (A. Pagani).

Another polynomial strain energy function is the Mooney–Rivlin model,
described by Mooney and Rivlin expressed in terms of the Cauchy–
Green deformation tensor invariants [10]. This model was used for
describing the behaviour of porcine brain tissue [11]. The Ogden model
was developed in 1972 [12] and it is mainly used today to fit brain
tissue test data as described by Kaster [1]. Moreover, Saccomandi
et al. [13] discussed the significant impact that the Ogden model has
had on the field of rubber mechanics and nonlinear elasticity over the
past 50 years, and its continued relevance and importance in these
fields today. The models previously described have polynomial forms
of the strain energy functions. They are mainly used for biological
tissue because of their simplicity. Instead, the Gent model has a log-
arithmic form and was proposed by Gent in 1996 [14]. This model
reproduces accurately the behaviour of many new elastomeric and
biological materials as studied by Horgan [15]. In [16], key features
of the Gent model are discussed, including its simplicity, its ability to
accurately describe the behaviour of rubber materials under various
deformation conditions, and its ability to be extended to model other
materials as well. More details and other material models are described
by Khaniki et al. [17]. In this work, considered problems refer to
a Neo–Hookean model. The reference solution of Breslavsky is also
obtained using a Neo–Hookean model [18,19]. Instead, the reference
solution of a silicone rubber plate by Amabili refers to a Mooney–Rivlin
model [20]. It is important to employ an appropriate strain energy
ttps://doi.org/10.1016/j.ijnonlinmec.2023.104465
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function to model the structures. In the work of Khaniki et al. [21]
structures related to biological materials of the human body such as
the brain, arteries, skeletal muscles, skin, adipose tissue, and problems
related to polymeric structures in different mechanical conditions are
investigated.

The nonlinear analysis of nearly incompressible hyperelastic mate-
rials presents some difficulties because the bulk modulus has orders of
magnitude larger than the shear modulus. Among the main issues, there
are instabilities and phenomena of locking. Many researchers have tried
to overcome these shortcomings. For example, in the work of Sussman
and Bathe [22] a finite element formulation was presented for the
analysis with both geometrical and physical nonlinearities of compress-
ible and incompressible solids. Babuška and Suri investigated Poisson
locking using the standard formulation, also called the displacement
formulation [23]. In the early work of Babuška [24], they also inves-
tigated shear and membrane locking when the thickness of the plate
or shell is very small. Other works, however, considered mixed formu-
lations such as that of Caylak and Mahnken [25]. Düster et al. [26]
applied p-FEM to finite isotropic hyperelastic bodies. These last two
works are mainly based on the method 𝑭̄ , in which the deformation
gradient is divided into two parts, isochoric and dilatational.

After discussing the issues related to the nonlinear analysis struc-
tures in hyperelastic material, it is important to develop simple and
accurate models for 1D and 2D cases. Many works proposed these mod-
els. For example, Chen and Wang [27] developed a model where the
Yeoh governing equations of a hyperelastic beam are shown using the
principle of the minimum energy potential. In 2D case, both Chen [28]
and Breslavsky [18,19] analysed the static behaviour of thin plates of
Neo–Hookean and Mooney–Rivlin material. In addition, Amabili [20]
studied the behaviour of a silicone plate and compared the solution
with experimental data. The equations of motion have been obtained by
a unified energy approach, and geometrical nonlinearities are modelled
according to the Novozhilov nonlinear shell theory. Amabili et al. [29]
also developed a geometrically nonlinear theory for circular cylindri-
cal shells made of incompressible hyperelastic materials using a 9-
parameter higher-order theory. Verhelst et al. [30] presented formula-
tions of stretch-based material models for isogeometric Kirchhoff–Love
shells. They verified formulations on invariant-based Neo–Hookean and
Mooney–Rivlin models using several numerical benchmarks. A numer-
ical solution technique, named as variational differential quadrature
(VDQ), was adopted for the compressible nonlinear elasticity problems
by Hassani et al. [31].

The present work aims at introducing a unified 2D element able to
deal with the nonlinear analysis of hyperelastic materials. The model
is built in the framework of the Carrera Unified Formulation (CUF)
which allows for the development of a plate finite element (FE) with
different kinematics, from low- to higher-order. The FE arrays are writ-
ten in terms of fundamental nuclei, which are invariant of the theory
approximation order, and therefore the equations can be written in
the compact form [32–34]. Recently, CUF was introduced to deal with
a one-dimensional finite element for the analysis of hyperelastic soft
materials [35]. Here, the formulation is further extended to deal with
hyperelastic plates. This paper is structured as follows: a description of
hyperelastic materials models and strain energy function considered in
Section 2; CUF and finite element method for 2D models in Section 3;
governing equations in the unified form and Newton–Raphson method
are described in Section 4; then, numerical results are discussed in
Section 5; finally, the main conclusions are drawn.

2. Nearly incompressible isotropic hyperelastic materials

2.1. Strain energy function

In this paper, homogeneous materials are considered, thus the strain
energy function, 𝛹 , only depends on the strain gradient tensor, 𝑭 .

or isotropic hyperelastic materials, 𝛹 can be expressed in terms of

2

rincipal stretches (𝜆1, 𝜆2, 𝜆3), which are the eigenvalues of 𝑭 . The
energy function 𝛹 can also be defined as a function of the invariants
(𝐼1, 𝐼2, 𝐼3) of the right Cauchy–Green strain tensor, defined as follows:

𝑪 = 𝑭 𝑇𝑭 . (1)

It is possible to write:

𝛹 = 𝛹 (𝐼1, 𝐼2, 𝐼3) (2)

where
𝐼1 = tr(𝑪)

𝐼2 =
1
2
(𝐼21 − tr(𝑪2))

𝐼3 = det(𝑪)

(3)

and tr(∙) and det(∙) represent the trace and determinant of a tensor,
respectively.

In the case of a nearly incompressible model, the Jacobian determi-
nant 𝐽 = det(𝑭 ) represents the volume ratio, and hence the value of 𝐼3
is approximately equal to the unit.

With a thermodynamic similarity, as described by Flory [36], the
tensor 𝑭 can be written by dividing it into two parts: 𝑭 vol = 𝐽

1
3 𝟏 and

𝑭 = 𝐽− 1
3 𝑭 representing the volumetric part, related to deformation,

nd the isochoric part, respectively. Introducing Eq. (1), it is possible
o write 𝑪vol = 𝐽

2
3 𝟏 and 𝑪 = 𝐽− 2

3 𝑪 , and to obtain 𝑪 = 𝑪vol𝑪 . Now,
the strain energy function can be decoupled into its volumetric (𝑈) and
isochoric (𝛹̄ part):

𝛹 = 𝑈 (𝐽 ) + 𝛹 (𝐼1, 𝐼2) (4)

where 𝐼1, 𝐼2 are the invariants of the isochoric part of the right
Cauchy–Green strain tensor, 𝑪. The function 𝑈 (𝐽 ) acts as a penalty of
incompressibility, and it must be strictly convex, twice differentiable
and continuous [37]. In the literature, several formulas [38] exist to
express such a function, and in this work, we use the one proposed by
Sussman and Bathe [22], where:

𝑈 (𝐽 ) = 1
𝐷1

(𝐽 − 1)2 (5)

where 𝐷1 = 2∕𝑘 is the incompressibility material parameter and 𝑘 is
he bulk modulus.

In the literature, there are many definitions of the isochoric part of
he strain energy function 𝛹̄ [15,39]. The most commonly used, often
or biological materials, are classified with respect to the form of the
quation, the number of strain invariants used and the ability to fit
xperimental data [9]. Polynomial forms of strain energy functions are
he most used due to their simplicity and efficiency. In this paper, a
eo–Hookean model is used and the strain energy function is related
nly to the first invariant such that 𝛹̄ = 𝛹̄ (𝐼1). In particular, it assumes
he following form:

𝛹 (𝐼1) =
𝜇
2

(

𝐼1 − 3
)

(6)

where 𝜇 is the shear modulus for infinitesimal deformations.

2.2. The Jacobian tensor

The constitutive relation in its general form is represented by the
second stress tensor Piola–Kirchhoff (PK-2) defined as:

𝑺 = 2 𝜕𝛹
𝜕𝑪

(7)

Introducing Eq. (4) into Eq. (7), th PK-2 stress tensor can be written as
the sum of a volumetric and an isochoric part:

𝑺 = 𝑺vol + 𝑺 iso

𝑺vol = 𝐽 𝑝𝑪−1

𝑺 iso = 2 𝐽− 2
3
𝜕𝛹 (

𝟏 − 1 𝐼1 𝑪−1
)

(8)
𝜕𝐼1 3
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Fig. 1. CUF-FEM configuration for plate model.

Where 𝟏 represents the unit matrix, 𝑪−1 is the inverse of the Cauchy–
Green tensor, and 𝑝 = 𝑈

𝐽
is the hydrostatic pressure. The isochoric

contribution 𝑺𝒊𝒔𝒐 refers to hyperelastic models correlated to the first
invariant.

Consider PK-2 𝑺 of one point at some time 𝑡. According to Holzapfel
[40], 𝑺 can be evaluated as a function of a variable which can be
assumed as 𝑪. It is possible to write a linear relationship between the
increments of 𝑺 and 𝐶:

𝛥𝑺 =  ⋅
1
2
𝛥𝑪 (9)

here  is the gradient of the function 𝑺. This quantity is the fourth-
rder elasticity tensor (Jacobian tensor) and measures the change in
tresses starting from the change in strain and is defined as:

= 𝜕𝑺
𝜕𝑬

= 2 𝜕𝑺
𝜕𝑪

= 4 𝜕2𝛹
𝜕𝑪𝜕𝑪

(10)

here 𝑬 = 1
2 (𝑪 − 𝟏) is the Green–Lagrange strain tensor. Considering

𝑈 = 𝑈 (𝐽 ) and 𝛹 = 𝛹 (𝐼1) and introducing the Eqs. (8) and (10) it is
possible to get the expression of the material Jacobian tensor:

 = vol + iso (11)

A detailed description is shown in [35,40].

3. Two-dimensional finite elements

The two-dimensional (2D) model adopted in this work is based on
the Carrera Unified Formulation (CUF) [32,33]. CUF allows writing
the equations of any refined theory 1D, 2D, or 3D in terms of a
few fundamental nuclei FNs, whose shape does not depend on the
assumptions used, such as type and order of the function, to describe
the field of displacements.

Referring to Fig. 1, the three-dimensional (3D) displacement field
𝑼 (𝑥, 𝑦, 𝑧) can be expressed as a product between a 2D in-plane shape
function 𝑁𝑖(𝑥, 𝑦) and 1D expansion function 𝐹𝜏 (𝑧).

𝑼 (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧)𝑁𝑖(𝑥, 𝑦)𝒒𝜏𝑖, 𝜏 = 1,… ,𝑀 𝑖 = 1,… , 𝑝 + 1 (12)

where 𝐹𝜏 (𝑧) is the function of expansion along the thickness, with 𝑀
equal to the number of terms of the expansion, 𝑞𝜏𝑖 are the discrete
nodal displacements, 𝑁𝑖(𝑥, 𝑦) are the 2D shape functions to use for
the finite element method in the plane 𝑥𝑦 of the mean surface, 𝑝
denotes the order of the shape functions and the repeated index 𝑖
indicates summation. Note that the choice of the function 𝐹𝜏 is made a
priori and is completely arbitrary but its choice characterizes the model
adopted. According to Pagani e Carrera [41], it is possible to write the
Green–Lagrange strain vector as:

𝑬 = (𝒃𝑙 + 𝒃𝑛𝑙)𝑼 = (𝒃𝑙 + 𝒃𝑛𝑙)𝐹𝜏 (𝑧)𝑁𝑖(𝑥, 𝑦)𝒒𝜏𝑖 = (𝑩𝑙
𝜏𝑖 + 𝑩𝑛𝑙

𝜏𝑖)𝒒𝜏𝑖 (13)

where 𝑩𝜏𝑗
𝑙 and 𝑩𝜏𝑗

𝑛𝑙 are the matrices of derivative operators applied to
the form functions in the linear and nonlinear case, respectively. In this
paper, Lagrange Expansion (LE) models are used as expansion func-
tions 𝐹𝜏 (𝑧). For simplicity, the considered plate theories are indicated
by the acronym LDN, which represents the Layer-wise Displacement-
based theory with the order of expansion N [34]. Specifically, the
3

two-node linear (LD1) and three-node quadratic (LD2) have been de-
veloped along the thickness of plates. For 2D in-plane shape functions
𝑁𝑖(𝑥, 𝑦), four-node bilinear (Q4) and nine-node quadratic (Q9) have
been adopted. Note that the choice of discretization along the thickness
is independent of the choice of discretization in the 𝑥𝑦 plane.

4. Governing equations

4.1. Tangent stiffness matrix

In this section, the tangent stiffness matrix is defined. It is used in
the interactions of Newton–Raphson method. Starting from the CUF-
FEM formulation and considering a generic expansion for a 2D element,
it is possible to define the tangent stiffness matrix for hyperelastic
materials. As already described, the strain vector can be written in
terms of the unknowns generalized nodal displacements. In this case,
𝑬 is the strain vector derived from the Green–Lagrange strain tensor
and 𝑼 𝜏𝑖 is the nodal virtual displacements. Therefore, it is possible to
write:

𝑬 = (𝒃𝑙 + 𝒃𝑛𝑙)𝒖 = (𝒃𝑙 + 𝒃𝑛𝑙)𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝑼 𝜏𝑖 = (𝑩𝑙
𝜏𝑖 + 𝑩𝑛𝑙

𝜏𝑖)𝑼 𝜏𝑖 (14)

Then the virtual variation is:

𝛿𝑬 = 𝛿((𝑩𝑙
𝜏𝑖 + 𝑩𝑛𝑙

𝜏𝑖)𝑼 𝑠𝑗 ) = (𝑩𝑙
𝑠𝑗 + 2𝑩𝑛𝑙

𝑠𝑗 )𝛿𝑼 𝑠𝑗 (15)

where indexes 𝜏 and 𝑖 have been respectively substituted with 𝑠 and 𝑗
for sake of convenience. The equilibrium equation must be linearized to
obtain the expression of the fundamental nuclei of the tangent stiffness
matrix.

𝛿(𝛿𝐿𝑖𝑛𝑡) = ∫𝛺
𝛿(𝛿𝑬𝑇𝑆)𝑑𝑉 = ∫𝛺

𝛿𝑬𝑇 𝛿𝑆𝑑𝑉 + ∫𝛺
𝛿(𝛿𝑬𝑇 )𝑺𝑑𝑉 (16)

The first right-hand side term corresponds to the linearization of the
constitutive equation of hyperelastic materials. Holzapfel [40] adopted
the formulation with first invariant:

𝛿𝑺 =  1
2
𝛿𝑪 = 𝛿𝑬 = (𝑩𝑙

𝑠𝑗 + 2𝑩𝑛𝑙
𝑠𝑗 )𝛿𝑼 𝜏𝑖 (17)

where  represents the tangent fourth-order elasticity tensor described
in previous section. It is possible to write the linearization of the
constitutive law in a weak form:

∫𝛺
𝛿𝑬𝑇 𝛿𝑺𝑑𝑉 = ∫𝛺

𝛿𝑼 𝑠𝑗
𝑇 (𝑩𝑙

𝑠𝑗 + 2𝑩𝑛𝑙
𝑠𝑗 )𝑇(𝑩𝑙

𝜏𝑖 + 2𝑩𝑛𝑙
𝜏𝑖)𝛿𝑼 𝜏𝑖𝑑𝑉

= 𝛿𝑼 𝑠𝑗
𝑇
[

∫𝛺
𝑩𝑙

𝑠𝑗 𝑇𝑩𝑙
𝜏𝑖𝑑𝑉

]

𝛿𝑼 𝜏𝑖

+𝛿𝑼 𝑠𝑗
𝑇
[

2∫𝛺
𝑩𝑙

𝑠𝑗 𝑇𝑩𝑛𝑙
𝜏𝑖𝑑𝑉

]

𝛿𝑼 𝜏𝑖+

+ 𝛿𝑼 𝑠𝑗
𝑇
[

2∫𝛺
𝑩𝑛𝑙

𝑠𝑗𝑇𝑩𝑙
𝜏𝑖𝑑𝑉

]

𝛿𝑼 𝜏𝑖

+𝛿𝑼 𝑠𝑗
𝑇
[

∫𝛺
2𝑩𝑙

𝑠𝑗 𝑇2𝑩𝑙
𝜏𝑖𝑑𝑉

]

𝛿𝑼 𝜏𝑖

(18)

Four contributions of 3 × 3 matrices are defined:

𝑲 𝑙𝑙
𝑖𝑗𝜏𝑠 = ∫𝛺

𝑩𝑙
𝑠𝑗 𝑇𝑩𝑙

𝜏𝑖𝑑𝑉

𝑲 𝑙𝑛𝑙
𝑖𝑗𝜏𝑠 = ∫𝛺

𝑩𝑙
𝑠𝑗 𝑇𝑩𝑛𝑙

𝜏𝑖𝑑𝑉

𝑲𝑛𝑙𝑙
𝑖𝑗𝜏𝑠 = ∫𝛺

2𝑩𝑛𝑙
𝑠𝑗 𝑇𝑩𝑙

𝜏𝑖𝑑𝑉

𝑲𝑛𝑙𝑛𝑙
𝑖𝑗𝜏𝑠 = ∫𝛺

2𝑩𝑠𝑗
𝒍
𝑇2𝑩𝑙

𝜏𝑖𝑑𝑉

(19)

where 𝑲 𝑙𝑙
𝑖𝑗𝜏𝑠 is the linear contribution and 𝑲𝑇1

𝑖𝑗𝜏𝑠 = 2𝑲 𝑙𝑛𝑙
𝑖𝑗𝜏𝑠+𝑲𝑛𝑙𝑙

𝑖𝑗𝜏𝑠+
𝑖𝑗𝜏𝑠
2𝑲𝑛𝑙𝑛𝑙 is the nonlinear contribution of the tangent stiffness matrix.
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It is possible to rewrite the linearized constitutive equation as:

∫𝛺
𝛿𝑬𝑇 𝛿𝑺𝑑𝑉 = 𝛿𝑼 𝑠𝑗

𝑇𝑲 𝑙𝑙
𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖 + 𝛿𝑼 𝑠𝑗

𝑇𝑲𝑇1
𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖 (20)

The second right-hand side term of Eq. (16) corresponds to the lin-
earization of geometric equations. Once the matrix of differential op-
erators 𝑩𝑛𝑙

∗ and the virtual variation of the deformations have been
defined:

𝛿(𝛿𝑬) = 𝑩𝑛𝑙
∗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑈𝑥𝜏𝑖𝛿𝑈𝑥𝑠𝑗

𝛿𝑈𝑦𝜏𝑖𝛿𝑈𝑦𝑠𝑗

𝛿𝑈𝑧𝜏𝑖𝛿𝑈𝑧𝑠𝑗

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(21)

The second term becomes:

∫𝛺
𝛿(𝛿𝑬𝑇 )𝑺𝑑𝑉 = ∫𝛺

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑈𝑥𝜏𝑖𝛿𝑈𝑥𝑠𝑗

𝛿𝑈𝑦𝜏𝑖𝛿𝑈𝑦𝑠𝑗

𝛿𝑈𝑧𝜏𝑖𝛿𝑈𝑧𝑠𝑗

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(𝑩𝑛𝑙
∗)𝑇𝑺𝑑𝑉

= ∫𝛺
𝛿𝑼 𝑠𝑗

𝑇 diag((𝑩𝑛𝑙
∗)𝑇𝑺)𝛿𝑼 𝜏𝑖𝑑𝑉

= 𝛿𝑼 𝑠𝑗
𝑇𝑲𝜎

𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖

(22)

where 𝑲𝜎
𝑖𝑗𝜏𝑠 is the geometric stiffness matrix and derives from the

linearization of the nonlinear displacement-strain relationship.
Then, substituting the different quantities in the Eq. (16), it is

possible to obtain the fundamental nuclei of the tangent stiffness matrix
as the sum of the linear, nonlinear and geometric contribution:

𝛿(𝛿𝐿𝑖𝑛𝑡) = 𝛿𝑼 𝑠𝑗
𝑇𝑲 𝑙𝑙

𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖 + 𝛿𝑼 𝑠𝑗
𝑇𝑲𝑇1

𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖 + 𝛿𝑼 𝑠𝑗
𝑇𝑲𝜎

𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖

= 𝛿𝑼 𝑠𝑗
𝑇𝑲𝑇

𝑖𝑗𝜏𝑠𝛿𝑼 𝜏𝑖 (23)

4.2. Internal force vector

Starting from the Eq. (15), the principle of virtual works establishes
that:

𝛿𝐿int − 𝛿𝐿est = 0 (24)

Considering the Green–Lagrange strain 𝑬 and stress tensors PK2 𝑺, the
irtual variation of the work of the internal forces can be expressed as:

𝐿int = ∫𝛺
𝛿𝑬𝑇𝑺𝑑𝑉 (25)

ow, adopting the same definition of generalized deformations and its
irtual variation:

𝑬 = 𝛿(((𝑩𝑙
𝜏𝑖 + 𝑩𝑛𝑙

𝜏𝑖)𝑼 𝜏𝑖)𝑼 𝑠𝑗 ) = (𝑩𝑙
𝑠𝑗 + 2𝑩𝑛𝑙

𝑠𝑗 )𝛿𝑼 𝑠𝑗 (26)

ubstituting it in Eq. (25), it is possible to write:

𝐿int = ∫𝛺
𝛿𝑬𝑇𝑺𝑑𝑉 = ∫𝛺

𝛿𝑼 𝑠𝑗
𝑇 (𝑩𝑙

𝑠𝑗 + 2𝑩𝑛𝑙
𝑠𝑗 )𝑺𝑑𝑉 = 𝛿𝑼 𝑠𝑗

𝑇𝑭 𝑖𝑛𝑡
𝑠𝑗 (27)

he fundamental nuclei of the internal forces vector are obtained:

𝑖𝑛𝑡
𝑠𝑗 = ∫𝛺

(𝑩𝑙
𝑠𝑗 + 2𝑩𝑛𝑙

𝑠𝑗 )𝑺𝑑𝑉 (28)

he FN of the external load vector is derived from the definition of 2D
UF-FEM. Considering 𝑝 the vector of conservative loads, it is possible
o write the virtual variation of the work done by external forces as:

𝐿est = ∫𝛺
𝛿𝑼𝑇 𝒑𝑑𝑉 = ∫𝛺

𝒒𝑠𝑗𝑇𝐹𝑠(𝑧)𝑁𝑗 (𝑥, 𝑦)𝒑𝑑𝑉 = 𝒒𝑠𝑗𝑇 𝒑𝑠𝑗 (29)

Substituting in Eq. (24) and assembling the final structure, nonlinear
algebraic equations are rewritten as:

𝛿𝑼 ∶ 𝑭 𝑖𝑛𝑡 − 𝑭 𝑒𝑥𝑡 = 0 (30)

Nonlinear equations are solved using the Newton–Raphson lin-

earization . The vector of residual nodal forces 𝝋𝑟𝑒𝑠 can be linearized

4

Fig. 2. Thin hyperelastic plate geometry under pressure.

Table 1
Material parameters of thin hyperelastic plate
present in [19]. Neo–Hookean model adopted.
𝐸 1247060.2 𝑃𝑎

𝜈 0.4999
𝜇 415714.45 𝑃𝑎
𝐷1 = 2∕𝑘 9.6226 × 10−10 𝑃𝑎−1

by Taylor series expansion introducing the tangent stiffness matrix
𝑲𝑇 . It is necessary to introduce a constraint relation to solve the
equations. Different incremental schemes can be implemented using
different constraint equation. A more detailed description of Newton–
Raphson method is provided in Ref. [41]. In particular, the arc-length
method provides a solution for nonlinear problems when critical points
are present. This method is accurately described by Crisfield [42].

5. Numerical results

In this paper, three study cases taken from literature are analysed
with the proposed 2D unified models:

• the first case refers to a simply supported square plate anal-
ysed with general Neo–Hookean material model and biological
material model;

• the second case deals with a simply supported rectangular plate
considering at first geometrical nonlinearities and then geometri-
cal and physical nonlinearities;

• the last case refers to a clamped silicone rubber plate under
uniform pressure.

All the cases consider to plates under pressure. A Neo–Hookean nearly
incompressible material has been adopted.

5.1. Thin hyperelastic plate under pressure

The first case was considered by Breslavsky et al. in [19] using
a incompressible model (𝜈 = 0.5). The same problem was analysed
by Ansari et al. in [43] considering a nearly incompressible model. A
simply supported plate is considered with 𝑎 = 𝑏 = 0.1 m, ℎ = 5×10−4 m
and it is subjected to uniform pressure with the following boundary
conditions, Fig. 2:

𝑤|𝛿𝑆 = 𝑀|𝛿𝑆 = 𝑢|𝛿𝑆 = 𝑣|𝛿𝑆 = 0 (31)

where 𝛿𝑆 is the boundary plate.
In this work, we considered the nearly incompressible Neo–Hookean

model with material parameters given in [19] and present in Table 1.
In the 𝑥𝑦 plane, we used a number of elements of 8 × 8, 10 × 10
with four-nodes (Q4) and 10 × 10, 16 × 16 with nine-nodes (Q9).
Along the thickness, however, it was sufficient to use a three-node
quadratic Lagrangian expansion function (LD2) to obtain the accuracy
of the solution. As shown in Fig. 3, for a few elements (in this case
8 × 8 Q4) the solution is not very accurate. Increasing the number of
elements, however, the solution tends to coincide with the 27 degrees
of freedom (DOF) Breslavsky solution obtained by the local model
method, where the total number of degree of freedom DOF is given by

𝑁 = 𝑁𝑊 +𝑁𝑈 +𝑁𝑉 [19]. Table 2 shows the centre point deformation
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Table 2
Deflection measured at the centre of the thin hyperelastic plate for different FEM
models. Comparison with 27 DOF solution in [19].
𝑝[𝑘𝑃𝑎] 𝑤∕ℎ Ref [19]

8 × 8Q4 10 × 10Q4 10 × 10Q9

0.029 6.848 9.030 9.043 10.109
0.285 17.741 19.318 19.226 20.132
1.917 37.642 38.912 39.192 39.980
4.292 54.337 55.052 56.075 57.020
8.019 76.571 76.935 78.601 80.032
10.476 91.047 91.854 93.243 94.984

Fig. 3. Neo–Hookean plate pressure-deflection response. Deflection measured at the
centre of the plate and normalized with respect to the plate thickness ℎ. Comparison
between different FEM models and solution with 27 DOF and 3 DOF of Breslavsky [19].

values for the different discretization models used and for different
load steps. As it is possible to see from the graph, the convergence
is achieved for a 10 × 10 Q9 mesh. Using the nearly incompressible
model with 𝜈 = 0.4999, it is possible to notice that it is almost coincident

ith the incompressible case. They are practically coincident for small
eformations.

In Fig. 4, the pressure-deflection response of a thin plate is plot-
ed using two different volumetric functions, 𝑈1 = 1

𝐷1
(𝐽 − 1)2 and

2 = 1
𝐷1

(𝑙𝑛𝐽 )2. As shown, the choice of volumetric function does not
ffect the results for a nearly incompressible material. It only could be
etrimental or beneficial from the stability point of view.

.2. Hyperelastic plate made of biological material

This case is also discussed by Breslavsky in [19]. The plate has the
ame dimensions and boundary conditions as in the previous example.
he properties of the material are in [19] and they refer to the experi-
ental data of the tunica adventitia of a human aorta available in [4].
Neo–Hookean material model is considered with Young modulus
= 59383.2 Pa and it is considered the nearly incompressible material

ondition with 𝜈 = 0.4999.
For convergence analysis, 4-node Q4 elements were used in the

𝑦 plane and a 3-node quadratic Lagrangian expansion (LD2) along
he thickness. Various discretizations have been tested. From Fig. 5
t is possible to see that a small number of elements is already suf-
icient to obtain an accurate solution. Moreover, even if it was used
nearly incompressibility condition, the solution obtained is close to

he solution of incompressible material (for small deformations it is
early coincident) as shown in Table 3. Furthermore, this plate has
dentical dimensions to the previous case, yet there is a contrasting out-
ome concerning reference solutions due to varied material parameters.
5

Fig. 4. Neo–Hookean plate pressure-deflection response. Deflection measured at the
centre of the thin plate considering two different volumetric function 𝑈1 and 𝑈2.

Fig. 5. Pressure load-middle point deflection response of the biological material plate.
Comparison between two different numbers of element and solution with 12 DOF of
Breslavsky [19].

Table 3
Middle point deflection of the biological material plate with mesh 8 × 8
Q4, 10 × 10 Q4 and Breslavsky’s solution with 12 DOF [19] for various
load levels.
𝑝[𝑃𝑎] 𝑤∕ℎ

8 × 8Q4 10 × 10Q4 Ref. [19]

3.83 11.21 12.09 13.67
84.64 36.41 36.93 37.21
208.51 54.83 54.83 54.83
426.39 81.66 82.03 81.20
542.14 96.46 97.11 94.27
568.45 99.69 100.50 98.33

Specifically, the Young’s modulus of the two cases differs by two orders
of magnitude, resulting in a distinct value for 𝐷1 and causing numerical
complications in defining 𝑈 (𝐽 ).

.3. Rectangular plate: comparison between geometrical nonlinearities and
eometrical and physical nonlinearities

The second example analysed is a simply supported rectangular
late, always subject to uniform pressure. In this case, the plate has
he following dimensions: 𝑎 = 0.1 m, 𝑏 = 0.12 m and ℎ = 5 × 10−4 m.

The material properties considered are 𝐸 = 107 Pa and 𝜈 = 0.4999.
The nearly incompressible material is considered. The analysed case
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Fig. 6. Middle point deflection-pressure curves for models with geometrical and
physical nonlinearities . Comparison between two different models 12 × 10 Q4, 12 × 10
Q9 and solution with 12 DOF of Breslavsky [18].

Fig. 7. Middle point deflection-pressure curves for models with geometrical and
physical nonlinearity . Comparison between 6 × 5 Q9, 12 × 10 Q9 and solution with
12 DOF of Breslavsky [18].

is taken from Breslavsky et al. [18], where the incompressible model
(𝜈 = 0.5) is used. For convergence analysis, a discretized model in the
𝑥𝑦 plane with 12 × 10 elements both Q4 and Q9 is investigated. From
Fig. 6, the discretized model with nine-node elements presents a more
accurate solution than four-nodes elements solution. In Fig. 7, another
convergence analysis is investigated. The solutions with nine-nodes
element Q9 and a different number of elements (6 × 5 and 12 × 10) are
compared considering 𝜈 = 0.4999. Note that a 6 × 5 Q9 mesh is already
accurate enough to describe the behaviour of the plate made from ma-
terial with almost incompressible Neo–Hookean condition. Finally, the
model with 12 × 10 Q9 is assessed. The solution obtained considering
only geometrical nonlinearities is compared with the solution obtained
with both geometrical and physical ones. In Fig. 8, the solutions are
similar to Breslavsky’s solutions. In Fig. 9, undeformed configuration
and deformed configuration with 𝑝 = 1.715, 8.694, 30.407 kPa are
shown. In addition, it is possible to see that a 3-node (quadratic)
discretization model along the thickness is sufficient to obtain the accu-
racy of the results. Note that the solutions of the nearly incompressible
are similar to the incompressible case and they coincide for small
deformations.
6

Fig. 8. Middle point deflection-pressure curves for 12 × 10 Q9 model and 𝜈 = 0.4999.
Comparison between solution with geometrical nonlinearities only and solution with
both geometrical and physical nonlinearities . Comparison with 12 DOF Breslavsky’s
solution [18].

5.4. Silicone rubber plate

The last case under examination is taken from Amabili et al. [20].
In Fig. 10, a clamped plate with 𝑎 = 𝑏 = 0.26 m and thickness ℎ =
1.5 × 10−3 m is shown. The silicone rubber plate is under aerostatic
pressure and it has been investigated analytically, numerically, and ex-
perimentally, as shown in Fig. 11. The plate has the following boundary
conditions:

𝑤|𝛿𝛺 = 𝜕𝑤
𝜕𝒏

|𝛿𝛺 = 𝑢|𝛿𝛺 = 𝑣|𝛿𝛺 = 0 (32)

here 𝜕𝛺 is the plate’s middle surface boundary and 𝒏 is the normal
o 𝜕𝛺 lying on the plate surface. In order to compare the experimental
ata with the numerical solution, the material parameters are obtained
y a fitting procedure on the results of the uniaxial tension test. In [20],
mabili considered a Mooney–Rivlin material model with elastic strain
nergy function as 𝛹̄ = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3), where the two

material parameters are 𝐶10 = 253216 Pa and 𝐶01 = 470900 Pa. In this
paper, however, it is used a model of Neo–Hookean material dependent
only on the first invariant, which is a special case of Mooney–Rivlin
material [22]. Material parameters in Table 4 are considered where 𝜇
is the shear modulus, 𝜈 is the Poisson coefficient, 𝐷1 is the material
incompressibility parameter. Therefore, it was considered an almost in-
compressible model and it will be compared with the solution obtained
by Amabili in the incompressible case (𝜈 = 0.5). For the convergence
analysis, 4-node elements (Q4) and a different number of elements were
used in the 𝑥𝑦 plane: 8 × 8, 10 × 10, 14 × 14, 18 × 18. Along the
thickness, however, three-nodes are sufficient for the accuracy of the
solution. As shown in Fig. 12 and Table 5, the configuration with fewer
degrees of freedom stands between the reference numerical solution,
where a 20 × 20 mesh was used, and the experimental solution. For the
nearly incompressible Neo–Hookean model considered in this paper,
the convergence is achieved with a 14 × 14 Q4 model and a quadratic
Lagrange expansion function (LD2) along the thickness. The solution
is practically coincident with the experimental solution in the case of
small deformations, while for displacements 𝑤 > 35 mm the solution
slightly deviates from the FEM analysis carried out in [20]. Fig. 13
shows the undeformed and deformed states of the plate under two
different load conditions.

6. Conclusions

This paper discussed two-dimensional (2D) high-order finite el-
ements for the analysis of first-invariant hyperelastic Neo–Hookean
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Fig. 9. Undeformed and deformed states of the simply supported rectangular plate. 12 × 10 Q9 model.
Fig. 10. Boundary condition and geometry of the silicone rubber plate.

Fig. 11. Silicone rubber plate under a pressure of 1 Psi. The deflection at the centre
point is measured using a Micro-Epsilon triangulation laser sensor [20].
Source: Adapted from [20] with permission from Elsevier.

plates. According to the Carrera Unified Formulation (CUF), it is pos-
sible to write the governing equations in terms of a few fundamental
nuclei (FNs), which are invariant of the theory approximation order.
The strain energy function was decomposed and split into its volumetric
7

Table 4
Material parameters of silicone rubber
clamped plate (see Fig. 1 and Fig. 11) and
subjected to uniform transverse pressure.
𝜈 0.4999
𝜇 1.448 × 106 𝑃𝑎
𝐷1 = 2∕𝑘 2.762 × 10−10 𝑃𝑎−1

Fig. 12. Static deflection of the silicone plate measured at the centre as function of
the pressure. Comparison between different FEM models and experimental and FEM
solutions of Amabili et al. [20].

and isochoric parts. The choice of the volumetric function does not
affect the response of the nearly incompressible material, but it can
only worsen or improve the locking phenomenon. Different problems
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Table 5
Pressure-deformation values of the central point of the plate 𝑤∕ℎ for different mesh. Comparison
with the reference solution in [20] of both FEM analysis and measured experimental data.
𝑝[𝑃𝑠𝑖] 𝑤∕ℎ

8 × 8Q4 10 × 10Q4 14 × 14Q4 Ref. FEM Ref. exp.

0.204 17.06 19.41 20.74 21.43 15.74
0.604 33.30 35.22 35.89 35.22 30.77
0.800 38.66 40.63 40.97 39.43 35.77
1.204 47.18 49.06 49.71 47.18 44.44
1.994 60.60 62.38 63.40 61.17 60.04
Fig. 13. Undeformed and deformed states of the silicone rubber plate.
were considered and the effect of the theory approximation order on
the convergence and the accuracy of the solutions is studied in detail.
The numerical investigation has demonstrated:

• the validity and accuracy of the theory provided for plates with
both geometrical and physical nonlinearities considering a nearly-
incompressible Neo–Hookean model.

• the accuracy of the CUF-FEM methodology compared with exper-
imental data for a clamped silicone rubber plate.

• a model with a three-node quadratic Lagrange expansion along
the thickness correctly described the large deflection of thin plates
under uniform pressure.

• the selection of the volumetric function has no impact on the
response of the nearly incompressible material. It acts as a pe-
nalization of incompressibility.

• higher order model can help to overcome locking phenomena.

Based on the numerical results, there is sufficient confidence to support
future developments in this area, such as the extension of this method
to thick plates, where the only alternative is 3D elements. Furthermore,
the proposed two-dimensional finite element method could be applied
to model the behaviour of layerwise hyperelastic materials, which
have unique mechanical properties due to their multi-layered struc-
ture. The research conducted provides enough confidence for future
developments in this direction.
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