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Abstract: Compressors are an essential component of aircraft engines. Their design and operation
must be extremely reliable as engine safety and performance depend greatly on these elements. Axial
compressors exhibit instabilities, such as surge or rotating stall, in a region close to the peak of their
performance curves. These fluid dynamic instabilities can cause drops in efficiency, stress on the
blades, fatigue, and even failures. Compressors are handled therefore by operating with a safety
margin far from the surge line. Moreover, models able to predict onset instabilities and to reproduce
them are of great interest. A dynamic system able to describe successfully both surge and rotating stall
is the model presented by Moore and Greitzer That model has also been used for developing control
laws of the compressor dynamics. The present work aims at developing an artificial neural network
(ANN) approach able to predict either the permanence of the system in stable working condition or
the onset instabilities from a time sequence of the compressor dynamics. Different solutions were
tried to find the most suitable model for identifying the system, as well as the effects of the duration
of the time sequence on the accuracy of the predicted compressor working conditions. The network
was further tried for sequences with different initial values in order to perform a system analysis that
included multiple variations from the initial database. The results show how it is possible to identify
with high accuracy both rotating stall and surge with the ANN approach. Moreover, the presence of
an underlying fluid dynamic model shares some similarities with physically informed AI procedures.

Keywords: rotating stall; nonlinear instabilities; artificial intelligence; system identification

1. Introduction

With the continuous improvement in the state of the art and technologies, aircraft
engines have nowadays reached a very high level of complexity. However, the challenge of
finding new solutions that preserve reliability while enhancing performance is compulsory
for the next generation of engines complying with the FlightPath 2050 targets [1]. A strategy
selected in achieving these goals focuses on active flow control and casing treatment of
flow compression systems. In fact, the high-pressure, high-efficiency region of an axial flow
compressor lays close to the surge line and to the region where rotating stall may occur,
so that optimal operating lines run in a region where the compressor is prone to different
kinds of instabilities. For this reason, the surge margin (SM), that is, the distance between
the operating point and surge, is monitored in real time by the Digital Engine Control Unit
(DECU) to avoid the onset of instabilities. The smaller the surge margin, the higher the
performance. This reasoning has motivated wide investigations of compressor instabilities
such as classical surge (CS), deep surge (DS), and rotating stall (RS) [2–6]. The detection
of the instabilities and their active control are essential tasks in order to ensure safety and
engine performance [7–11]. As RS and DS instabilities are nonlinear phenomena, one of the
most effective approaches to their control is the model-based predictive control, which in
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turn requires an underlying reduced order model that predicts the system evolution within
a given time interval.

Among the modeling efforts in describing the nonlinear dynamics of rotating stall
and surge, the model proposed by Moore and Greitzer (MG) [2,3] was one of the most
successful, since it captures the essential features of these instabilities by relating them to
some characteristic parameters of the system interacting with the surrounding environment
and nearest components. Moreover, the MG model is expressed as a low-order state-space
model and this fact makes it suitable for applications to control design. The MG model has
been further extended, including other effects, e.g. variable compressor speed, additional
control valves, etc., and the availability of such reduced order models also encourages the
efforts in developing active control schemes for compression systems [12–16]. Apart from
classical PID controllers, a variety of approaches have been used as adaptive control [13],
back-stepping [17], bifurcation theory [18], and state-feedback linearization [19]. More
recently, other model-based predictive methods have applied artificial neural networks [20],
fuzzy logic control [21], and neural network predictive controllers [22,23]. Regarding the
devices used for manipulating the flow, although advanced control concepts such as
synthetic jets [24] and plasma actuators [25] have been considered, the most widely used
actuators over the years remain the Close-Coupled Valve (CCV) [14,19] and the bleed
Throttle Control Valve (TCV) [26].

In the present paper, a method based on artificial intelligence (AI) for detecting the
onset and type of compressor instability is proposed. The characteristic parameters of an
equivalent MG model [27] are extracted by using a deep learning procedure from time
sequences of the compressor dynamics recorded by sensors embedded in the system. From
the values of such estimated parameters, compressor stability/instability, as well as the
near future system evolution, are deduced. In order to test the accuracy and effectiveness
of the method, the algorithm is applied to time sequences generated by the analytical
MG model itself, without loss of generality. In fact, the MG model can be tailored to a
specific compressor by using an experimental fitting of the related map [27–29]. To test
the proposed procedure, a theoretical/numerical approach is adopted here: we generate a
“synthetic” signal by using the MG model and then we analyze the accuracy of the AI-based
detection algorithm by comparison with the exact solution.

The paper is organized as follows: the Moore and Greitzer model is presented and
some key stable and unstable evolutions are shown; then, the deep learning algorithm is
explained and its ability and accuracy in estimating the system working conditions are
tested. The algorithm accuracy is then checked against reduced input time sequences.
Finally, uncertainty in the initial conditions is introduced and its influence is investigated
in combination with the use of reduced length time series in input.

2. Mathematical Model

A sketch of compression system components with related geometrical parameters
is shown in Figure 1. The flow enters from atmospheric pressure pti in the inlet annular
duct, proceeds through the compressor block and plenum, where the static pressure is
increased to level ps, and to the outlet duct, from where it exits to atmospheric pressure
through the downstream throttle. The plenum and throttle are a quite simple model of
simulating the mass storage and mass flow regulation effects of the combustor–turbine–
nozzle system in a gas turbine engine [30]. The flow is assumed incompressible, irrotational,
and without radial variations, i.e., two-dimensional in the inlet duct. These assumptions
hold for low-speed axial compressors with high hub-to-tip ratios. The flow compressibility
in the plenum is responsible for mass storage effects.
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Figure 1. Sketch of the M-G reduced-order model.

System performances are described by the flow coefficient ϕ = Cx/U, i.e., the ratio
between the axial velocity component Cx and the compressor speed at the mean radius U
and by the total-to-static pressure rise

ψ =
pti − ps

ρU2 (1)

At steady state, the compressor pressure rise delivered as a function of the annu-
lus averaged flow rate is known as the compressor map ψc(Φ). The map is evaluated
experimentally and fitted by a polynomial function:

ψc(Φ) =
N

∑
n=01

anΦn (2)

where an are coefficients fitting the experimental data and Φ is the annulus averaged
flow coefficient

Φ(ξ) = ϕ(ξ) =
1

2π

∫ 2π

0
ϕ(ξ, θ)dθ (3)

where θ is the circumferential position, or rotor wheel angle, and ξ = tR/U is the nondi-
mensional time. Overline is used throughout the paper to defined annulus averaged
variables. A similar quadratic relation holds between the pressure drop ψT versus flow rate
delivered by the downstream throttle:

ψT(Φ) =
1

γ2
T

Φ2 (4)

where ψT is the pressure drop across the throttle and γT is the throttle coefficient. Con-
versely, the relation

ΦT(ψ) = γT
√

ψ (5)

is evidence of how the mass flow depends on the throttle setting γT and the pressure drop.
In steady conditions, the pressure rise in the compressor must be equal to the pressure drop
across the throttle, and therefore the intersection of the two pressure delivery curves gives
the steady state operating point for the compression system, as is indicated in Figure 2a.
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(a) (b)

Figure 2. Compressor–valve characteristics. (a) Map of the unstalled case with different valve opening
values γT (red lines), (b) sketch of the stalled case.

From the continuity equation written for a lumped volume across the compressor and
the isentropic relation [3], one derives

ṁc − ṁT
Vp

=
∂ρ

∂t
=

1
a2

s

∂ps

∂t
(6)

by introducing the mass flow coefficient and collecting some parameters that characterize
the system setup

ϕ(ξ)− ϕT(ψ) =
VpU
a2

s Ac

∂ψ(ξ)

∂ξ
(7)

the lag in the pressure rise can be derived as

∂ψ(ξ)

∂ξ
=

1
4B2lc

[ϕ(ξ)− γT
√

ψ] (8)

where lc is the aerodynamic length of the compressor

lc = li + µ + le µ =
nsUτ

R
(9)

where ns is the number of stages, τ is a time-lag parameter, and µ is a parameter taking
into account for flow inertia on the response to perturbation traveling in the axial direction.
It depends on the effective path inside the compressor being longer than its axial length.
This consideration is evident modeling the row time-lag τ; e.g., a proposed estimation
is τ = Lrk/ cos2 β [2]. The parameter B > 0 is known as the Greitzer surge parameter
defined by

B =
U

2as

√
Vp

AcLc
(10)

where Vp and as are the volume and the speed of sound in the plenum, respectively, and Ac
is the flow area.

The flow acceleration rate through the compressor is derived from the axial momentum
equation applied from the upstream ambient to the plenum [2]. At the axial station (η = 0)
in front of the compressor/IGV is

ps(ξ)− pti(ξ)

ρU2 = −ψ = ψc(ϕ(θ, ξ))− (lI + lE)
dΦ(ξ)

dξ
− λ

∂ϕ(θ, ξ)

∂θ
− µ

∂ϕ(θ, ξ)

∂ξ
(11)
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where λ accounts for the fluid inertia in the rotor. An evolution equation for the flow
disturbances is now derived to focus on the flow instabilities. The flowfield variables are
divided into annulus averaged and circumferential perturbation components

ϕ(θ, ξ) = ϕ(ξ) + δϕ(θ, ξ)

ps(θ, ξ) = ps(ξ) + δps(θ, ξ)

pti(θ, ξ) = pti(ξ) + δpti(θ, ξ)

(12)

The overline defines annulus averaged quantities, i.e. f = 1
2π

∫ 2π
0 f (θ)dθ and δ indi-

cates a perturbation quantity; i.e., δϕ is the perturbation of the flow coefficient. By averaging
both members of Equation (11), the axisymmetric part is obtained as

∂ϕ

∂ξ
=

1
lc

[∫ 2π

0
ψc(ϕ + δϕ)− ψ(ξ

]
(13)

whereas the non-axisymmetric part of (11) is derived by subtracting (13) from (11), that is

δps(ξ)− δpti(ξ)

ρU2 = ψc(Φ + δϕ)−
∫ 2π

0
ψc(Φ + δϕ)dθ − λ

∂(δϕ)

∂θ
− µ

∂(δϕ)

∂ξ
(14)

Moreover, the incompressibility assumption in the inlet duct region allows us to
define a perturbation velocity potential Y(η, θ, ξ), such as ∂Y

∂η = δϕ, which satisfies the
Laplace equation

∇2Y =
∂2Y
∂η2 +

∂2Y
∂θ2 = 0 for η ≤ 0 (15)

inside the inlet duct. The solution for Y(η, θ, ξ) is of the form

Y(η, θ, ξ) =
∞

∑
n=1

exp(nη)

n
An(ξ) sin(nθ + rn(ξ)) (16)

where An and rn are amplitude and phase of the n-th circumferential Fourier mode, respec-
tively. The perturbation of the flow coefficient is then

δϕ(θ, ξ) =
∞

∑
n=1

An(ξ) sin(nθ + rn(ξ)) at η = 0 (17)

The solution for the flow perturbation δϕ(θ, ξ) is evaluated at the rotor face. Based on
this potential flow solution, the perturbations of the downstream static pressure δps and
upstream total pressure δpti are given by [12]

δps

ρU2 =
∂Y
∂ξ

,
δpti
ρU2 = −∂Y

∂ξ
(18)

Combining Equations (14) and (15), a relation for non-axisymmetric unsteady behavior
in the compressor annulus is derived:

2
∂Y
∂ξ

+ λ
∂(δϕ)

∂θ
+ µ

∂(δϕ)

∂ξ
= ψc(Φ + δϕ)−

∫ 2π

0
ψc(Φ + δϕ) sin θdθ (19)

The set of Equations (6), (13) and (19) describe the behavior of an axial flow com-
pression system. A further simplification of the equation set is obtained by applying the
Galerkin procedure and then retaining the first term in the Fourier series of the perturbation
δϕ only.
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Finally, assume J1 = A2
1 and introduce the most suited formulation of ψc as a cubic of

the form

ψc(ϕ) = ψco + H

[
1 +

3
2

(
ϕ

W
− 1

)(
1 − J

2

)
− 1

2

(
ϕ

W
− 1

)3
]

(20)

where W, H, ψco are the semi-height, the semi-width, and the shut-off value, respectively,
of the curve shown in Figure 2.

The simplest formulation of the MG [2,14] model becomes

dψ

dξ
=

1
4B2lc

(ϕ − ϕT(ψ))

dϕ

dξ
=

1
lc
(ψ − ψc(ϕ))

dJ
dξ

= J
3aH

(1 + ma)W

[
1 −

(
ϕ

W
− 1

)2
− J

4

] (21)

where J = J1 is the squared amplitude of the flow perturbation also identified as the
rotating stall amplitude.

The equations presented in (21) account for a variety of phenomena and features of
the compression system, such as system volumes, inlet and diffuser shapes, axisymmetric
compressor characteristics, throttle characteristics, system hysteresis, compressor geometry,
and internal lag processes in the subsystems. Modifications of the MG model to include effects
generated by inlet distortion, compressibility inside the compressor, rotational speed variation,
and many other improvements have been proposed from other researchers [14,18,31–33].

Numerical Simulations Based on the Moore and Greitzer Model

Some typical solutions obtained by integrating the MG model numerically are pre-
sented in this section. The main parameters of the model used are shown in Table 1. The
four configurations selected, each one representing a possible scenario described by the
MG model, are:

(a) Stable working point;
(b) Rotating stall;
(c) Classical or deep surge;
(d) Mixed instability.

The numerical integration is based on the fourth-order Runge–Kutta method. For all
cases, the initial working condition is the same (ϕo, ψ0, Jo) = (0.56, 0.64, 0.1), whereas the
different dynamics corresponds to different values for the parameters B e γT . The trajec-
tories in the compressor map (ϕ, ψ) and the evolutions in time of all the system variables
ϕ(t), ψ(t), and J(t) are presented in Figure 3 for completeness. The cases (a), (b), and (c) in
Figure 3 are typical scenarios the AI detection algorithm should deal with. Case (d), namely
the mixed instability, is the most confusing but also of great interest since it describes the
system falling in rotating stall/surge. Actually, the system finally ends up in surge so that,
in this case, RS is acting as a precursor of surge. The results are discussed, together with
our findings, in the next sections.

Table 1. Values of Moore and Greitzer parameters.

Parameter ψco W H lI lE a m Jo

Value 0.3 0.25 0.18 2.0 8.0 0.3 1.75 0.1
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(a) Stable Point (SP): B = 1.5, γT = 0.8

(b) Rotating Stall (RS): B = 0.5, γT = 0.5

(c) Classical / Deep Surge (CDS) : B = 2, γT = 0.5

(d) Mixed Instability (MI): B = 0.8, γT = 0.6

Figure 3. Four typical dynamics resulting for the same initial conditions and different parameter
setup of Moore and Greitzer model. For each case, the plot of ϕ − ψ and the evolution in time of ϕ(ξ),
J(ξ) and ψ(ξ) are presented (from left to right).

3. Description of the AI-Based Approach

Artificial intelligence (AI) is an overall definition of a science that contains several
fields within it. This work focuses on the use deep learning (DL) approach based on artificial
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neural networks (ANNs). Briefly, an ANN is formed by an interconnection of nodes, called
neurons, which represent the information processing units. They are organized into layers
which can be recognized as input, hidden, or output layers. An example of a feed-forward
neural network, where the neurons send signals only in one direction, is shown in Figure 4a.
The number of input neurons corresponds to the input variables of the system, while the
number of output nodes equals the number of outputs associated with each input. In
Figure 4b, it is possible to identify three basic elements of the computational model: (i) a set
of connected synapses, each one characterized by a weight, which could be either positive
or negative; (ii) an adding junction to sum or combine the input signals; (iii) an activation
function to introduce non-linearity into the system.

(a) (b)

Figure 4. Sketch of (a) the feed-forward neural network and of (b) the artificial neural network
scheme adopted for TensorFlow.

In order to monitor the training of the neural network, a loss function is defined to
compare the target and the predicted output, measuring the model performance. The train-
ing of a deep neural network consists of two essential phases: forward propagation and
backpropagation. In the first one, the input data are given to the model to generate pre-
dictions, and the error from the target value is calculated through a suitable loss function.
Secondly, to minimize this loss function, the network works backwards from the output,
iteratively updating the coefficients of the nodes (weights). Therefore, the backpropagation
is a required method used in supervised learning to reach the proper level of model perfor-
mance.

The main goal of the present work is to estimate the relationship between time series of
independent variables, i.e., the input feature, and the parameters B and γT of the governing
equations, namely the targets, that characterize the system dynamics. Therefore, the neural
network will be used here to solve a regression problem.

To build and train the neural network, we used TensorFlow, an end-to-end open-
source platform for machine learning [34]. It provides an extended system of libraries,
tools, and resources that helps to create efficient machine learning models, especially those
implementing neural networks [35]. TensorFlow is a platform already extensively used for
fault detection and diagnosis [36,37], also recently introduced for axial compressors [38–40].

The API we used in the TensorFlow library is Keras, which allows for flexible and
modular access to the construction of the model, simplifying experimentation with different
configurations and architectures [41,42].

The dataset is partitioned into three smaller ones, namely the training, validation,
and test datasets. The validation dataset evaluates the accuracy of the model built on
training data, whereas the test set is used to double-check the model. By following best
practice guidelines [35], the dataset partitioning in the present study was set as follows:
Training = 64%, Validation = 16%, Test = 20% .
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ANN Model Definition

The feed-forward neural network is implemented in Python using the Keras functional
API [43], which allows models with multiple inputs and outputs. The model architecture is
based on fully connected layers; that is, each neuron is connected to every neuron in the
previous layer. The target values of B andγT have been normalized in the range [0–1] by
using the MinMaxScaler function of the Scikit-learn library [44].

The input layer, i.e. the first layer of the neural network, receives the data to initialize
a Keras tensor. In the present case, each element of the input dataset is a vector

αij = {ϕ1 . . . ϕN , ψ1 . . . ψN , [J1 . . . JN ]}

with N = 1000 in our computations. Therefore, each element αij consists of a time sequence
describing the evolution of the independent variable {ϕ(ξ), ψ(ξ), J(ξ)} at N times steps
ξn, starting from the same initial condition

ϕ(0) = ϕ0, ψ(0) = ψ0, J(0) = J0

but characterized by the parameters (B)i and (γT)j. The time series of the RS amplitude
J is enclosed between square brackets since in the reduced input dataset its evolution
has been neglected in the training process. The ANN output is the estimated value yB,
ygm of the parameters B and γT , respectively. Seven layers x1 . . . x7 have been introduced
between the input and output layers. The parameters and functions for each layer are
presented in Table 2. A single ANN model is trained for obtaining both outputs. The
convergence of the ANN training process is monitored by the MeanAbsoluteError loss
function [34], whereas the Adaptive Moment Estimation (Adam) algorithm has been used
as the optimizer. The latter combines the advantages of both the AdaGrad (Adaptive
Gradient) and RMSprop (Root Mean Squared Propagation) approaches, from which it takes
the adaptive learning rate and the moving average of squared error, respectively.

Table 2. Neural network parameters.

Layer Number of Units Activation Type Regularization Class

x1 30 ReLU −
x2 100 Linear L2, λ = 0.1
x5 100 Linear L2, λ = 0.05

x3, x4, x6, x7 60 ReLU −
ygm, yB 1 Linear −

As mentioned, two different models have been trained, one considering the full input
dataset {ϕ(ξ), ψ(ξ), J(ξ)} and a reduced dataset with {ϕ(ξ), ψ(ξ)} only. Results on the
convergence of the training process are shown for both datasets in Figure 5. These plots
show similar convergence rates, with a small improvement for the full dataset case, since
the convergence of the validation step is closer to that of the training step. Nevertheless,
we observed that the ANN model trained with the reduced dataset leads to more accu-
rate predictions of the system dynamics. In fact, the time evolution of J(ξ) vanish very
rapidly in most cases, except in rotating stall, so that by including the J-time history in the
training process, the overall convergence error is reduced without improving the detection
of instabilities.

These considerations can be checked in practice with an example test. Let us consider
two different throttle settings, i.e. γt = 0.5 and γT = 0.6, that are able to generate a wide
range of compressor instabilities as B varies. The accuracy of the ANN models based on the
full and on the reduced datasets has been checked by testing a wide number of compressor
time histories as input for the values of γT mentioned above. The time histories in the
input are characterized by the same value of γT and by a different Greitzer parameter
B. The results for the case with γT = 0.5 are shown in Figure 6a. The plots show the
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ANN-estimated values (ygm, yB) of the parameters γT and B, respectively, as a function
of the actual parameter B. As visible in Figure 6a (left), the prediction of γT is always
more accurate for the ANN trained using the reduced dataset. The predicted value of the
parameter B is almost the same for the two ANN models, but when B < 1, which is in
the rotating stall range, the ANN trained with the reduced dataset still remains accurate,
whereas the ANN trained with the full dataset freezes to an almost constant value, as shown
in Figure 6a (right). Contrary to what one might expect, the information produced by J(ξ)
seems to make the solution of the regression problem worse and the RS detection is more
accurate when the evolution of the RS amplitude J is not taken into account during the
ANN training. Similar considerations can be put forward for the case with γT = 0.6,
presented in Figure 6b. The same behavior is observed for a wide range of the throttle
setting γT not reported here. Therefore, all the new ANN-trained models adopted in
present work are based on the reduced set {ϕ, ψ}, whereas the value of J is used as an
additional check of the correct detection of the instabilities.

(a) (b)

Figure 5. Loss function residuals of the ANN training using (a) the {ϕ, ψ, J} full set of time series and
(b) the reduced set {ϕ, ψ}.

(a) γT=0.5

(b) γT= 0.6

Figure 6. Estimated (ygm, yB) versus exact values of the Greitzer parameter B and throttle setting γT .
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4. Results of Parameter Estimation and Instability Detection

In this section, comparisons are provided between the compressor dynamics predicted
by the ANN algorithm and the original dynamics of the MG model. The two dynamics will
differ by the value of the B and γT parameters estimated by the ANN in the former case
and exact in the latter. The results obtained for the cases where the time history duration
is equal to the original time interval of the trained network are discussed first. After that,
the loss of accuracy related to the use of shorter time sequences in input is investigated. All
time histories start from the same initial condition (ϕo, ψo, Jo).

Before proceeding further, we considered the effects of the uncertainty in the evaluation
of the actual Greitzer parameter B. From its definition (10), one may observe that B is
affected mainly by the measure of the speed of sound, i.e. from temperature and from
velocity U . This leads to the uncertainty evaluation ∆B as

∆B
B

=
1
B

[
∂B
∂T

∆T +
∂B
∂U

∆U
]
= −∆T

2T
+

∆U
U

(22)

Considering typical working conditions, e.g., T ≈ 300 K and U ≈ 300 m/s, we may
assume that the uncertainty is of some percent of the measured value. Therefore, errors
of the ANN procedure in estimating the B that fall within this uncertainty range should
be considered as meaningless. Let us finally note that the uncertainty mentioned here is
related to the temperature and rotational speed oscillations only. Moreover, in a practical
application of this detection procedure, the accuracy and the dynamic response of the
sensors used must be accounted for separately.

4.1. Results with Full Length Input Time Series

The scope of the analysis is to investigate how accurately the ANN model can extract
the dynamic parameters of the system from the knowledge of a time history of a certain
duration. An optimal duration of temporal window is difficult to determine anyway,
since it depends on the characteristic time of the actual phenomenon occurring inside the
compressor, which differs case by case.

In the present analysis, the duration of the time series in input is equal to the duration
of the time series used in the ANN training phase. The nondimensional time interval is
∆ξ = 2000, as presented in the the four evolutions commented in Figure 3. We are therefore
trying to recover the dynamics of the cases analyzed in Section 2. The parameters yB
and ygm are estimated by the ANN procedure and the system dynamics is reconstructed
by integrating Equation (21) numerically. The actual and the estimated parameters are
compared in Table 3, whereas the reconstructed and theoretical dynamics are presented in
Figure 7. A brief description of the results follows.

Table 3. Parameter detection. Full-length case. Comparison of the actual parameters (B, γT) and their
corresponding values (yB, ygm) estimated by ANN.

Point B yB err % γT ygm err%

Stable Point 1.5 1.48 1.3 0.8 0.81 1.2
Rotating Stall 0.5 0.56 12 0.5 0.52 4
Surge 2 1.97 1.5 0.5 0.51 2
Mixed Instability 0.8 0.5 37 0.6 0.57 5

Stable Point. For stable working conditions, the neural network succeeds in predicting
the parameters accurately, within a relative error of 1% (Table 3). The predicted and actual
dynamics are therefore in very close agreement, as shown in Figure 7a .

Rotating Stall. The RS phenomenon is well predicted by the ANN model. Although the
relative error in B is around the 12% in the case presented here, the predicted system
evolution still remains very close to the theoretical one (Figure 7b). The final equilibrium
point at which the system works during the rotating stall is also well matched.
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Deep Surge. The hysteresis cycle described by the values predicted by the neural
network is nearly the same as the original one. Although the relative error of the predicted
values of the parameters is a little bit higher than the stable point case (≤2%), from the plot
in Figure 7c the curves of the actual and predicted evolution are almost overlapped.

Mixed Instability. This case does not present a distinct instability, as described pre-
viously in Section 2. Observing the ϕ-ψ plot in Figure 7d, the original system alternates
RS loops with surge cycles. The system tends to RS initially, then the degradation of the
compressor characteristics ψc, due to the increasing value of J, leads the system to surge.
Surging tends to decrease J and ψc rises again. Usually, a fall in the surge is irreversible.
The case we proposed is uncommon but admitted by Equation (21). It has been chosen
because it is more difficult to detect. The yB, ygm values predicted by the ANN identify a
system suffering a rotating stall (see Table 3), which in fact is the instability that comes first.

(a) (b)

(c) (d)

Figure 7. Parameter estimation and reconstruction of the system dynamics. Full-length case.

4.2. ANN Modelling with Missing Data

In the previous section, the compressor’s behavior has been observed over a period
of time long enough to see the instabilities completely developed. Aiming to introduce
a control that prevents the growth of instabilities, the model must manage and predict
the behavior of the compressor over shorter periods of time, down to an interval shorter
than the characteristic time of the instability. Now, a problem arises: the neural network
is trained with input data over a fixed and longer time interval. The mismatch between
the model’s expectations and the available input is one of the most challenging aspects
of testing with partial data because the ANN model is designed to accept a specific input
format and array shape.

The input data must be arranged in order to meet the input ANN model’s expectations,
thus avoiding lower accuracy or even potential mistakes in model outputs.

Over the years, several solutions have been developed to address how to handle
missing data in the ANN input [45]. A straightforward technique is zero padding, which
consists of placing null values in the missing elements. It might be effective when the
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data can be represented as zero without introducing bias, therefore when the sequence or
location of missing data has no major influence on the model’s predictions. This technique
cannot be applied since zero is a value significant for our trained variables and will alter
the input time history.

Imputation is another technique for estimating missing values by relying on existing
ones [46]. This approach is suitable when the missing data are sparse inside the input
vector so that the missing value can be replaced, for instance, by a mean or a weighted
average of the nearest data points or deduced by a regression model. This is not applicable
to our input time sequences since the missing data are all the elements from a certain time
onwards.

Lastly, there are more complicated solutions such as Domain Knowledge or Transfer
Learning [47]. The former approach requires a thorough understanding of the field to
manually enter missing data, a technique that depends entirely on the programmer’s ability.
Transfer learning, instead, requires the access to a pre-trained model, that accepts data with
different shape size so that it can be fine-tuned to the incomplete data.

It was decided, therefore, to create several models, each one trained with different
percentages of the original time interval so that each neural network would be as accurate
as possible for its specific time sequence.

4.3. Results with Reduced Length Input Time Series

Three additional ANN models were trained, composed by the first 40% (ξ f = 800),
10% (ξ f = 200) and 5% (ξ f = 100) elements of the original dataset, respectively. The time
duration ξ f and the number of elements of the dataset decrease proportionally, since the
series are equally spaced in time.

In the first step, we report the analysis for the throttle values γT = 0.5 and γT = 0.6,
as B varies, for comparison with the results obtained in Section 3. The results are presented
in Figure 8 for all the datasets, including the original one (100% data). The plots show that
the shorter the training time sequence is, the lower the accuracy of the predicted values for
B and γT is. However, a few observations can be raised for the different models. Firstly,
the predicted values ygm of the throttle gain γT are reasonably accurate even for the model
with fewer data. Moreover, in the RS range, that is for B < 1, the predicted values yB remain
close the the correct ones (see Figure 8), thus leading to the detection of the right instability.

The “brute force” detection of the instability by ANN is less reliable when using shorter
time sequences. Anyway, by combining the available information with the knowledge of
the MG model static stability, the compressor working conditions may still be identified.
For instance, when J = 0 from theoretical considerations [14], one may deduce the lowest
value of throttle that does not lead to instability because of the change in slope of ψc

(γT)min = 2W/
√

ψco + 2H

According to the data adopted in Table 1, (γT)min = 0.6155. Therefore, as far as
the predicted value ygm >> (γT)min, one may exclude compressor instability without
considering the estimated parameter for B.

In summary, the accuracy of the prediction of the throttle gain is the most important
because it is of relevance in the identification of the instability region, whereas the prediction
of B defines which kind of instability may occur. Analyzing the case for γT = 0.5 in
Figure 8a, the ANN predicted value ygm remains close to the 100% data estimation except
for the shortest time sequence case (5% data), where for large B, the γT overestimation
can even predict stable conditions. The corresponding predicted value of B (i.e., yB) is
well estimated in the RS range (B < 1), whereas for B ≥ 2 the 5% data case may lead to
misleading the system dynamics.

Similar considerations may be put forward for the case with γT = 0.6, although this
value is very close to (γT)min. The results are presented in Figure 8b. With respect to the
ANN model trained by the full dataset, the 40% reduced dataset tends to underestimate
γT , predicting a more severe instability, whereas the other two reduced models tend to
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predict an overestimate of γT and, therefore, the system stability. The detection algorithm
is supposed to be applied continuously on a time moving window so that the instability
can be detected in the next step.

(a) γT=0.5

(b) γT= 0.6

Figure 8. Estimated (ygm, yB) versus exact values of the Greitzer parameter B and throttle setting γT

for input time sequences of different lengths.

As for previous analysis, we studied the effectiveness of the algorithm in predicting
the system parameters and dynamics of conditions already defined in Section 4.1.

Stable Point. The stable working condition is well captured by all the datasets. Even
the shortest dataset (5% data) overpredicts γT by about 10% and B by 100%, as reported in
Table 4. The parameter B does not affect stability and has a weak effect on the dynamics.
The worst case, predicted by the 5% dataset, still maintains good agreement with the actual
system dynamics within the observation window (Figure 9).

Table 4. Stable point.

γT B

Exact Value 0.8 1.5
100% Data 0.81 1.48
40% Data 0.78 1.52
10% Data 0.81 1.38
5% Data 0.87 2.15
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Figure 9. Stable point prediction with 5% data.

Rotating Stall. This example of RS instability is detected by all the ANN models
correctly. The highest mismatch in the prediction of γT is about 8% and 18% for B (see
Table 5). In Figure 10, the worst case prediction of the RS dynamics is presented. Although
not included in the inputs of the ANN-trained models, the evolution of the RS amplitude J
can still be deduced from the detected parameters. As an example, the predicted and exact
J-evolutions are compared in Figure 10b.

(a) (b)

Figure 10. RS prediction with 10% data. (a) ϕ-ψ plane and (b) predicted RS amplitude J(ξ).

Surge. Surge is well captured by all the ANN models. From Table 6, both the parame-
ters γT and B are estimated within a relative error of the 6% and 3%, respectively. The DS
hysteresis cycle is in good agreement with the system’s actual dynamics even for the 5%
data case, as presented in Figure 11.

Figure 11. Deep surge prediction with 5% data.

Mixed Instabilities. This case is the most challenging even for the ANN model based
on the full dataset. The actual dynamics alternates an RS loop for several surge cycles.
From Figure 3d, we may argue that the 40% dataset covers a complete evolution (ξ < 800),
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whereas the 10% and 5% dataset are trained with the part of the time series that exhibit RS
only with J >> 0 . The predicted values of γT are within a 3% error and B estimations are
closer to the actual values for the reduced rather than the full dataset, as visible in Table 7.
Nevertheless, this accuracy does not infer the system dynamics being well captured always,
because the value of γT is very close to the discriminant value γTmin. The ANN reduced
model with 5% data estimates γT > γTmin and therefore predicts a stable working condition
(Figure 12a, whereas for the model with 10% data, the agreement is good (Figure 12b).

(a) (b)

Figure 12. Mixed instabilities with 5% (a) and 10% (b) reduced data.

Table 5. Rotating stall.

γT B

Exact Value 0.5 0.5
100% Data 0.52 0.56
40% Data 0.53 0.59
10% Data 0.54 0.48
5% Data 0.53 0.51

Table 6. Surge.

γT B

Exact Value 0.5 2
100% Data 0.51 1.97
40% Data 0.5 1.95
10% Data 0.52 1.96
5% Data 0.53 1.61

Table 7. Mixed instability.

γT B

Exact Value 0.6 0.8
100% Data 0.57 0.5
40% Data 0.59 0.77
10% Data 0.59 0.85
5% Data 0.62 0.82

4.4. Algorithm Sensitivity to the Initial Conditions and to Sensor Accuracy

All the time sequences and examples presented in this work started from the same
initial conditions (ϕo, ψo). In a practical application, instead, the initial condition is a
generic point in the operative range of the compressor. The plan is therefore to train the
ANN model in a grid of points (ϕo, ψo)ij covering the compressor working domain and
then to combine these data for approximating the compressor dynamics for starting points
in between. As the simplest choice, one could use the nearest trained neighbor as initial
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conditions other than these grid nodes. In the present study, the analysis is limited to
a couple of additional points with the opposite displacement δϕo = ± 6% of ϕo along
the compressor map, introduced to each of the four working conditions in Section 4.1
and studied by using all trained datasets of different time lengths. The results are shown in
the scatter plot of Figure 13. This plot gives a synthetic view of the cluster spread because
of the overall error introduced in the initial conditions and given as evidence for the ability
and limitations of the reduced datasets to capture the instability correctly. Stable points
are detected as stable. Working points in the stable region of the plot (γT >> γTmin) are
well captured and are weakly affected by the initial displacement, since the spread in B
remains within that of the time sequences without displacements (δϕo = 0). Moreover, it
has already been shown in Figure 9 and Table 4 that in that region, γT is the most relevant
parameter, and even with a 30% error in evaluating B, the system dynamics remains very
close to the exact one.

The same behavior can be observed when the time series in input clearly represents
deep surge conditions. The error spread introduced by uncertainty remains closer to that
introduced by the reduced duration ANN models. For the RS and MI cases, the spread
is even lower. These cases are very close to the ideal limit between stable and unstable
cases (γT ≃ γTmin) and between RS and DS (B ≃ 1), drawn as dashed lines in Figure 13.
The overlap between the region of rotating stall, mixed instability, and classical surge is
clearly visible. In these cases, the system may end up in either rotating stall or surge.
Anyway, the system is monitored continuously and the evolution of the system towards
the instability should be detected as the trend is more pronounced.

0 0.5 1 1.5 2 2.5 3

B

0.4

0.5

0.6

0.7

0.8

0.9

1

T

SurgeRotating Stall

Mixed Instability

Stable

100%

40%

10%

5%

exact

Figure 13. Scatter plot of the estimated values for parameters B and γt for different (5–100%) training
datasets and with uncertainty in the initial conditions. Colors define the different cases: SP (green),
RS (blue), MI (yellow), and DS (red).

In a further sensitivity analysis, we studied the effect of sensor precision on the
accuracy of the proposed detection algorithm. In fact, the sensors used for recording the
time series are affected by measurement errors. The related uncertainty is simulated here
as in [48] by introducing random displacements (δϕ, δψ) to all data of the clean input time
series. The same ANN-trained models of the previous analyses are still used for detecting
the system parameters since the clean time sequences also represent the averaged signals
in the present model, as explained below.

The clean time sequence {ϕ(ξk), ψ(ξk)} in the input is perturbed by adding to each
time step k random displacements {δϕk, δψk}. Both δϕk and δψk follow Gaussian distri-
butions with zero mean and standard deviations such that each measurement is affected
by an error ϵϕ and ϵψ, respectively, expressed as a percent of the measured values [48]. In
the present analysis, we assumed ϵϕ = ϵψ = 10%, which is a large value. Typical values
for low cost sensors are some percent of the measured value [48]. The influence of these
errors is shown in Figure 14 for the case with γT = 0.5. For each value of B, the results of
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the detection obtained by 50 randomly perturbed sequences have been superposed to the
value obtained by the clean sequence. As visible in Figure 14a, the ANN predicted value
ygm is almost unaffected by the added noise. The predicted yB exhibits significant spreads
for B > 2, up to the 16%, in the deep surge region. For lower B-values, the predicted yB is
almost insensitive to the assumed sensor precision, as shown in Figure 14b.

(a) (b)
Figure 14. Estimated (ygm, yB) versus exact values of the Greitzer parameter B and throttle setting
γT for the 10% dataset, including sensor accuracy of 10% of the measured value, simulated by
noise addition.

The predicted dynamics of the system is still unaffected by the added noise even
in the worst case. Assuming a DS case with γt = 0.5 and B=2.8, that is, in the wider
yB-spread region of Figure 14b, no appreciable differences have been found between the
noisy and the clean signal cases. The resulting dynamics is shown for ϕ(ξ) in Figure 15a
and ψ(ξ) in Figure 15b , where it can be appreciated that the two system dynamics gen-
erated by the parameters predicted by using the clean and the noisy time sequences are
almost superposed.

(a) (b)

Figure 15. Input and predicted system dynamics for case (γT = 0.5; B = 2.8 ) with clean or noisy
input time sequences. Both sensors for ψ and ϕ measurement are supposed to have a 10% error with
respect to the measured value.

5. Conclusions

The capabilities of an AI algorithm to the detect stable and unstable operating con-
ditions of an axial compressor have been studied by using the model of the compression
system model proposed by Moore and Greitzer [2,3]. It is a fluid dynamic model of general
application, based on the reduction of the flow governing equations by the Galerkin method.
The model allows general theoretical considerations on the instabilities of the compression
system, as well as the tailoring to an actual compressor, by determining experimentally the
appropriate coefficients of the manometric characteristic. The AI approach used is based
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on the TensorFlow platform. Providing the algorithm with a time sequence of the system
evolution, we studied how to set up an AI model that recognizes the compressor operating
condition and detects an eventual instability or its onset. In a practical application, the time
sequence may be obtained from sensors that are monitoring the system continuously.

The study covered the entire operating field of the compressor. The results were
summarized in four key situations (stable point, rotating stall, deep surge, and mixed
instabilities). The effectiveness in detecting the operating condition and the related accuracy
in the reconstruction of the dynamics were studied for each case, in view of an application
of the AI algorithm for the design of a model-based predictive controller. It has been found
that the use of a reduced set of variables, excluding the flow perturbation amplitude J,
improves the algorithm accuracy.

The possibility of providing time sequences in input to the ANN model shorter than
that of training was studied. Most common missing data treatment techniques have proven
to be ineffective or inapplicable. We therefore studied the accuracy and effectiveness of the
detection algorithm when the length of the training time series is decreased. It was found
that by combining the features of the MG model and the results of the ANN detection
algorithm, a time series reduced to 10% of the original training duration is still able to
identify the compressor operating conditions, but in the case of mixed instability, the short
term dynamics is still captured. The accuracy loss caused by the uncertainty in the initial
and boundary conditions has an influence on a limited range of throttling values close to the
stability value γTmin. With respect to ANN models based on the “brute force” training from
the compressor recorded time sequences, the proposed approach allows for considerations
both based on the theoretical model and on the reconstructed dynamics, a simpler step
towards a physically-informed AI approach.
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Abbreviations
B Greitzer’s parameter
J first harmonic rotating stall amplitude
H compressor characteristic parameter
lc equivalent compressor length
lI intake duct length
lE compressor exit duct length
pti inlet total pressure
ps plenum static pressure
R compressor wheel radius
U wheel speed at mean radius
W compressor characteristic parameter
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yB ANN predicted value of B
ygm ANN predicted value of γT
γT throttle parameter
ϕ flow coefficient
ϕT throttle flow characteristics
ψ nondimensional total-to static pressure rise
ψco compressor characteristics parameter
ψc compressor characteristics
ξ nondimensional time
ANN artificial neural network
CS classical surge
DS deep surge
MI mixed instability
RS rotating stall
SP stable point
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