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Abstract
Computer network systems are often subject to several types of attacks. For example, an 
excessive traffic load sent to a web server for making it unusable is the main technique 
introduced by the Distributed Denial of Service (DDoS) attack. A well-known method for 
detecting attacks consists in analyzing the sequence of source IP addresses for detecting 
possible anomalies. With the aim of predicting the next IP address, the Probability Density 
Function of the IP address sequence is estimated. Anomalous requests are detected via pre-
dicting source’s IP addresses in future accesses to the server. Thus, when an access to the 
server occurs, the server accepts only the requests from the predicted IP addresses and it 
blocks all the others. The approaches used to estimate the Probability Density Function of 
IP addresses range from the sequence of IP addresses seen previously and stored in a data-
base to address clustering, for instance via the K-Means algorithm. Instead, the sequence 
of IP addresses is considered as a numerical sequence in this paper, and non-linear analysis 
of this numerical sequence is applied. In particular, we exploited non-linear analysis based 
on Volterra Kernels and Hammerstein models. The experiments carried out with datasets 
of source IP address sequences show that the prediction errors obtained with Hammer-
stein models are smaller than those obtained both with the Volterra Kernels and with the 
sequence clustering based on the K-Means algorithm.
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1 Introduction

User modeling is an important task for web applications dealing with large traffic flows. 
Predict future situations or classify current states are two possible applications of these 
techniques. Several papers show the importance of user modeling in other problems such 
as improving detection and mitigate of Distributed Denial of Service (DDoS) attacks (see 
[19, 22, 29]), improving the quality of service (see [32]), individuate click fraud detection 
and optimize traffic management. In peer-to-peer (P2P) overlay networks, IP models can 
also be used for optimizing request routing [2]. How to manage the actual traffic is a field 
of application of these techniques. If only one class of users is known another family of 
methods often used is the detection ones. If, for example, an Intrusion Prevention System 
wants to mitigate DDoS attacks, the only information that it can use are inferred from the 
normal traffic before the attack. Thus, the different behavior is the only characteristic that 
can be used in order to detect outliers. For example, the normal traffic before the attack 
is the only information that an Intrusion Prevention System wanting to mitigate DDoS 
attacks can use. In this paper, we deal with the management of DDoS because nowadays 
it has become a major threat in the internet. A large scaled networks of infected PCs (usu-
ally called bots or zombies) that combine their bandwidth and computational power for 
overloading a publicly available service and denialing it for legal users are used for those 
attacks. It is worth noting that all public servers are vulnerable to DDoS attacks due to 
the open structure of the internet. The bots are usually acquired automatically by hackers 
by using software tools to scan through the network, detecting vulnerabilities and exploit-
ing the target machines. Due to the current internet infrastructure, the only solution to this 
problem has proven to be the mitigation of DDoS attacks in the machines near to the target 
servers. This protection aims to identify malicious requests in order to limit their destabi-
lizing effect on the servers. There are multiple strategies when dealing with DDoS attacks. 
Near-target filtering solutions has proven to be the most effective ones. These techniques 
use the data contained in the IP packet header information to estimate normal users behav-
ior. Then, during an attack the accesses from outliers are denied. The IP addresses of the 
users are the data that all the methods for discrimination of DDoS traffic have in com-
mon. Due to the huge IP address space, storing the IP addresses and making inferences on 
these data are not easy task. In this paper, we present a novel approach based on system 
identification techniques and, in particular, on the Hammerstein model. The following sec-
tions composed the paper. Section 2 presents the state-of-the-art methods for DDoS traffic 
classification. Since a comprehensive literature review is out of the scope of the present 
work, we suggest to the reader [16], where a broader overview of state-of-the-art mitiga-
tion research is given. In Sects. 3 and 4 we present our proposed technique based on the 
Hammerstein model and we recall some similar models. Section 5 presents the experimen-
tal results and confirms the effectiveness of our approach. DDoS mitigation is the most 
important practical application for IP density estimation. Nevertheless, we present the topic 
in much general way by not restricting the work to this application. In fact, our generic 
view on IP density estimation may be valuable to other applications as well. Applications 
as optimizing routing in peer-to-peer networks, preferring regular customers in overload 
situations (flash crowd events) and identifying non-regular users on websites during high 
click rates on online advertisements (click fraud detection), are possible applications of the 
proposed methodology. In Sect. 6, we provide some interesting, further remarks that focus 
the attention on the integration of our proposed framework with emerging big data analyt-
ics systems. Finally, Sect. 7 reports the conclusions and proposes future research lines.
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2  Related work

In this Section, we review existing IP density estimation approaches. A probability den-
sity function (PDF) is used to formulate the implicitly used ideas in a probabilistic way. In 
Fig. 1, we report a summary table of the most recent applications.

2.1  History‑based IP filtering

One of the first work on the field of IP filtering is [24]. An algorithm called History based 
IP Filtering (HIF) is proposed in their work. During an attack, HIF allows the access to the 
website only to the IP addresses belonging to a database containing all frequently observed 
addresses (IAD).

The idea behind this algorithm was introduced in [20]. In this paper, it is observed that 
the IP addresses from Code Red worm attacks were different from the standard IPs access-
ing the website. Thus, HIF adds an IP address to the IAD only if a certain threshold is 
exceeded. This threshold can be measured with different methods, e.g., a certain number of 
packets, a fixed number of visits in a certain time window, etc. The advantage of the HIF 
algorithm is the low computational load required for its implementation. A main drawback 
of this algorithm is that the differentiation between users which revisit the server more 
often than others is not consider. Therefore, a less precise density estimation is consid-
ered. Moreover, if an IP address belongs to the IAD, it is not removed unless specific but 
fixed rules are applied for the update.  This prevent the method to adapt to the dynamic 
context of the web.  A kind of history-based IP filtering approach is introduced in [27]. 
The focus of the paper is just on DDoS attacks, and the authors present it as one of the 
most difficult security issues on the Internet today. Indeed, these attacks can without much 
of a stretch, fumes the assets of the potential victims. Since the aggressors regularly pro-
duce their IP delivers to shroud their character, the problem is recognised by the authors 
to be much more extreme. It is worth noting that the problem in the paper is difficult also 
because the only guard mechanism against DDoS attacks is to filter the IP addresses to the 
victim’s side. Due to this situation, regardless of whether the attacking traffic is filtered by 
the victim, the attacker may achieve the objective of blocking access to the victim’s band-
width. To solve this issue, the tracking of the wellspring of an attack is enabled by using 
IP-Traceback. The authors claim that by using this technique, it is possible to minimize the 
attack when it is in progress. Due to these characteristics of the problem, authors minimize 
the quantity of malicious packets entering the network by means of a hybrid method. They 
also introduce a quantum annealing technique at the server side to identify and mitigate the 
DDoS attack. Client puzzle is used in order to minimize the attack messages as a part of 

Fig. 1  Summary of state-of-the-art IP filtering approaches
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the ingress router and at the egress side is used the path fingerprint. The authors conclude 
the paper by presenting simulation studies which prove that recognizing and mitigating the 
DDoS attacks is optimally done by the proposed techniques.

2.2  Adaptive history‑based IP filtering

To compensate the shortcomings of HIF, [19] presents the Adaptive History-based IP Fil-
tering (AHIF). The probability that an IP address s is not malicious is estimated by the 
methods as follows:

where ns is the number of accesses of IP addresses s during the standard period. It is worth 
noting that HIF just approximate Eq. (1) by binary variables. Equation (1) can be inter-
preted as the conditional probability to observe the IP s given that the server is not under 
attack. A threshold over f(s) is used for predicting the appearance of an IP address (or an IP 
range). Equation (2) shows the decision rule r applied by AHIF algorithm:

It should be noted that adaptive metaphors have been applied in several other domains, 
with relevant success (e.g., [5, 30]).

Given a set of constant width networks with fixed network masks ranging from 16 up 
to 24 bit, during attack mitigation, the most appropriate network mask is chosen such that 
a maximum number of firewall rules is not exceeded and the attack traffic is reduced to be 
below the maximum server capacity. The adaptive method is shown to perform better in 
terms of predicting user IP addresses during an attack. Nevertheless, the AHIF algorithm 
does not consider neighbor relations (i.e., relations between source networks).

Phan and Park [26] is in line with the class of adaptive history-based IP filtering 
approaches. In order to study some DDoS aspects, the specific case of Software-defined 
networking (SDN)-based Clouds is considered by the author. SDN is the state of the art 
outcome for transforming the Internet infrastructure to be more programmable, configur-
able, and manageable. It is the results of extensive research efforts over the past few dec-
ades toward. However, critical cyber-threats in the SDN-based cloud environment are ris-
ing rapidly, among all cyber-attacks, DDoS attack is one of the most damaging. Therefore, 
an efficient solution to tackle DDoS attacks in the SDN-based Cloud environment is pro-
posed. The algorithm proposed for improving the traffic classification is composed by a new 
hybrid machine learning model based on support vector machines and self-organizing map 
algorithms. Then, they propose an enhanced history-based IP filtering scheme (eHIPF) to 
improve the attack detection rate and speed. Finally, a novel mechanism that combines both 
the hybrid machine learning model and the eHIPF scheme is introduced in order to better 
defend from a DDoS attack in the SDN-based cloud environment.

2.3  Clustering of source address prefixes

In [22], the authors introduce algorithms for mitigating DDoS attacks by filtering source 
address prefixes. Unlike AHIF, different sizes network are considered. The authors use a 

(1)�(s) =
ns∑N−1

i=0
nsi

(2)r =

{
reject if �(s) ≥ �

accept otherwise

174 Multimedia Tools and Applications (2022) 81:171–189
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hierarchical agglomerative clustering algorithm with single linkage for finding the most 
appropriate network masks. The used distance measure is defined with respect to network 
boundaries. In general, both the amount of requests from a source network and the neighbor-
ing density estimation (from a generalized clustering method) are taken into account. Unfor-
tunately, the proposed technique is not applicable in practice on large source IP datasets since 
hierarchical clustering methods consume a lot of memory, (see [29]).

3  Non‑linear analytic prediction of IP addresses

Data driven identification of mathematical models of physical systems starts with representing 
the systems as a black box. In other terms, the internal mechanisms are totally unknown to us 
despite the availability of inputs and outputs. Thus, choosing the model representative of the 
system is the first step of identification techniques. The second step is to estimate its param-
eters through an optimization algorithm so that the model mimics at good as possible the inner 
mechanisms of the non-linear system. The test of the goodness of fit are performed by using 
the available inputs and outputs. This approach is, for instance, widely used in the related big 
data analytics area (e.g., [1, 3, 4, 8, 10–14, 31]).

In this work, the Linear-In-the-Parameters (LIP) predictors are considered. They belong to 
the sub-class of non-linear predictors. LIP predictors have many interesting features, the one 
that is more interesting in our setting is a linear dependence of the predictor output on the pre-
dictor coefficients. Such predictors are inherently stable, and their estimation is guaranteed to 
converge to a globally minimum solution (in contrast to other types of non-linear filters whose 
cost function may exhibit many local minima). We start by considering a causal, time-invariant, 
finite-memory, continuous non-linear predictor. Equation (3) reported its mathematical model:

where s(n) is the input signal, ŝ(n) its estimation and f (⋅) is a general continuous non-linear 
function describing the state of the system. We can expand f (⋅) with a series of basis func-
tions fi(⋅) , as shown in Eq. (4):

Equation (4) holds for proper coefficients h(i). As commonly done in the analysis of non 
linear systems, we truncate the series in Eq. (4) to the first N terms. Thus, we obtain Eq. (5):

In the general case, a linear-in-the-parameters non-linear predictor is described by the 
input-output relationship as in Eq. (6):

where the row vector containing predictor coefficients is represented by H⃗T and the corre-
sponding column vector whose elements are non-linear combinations of the input samples 
is represented by X⃗(n).

(3)ŝ(n) = f (s(n − 1),… , s(n − N))

(4)ŝ(n) =

∞∑
i=1

h(i)fi(s(n − i))

(5)ŝ(n) =

N∑
i=1

h(i)fi(s(n − i))

(6)ŝ(n) = H⃗T X⃗(n)

175Multimedia Tools and Applications (2022) 81:171–189
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3.1  Linear predictor

Linear prediction is a well-known technique with a long history [21]. Given a time series 
X⃗ , the optimal approximation of sample x(n) is obtained from a linear combination of the 
N most recent samples. Hence, the linear predictor is described in Eq. (7):

or, in matrix form as in Eq. (8):

where Eqs. (9) and (10) define the coefficients of Eq. (8):

3.2  Non‑linear predictor based on Volterra series

As Linear Prediction, Non Linear Prediction is the optimal approximation of the new obser-
vation computed by using a non linear combination of the N most recent samples. Volterra 
series is one of the most popular non-linear predictor (see [25]). We report in Eq. (11) a 
Volterra predictor based on a Volterra series truncated to the second term:

where the symmetry of the Volterra kernel (the h coefficients) is considered. In matrix 
terms, Eq. (12) represents the Volterra predictor:

where Eqs. (13) and (14) show the coefficient and input vectors of Eq. (12):

3.3  Non‑linear predictor based on Functional Link Artificial Neural Networks 
(FLANN)

FLANN is a single layer neural network without hidden layer. Function expansion of the 
input signal exploiting suitable orthogonal polynomials is used to model the non-linear 

(7)x̂(n) =

N∑
i=1

h1(i)x(n − i)

(8)x̂(n) = H⃗T X⃗(n)

(9)H⃗T =
[
h1(1) h1(2) … h1(N)

]

(10)X⃗T =
[
x(n − 1) x(n − 2) … x(n − N)

]

(11)x̂(n) =

N1∑
i=1

h1(i)x(n − i) +

N2∑
i=1

N2∑
j=i

h2(i, j)x(n − i)x(n − j)

(12)x̂(n) = H⃗T X⃗(n)

(13)H⃗T =

[
h1(1) h1(2)… h1(N)

h2(1, 1) h2(1, 2)… h2(N2,N2)

]

(14)X⃗T =

[
x(n − 1) x(n − 2)… x(n − N1)

x2(n − 1) x(n − 1)x(n − 2)… x2(n − N2)

]

176 Multimedia Tools and Applications (2022) 81:171–189
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relationships between input and output. The most used choices are trigonometric, Legendre 
and Chebyshev polynomials.

However, the most frequently used basis function used in FLANN for function expan-
sion are trigonometric polynomials [33]. Equation (15) reports the FLANN predictor:

Using the matrix notation of above, it is possible to notice that also the equation of the 
Flann predictor (i.e., Eq. (15)) can be represented as follows:

where the coefficient and input vectors of FLANN predictors are reported in Eqs. (17) and 
(18), respectively:

3.4  Non‑linear predictors based on Hammerstein models

Previous research [7] shown that many real non-linear systems, spanning from electrome-
chanical systems to audio systems, can be modeled using a static non-linearity.

System non-linearities are captured by these models by means of a set of non-linear 
blocks in series with a linear function. Figure 2 represents the general schema of the model.

One of the most famous non-linear models is the one proposed by Hammerstein, which 
gains his name. Its front-end is composed by a non-linear function whose inputs are the 

(15)

x̂(n) =

N∑
i=1

h1(i)x(n − i) +

N∑
i=1

N∑
j=1

h2(i, j) cos
[
i𝜋x(n − j)

]

+

N∑
i=1

N∑
j=1

h2(i, j) sin
[
i𝜋x(n − j)

]

(16)x̂(n) = H⃗T X⃗(n)

(17)H⃗T =

⎡⎢⎢⎣

h1(1) h1(2)… h1(N)

h2(1, 1) h2(1, 2)… h2(N,N)

h3(1, 1) h3(1, 2)… h3(N,N)

⎤⎥⎥⎦

(18)X⃗T =

⎡⎢⎢⎣

x(n − 1) x(n − 2) … x(n − N)

cos[𝜋x(n − 1)] cos[𝜋x(n − 2)] … … cos[N2𝜋x(n − N)]

sin[𝜋x(n − 1)] sin[𝜋x(n − 2)] … … sin[N2𝜋x(n − N)]

⎤
⎥⎥⎦

Fig. 2  Representation of the Hammerstein models
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system inputs. Of course, the type of non-linearity depends on the actual physical system to 
be modeled. The input to the linear part of the system is the output of the non-linear function.

In the rest of the paper, we use a finite polynomial expansion in order to model non-
linearity. Furthermore, we assume that the linear dynamic is realized with a Finite Impulse 
Response (FIR) filter. Furthermore, in contrast with [7], we assume a mean error analysis and 
we postpone the analysis in the robust framework in future work. In mathematical terms, Eq. 
(19) shows the non linear transformation:

The output z(n) is fed to a FIR system as in Eq. (20):

Substituting Eq. (19) in Eq. (20), Eq. (21) is derived:

Equation (22) is obtained by Eq. (21) by setting c(i, j) = h(j)p(i):

and, by writing Eq. (22) in matrix form, we get Eq. (23):

where the matrices H⃗T and X⃗T are defined in Eqs. (24) and (25), respectively:

(19)

z(n) = p(1)x(n) + p(2)x2(n) + p(3)x3(n)

+… p(m)xm(n) =

M∑
i=1

p(i)xi(n)

(20)

x̂(n) = h(0) + h(1)z(n − 1) + h(2)z(n − 2) +…

+ h(N)z(n − N) =

N∑
j=1

h( j)z(n − j)

(21)

x̂(n) =

N∑
j=1

h( j)z(n − j) =

N∑
j=1

h( j)

M∑
i=1

p(i)xi(n − j)

=

M∑
i=2

N∑
j=1

h( j)p(i)xi(n − j)

(22)x̂(n) =

M∑
i=1

N∑
j=1

c(i, j)xi(n − j)

(23)x̂(n) = H⃗T X⃗(n)

(24)H⃗T =

⎡
⎢⎢⎢⎣

c(2, 1) c(2, 2) … c(2,N)

c(3, 1) c(3, 2) … c(3,N)

… … … …

c(M, 1) c(M, 2) … c(M,N)

⎤⎥⎥⎥⎦

(25)X⃗T =

⎡
⎢⎢⎢⎣

x2(n − 1) x2(n − 2) … x2(n − N)

x3(n − 1) x3(n − 2) … x3(n − N)

… … … …

xM(n − 1) xM(n − 2) … xM(n − N)

⎤⎥⎥⎥⎦
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4  Predictor parameters estimation

So far, we saw that all the predictors can be expressed, at time instant n, as follows:

where X⃗(n) is the input vector (for the aforementioned different definitions), and H⃗T is 
the parameters vector. For the estimation of the parameters there are several possibili-
ties. Before to analyse them, we generalize the model of Eq. (26). Thus, in the following 
we consider the general signal ŷ(n) , in relation to generic input that can be its previous 
observations.

The general Eq. (27) is then considered instead of Eq. (26):

We recall to the reader, that in our application domain, the i-th component of vector 
ŷ(n) represents the number of access from IP address si . In the following section, we 
present two methods for estimating the matrix H⃗T . In particular, a block based approach 
is considered in Sect. 4.1, while an adaptive approach is considered in Sect. 4.2.

4.1  Block‑based approach

The Least Square estimation is based on the minimization of the mathematical expecta-
tion of the squared prediction error e(n) = y(n) − ŷ(n) shown in Eq. (28):

Due to the convexity of function in Eq. (28), setting to zero the Laplacian allows us 
to compute the parameters leading to the minimum estimation error:

Thus, Eq. (29) can be written. Its solution is shown in Eq. (30):

where the the definition of the statistical auto-correlation matrix of the input vector X⃗(n) , 
R⃗xx(n) , is shown in Eq. (31):

Instead, Eq. (32) shows the statistical cross-correlation vector between the signal s(n) 
and the input vector X⃗(n):

Equations (33) and (34) show the expressions used to estimate the mathematical 
expectations of the auto and cross correlation, respectively:

(26)x̂(n) = H⃗T X⃗(n)

(27)ŷ(n) = H⃗T X⃗(n)

(28)E
[
e2
]
= E

[
(y(n) − ŷ(n))2

]
= E

[(
y(n) − H⃗T X⃗(n)

)2
]

(29)∇HE[e
2] = E[∇He

2] = E
[
2e(n)∇He

]
= 0

(30)H⃗opt = R⃗−1
xx
R⃗yx

(31)R⃗xx(n) = E[X⃗(n)X⃗T (n)]

(32)R⃗yx(n) = E[y(n)X⃗(n)]

179Multimedia Tools and Applications (2022) 81:171–189
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4.2  Adaptive approach

Let us consider a general second order terms of a Volterra predictor as in Eq. (35):

The generalization of Eq. (35) for higher order term is reported in Eq. (36):

In the following, we consider a Volterra predictor based on a Volterra series trun-
cated to the second term as in Eq. (37). It is worth noting that despite the easier notation 
the general calculation does not change is higher order approximations are considered:

by defining HT (n) as in Eq. (38), and XT (n) as in Eq. (39):

Equation (40) is obtained by rearranging Eq. (37):

We consider the loss function in Eq. (41) in order to estimate the best parameter H:

where �n−k weights the relative importance of each squared error. As the reader can notice, 
Eqs. (41) and (28) are similar. By imposing the gradient of Eq. (41) to zero, we find the H 
that minimizes the convex function Jn(H) . The mathematical expression is reported in Eq. 
(42):

(33)R⃗xx(n) =

∑n

k=1
X⃗(n)X⃗T (n)

n

(34)R⃗yx(n) =

∑n

k=1
y(k)(n)X⃗(n)

n

(35)y(n) =

N−1∑
k=0

N−1∑
r=0

h2(k, r)x(n − k)x(n − r)

(36)y(n) =

N∑
k1=1

⋯

N∑
kp=1

ck1 ⋯ ckpHp

[
xk1 (n),⋯ xkp (n)

]

(37)ŷ(n) =

N1∑
i=1

h1(i)y(n − i) +

N2∑
i=1

N2∑
j=i

h2(i, j)y(n − i)y(n − j)

(38)HT (n) =
|||h1(1),⋯ , h1

(
N1

)
, h2(1, 1),⋯ , h2

(
N2,N2

)|||

(39)
XT (n) =

|||y(n − 1),⋯ , y
(
n − N1

)
, y2(n − 1)

y(n − 1)y(n − 2),⋯ , y2
(
n − N2

)|

(40)ŷ(n) = HT (n)X(n)

(41)Jn(H) =

n∑
k=0

𝜆n−k
[
ŷ(k) − HT (n)X(k)

]2
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Equation (42) is equivalent to Eq. (43):

Equation (44) defines RXX(n):

Equation (45) shows how the best H can be computed:

It is worth to notice that RXX(n) is a combination of RXX(n − 1) and X(n)XT (n) as in 
Eq. (46):

thus, Eq. (47) can be obtained:

The parameters k(n) are defined in Eq.(48):

Analogously to matrix RXX(n) , matrix RyX(n) in Eq. (45) can be written as in Eq. (49):

Thus, Eq. (50) is obtained by plugging Eqs. (49) and (47) in Eq. (45) and rearranging 
the terms:

Equation (51) defines �:

by recalling Eq. (48), Eq. (50) can be rewritten as Eq. (52):

Let us define matrix F(n) as in Eq. (53):

Equation (54) resumes the previous equations in a system:

(42)∇HJn(H) = 0

(43)RXX(n)H(n) = RyX(n)

(44)
RXX(n) =

∑n

k=0
�n−kX(k)XT (k)

RyX(n) =
∑n

k=0
�n−ky(k)X(k)

(45)H(n) = R−1
XX
(n)RyX(n)

(46)RXX(n) = �RXX(n − 1) + X(n)XT (n)

(47)R−1
XX
(n) =

1

�

[
R−1
XX
(n − 1) − k(n)XT (n)R−1

XX
(n − 1)

]

(48)k(n) =
R−1
XX
(n − 1)X(n)

� + XT (n)R−1
XX
(n − 1)X(n)

(49)RyX(n) = �RyX(n − 1) + y(n)X(n)

(50)H(n) = H(n − 1) + R−1
XX
(n)X(n)�(n)

(51)𝜖 = ŷ(n) − HT (n − 1)X(n)

(52)H(n) = H(n − 1) + �(n)k(n)

(53)F(n) = ST (n − 1)X(n)
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It should be noted that by solving Eq. (54) the estimation adapts in each step to 
decrease the error. Thus, a structure similar to the the Kalman filter can be observed. 
From the computational point of view, the solution of Eq. (40) requires a number of 
operation that is equal to:

where Ntot is equal to:

5  Experiments

In order to prove the effectiveness of the proposed approach, in this Section we present 
our experimental results for a simulated dataset and a real one. In this Section, a com-
parison of the two approaches (namely the prediction based on Volterra systems and the 
one based on the Hammerstein one) is presented. The following method has been used 
to generate the simulated dataset: 

1. generate a set of N = 1000 IP addresses in which the 10% are malicious users. For each 
of them a normal random variable generates the number of access. In particular the 
distribution chosen is N(�,�∕5) where � = U[10, 100] if the IP address is not malicious, 
� = U[200, 1000] if the user is malicious;

2. during each time step t:

– pick a random number using a Bernoulli with probability p = 0.001 , i.e., 
Xt ∼ B(0.001);

– an attack is performed if Xt = 1 , (i.e., one or more malicious users have been 
selected) else no attach is performed.

In each time step, the algorithm compares the access observed with the one predicted 
and blocks the access to the website to all those IPs which number of accesses is greater 
than the forecasted number of accesses. In the real setting, it would be better to improve 
the robustness of the algorithm by adding a parameter that increase by 10% − 20% the 
forecasted number of accesses. Nevertheless, the results of the plain algorithm are pre-
sented. It is worth noting that those results are a lower bound of the performance of the 
algorithm in the real settings. The first analysis that we perform is related to the number 
of IP address that are not blocked despite being not malicious. We define en as in Eq. 
(57):

(54)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

L(n) = S(n − 1)F(n)

𝛽(n) = 𝜆 + FT (n)F(n)

𝛼(n) =
1

𝛽(n)+
√
𝜆𝛽(n)

S(n) =
1√
𝜆

�
S(n − 1) − 𝛼(n)L(n)FT (n)

�

𝜖(n) = r̂(n − 1) − 𝛼(n)L(n)FT (n)

𝜖(n) = H(n − 1) + L(n)
𝜖(n)

𝛽(n)

(55)6Ntot + 2N2

tot

(56)Ntot = N1 + N2

(
N2 + 1

)
∕2

182 Multimedia Tools and Applications (2022) 81:171–189



1 3

Instead, Eq. (58) defines e:

The value e is the maximum percentage of not malicious IP addresses for which the 
identification algorithm has denied the access in the whole time horizon [0, T]. This is an 
important indicator since it provides a measure of the damage that adopting this technique 
can generate to standard users. Figure 3 shows the values of e versus different values of 
probability of attack p. It is worth noting that e is almost negligible for extreme values of p, 
i.e., p near to 0 and 1. In particular, if p = 0 , (i.e., no attacks) the server allows the service 
to all the IP addresses. Instead, if p = 1 , (i.e., in each time step there is an attack), the indi-
viduation of the malicious IP addresses is well performed by both the algorithms. As the 
reader can notice, the worst values of e are achieved for p near to 0.5. This is reasonable, 
since p = 0.5 is the value characterized by the less information about the probability of an 
attack. The two values e = 4% and e = 7% are the worst performance of the Hammerstein 
and Volterra model, respectively. These values are reasonable for a real application. The 
goodness of these results is also strengthened by observing that it is unlucky that the real 
setting will present a probability of attack greater than few percentage points Thus, the pre-
sented results and Fig. 3, must be interpreted as an upper bound on the real error e.

As the reader can notice, the number of coefficients needed by the Volterra model is 
greater than the one needed by the Hammerstein (see Eq. (21) with respect to Eq. (11)). 
Thus, outfitting is probably the cause of the worst performance of the Volterra model in 
Fig. 3. Furthermore, by observing that the Hammerstein model required less coefficients 
than the Volterra one, we can conclude that also from a computational point of view to use 
the usage of the Hammerstein model is preferable.

The requests made to the 1998 World Cup Web site between April 30, 1998 and July 
26, 19981 are considered as the real data set. During this period of time the database col-
lected 1,352,804,107 requests. The fields of the request structure contain the following 
information:

(57)en =
number of legal IPs blocked

total number of accesses in t
∀t = 0,… , T

(58)e = max
n∈[0,T]

en

Fig. 3  Maximum error e for 
different values of probability of 
attack p 
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– timestamp is the time of the request, it is recorded in number of seconds and it has been 
converted to GMT for improving readability. During the World Cup the local time was 
2 hours ahead of GMT (+0200). This amount must be used to adjust the timestamp in 
order to determine the local time.

– clientID is an integer number which identifies the client that issued the request. For 
privacy reasons the real IP addresses cannot be released. It worth noting that each IP 
address is mapped though a bijective function in the clientID space. Thus, if IP address 
s is mapped to clientID X on day t then any request in any of the data sets containing. 
clientID X also came from IP address s.

– objectID a unique integer identifier for the requested URL; these mappings are also 
1-to-1 and are preserved across the entire data set.

– size records the number of bytes in the response.
– method is the REQUEST method of the client’s request (e.g., GET, POST, etc.).
– status this field contains two pieces of information; the 2 highest order bits contain the 

HTTP version indicated in the client’s request (e.g., HTTP/1.0); the remaining 6 bits 
indicate the response status code (e.g., 200 OK).

– type if the request required a file, it is the type of file. It is generally the file extension 
(e.g., .html), or the presence of a parameter list.

– server indicates the IP address of the server which handled the request. The upper 3 bits 
indicate which region the server was at; the remaining bits indicate which server at the 
site handled the request.

The dataset collects data about the access for 87 days. We split the data in two parts: the 
first one is used for initializing the estimator in Eq. (37), while the second one is used as 
test set by using a rolling horizon method (as in [7]). Particularly, for each day t we com-
pute the estimation by using all the IP observations in the previous days [0, t − 1] . From the 
computational point of view the more days are considered, the more computational time 
is required by the algorithms. Thus, as above described the algorithms cannot be applied 
in the real field without the definition of a fixed time window that limits the number of 
data considered. Nevertheless, their application of an ad-hoc website for a event with a 
finite duration is reasonable. Figure 4 shows the results for the Hammerstein and Volterra 
models.

Due to the sudden increment of different IP addresses accessing the website for the start-
ing matches of the competition, both methods shown an increment in the estimation error 
in June. Then, the estimation error decrease exponentially despite dealing with several mil-
lions of IPs. The smallest estimation error and the lowest error variance is shown by the 

Fig. 4  Estimation error for each 
day of activity of the website

Apr 30 May 14 May 28 Jun 11 Jun 25 Jul 09 Jul 23
1998   

0

0.2

0.4

0.6

0.8

1
Hammerstein models
Volterra Kernels

184 Multimedia Tools and Applications (2022) 81:171–189



1 3

Hammerstein model. Furthermore, the amplitude of the error due to the sudden increase of 
the IPs is bigger for the Volterra model.

Since the computation of the optimal coefficient H(n) may require some time, we meas-
ure the percentage of available data that our approach needs in order to provide good 
results. The average estimation error of each model at time step n, given a subset of the IPs 
observed in interval [0, n − 1] is considered in this experiment. We consider these subsets 
to be composed of a percentage ip% of the IP addresses. Figure 5 shows the experimental 
results on real data.

In this experiment, we also report the performance of the state of the art techniques, in 
particular we consider the clustering technique proposed in [22].

Both the Volterra kernels and the clustering techniques are outperformed by the Ham-
merstein models. In particular, the worst performing technique is the clustering one. This 
is due to the nature of the clustering techniques that exploit the geometric information of 
the data more than their time dependency. We highlight that the real time applicability of 
the method is not affected by the computational evaluation of H(n) since the decision of 
the IP address to block is taken by considering the estimator ŷ(n) that is computed once per 
day. Therefore, the computation of H(n) does not need to be performed in a short amount 
of time. It is worth noting that the average estimation error is the right point of the graph in 
Fig. 5.

To avoid over-fitting, the best values of ip% to be considered is ip% ∼ 60% . For further 
testing the proposed methodologies, we test them using the aforementioned simulation 
setting using different probabilities of attack. In this way, we can see how the algorithms 
behave in different conditions. The results are shown in Fig. 6. As the reader can notice, the 

Fig. 5  Estimation error vs. per-
centage size of the training set
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results of the analysis gather from Fig. 5 are confirmed. The best models are the Hammer-
stein ones that achieve the maximum error en ∼ 5% . These results are particularly impor-
tant if we consider that the worst performance is achieved for a probability of attack p near 
50% that it very unlucky in the real world. The second best models are the Volterra ker-
nels (the worst performance is en ∼ 10% ) while the worst performance are achieved by the 
Sequence clustering techniques based on K-Means ( en ∼ 25% ). We have selected K-Means 
as the basis of our sequence clustering as it has proven to be very good on this specific 
applicative setting (e.g., [23]). The interesting fact is that the behaviour of the models is 
well define and it has statistically significance due to the low standard deviations of the 
observations. It is worthwhile noting that the standard deviations of the Hammerstein mod-
els are smaller than the one of the Volterra kernels that are smaller than the ones of the 
Sequence clustering techniques. This better result of Hammerstein models is due to the 
numerical stability of the method. Instead, the sequence clustering techniques present the 
biggest standard deviations due to their intrinsic stochasticity.

6  Further remarks: Integration with big data analytics systems

Recent studies, such as [28], have clearly shown the strong requirement of integrating 
cyber-security frameworks, like the one we presented on our paper, with innovative big 
data analytics systems. Our technique, being intrinsically a big data analytics technique, is 
immediately prone to adhere to this nice integration.

Indeed, when the input dataset to be processed become excessive large, i.e. it takes the 
form of a big data repository, scalability becomes a critical requirement towards the relia-
bility of the overall cyber-security framework. This way, cyber-security techniques must be 
seamlessly integrated with state-of-the-art big data processing platforms, such as Hadoop, 
Spark and so forth, in order to obtain truly-scalable analytics systems over big data reposi-
tories (just like collections of IP addresses deriving from a portion of the Web).

Therefore, it follows that the new challenge for next-generation cyber-security frame-
works is represented by the strict integration with big data analytics systems, which more 
and more play the role of enabling technologies for a plethora of emerging applications like 
smart cities, social networks, bio-informatics, and so forth.

Finally, as regards the integration with big data analytics systems, the following critical 
aspects must be taken into account: 

1. scalability, which is the attitude to scale over growing-in-size big data repositories of 
IPs – this becomes critical in modern applicative settings, perhaps mapped on top of 
multi-Cloud architectures;

2. high-rate streaming sources: the proposed framework takes as input IPs, a well-known 
class of streaming sources; on the other hand, modern applications demand for high-rate 
IPs, i.e. IPs arriving at a very high inter-arrival time – this puts the basis for special-
ized acquisition modules that should interface the target data sources and the proposed 
prediction framework;

3. heterogeneity, which is the capabilities of dealing with the variety of IP addresses that 
can reach very high values – this is a special feature to be taken into account, due to 
the nature of different domains that characterize popular applicative settings where our 
framework is supposed to operate (e.g., heterogeneous IP multi-domains);
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4. outlier and false positive management: outliers and false positives still occur in real-life 
IP-based application scenarios; this feature poses several challenges to deal-with, due 
to the reduction of the prediction accuracy that it may derive from this phenomenon.

7  Conclusions and future work

In this paper, we presented a new way to deal with cyber-attack by using Hammerstein 
models. The effectiveness of the proposed techniques is proven by means of experi-
ments using also a real data. Moreover, they have proven to outperforming other well-
known techniques (such as clustering). Summarizing, in this paper we made the following 
contributions: 

1. we focus on the problem of detecting DDoS attacks for analyzing and mining sequences 
of IP addresses;

2. our method is a kind of anomaly detection mining method;
3. our goal is that of predicting the next IP address via analyzing the Probability Density 

Function of the actual IP address sequence;
4. the core of our approach consists in considering the sequence of IP addresses as a 

numerical sequence in, and non-linear analysis of this sequence is applied;
5. we exploit non-linear analysis based on Volterra Kernels and Hammerstein models;
6. experiments show that the prediction errors obtained with Hammerstein models are 

smaller than those obtained both with the Volterra Kernels and with the sequence clus-
tering based on the K-Means algorithm.

Our approach has also some open issues and limitations. For instance, we still need to 
study how our framework can scale on big data settings, managing billions and billions of 
IP addresses. Furthermore, we still need to improve our prediction technique as to make 
it robust with respect to the presence of “false” outliers in data. The latter problem can, in 
fact, be witness of more sophisticated cyber-attacks.

We propose two future lines of research. First, we want to consider the problem in a 
stochastic optimization settings, as for example in [18] and [17]. Second, we think that the 
exploitation of knowledge management methodologies can be beneficial for the proposed 
algorithms (e.g., [6, 9, 15]).
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