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Abstract

The statistical operators typically applied in postprocessing numerical databases
for statistically steady turbulence are a mixture of physical averages in homoge-
neous spatial directions and in time. Alternative averaging operators may involve
phase or ensemble averages over different simulations of the same flow. In this
paper, we propose straightforward metrics to assess the relative importance of
these averages, employing a mixed averaging analysis of the variance. We apply
our novel indicators to two statistically steady turbulent flows that are homo-
geneous in the spanwise direction. In addition, this study highlights the local
effectiveness of the averaging operator, which can vary significantly depending
on the mean flow velocity and turbulent length scales. The work can be utilized
to identify the most effective averaging procedure in flow configurations featur-
ing at least two homogeneous directions. Thus, this will contribute to achieving
better statistics for turbulent flow predictions or reducing computing time.
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1 Introduction

The theory of turbulence primarly relies on the concept of ensemble averaging, and the
statistical description of turbulent flows largely depends on that. Ideally, conducting
the same experiment or the same simulation under identical conditions is the preferred
theoretical scenario, but it is very difficult to realize practically. Time, space, or phase
averages are the usual surrogates, acting as substitutes for ensemble averages when
possible. Obviously, in the general case, for statistically unsteady turbulence, involving
complex geometry, without homogeneous directions, ensemble averaging remains the
sole option.

A simulation of turbulent flows based solely on ensemble averages is still far
from realization, due to the unaffordable computational cost that would be required.
Currently, mixed averaging procedures serve as substitutes for the ensemble aver-
age in practical simulations of steady turbulent flows with space symmetries. Shirian
et al. [1] assess the quality of the statistics evaluated using averaging in statistically
stationary chaotic phenomena, particularly in low Reynolds number, incompressible
homogeneous and isotropic turbulence. Furthermore, various algorithms have been
proposed to estimate the variance of the computed average field, in order to assess
the statistical convergence of results. Noteworthy among these methodologies are the
Non-Overlapping Batch Means (NOBM) method [2], the Overlapping Batch Means
(OBM) method [3], and the Batch Means Batch Correlations (BMBC) method [4].
These approaches, while distinct, share a fundamental conceptual similarity, requir-
ing the delineation of subsamples (batches) derived from the computed time history.
However, the aforementioned approaches do not address the relative importance of
different averaging procedures, which is the focus of the present work.

Mixed ensemble time or space or phase averages are currently applied in compli-
cated geometries and complex problems, such as diesel sprays [5], where phase averages
or ensemble averages of the same turbulent flows under different initial conditions are
produced. Specifically, in that work, mixed ensemble and spatial averages, spatial and
time averages, ensemble, spatial and time averages are compared in order to estimate
their efficiency and reliability.

Testing the significance of the different averaging operators in such cases is not so
straightforward. For instance, let’s consider a category of turbulent flows crucial in
engineering applications - those that exhibit homogeneity in both time t and in the
spanwise direction y. In this case, the flow theoretically has infinite extensions, but in
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practice, it is limited by a finite extent of time T and a finite extent of space, denoted
here as Y without loss of generality.

More specifically, without relying on probabilistic assumptions, we define, in this
particular case, for the components of the velocity field ui(t, x, y, z), the quantities

⟨ui⟩t(x, y, z) =
1

T

∫ T

0

ui(x, y, z, t
′)dt′

⟨ui⟩y(x, z, t) =
1

Y

∫ Y

0

ui(x, y
′, z, t)dy′ (1)

⟨ui⟩ty(x, z) =
1

TY

∫ T

0

∫ Y

0

ui(x, y
′, z, t′)dt′dy′ = ⟨ui⟩yt(x, z) (2)

and we introduce the associated Generalized Central Moments [6] given by

τt(ui, uj) ≡ ⟨uiuj⟩t − ⟨ui⟩t⟨uj⟩t
τy(ui, uj) ≡ ⟨uiuj⟩y − ⟨ui⟩y⟨uj⟩y

τt(⟨ui⟩y, ⟨uj⟩y) ≡ ⟨⟨ui⟩y⟨uj⟩y⟩t − ⟨⟨ui⟩y⟩t⟨⟨uj⟩y⟩t
τy(⟨ui⟩t, ⟨uj⟩t) ≡ ⟨⟨ui⟩t⟨uj⟩t⟩y − ⟨⟨ui⟩t⟩y⟨⟨uj⟩t⟩y

τty(ui, uj) ≡ ⟨⟨uiuj⟩t⟩y − ⟨⟨ui⟩y⟨uj⟩t⟩y = τyt(ui, uj) (3)

It is easy to see that in terms of these quantities, we can express the following identities:

τty(ui, uj) = τt(⟨ui⟩y, ⟨uj⟩y) + ⟨τy(ui, uj)⟩t
= τy(⟨ui⟩t, ⟨uj⟩t) + ⟨τt(ui, uj)⟩y = τyt(ui, uj); (4)

the aforementioned relations will be instrumental to the definition of the new indices
in Eq. (5).

The meaning of these decompositions of the total turbulent stress τty(ui, uj) related
to the mixed average in space and time can be found in the framework of the sta-
tistical Law of the Total Variance [7]. Specifically, ⟨τy(ui, uj)⟩t and τt(⟨ui⟩y, ⟨uj⟩y)
represent the fractions of the Reynolds stress due to the time averaging within and
between the space average, and ⟨τt(ui, uj)⟩y and τy(⟨ui⟩t, ⟨uj⟩t) represent the fractions
of the Reynolds stress due to the space averaging within and between the time aver-
age. Utilizing these insights, we can define two measures of statistical homogeneity:
the first is related to time average, and the second to spanwise average, expressed as
the ratios of the traces:

Mt(x, y) = ⟨τt(ui, ui)⟩y/Rii ; My(x, y) = ⟨τy(ui, ui)⟩t/Rii (5)

where Rij ≡ τe(ui, uj) are the Reynolds stresses.
The introduced indices provide a computationally straightforward and physically

intuitive method for assessing the efficiency of mixed averaging procedures among the
different averaging components. These homogeneity indices contribute to improved
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statistics in turbulent flow predictions and have the potential to mitigate computa-
tional costs. Employing the newly introduced indices, in the following, we analyze a
database comprising two statistically steady turbulent flows homogeneous in the span-
wise direction: the turbulent plane jet flow and the turbulent flow past a cascade of
blades, used as benchmark cases in the application of the homogeneity indices.

2 The turbulent plane jet flow

The turbulent plane free jet represents an important statistically steady turbulent
flow benchmark provided with a spatial symmetry. The details regarding the compu-
tational domain, the numerical technique, and boundary conditions for the plane jet
configuration can be found in [8].

As previously mentioned, the primary focus of this exploration is the analysis of
the homogeneity indices. Figure 1 displays the trace of the Reynolds stresses obtained
from space-time averaging along with the homogeneity indices Mt and My. In this
specific simulation, the Mt index exceeds My, suggesting that statistics are mainly
captured by sampling in time. Nevertheless, it is evident that sampling in y direction
plays still an important role in some regions of the computational domain.

Additionally, another focal point of this study is examining the relationship
between the defined indices and the number of independent samples NSIS , where the
superscript SIS stands for statistically independent samples. This quantity is simply
assumed as NSIS = NSIS

t NSIS
y , with NSIS

t and NSIS
y representing the independent

samples in time and in the spanwise direction, respectively, estimated as follows

NSIS
t = min {Nt, T/τconv} ; NSIS

y = min {Ny,Y/L∈∈} ; τconv = L11/⟨U⟩ (6)

Fig. 1 Left to right: Mean axial velocity, trace of Reynolds stresses Rii, homogeneity index Mt and
My . Only a section of the computational domain is shown in y direction ([−3, 3]× [0, 20]).

4



Fig. 2 Left to right: Estimated number of independent samples in time t and y direction. Only
a section of the computational domain from the turbulent plane jet is shown in lateral y direction
([−3, 3]× [0, 20]).

where T is the total simulation time, Y is the size of the computational domain in
the spanwise (y) direction, and Nt and Ny are the number of samples in time and in
the spanwise direction, respectively. L11 and L22 represent directional length scales in

the axial and spanwise directions: L11 = 0.43R
3/2
11 /ε11, L22 = 0.43R

3/2
22 /ε22, using as

a first approximation the relation L11 ≈ 0.43k3/2/ε given in [9].
In line with the observation that NSIS

t greatly exceeds NSIS
y , the index Mt sur-

passes My, emphasizing that time sampling dominates statistics (see Figure 2). While
Eq. 6 offers a quick estimation of independent samples (assuming isotropic flow in equi-
librium), accurately determining decorrelation time or distance can be complex due
to challenges such as undershoots, oscillations, and poor autocorrelation convergence
at large separations. The indices proposed in Eq. 5 provide a more straightforward
evaluation.

3 Gas turbine cascade

The second turbulent flow benchmark is the transitional and separated flow field
around the T106C subsonic low pressure turbine (LPT) cascade.

The simulation is carried out with the isentropic exit Mach number M2,is and
the isentropic exit Reynolds number Re2,is set to M2,is = 0.65 and Re2,is = 80, 000,
respectively. The T106C cascade geometry is characterized by a pitch t to chord c ratio
of t/c = 0.95 and an inlet flow angle β1 of 32.7◦ with respect to the axial direction.

The three-dimensional, compressible Navier-Stokes-equations are solved in non-
dimensional form using the Discontinuous Galerkin finite elements framework, without
any subgrid-scale model. Hence, the following computations can be classified as
Implicit Large Eddy Simulation (ILES). For spatial discretization, a second order
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Fig. 3 Rii (a), homogeneity index Mt (b) and My (c) for the T106C cascade.

accurate DG scheme is used, while time integration is performed with an explicit sec-
ond order Runge-Kutta-method, considering a CFL number of 0.45. Further details
about the flow, the computational domain, and the numerical framework used for the
simulations are provided in [10] and omitted here for brevity.

The Reynolds stresses Rii, obtained through space-time averaging, along with the
homogeneity indices Mt and My, are presented in Figure 3. Since the indices Mt and
My are defined assuming the presence of turbulence, it is important to emphasize that
these plots were generated by setting a threshold on the local turbulence intensity
I. This implies that Mt and My were computed for points in space where the local
turbulent intensity exceeded the value of I = 0.015. It is apparent that the index Mt is
larger than My, consistently with the observations in the preceding section, reinforcing
that statistics are primarily captured by sampling in time.

4 Discussion

The analysis suggests that time averaging is generally more efficient than spatial
averaging in the considered testcases. Nevertheless, averaging in time is not always
desirable because it can require very long wall clock times (WCT). To reduce
WCT, options such as ensemble averaging or extending the domain in a spatially
homogeneous direction can be explored.

In our study, we assume a flow with temporal and spatial homogeneity in the
y-direction (with domain dimensions X ,Y,Z) and a linear scaling of floating-point
operations with mesh size Nx ·Ny ·Nz. The total computational time (TCT ) depends
on the time to reach a statistically steady state, measured in flow through units for
initialization (FTI) and the number of flow through times for collecting statistics
(FTS).

Estimating FTS as NSISL2/(XY), where L represents a characteristic turbulent
length scale and NSIS denotes the number of required samples to reach a desired
confidence for the statistical error, noting that one flow through time takes (for a
constant grid spacing) Nx/CFL time steps, the total computational time TCT scales
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as:

TCT ∝ N2
x ·Ny ·Nz

CFL

(
FTI +

NSISL2

XY

)
. (7)

Increasing the domain length (Y) leads to a proportional increase in the number of grid
points (Ny) while keeping the second contribution in the equation constant (Ny ∼ Y).
Similarly, employing an ensemble averaging strategy with M simultaneous simulations
from varied initial fields using M times more computational cores shows that the
second contribution in Eq. 7 remains constant. However, the time for reaching a steady
state has to be achieved for each flow realization, contributing to a total increase.
Consequently, averaging in time is the most efficient approach in terms of saving
computational resources, energy and to reduce associated carbon dioxide emissions,
which are non-negligible for HPC computing.

WCT is proportional to the required computational demand divided by the number
of cores. Hence, increasing Y and proportionally the number of cores reduces the
wall clock time for collecting statistics, keeping the time for initialization constant.
The similar argument and asymptotic limit holds for ensemble averaging of M flow
realizations with a factor of M more computational cores, i.e., the minimum WCT in
both cases scales with N2

x ·Ny ·Nz · FTI/(CFL ·Ncores). This discussion highlights
the importance of reducing the time to reach a statistically steady state, for which
methods like multi-grid strategies or synthetic initial data are relevant.

5 Conclusions

We propose a basic mixed averaging analysis of Reynolds stress in statistically steady
turbulent flows with spanwise homogeneity, using straightforward indices to assess the
importance of spanwise and time averages. While time averaging is more effective,
the inability to parallelize in time and long run times presents challenges. Combining
ensemble and time averaging with varied initial data may offer a solution, though
further research is needed to relate these indices to conventional statistical convergence
methods.
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