
06 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Combining deep reinforcement learning and multi-stage stochastic programming to address the supply chain inventory
management problem / Stranieri, Francesco; Fadda, Edoardo; Stella, Fabio. - In: INTERNATIONAL JOURNAL OF
PRODUCTION ECONOMICS. - ISSN 0925-5273. - ELETTRONICO. - 268:(2024). [10.1016/j.ijpe.2023.109099]

Original

Combining deep reinforcement learning and multi-stage stochastic programming to address the supply
chain inventory management problem

Publisher:

Published
DOI:10.1016/j.ijpe.2023.109099

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2984070 since: 2023-11-24T11:03:11Z

Elsevier

Int. J. Production Economics 268 (2024) 109099

A
0

Contents lists available at ScienceDirect

International Journal of Production Economics

journal homepage: www.elsevier.com/locate/ijpe

Combining deep reinforcement learning and multi-stage stochastic
programming to address the supply chain inventory management problem
Francesco Stranieri a,b,∗, Edoardo Fadda c, Fabio Stella a

a Department of Informatics, Systems, and Communication (DISCo), University of Milano-Bicocca, Viale Sarca, 336, Milan, 20126, Italy
b Department of Control and Computer Engineering (DAUIN), Polytechnic of Turin, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy
c Department of Mathematical Sciences (DISMA), Polytechnic of Turin, Corso Duca degli Abruzzi, 24, Turin, 10129, Italy

A R T I C L E I N F O

Dataset link: https://github.com/frenkowski/S
CIMAI-Gym

Keywords:
Inventory management
Deep reinforcement learning
Stochastic programming

A B S T R A C T

We introduce a novel heuristic designed to address the supply chain inventory management problem in the
context of a two-echelon divergent supply chain. The proposed heuristic advances the current state-of-the-
art by combining deep reinforcement learning with multi-stage stochastic programming. In particular, deep
reinforcement learning is employed to determine the number of batches to produce, while multi-stage stochastic
programming is applied to make shipping decisions. To support further research, we release a publicly available
software environment that simulates a wide range of two-echelon divergent supply chain settings, allowing the
manipulation of various parameter values, including those associated with seasonal demands. We then present
a comprehensive set of numerical experiments considering constraints on production and warehouse capacities
under fixed and variable logistic costs. The results demonstrate that the proposed heuristic significantly and
consistently outperforms pure deep reinforcement learning algorithms in minimizing total costs. Moreover, it
overcomes several inherent limitations of multi-stage stochastic programming models, thus underscoring its
potential advantages in addressing complex supply chain scenarios.
1. Introduction

Supply chain inventory management (SCIM) is a critical challenge
faced by several companies; it involves making decisions regarding the
number of batches to produce at the factory and how many of them ship
to each distribution warehouse. While higher production levels and
inventory stocks allow companies to better meet customers’ demands,
they come at greater costs. Therefore, the goal of SCIM is to find a
trade-off between satisfying customer demands and minimizing supply
chain costs while maintaining market competitiveness (Brandimarte
and Zotteri, 2007).

Although the SCIM problem is typically formulated as a multi-
stage (MS) stochastic, mixed-integer linear problem (MILP), existing
models often exhibit certain limitations due to a rapid increase in the
number of scenarios to consider, which often prevents their practical
application (Alonso-Ayuso et al., 2003). In particular, when risk factors
are characterized by seasonality patterns, the number of stages required
leads to mathematical models that cannot be solved with reason-
able computational resources or within an acceptable amount of time.
This challenge, known as the ‘‘curse of dimensionality’’, underscores
the importance of developing efficient heuristics capable of handling

∗ Corresponding author at: Department of Informatics, Systems, and Communication (DISCo), University of Milano-Bicocca, Viale Sarca, 336, Milan, 20126,
Italy.

E-mail addresses: francesco.stranieri@polito.it (F. Stranieri), edoardo.fadda@polito.it (E. Fadda), fabio.stella@unimib.it (F. Stella).

large-scale, complex problems without sacrificing solution quality or
computational tractability (de Kok et al., 2018).

A potential approach to address these limitations is through the
use of reinforcement learning (RL), which, as evidenced by Boute
et al. (2022), has rarely been applied to the SCIM domain. Recently,
deep reinforcement learning (DRL) algorithms have attracted increas-
ing attention and have been employed to tackle the SCIM problem,
demonstrating their effectiveness and efficiency (Yan et al., 2022).
However, several challenges persist (Dulac-Arnold et al., 2021), includ-
ing: (i) problem-specific properties can be difficult to capture as most
DRL algorithms are model-free; (ii) performances of DRL algorithms can
be highly sensitive due to the complex task of hyperparameter tuning;
and (iii) significant training time is required as DRL algorithms are
computationally intensive.

Furthermore, several critical aspects of the SCIM problem have
not yet been effectively addressed in the RL context, for example: (i)
incorporating a seasonal and stochastic demand, which considerably
complicates the determination of actions to be taken; (ii) considering
production constraints that make it necessary, for instance, to maintain
stocks in advance to prevent myopic behavior; and (iii) addressing fixed
vailable online 15 November 2023
925-5273/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.ijpe.2023.109099
Received 4 May 2023; Received in revised form 20 October 2023; Accepted 13 No
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

vember 2023

https://www.elsevier.com/locate/ijpe
http://www.elsevier.com/locate/ijpe
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
mailto:francesco.stranieri@polito.it
mailto:edoardo.fadda@polito.it
mailto:fabio.stella@unimib.it
https://doi.org/10.1016/j.ijpe.2023.109099
https://doi.org/10.1016/j.ijpe.2023.109099
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2023.109099&domain=pdf
http://creativecommons.org/licenses/by/4.0/

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

p
p
t

a
a
i
t
i
d

2

d
m
m
g
r
r
G

D
H
m
e
o
t
c
p

t
e
o
t
b
(
𝑄
𝑄

u

and variable logistic costs (i.e., costs for each vehicle utilized and each
unit of item shipped, respectively), which needs proper optimization
of production and shipments. Notably, accounting for this final point
is crucial not only for economic efficiency but also for reducing the
environmental impact of the supply chain and fostering sustainability.

Consequently, there is a growing need for more advanced RL ap-
roaches that can effectively tackle these challenges and deliver better
erformance in complex SCIM settings. In an effort to fill these gaps in
he existing literature, in this paper we:

• Consider a two-echelon supply chain (i.e., consisting of a factory
and multiple distribution warehouses) with a single-item type
characterized by seasonal demand, constraints on production and
warehouses’ capacity, and logistics with fixed and variable costs.

• Design and develop a SCIM software environment capable of
modeling all the aforementioned characteristics. We have made
the developed SCIM environment accessible as an open-source
library on GitHub.1

• Propose a novel heuristic that combines DRL algorithms and MS
stochastic programming to compute an effective solution for the
presented SCIM problem.

• Demonstrate the usefulness of the proposed heuristic through
a series of numerical experiment settings (e.g., by varying the
uncertainty associated with the demand and the number of dis-
tribution warehouses).

The rest of the paper is organized as follows: Section 2 provides
literature review on the SCIM problem, including state-of-the-art

lgorithms used to address it. Section 3 is devoted to mathematically
ntroducing the SCIM problem, while Section 4 presents the solution
echniques implemented in this work. Results from numerical exper-
ments are reported in Section 5. Finally, conclusions and potential
irections for further research are discussed in Section 6.

. Literature review

The SCIM problem has been tackled through several approaches
ue to its sequential and stochastic nature, making it one of the
ost challenging and significant problems in production research. The
ost prominent solution approaches include multi-stage stochastic pro-

ramming (Khouja, 2003; Preusser et al., 2010; Huang et al., 2010),
eordering policies (Zipkin, 2000; Grewal et al., 2015), and, more
ecently, reinforcement learning (Peng et al., 2019; Hubbs et al., 2020;
ijsbrechts et al., 2022; Stranieri and Stella, 2022).

MS optimization employs scenario trees to represent uncertainty.
espite some applications when demand is stationary (Khouja, 2003;
uang et al., 2010), its use in settings characterized by seasonal de-
and has been limited. In fact, MS requires a large number of stages to

ffectively model seasonality, which leads to an increase in the number
f decision variables, thus requiring remarkable computation resources
o obtain a solution. As a result, much of the existing literature fo-
uses on computationally lighter solution methods, such as reordering
olicies (Rolf et al., 2022).

More in detail, reordering policies are decision rules that determine
he number of items (or batches) to produce and ship. One of the
arliest rules derived from lot-sizing literature is the base-stock policy
r (𝑠, 𝑆)-policy (Wagner and Whitin, 1958). According to this rule, if
he stock quantity falls below 𝑠, an order is placed to bring inventory
ack up to the base-stock level 𝑆. A variation of this rule is the so-called
𝑠, 𝑄)-policy, where 𝑄 = 𝑆 − 𝑠 (Vincent, 1985). Therefore, under an (𝑠,
)-policy, whenever the stock level falls below 𝑠, an order of quantity
is placed to replenish the inventory.
Reordering policies pave the way for several other rules. In partic-

lar, reordering policies are further generalized in RL, which considers

1 https://github.com/frenkowski/SCIMAI-Gym.
2

rules encompassing estimations of the future. One of the most common
approaches for solving the SCIM problem through RL algorithms is by
Q-learning (Ravulapati et al., 2004; Chaharsooghi et al., 2008; Sui et al.,
2010; Mortazavi et al., 2015). However, upon examining various RL
studies, it becomes evident that the implemented Q-tables are typically
huge and, thus, unscalable, and this becomes worst when seasonal and
stochastic demand is considered. Consequently, since a tabular repre-
sentation is out of the question, more sophisticated representations may
be useful.

One of the most promising techniques that has been successfully ap-
plied in several settings is DRL, which combines deep learning methods
with the classical reinforcement learning paradigm. Despite its success
achieved in other domains, to the best of the authors’ knowledge, only
a few papers have implemented DRL algorithms to address the SCIM
problem.

In Hubbs et al. (2020), the authors examine a four-echelon sup-
ply chain, employing the Proximal Policy Optimization (PPO) algo-
rithm. The study compares the performance of various operations
research methods with a DRL approach in two scenarios, one with and
one without backorder costs. Numerical experiments prove that PPO
outperforms reordering policies in both scenarios.

Using a supply chain structure with ten warehouses and a normal
demand distribution, in Gijsbrechts et al. (2022), the authors conduct
two distinct numerical experiments (adapted from Roy et al. (1997)) by
applying and tuning the Asynchronous Advantage Actor–Critic (A3C)
algorithm. The proposed solution method involves a state-dependent
base-stock policy to restrict the action space, with A3C used to se-
lect the base-stock level at each timestep. The study shows that A3C
achieved performance comparable to state-of-the-art heuristics and
other RL algorithms, although its initial hyperparameter tuning remains
computationally intensive.

Despite their successes, DRL approaches face several challenges,
including a lack of robust convergence properties, strong sensitivity to
hyperparameters, high sample complexity, and function approximation
errors. These issues can result in poor policies and inaccurate value
estimation (Fujimoto et al., 2018; Henderson et al., 2018; Harsha et al.,
2021). To deal with these challenges, researchers have attempted to
combine DRL techniques with MILP.

One such approach is presented in Bertsekas (2021), which demon-
strates that by adding a rough approximation of the value function to
the MS objective function, it is possible to enhance the performance of
MS significantly.

Another possible solution method is provided by Harsha et al.
(2021), where the authors propose RL methodologies that compute
actions by solving a MILP problem. Here, the objective function com-
bines an immediate reward with a value function estimated by a
trained neural network. Interestingly, due to the simple structure of the
neural network and the use of ReLU activation functions, the objective
function can be expressed as a linear term, thus leading to a linear
objective function. The authors found that this technique outperforms
other methods in various realistic settings.

In this work, we adopt a different approach compared to previous
studies. Instead of using RL to reduce the myopic behavior of mathe-
matical models, we decompose the SCIM problem into two parts. First,
we use RL to make production decisions that require considering a long
horizon. Second, we employ MS programming for the logistic decisions
that need to be made over a shorter horizon. While various techniques
exist to address settings with independent and identically distributed
(i.i.d.) demand (Yan et al., 2022), our work delves into more complex
settings. In particular, we consider a two-echelon supply chain with sea-
sonal demand, constraints on production, limited warehouse capacities,
and fixed and variable logistic costs, making our environment more
realistic.

In fact, to the best of the authors’ knowledge, the only study in the
RL literature assuming seasonal demand within a two-echelon supply

chain is Peng et al. (2019). Here, a DRL approach based on the Vanilla

https://github.com/frenkowski/SCIMAI-Gym

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
Fig. 1. A two-echelon supply chain consisting of a factory (first echelon) and three
distribution warehouses (second echelon).

Policy Gradient (VPG) algorithm is used. The authors evaluate the VPG
performance through numerical experiments on three distinct cases.
The findings underscore that the VPG algorithm outperforms the (𝑠, 𝑄)-
policy employed as a baseline in all three cases. Nevertheless, despite
their setting being similar to ours, they do not consider production
constraints, warehouse capacities, and fixed and variable logistic costs,
making our work the first to explore such a setting.

3. Problem formulation

In this work, we deal with a divergent supply chain, i.e., a supply
chain characterized by a single participant in the first echelon and
multiple participants in the second echelon. More specifically, we inves-
tigate a single-item-type, two-echelon supply chain consisting of a single
factory at the first echelon and a set  = {1, 2,… , 𝐽} of distribution
warehouses at the second echelon, as depicted in Fig. 1. Despite its
apparent simple structure, it aptly describes several settings, such as
the fuel industry supply chain in which there is a refinery and multiple
points of sale or, more generally, two-echelon supply chains where each
item type is managed independently.

In detail, we consider episodes of length 𝑇 (i.e., the time horizon)
subdivided into a given number of equally spaced timesteps, implying
a supply chain under periodic review. At the beginning of each episode,
each warehouse 𝑗 = 0, 1,… , 𝐽 has an initial number of batches 𝐼𝑗,0. At
each timestep 𝑡, the agent decides the number of batches to produce, 𝑥𝑡,
(which must be lower than the factory production limit 𝑋max), paying 𝑐0
for each of them. Batches can either be stored in the factory or shipped
to distribution warehouses. In the first case, the agent pays ℎ0 for each
batch and can store up to 𝐼max

0 of them. In the second case, the agent
ships 𝑧𝑗,𝑡 batches to the distribution warehouse 𝑗. Each distribution
warehouse 𝑗 has a maximum capacity of 𝐼max

𝑗 , a storage cost of ℎ𝑗 per
batch, and a stock level at timestep 𝑡 equal to 𝐼𝑗,𝑡.

We assume infinite delivery capacity, meaning we can ship any quan-
tity of stocks at the same cost. The logistic cost comprises a fixed
price 𝑝𝑗 paid for each vehicle used to transport batches to warehouse
𝑗, irrespective of the truckload, and a variable price 𝑙𝑗 dependent on
the number of batches shipped. Defining 𝑉𝑗 as the capacity of the
vehicles going to the distribution warehouse 𝑗, 𝑦𝑗,𝑡 = ⌈

𝑧𝑗,𝑡
𝑉𝑗

⌉ represents
the associated number of vehicles used for the shipment. Clearly, from
a logistic perspective, the goal of the agent is to achieve full-truckload
shipping. In fact, by fully utilizing the truck’s capacity, the agent can op-
timize vehicle resources, leading to lower shipping costs and increased
overall efficiency in the supply chain. This approach helps minimize
the number of partially filled trucks, reducing fuel consumption and
emissions, as well as the number of expeditions required to satisfy
demand. Consequently, it contributes to a more cost-effective and
environmentally friendly SCIM strategy.

We consider a seasonal and stochastic demand, 𝑑𝑗,𝑡, that realizes, for
each timestep 𝑡, at distribution warehouse 𝑗. Unsatisfied demand is
3

backordered, meaning that if the demand cannot be satisfied, a penalty
cost 𝑏𝑗 is incurred until the specific distribution warehouse 𝑗 is able to
satisfy it. Finally, we assume no lead times for production and logistics;
thus, inventories are used to make a seasonal stock (Brandimarte and
Zotteri, 2007). A summary of the notation is provided in Table 1.

The dynamics of the system are graphically represented in Fig. 2 and
described by the following sequence of events:

1. Starting from the current state of the environment, the agent
determines the number of batches to produce, 𝑥𝑡, and ship, 𝑧𝑗,𝑡,
to each distribution warehouse 𝑗 = 1,… , 𝐽 .

2. Each distribution warehouse 𝑗 = 1,… , 𝐽 receives the sent
batches of stocks, 𝑧𝑗,𝑡.

3. Demand 𝑑𝑗,𝑡 at each distribution warehouse 𝑗 = 1,… , 𝐽 is either
satisfied or backordered.

4. The per-step cost, 𝐶𝑡, is calculated according to the following
formula:

𝐶𝑡 = 𝑐0 ⋅ 𝑥𝑡
⏟⏟⏟

production costs

+
𝐽
∑

𝑗=1
𝑙𝑗 ⋅ 𝑧𝑗,𝑡

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
variable logistic costs

+
𝐽
∑

𝑗=1
𝑝𝑗 ⋅ 𝑦𝑗,𝑡

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
fixed logistic costs

+
𝐽
∑

𝑗=0
ℎ𝑗 ⋅max[𝐼𝑗,𝑡, 0]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
storage costs

−
𝐽
∑

𝑗=0
𝑏𝑗 ⋅min[𝐼𝑗,𝑡, 0]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
backorder costs

, (1)

where the first term represents production costs, the second and
the third consist of variable and fixed logistic costs, respectively,
the fourth denotes storage costs, and the last one quantifies
backorder costs (which are introduced with a minus sign because
stock levels would be negative in the eventuality of unsatisfied
demand).

5. The state related to the next timestep is determined, transferring
surplus stocks or unsatisfied demands. Formally, the evolution of
the inventories is defined as follows:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼0,𝑡+1 = min
[(

𝐼0,𝑡 + 𝑥𝑡
)

, 𝐼𝑚𝑎𝑥0
]

−
∑𝐽

𝑗=1 𝑧𝑗,𝑡
𝐼1,𝑡+1 = min

[(

𝐼1,𝑡 + 𝑧1,𝑡−1
)

, 𝐼max
1

]

− 𝑑1,𝑡
⋮

𝐼𝐽 ,𝑡+1 = min
[(

𝐼𝐽 ,𝑡 + 𝑧𝐽 ,𝑡−1
)

, 𝐼max
𝐽

]

− 𝑑𝐽 ,𝑡.

(2)

This implies that at the beginning of the timestep 𝑡 + 1, the
factory’s stocks are equal to the sum of the stocks at timestep 𝑡
and the production during the same period, minus the batches
shipped during timestep 𝑡. Similarly, the distribution ware-
houses’ stocks at timestep 𝑡+1 are equal to the stocks at timestep
𝑡, plus the batches received from the factory during the same
period, minus the demand at timestep 𝑡. It is worth mention-
ing that the environment does not allow storing a number of
batches exceeding the storage capacity constraints, automati-
cally discarding all batches that, if accepted, would violate these
constraints.

4. Solution methods

In this section, we present the techniques used to solve the prob-
lem described in Section 3. Section 4.1 offers a brief introduction
to deep reinforcement learning, while Section 4.2 defines the multi-
stage stochastic programming model. Finally, Section 4.3 describes the
proposed heuristic, which combines DRL and MS optimization.

4.1. Deep reinforcement learning

RL adopts the Markov decision process (MDP) framework to rep-
resent the interactions between a learning agent and an environment.
As shown in Fig. 3, at each timestep 𝑡, the agent observes the current

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

s

Table 1
The considered SCIM notation with relative explanation (and units of measure).
Notation Explanation Notation Explanation

𝑇 Time horizon 𝐼max
𝑗 Storage capacity (batches)

𝐽 Number of distribution warehouses ℎ𝑗 Storage cost (per batch)
 Set of distribution warehouses 𝑝𝑗 Logistic cost fixed (per vehicle)
𝑑𝑗,𝑡 Demand (batches) 𝑙𝑗 Logistic cost variable (per batch)
𝑥𝑡 Production (batches) 𝑧𝑗,𝑡 Shipping (batches)
𝑐0 Production cost (per batch) 𝑉𝑗 Vehicles capacities (batches)
𝑋max Maximum production (batches) 𝑦𝑗,𝑡 Number of vehicles
𝐼𝑗,𝑡 Stock level (batches) 𝑏𝑗 Backorder cost (per batch)
Fig. 2. Representation of the dynamics of the SCIM system considered.
Fig. 3. Agent-environment interface in an MDP (Sutton and Barto, 2018).

tate of the environment, 𝐬𝑡, selects an action, 𝐚𝑡, and obtains a reward,
𝑅𝑡+1 ∈ R; afterward, the environment transitions into a new state,
𝐬𝑡+1. The goal of RL is to find an optimal policy – a function that maps
the states of the environment to a set of actions – that maximizes the
expected discounted return, ∑𝑇

𝑘=𝑡+1 𝛾
𝑘−𝑡−1𝑅𝑘, where 0 ≤ 𝛾 ≤ 1 represents

the discount rate (Powell, 2011). In the SCIM problem, the objective
is to minimize the total cost, therefore we define the reward as the
negative cost, i.e., 𝑅𝑡 = −𝐶𝑡.

DRL combines RL with deep learning, offering the potential to scale
to previously intractable decision-making problems. In detail, DRL is
rooted in neural networks, which are universal approximators capable
of expressing an approximation of highly nonlinear functions. The
specific DRL algorithm we used belongs to policy-based methods, which
learn a parameterized and stochastic policy to select actions directly
(in contrast to value-based methods like Q-learning (Sutton and Barto,
2018)). To formally address and solve the SCIM problem within the
context of an MDP, we thus need to define the state vector, the action
space, and the reward function relating to the SCIM problem assumed.

The state vector includes all current stock levels (for the factory
and each distribution warehouse) and the last 𝜏 demand values; this
provides the agent with limited knowledge of demand history, which,
in turn, allows for a basic understanding of its fluctuations (similar to
what was initially proposed by Kemmer et al., 2018). In mathematical
terms, we have:

𝐬𝑡 =
(

𝐼0,𝑡,… , 𝐼𝐽 ,𝑡,𝐝𝑡−1,… ,𝐝𝑡−𝜏
)

, (3)

where 𝐝𝑡 =
(

𝑑0,𝑡,… , 𝑑𝐽 ,𝑡
)

. The state’s updating rule is dictated by Eq. (2)
4

for the inventory, while the values of the demands are updated based on
the current timestep. It is worth noting that during timestep 𝑡, the actual
demand 𝐝𝑡 is only known after decisions regarding production and
shipping have been made; this ensures that the agent can benefit from
learning the demand pattern, allowing for the integration of demand
forecasting directly into the policy. Further, by observing and learning
from the demand history, the agent can develop a more effective
decision-making process, anticipating future demand fluctuations and
adjusting its actions accordingly (Stranieri and Stella, 2022).

Concerning the action space, it contains information about produc-
tion and shipping controls:

𝐚𝑡 =
(

𝑥𝑡, 𝑧1,𝑡 … , 𝑧𝐽 ,𝑡
)

. (4)

The considered agent uses a continuous action space – wherein the
neural network directly generates the action values – since it scales
better than a discrete action space and can be applied to wider action
spaces (Vanvuchelen and Boute, 2022). As a result, the agent can
specify the factory’s production level and the number of batches to ship
to each distribution warehouse.

To guarantee that the actions generated by the neural network
belong to the feasible action space, we adopted a continuous action
space based on independent bounds (Stranieri and Stella, 2022). This
involves: (i) setting the lower bound for each action value to zero; (ii)
setting the upper bound for the factory to its maximum production
level (i.e., 0 ≤ 𝑥𝑡 ≤ 𝑋max); and (iii) setting the upper bound for
each warehouse to its corresponding storage capacity (i.e., 0 ≤ 𝑧𝑗,𝑡 ≤
𝐼max
𝑗 , ∀𝑗 ∈ ). It is worth noticing that if the agent produces or ships a

number of batches exceeding the free storage availability (for example,
due to stocks preserved in the warehouses), the environment directly
discards those in excess, according to Eq. (2). This results in a cost,
which implicitly penalizes the agent, thus encouraging it to learn a pol-
icy that prevents overproduction and excessive shipping. Additionally,
when factory stocks are insufficient to meet orders from all distribution
warehouses, we employ the allocation rule described in Stranieri et al.
(2023) to ensure a fair distribution of batches among the distribution
warehouses while maintaining factory stocks non-negative.

Finally, the reward function is defined by means of Eq. (1).

4.2. Multi-stage stochastic programming

In multi-stage stochastic programming, the uncertainty associated

with demand is represented through a scenario tree, as depicted in

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

d
T
t
t
a
b

t
w
T
c
e
a

T
e

Fig. 4. Each layer of the tree corresponds to a stage and models the
available information. In the SCIM problem, because new information
(i.e., demand realization) becomes available at each time step, the
concepts of stage and time steps are equivalent.

The leftmost node (labeled as node 0 in Fig. 4) represents the
current state of the environment where we determine the first-stage
ecisions, each associated with an immediate and definite per-step cost.
hese decisions influence the second-stage ones, made after observing
he realized demand (as illustrated by nodes 1 and 2 in Fig. 4). Then, in
he subsequent stages of the scenario tree, the process is repeated (Birge
nd Louveaux, 2011). Notably, decisions made after the first stage can
e viewed as contingent plans based on future demands realizations.

To this end, we let:

•  be the set of nodes of the scenario tree, + =  ⧵ {0}, with
0 being the root node.

• 𝑝(𝑛) be the parent of node 𝑛 ∈ +; for example, in Fig. 4,
𝑝(1) = 𝑝(2) = 0, 𝑝(3) = 𝑝(4) = 1,… .

• 𝜋[𝑛] be the unconditional probability of node 𝑛 (i.e., the likelihood
of demand realization in node 𝑛 expressed considering the infor-
mation available from the root node) (Brandimarte, 2011); for
example, in Fig. 4, we have 𝜋[0] = 1, 𝜋[1] = 𝜋[2] = 1

2 , 𝜋[3] = 𝜋[4] =
𝜋[5] = 𝜋[6] = 1

4 ,… .
• 𝑑[𝑛]𝑗 be the item demand from distribution warehouse 𝑗 at node
𝑛 ∈  .

In the MS model, given that the decision variables are contingent on
he node of the scenario tree (which includes all available information),
e replace the subscript ⋅𝑡 with the superscript ⋅[𝑛] for all variables.
he superscript ⋅[𝑛] denotes a specific node of the scenario tree and is
onsequently associated with a single stage and a single time step. For
xample, 𝑥𝑡 in Table 1 becomes 𝑥[𝑛], representing the quantity produced
t node 𝑛. It is essential to note that our primary interest lies in the

variables calculated in the first stage, in particular, the quantity to
produce (𝑥[0]), the number of batches to ship (𝑧[0]𝑗 ,∀𝑗 ∈ ), and the
number of vehicles to be employed (𝑦[0]𝑗 ,∀𝑗 ∈ ).

The MS optimization model can thus be defined as follows:

min
𝑥[𝑛]

∀𝑛∈
𝑦[𝑛]𝑗 ,𝑧[𝑛]𝑗 ,𝐼[𝑛]𝑗
∀𝑛∈ ,∀𝑗∈

∑

𝑛∈
𝜋[𝑛]

[

𝑐0𝑥
[𝑛] +

𝐽
∑

𝑗=1
𝑙𝑗𝑧

[𝑛]
𝑗

+
𝐽
∑

𝑗=1
𝑝𝑗𝑦

[𝑛]
𝑗 +

𝐽
∑

𝑗=0
ℎ𝑗𝐼

+[𝑛]
𝑗

+
𝐽
∑

𝑗=0
𝑏𝑗𝐼

−[𝑛]
𝑗

]

(5)

s.t. 𝐼 [𝑛]0 = 𝐼 [𝑝(𝑛)]0 + 𝑥[𝑛] −
𝐽
∑

𝑗=1
𝑧[𝑛]𝑗 ∀𝑛 ∈ + (6)

𝐼 [𝑛]𝑗 = 𝐼 [𝑝(𝑛)]𝑗 + 𝑧[𝑝(𝑛)]𝑗 − 𝑑[𝑛]𝑗 ∀𝑛 ∈ +,∀𝑗 ∈  (7)

𝐼 [𝑛]𝑗 = 𝐼+[𝑛]𝑗 − 𝐼−[𝑛]𝑗 ∀𝑛 ∈  , ∀𝑗 ∈  ∪ {0} (8)

𝐼 [0]𝑗 = 𝐼 [0]𝑗 ∀𝑗 ∈  ∪ {0} (9)

𝑦[𝑛]𝑗 ≥
𝑧[𝑛]𝑗

𝑉𝑗
∀𝑛 ∈  , ∀𝑗 ∈  (10)

𝑥[𝑛] ∈ {0,… , 𝑋max} ∀𝑛 ∈  (11)

𝑧[𝑛]𝑗 ∈ Z+, 𝑦[𝑛]𝑗 ∈ Z+ ∀𝑛 ∈  , ∀𝑗 ∈  (12)

𝐼 [𝑛]𝑗 ∈ Z, 𝐼+[𝑛]𝑗 ∈ {0,… , 𝐼max
𝑗 },

𝐼−[𝑛]𝑗 ∈ Z+ ∀𝑛 ∈  , ∀𝑗 ∈  ∪ {0}.

(13)

he objective function in Eq. (5) represents the expected total costs,
5

xpressed as the sum of production, logistics, storage, and backorder
Fig. 4. Scenario tree representation where each node represents a possible demand
realization.

costs. Constraints (6)–(7) dictate the evolution of the stocks in the
factory and distribution warehouses. These constraints are analogous
to Eq. (2) but contextualized to MS stochastic programming. Moreover,
constraints (8) define the relationship between the variable 𝐼 [𝑛], the
inventory 𝐼+[𝑛], and the backorder 𝐼−[𝑛]. These latter two are vari-
ables used to linearize the max and min operators in Eq. (1). Lastly,
constraints (9) establish the initial stock condition, constraints (10)
determine the number of vehicles used for shipping, and constraints
(11)–(13) describe the domains to which the variables belong. It is
important to note that model (5)–(13) implicitly enforces the non-
anticipative constraints, meaning that the decision-maker cannot exploit
future information (Brandimarte, 2011). For example, in Fig. 4, at
node 2, the demand realizations for both nodes 5 and 6 are possible.
By solving this MS optimization model, the SCIM problem can be
optimized to minimize total costs while trying to satisfy the overall
demand from the distribution warehouses.

4.3. Deep reinforcement learning-based decomposition

The proposed heuristic combines the main points of strength of both
DRL and MS programming, leveraging their complementary character-
istics to address their respective weaknesses.

The principal advantage of MS programming lies in its model-
based problem formulation, where both the objective function and the
constraints are explicitly defined within the model; this is particularly
effective when the model accurately represents the problem, as in the
considered context. Indeed, the mathematical model adeptly captures
the computation of inventories evolution and backlogs, the number of
vehicles to use, and their consequent impact on the objective function.
By contrast, the main drawback of MS programming stands in its
potential need for multiple stages to properly represent a stochastic
and seasonal demand, thus leading to challenging problems that, in the
worst case, cannot be solved by an exact solver within a reasonable
amount of time. Specifically, the bottleneck in MS programming is the
number of scenarios required to approximate the out-of-sample cost of
the solution when complex demands are considered. Seasonal demand
is a prime example where several stages – and thus several scenarios –
are needed to characterize the evolving demand distribution.

In general, given 𝐽 distribution warehouses, 𝑁 possible demand
realizations for each stage, and 𝑇 stages (assuming the number of stages
equals the time horizon), we end up with 𝑁𝑇 scenarios and (5𝐽+2)⋅𝑁𝑇

variables. Even small values of 𝐽 , 𝑁 , and 𝑇 prevent an exact solver
from computing the optimal solution of the model. Furthermore, in
the SCIM problem, the risk mitigation strategy involves producing and
storing batches in warehouses, thereby paying relative storage costs.
Hence, inventory decisions require the longest look ahead. Conversely,
seasonality is not a major issue for DRL since it adapts its strategy to

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

A
i
i
s
m
c

a
h
a
t

b
e
t
a
t
m
t

u
t
d
t
t
t
i
i
d

t
T
m
s
t
s
m
f
t
s
B
e
f

1
r

(

1

T
c
i
m
c
v
s
r
o
o
a
s
b
a

t

𝑑

w
r
𝜙
𝜖
e
c
t

random demand based on the policy learned during the training phase.
lthough the training phase for complex demands can take time, it

s only required once. Thus, in a testing environment, the solution
s nearly immediate. Nevertheless, being a model-free method, DRL
uffers from slow convergence, a weakness that becomes even more
arked as the number of constraints increases, as it happens in our

urrent setting.
The complementary strengths and weaknesses of MS programming

nd DRL suggest a potential synergy if combined to develop a novel
euristic, exploiting the policy provided by DRL for decisions requiring
longer time horizon and using MS to determine all other variables

hat need a shorter time horizon.
More in detail, we consider two distinct agents at play, one driven

y DRL and the other by MS programming. In the following, we will
mploy the MDP notation ⋅𝑡 to refer to the variables associated with
he DRL agent while using the notation ⋅[𝑛] for those tied to the MS
gent. Thus, for instance, 𝑥𝑡 denotes the MDP variable that describes
he production quantity at timestep 𝑡, whereas 𝑥[0] pertains to the MS
odel (5)–(13), which will be solved with a rolling horizon approach

o determine the production quantity at timestep 𝑡.
Initially, we train the DRL agent over a set of episodes; then, we

se the trained DRL policy to select the number of batches to produce,
hereby setting the value 𝑥𝑡. Identifying an optimal value for this
ecision variable requires deep foresight; moreover, any value within
he range [0, 𝑋max] yields a feasible solution, eliminating the need for
he DRL agent to learn complex constraints. Once the decision about
he number of batches to produce has been made, the second agent
mplements an MS model to handle the logistics decisions. Specifically,
t solves model (5)–(13) by fixing the 𝑥[0] variable with the DRL’s
erived solution.

Since the production decisions now depend only on the DRL agent,
he MS agent no longer needs to consider an extensive number of stages.
hus, we reduce the number of stages to two, leading to a significantly
ore manageable model. However, the number of scenarios within the

econd stage might still lead to computational issues. To counteract
his, we reduce the number of scenarios using Monte Carlo techniques,
uch as moment matching generation or importance sampling (Brandi-
arte, 2014). Since all the second-stage variables are used to account

or the future, we relax them to be continuous, and we only constrain
he first-stage variables 𝑦[0]𝑗 to be integers. This strategy has been
uccessfully employed in fix-and-relax heuristics (Brandimarte, 2006).
y adopting this approach, despite the introduction of approximation
rrors at future stages, we can guarantee the quick achievement of a
easible solution.

The pseudocode summarizing the heuristic is outlined in Algorithm
. In the following sections, we will refer to this heuristic as deep
einforcement learning-based decomposition (DRLBD).
Algorithm 1 Deep Reinforcement Learning-Based Decomposition
DRLBD) algorithm.
1: Train a DRL agent
2: for 𝑡 = 1,… , 𝑇 do
3: Observe the current state of the environment, 𝑠𝑡
4: Determine the production level 𝑥𝑡 using the DRL agent
5: Generate a scenario tree
6: Set 𝑥[0] ← 𝑥𝑡 in model (5)-(13)
7: Relax variables 𝑦[𝑛]𝑗 ∈ R+, ∀𝑗 = 1,… , 𝐽 , 𝑛 ≠ 0
8: Solve model (5)-(13) using the MS agent
9: Set 𝑧𝑗,𝑡 ← 𝑧[0]𝑗,𝑡 , ∀𝑗 = 1,… , 𝐽
0: Produce 𝑥𝑡 and ship 𝑧𝑗,𝑡, ∀𝑗 = 1,… , 𝐽

11: Satisfy demand 𝑑𝑗,𝑡, ∀𝑗 = 1,… , 𝐽
12: Calculate per-step cost 𝐶𝑡 and determine next state 𝑠𝑡+1
13: end for
6

5. Numerical experiments

This section presents the numerical experiments designed to eval-
uate the performance of the proposed heuristic algorithm. All exper-
iments were executed on a machine equipped with an Apple M2 Pro
chip with 10 cores and 16 GB of RAM. We developed the code using
Python 3.10. Specifically, we used: (i) the OpenAI Gym APIs (Brockman
et al., 2016) to implement the SCIM environment; (ii) the Ray Python
library (Moritz et al., 2017) for importing the DRL algorithms; (iii)
Gurobi version 10.0 (via its Python APIs) (Gurobi Optimization, LLC,
2023) to solve the MS optimization model.

We organize the numerical experiments into two different settings.
he first setting is elementary and aims to compare the methods under
onsideration with the derived optimal solution. The second setting
nvolves more challenging experiments to evaluate in-depth the perfor-
ance of the proposed heuristic in scenarios where an optimal solution

annot be computed within a reasonable amount of time. The specific
alues of the parameters that define the SCIM environment for both
mall and large settings are reported in Appendix A. Due to the lack of
eal-world data or benchmark instances, our experimental plan relies
n synthetic and realistic data. However, by providing open access to
ur code, we aim to offer a reference point for future research, thereby
ddressing this limitation. While the data used in Section 5.1 ensure a
pecific problem structure but lacks realism, the data in Section 5.2 has
een validated in collaboration with Bristol-Myers Squibb2 to simulate
realistic supply chain.

Following Kemmer et al. (2018), and Peng et al. (2019), we define
he seasonal demand for warehouse 𝑗 as:

𝑗,𝑡 =
⌊

𝐷𝑗

(

1 + sin
(2𝜋(𝑡 − 𝜙𝑗)

𝑃𝑗

))⌋

+ 𝜖𝑗 , ∀ 𝑗 = 1,… , 𝐽 , ∀𝑡 = 1,… , 𝑇 ,

(14)

here ⌊⋅⌋ represents the floor function, 𝐷𝑗 denotes the amplitude of the
eference demand value (set to exceed the maximal production 𝑋max),
𝑗 is the phase, 𝑃𝑗 represents the period (set as a fraction of 𝑇), and
𝑗 indicates a random noise which will be defined differently in each
xperimental setting. Fig. 5 provides an empirical example of a 95%
onfidence interval where 𝐷𝑗 = 5, 𝑃𝑗 = 5 over a time horizon of 𝑇 = 7
imesteps, and 𝜙𝑗 = 0, with 𝜖𝑗 as in Eq. (16).

If 𝜙𝑗 ≠ 0 and 𝑃𝑗 ≠ 𝑃𝑘,∀𝑗 ≠ 𝑘 ∈  , demands manifest peaks
at different timesteps. Accordingly, summing the demands across all
warehouses will diminish the impact of these peaks, enabling the
agent to make good decisions with a short look-ahead. Given these
insights, we consider 𝜙𝑗 = 0, ∀𝑗 ∈  , and 𝑃𝑗 = 𝑃𝑘, ∀𝑗, 𝑘 ∈  ; this
represents the most challenging scenario, characterized by complete
demands overlapping that results in pronounced demand peaks, thus
necessitating a wise production and stocking strategy. Such a scenario
is particularly plausible when warehouses are located in homogeneous
regions that follow equivalent demand patterns. Examples include the
paper notebook industry, where sales synchronize with the academic
calendar (consistent at a national level), or the food industry producing
items linked to specific times of the year (such as Christmas cakes). In
fact, production might only occur in just a few periods of the year in
these supply chains.

For the sake of simplicity, we assume that random noises 𝜖𝑗 are i.i.d.
across all distribution warehouses 𝑗 and that all 𝐷𝑗 values are equal. As
a result, we will omit the subscript 𝑗 from 𝜖𝑗 , 𝑃𝑗 , and 𝐷𝑗 in subsequent
sections. Additionally, we assume that when production capacity is
used strategically, all demands can be satisfied; mathematically, this
means that:

𝑃 ⋅𝑋max

𝐽
≥

𝑃
∑

𝑡=0

⌊

𝐷
(

1 + sin
(2𝜋(𝑡 − 𝜙𝑗)

𝑃

))⌋

+ 𝜖, (15)

2 https://www.bms.com/.

https://www.bms.com/

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
Fig. 5. 95% confidence interval computed over 250 realizations of the seasonal demand with two distribution warehouses (i.e., WH1 and WH2), 𝐷𝑗 = 5, 𝑃𝑗 = 5, 𝑇 = 7, 𝜙𝑗 = 0,
and 𝜖 as in Eq. (16).
i
p
m
r
𝑇
t
d
p
i
L

r
s
o
t
p
a
a
b
i
w
o

t
i
M
s
c
h
o
t

g
F
c
e

t
F

where 𝜖 represents the average demand noise from a single distribution
warehouse.

For performance comparisons, we calculate the total costs as ∑𝑇
𝑡=1 𝐶𝑡

for each experiment, and we replicate this process 250 times. As
benchmark techniques, we exploit the PPO algorithm (Schulman et al.,
2017), given its demonstrated superiority in comparable settings over
other state-of-the-art DRL algorithms, such as VPG and A3C (Stranieri
and Stella, 2022; Stranieri et al., 2023). For the same reasons, DRLBD
also adopts PPO as its foundation algorithm. The hyperparameters for
DRLBD and PPO are detailed in Appendix B.

5.1. Small settings

In the first context, we examine experiments attributable to a small
setting involving two distribution warehouses with demand parameters
𝐷 = 5 and 𝑃 = 5, spanning a time horizon of 𝑇 = 7 timesteps where
each timestep conceptually represents a day. The primary goal of this
setting is to compute the optimality gap of the proposed heuristic rather
than evaluate its performance in a realistic context.

In detail, two experiments are conducted within this setting: the first
considers a noise 𝜖 distributed according to a Bernoulli distribution
with a probability of 0.5, while the second experiment employs a
different distribution for the noise 𝜖, defined as follows:

𝜖 =

{

0 with probability 0.5
5 with probability 0.5.

(16)

We select these two distributions because, for a specific number of
batches, they model to either have an increased demand over a short
number of timesteps or none at all. Furthermore, an optimal solution
to the problem can be easily computed using these distributions.

One viable strategy would involve value iteration or policy itera-
tion (Brandimarte, 2021). However, these methods require an excessive
amount of time to reach convergence. As a result, we opt to directly
solve the MS problem as expressed in model (5)–(13). In fact, since
𝜖 can take only four distinct values (i.e., two possible outcomes for
each of the two distribution warehouses), considering 𝑇 stages gives
rise to 4𝑇 different scenarios. For small values of 𝑇 , this leads to a
mathematical model that can be solved by an exact solver, thereby
providing the optimal solution (in that case, the scenarios tree precisely
describes every possible demand realization with its exact probability).

It is worth noting that there is no advantage in considering a number
of stages exceeding the demand period 𝑃 since, according to Eq. (15),
decisions made during the first stage have a limited influence on the
future. Although not detailed here due to their irrelevance to the scope
of the paper, computational experiments suggest that considering only
four stages is sufficient to obtain a practically equal solution derived
from a model considering all 𝑇 stages. Thus, the resulting MS stochastic
problem considers just (44 =) 256 scenarios and can be solved by
off-the-shelves solvers like Gurobi.

Before delving into a comparison of the proposed heuristic, it is
essential to assess the impact of initial conditions. To this end, we inves-
7

tigate the cost incurred per timestep starting from empty inventories h
over a period of 𝑇 = 21 timesteps. The results for the MS stochastic
model are reported in Fig. 6. From both Figs. 6(a) and 6(b), it is evident
that there is almost no transient phase, as evidenced by the periodicity
depicted in the two plots.

To assess the performance of the proposed heuristic, we benchmark
it against the PPO algorithm, the (s, Q)-policy (hereafter referred to as
sQ), and the expected value problem (EVP). Specifically, when employing
EVP, we solve the model (5)–(13) by replacing each random variable
with its expected value; this leads to a deterministic problem that exact
solvers can handle given that the scenario tree depicted in Fig. 4 is
reduced to a single chain of length 𝑇 .

We present the percentage optimality gaps derived from simulations
n Table 2. Within the table, we also report the performance of the
erfect information (PI) model. This model is obtained by solving the
odel (5)–(13) and substituting each random variable with its future

ealization. Analogous to EVP, this results in a scenario tree comprising
nodes, which can be addressed using exact solvers. It is important

o highlight that the PI model assumes complete knowledge of future
emand outcomes, making it not implementable in a real-world de-
loyment. Nevertheless, its introduction is helpful for quantifying the
nherent value of perfect information regarding the future (Birge and
ouveaux, 2011).

As the reader can observe, EVP underperforms in both settings,
eporting costs that are 116% and 198% worse than the average MS
olution, respectively. Trailing behind EVP, there is sQ, which has an
ptimality gap of 64% and 47%. Such performance can be attributed
o its static nature, which often leads to unsatisfactory solutions, es-
ecially in scenarios with seasonal demand. Interestingly, sQ emerges
s the only method where the optimality gaps diminish as the variance
ssociated with the noise increases; this observation can be rationalized
y recalling that, in the i.i.d. demand context, the (𝑠, 𝑄)-policy is
ntrinsically optimal (Wagner and Whitin, 1958). Moreover, it is note-
orthy that as the noise variance increases, the impact of seasonality
n performance diminishes.

In comparison, the PPO algorithm achieves better optimality gaps
han sQ, reporting gaps of 24% and 35%, respectively, and attest-
ng to the improved performance of dynamic rules over static ones.
eanwhile, DRLBD reaches an optimality gap of only 6% and 8%, con-

olidating its position as the most effective approach. Its performance,
ombined with a narrow standard deviation, reveals that our proposed
euristic consistently earns the lowest optimality gap. In the authors’
pinion, these considerable improvements can be mainly attributable
o the enhanced logistics management promoted by the MS model.

Lastly, the PI model, as intended, manifests negative optimality
aps, a direct consequence of its ability to access future knowledge.
urthermore, as it is intuitive to guess, PI excels particularly in settings
haracterized by higher demand variance, where a precise foreknowl-
dge of upcoming scenarios becomes an invaluable asset.

While average values and standard deviations provide some insight,
hey do not fully describe the actual distribution of costs. Therefore,
ig. 7 delves deeper, presenting the average optimality gaps through

istograms of frequency distributions. Given that the primary goal of

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

t
p
t
D

D
l
e
t
a

Fig. 6. Cost per timestep over 250 episodes, as computed by the multi-stage programming model. The 𝑋-axis represents the timesteps, while the 𝑌 -axis displays the per-step cost.
From both Figs. 6(a) and 6(b), which refers to the experiments of the small settings (but with 𝑇 = 21), it is possible to observe the periodic behavior of the costs.
Table 2
Average opt-gap (expressed as a percentage) over 250 episodes with respect to the multi-stage programming model. The
standard deviation is provided in round brackets. The lower the value, the better the algorithm.
a Average opt-gap (as a percentage) with 𝜖 ∼ (0.5). b Average opt-gap (as a percentage) with 𝜖 as in Eq. (16).

Algorithm Opt-gap [%] Algorithm Opt-gap [%]

DRLBD 6.10 (2) DRLBD 8.66 (3)
PPO 24.67 (9) PPO 35.66 (9)
sQ 64.09 (30) sQ 47.71 (12)
EVP 116.95 (59) EVP 198.62 (160)
PI −7.79 (3) PI −33.63 (9)
Fig. 7. Average opt-gap (expressed as a frequency distribution) over 250 episodes in comparison to the multi-stage programming model.
F
d
t
l
r
r

his small experiment setting is to evaluate the optimality gap of the
roposed methodologies, we focus exclusively on the gaps rather than
he absolute cost values. Moreover, our analysis considers only PPO and
RLBD, as they emerged as the most performing techniques.

From Figs. 7(a) and 7(b), it is evident that the cost interval for
RLBD is considerably more confined than that of PPO. In particu-

ar, the poorest results for DRLBD – approximately 10% for the first
xperiment and 15% for the second – are significantly better than
hose achieved by PPO, which hover around 70% and 80% for the first
nd second experiments, respectively. Moreover, DRLBD reaches values

close to optimality in both experiments, whereas PPO consistently
achieves optimality gaps greater than the average values achieved by
DRLBD, thus suggesting that DRLBD may offer a more robust and
efficient solution than PPO.

Regarding computational times for the different techniques, Table 3
contains the training times (in minutes) and the time needed to execute
a single episode, referred to as testing times (in milliseconds). Training
times for MS, EVP, and PI are omitted from the table, as these methods
do not necessitate performing any training phase, while DRLBD has the
same training time as PPO since they share the same underlying DRL
agent. In this first setting, the computational times are particularly fast.
8

Specifically, all training times require less than 3 min, and all testing t
executions are completed in less than a second. However, certain
methods diverge from the rest, i.e., MS, which needs to solve a MILP
with a considerable number of variables, and EVP, which needs to
consider the full-time horizon.

5.2. Large settings

In the second context, we consider experiments within a large setting
involving 5 or 10 distribution warehouses (i.e., 𝐽 = 5 or 𝐽 = 10).

The demand parameters of Eq. (14) are 𝐷 = 2 and 𝑃 = 6 over a time
horizon of one year (𝑇 = 12), such that each timestep ideally represents
a month. We consider the noise 𝜖 of the demand to be a random
variable distributed according to a negative binomial distribution with
parameters 𝑟 = 3 and 𝑝 = 0.7 (Agrawal and Smith, 1996; Aviv and
edergruen, 1997). Due to the size of the experiments and the demand
istribution, in this setting, we do not exploit an MS benchmark since
he number of scenarios required to approximate the out-of-sample cost
eads to a model that runs out of memory. Therefore, we report the
esults by computing the average gap achieved for each method with
espect to the performances reached by PI.

Accordingly, Table 4 presents the results of the comparison among
he different benchmark techniques in terms of the expected value

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.

t
t
a

w
a

Table 3
Average training and testing times for the two experiments conducted under small settings (i.e., with 𝜖 ∼ (0.5) and 𝜖 as in Eq. (16), respectively)
with their standard deviation (in brackets).
Algorithm Small setting (with 𝜖 ∼ (0.5)) Small setting (with 𝜖 as in Eq. (16))

Training time [min] Testing time [ms] Training time [min] Testing time [ms]

DRLBD 2.41 (0.01) 12 (2.01) 2.42 (0.01) 12 (2.01)
PPO 2.41 (0.01) 8 (15.70) 2.42 (0.01) 8 (3.39)
sQ 2.40 (0.01) 5 (0.61) 2.36 (0.01) 5 (0.56)
MS – 279 (30.30) – 298 (30.90)
EVP – 49 (0.52) – 39 (14.50)
PI – 7 (0.83) – 7 (1.18)
Table 4
Average EVPI-gap (expressed as a percentage) over 250 episodes concerning the expected value of perfect information model. The standard deviation is provided in round brackets.
The lower the value, the better the algorithm.
a Average EVPI-gap (as a percentage) with 𝐽 = 5 distribution warehouses. b Average EVPI-gap (as a percentage) with 𝐽 = 10 distribution warehouses.

Algorithm EVPI-gap [%] Algorithm EVPI-gap [%]

DRLBD 98.08 (21) DRLBD 105.08 (18)
PPO 132.31 (32) PPO 139.93 (26)
sQ 145.54 (34) sQ 188.71 (41)
EVP 548.87 (161) EVP 577.43 (124)
{
t

of perfect information (EVPI). By analyzing the values, it is evident
that EVP underperforms, corroborating the conclusion that addressing
uncertainty using ad-hoc methods is the appropriate approach. Indeed,
the costs incurred by EVP are more than five times higher than those
of DRLBD. These poor performances are mainly due to the inability of
EVP to produce a sufficiently high amount of items during the initial
timesteps of the considered time horizon. As a result, it suffers an initial
backlog that becomes impossible to satisfy during the seasonal peak,
leading to even higher backlogs. The second underperforming method
is sQ which still outperforms EVP since it adopts a massive Q value to
prevent backorder accumulation, unlike EVP.

As in the previous experiments, PPO achieves better results than sQ
by leveraging its ability to develop a dynamic decision rule proper for
seasonal behavior. Finally, DRLBD significantly outperforms all other
echniques, showing its superiority compared to the inability of PPO
o make advantageous logistic decisions, which, in turn, grows logistic
nd storage costs.

It is worth noting that all the gaps increase as the number of
arehouses grows since it leads to a more challenging problem. Among
ll methods, sQ and EVP are most impacted by the shift from 𝐽 = 5 to

𝐽 = 10, with performance reductions of 43.17% and 28.56%, respec-
tively. This drop also involves DRLBD and PPO, which decrease their
performance solely by 7.00% and 7.62%, respectively, thus proving the
stability of the proposed heuristic when confronted with an increasing
number of distribution warehouses.

To gain a better understanding of the cost distribution, we present it
in Fig. 8, expressing the cost in thousands of euros (ke). Both PPO and
DRLBD exhibit a similar distribution in both experiments. However,
PPO achieves higher average costs, reaching an average annual cost of
550ke for the setting with 𝐽 = 5 and 1100ke for the setting with 𝐽 =
10. In contrast, DRLB incurs average costs of 450ke and 800ke for
the same two settings, respectively. Furthermore, the distribution queue
for both methods appears fatter in the second experiment, especially
for PPO; this is a result of the increased complexity derived from a
greater number of distribution warehouses for which determining an
appropriate quantity to be shipped becomes more challenging, thus
leading to higher costs.

The computational times for both training and testing are detailed in
Table 5. As in the previous subsection, we report the training time (in
minutes) needed to learn a policy and the testing time (in milliseconds)
required to execute a single episode. In comparison to small settings,
the training time increases by a factor of three to five. Notably, sQ faces
the most significant increase, requiring a training time of 12.17 min for
9

the large setting experiment with 𝐽 = 10, in contrast to approximately
2.40 min in the smaller setting experiments.

Despite the challenges posed by the large settings, all testing times
remain under one second, thus proving that the primary computational
bottleneck is the training phase of the algorithms. Moreover, such
small computational times needed to compute actions allow for the
execution of multiple experiments in a reasonable amount of time.
This promptness is especially desirable for real-world applications, as
decision-makers can swiftly conduct what-if analyses.

Among all methods, EVPI is most affected by the increment of 𝐽 ,
increasing its computational time by 4.16 times. Finally, it is crucial
to note that the testing times for DRLBD appear small; this can be
attributed to the small number of stages and the variable relaxation
applied to the mathematical model used to determine the shipping
quantity, underscoring the DRLBD effectiveness also in this context.

5.3. Sensitivity analysis

To further investigate how demand variations affect the results
described and commented in the previous subsection, we design and ex-
ecute additional experiments, replicating those from Section 5.2 while
using different parameter values. Specifically, we focus on the setting
consisting of 5 distribution warehouses (i.e., 𝐽 = 5), as it facilitates to
perform numerical experiments that are both quick and easily manage-
able. The demand defined by Eq. (14) depends on several parameters,
such as amplitude 𝐷, period 𝑃 , and phase 𝜙𝑗 of the reference demand
value, along with parameters 𝑟 and 𝑝 associated with the random noise
𝜖. Since conducting a comprehensive analysis of the results involving
all these parameters would be complex, we opted to provide only some
select and possibly valuable insights here. Nevertheless, the publicly
available software code allows replicating the results and considering
different parameter values.

In detail, we introduced variations in 𝑃 and 𝐷 values, i.e., 𝑃 =
3, 6, 9} and 𝐷 = {1, 2, 3}. By adopting these parameters, we can adjust
he number of demand peaks throughout the time horizon (𝑇 = 12) as

well as the amplitude of the demand. Additionally, varying 𝐷 allows us
to regulate the balance between deterministic and stochastic demand
components. Compatible with the previous subsection, we keep 𝜙𝑗 = 0,
expressing the harshest condition, while we expand the capacities of
the distribution warehouses (i.e., 𝐼max

𝑗 = 8) according to the maximum
𝐷 value employed (i.e., 𝐷 = 3). This choice guarantees a standardized
setting across all experiments, preventing the risk of backlogs caused
by insufficient storage restriction. All other values are consistent with

those presented in Section 5 (and are reported in Appendix A). As in our

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
Fig. 8. Total costs histograms over 250 episodes in relation to PPO and DRLBD techniques.
Table 5
Average training and testing times for the two experiments conducted under large settings (i.e., with 𝐽 = 5 and 𝐽 = 10 distribution warehouses,
respectively) with their standard deviation (in brackets).
Algorithm Large setting (with 𝐽 = 5) Large setting (with 𝐽 = 10)

Training time [min] Testing time [ms] Training time [min] Testing time [ms]

DRLBD 6.40 (0.01) 28 (1.96) 11.30 (0.01) 40 (2.14)
PPO 6.40 (0.01) 18 (1.23) 11.30 (0.01) 25 (1.56)
sQ 6.04 (0.01) 11 (0.51) 12.17 (0.01) 14 (0.77)
EVP – 49 (0.58) – 204 (0.32)
PI – 245 (612) – 362 (1627)
a
m
𝐷
c
d

p
t
p
s
n
t
n
t
a

6

s
e
u
o
l
I
n
l

Table 6
Average EVPI gap (as a percentage) by varying demand parameters 𝑃 = {3, 6, 9}
and 𝐷 = {1, 2, 3}, and considering 𝐽 = 5 distribution warehouses. Adjusting these
parameters allows us to alter the number of demand peaks and the balance between
deterministic and stochastic demand components. The standard deviation is provided
in round brackets. The lower the value, the better the algorithm.

𝐷 = 1 𝐷 = 2 𝐷 = 3

𝑃 = 3

DRLBD 155.98 (21) 112.23 (25) 30.85 (28)
PPO 199.63 (31) 167.63 (47) 45.88 (38)
sQ 234.11 (42) 197.91 (55) 70.68 (47)
EVP 860.06 (290) 595.91 (170) 116.68 (72)

𝑃 = 6

DRLBD 151.77 (21) 105.01 (22) 31.78 (27)
PPO 196.01 (34) 156.54 (42) 47.10 (36)
sQ 228.05 (44) 223.23 (70) 75.49 (52)
EVP 858.57 (288) 571.42 (168) 122.25 (71)

𝑃 = 9

DRLBD 164.53 (23) 120.70 (25) 51.22 (29)
PPO 221.37 (39) 187.65 (56) 59.00 (33)
sQ 244.44 (42) 195.58 (42) 96.40 (48)
EVP 901.54 (300) 618.92 (184) 183.21 (71)

prior evaluations, we considered DRLBD, PPO, sQ, and EVP. In Table 6,
we reported the relative gaps compared to PI (i.e., the EVPI gap).

The most challenging scenario for all techniques emerged when 𝑃 =
9 and 𝐷 = 1. In this configuration, a single demand peak appears over
the time horizon, and the deterministic component is relatively small;
this makes preventing backlogs particularly complex for all techniques.
However, as the deterministic component grows, or as 𝑃 decreases,
the problem becomes more tractable since all methods begin to reduce
costs. This outcome is reasonable as a greater deterministic component
allows more accurate forecasting of the future. Moreover, when peaks
occur more frequently, they can be captured with a shorter look-ahead
interval, facilitating more effective production and shipping decisions.
The most favorable scenario emerges when 𝐷 = 3 and 𝑃 = 3. Here, a
demand peak appears every 3 time steps, and the demand is primarily
10

m

influenced by its deterministic component, thus promoting enhanced
production and shipment planning.

It is interesting to notice that 𝐷 affects the performance of the
methods more than 𝑃 . In fact, while the variation along the columns is
round 30%, the variation along the rows is approximately 6%. The
ost substantial growth occurs when transitioning from 𝐷 = 2 to
= 3; this is motivated by an increment of the deterministic demand

omponent that enables all methods to make more knowledgeable
ecisions.

When comparing various techniques, it becomes evident that the
roposed heuristic consistently outperforms its competitors in all set-
ings. Among the others, PPO demonstrates superior results when com-
ared to sQ and EVP, with sQ surpassing EVP. Interestingly, the most
ignificant performance improvements across different 𝐷 values are
oticed with EVP, underscoring its heightened sensitivity to uncer-
ainty. In contrast, the performance variations of the other methods do
ot reveal any substantial differences, thus confirming the conclusion
hat addressing uncertainty with appropriate methods is the proper
pproach.

. Conclusions

In this paper, we introduce a novel heuristic for addressing the
upply chain inventory management problem within a divergent two-
chelon supply chain. The proposed heuristic decomposes the problem
sing a deep reinforcement learning algorithm to determine the number
f batches to produce and multi-stage stochastic programming to estab-
ish the quantities of batches to ship to each distribution warehouse.
n practical terms, this approach combines the strengths of both tech-
iques: the model-based approach of MS programming for immediate
ogistics decisions and the simulation–optimization abilities of DRL to
ake production decisions that require a longer look ahead interval.

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
We assessed the performance of the proposed heuristic through a
series of numerical experiments. In smaller settings, where computing
an optimal solution was feasible, DRLBD demonstrated performance
reasonably close to exact methods. Moreover, in larger and more com-
plex settings where determining an optimal solution was impracticable,
DRLBD performed robustly, consistently outperforming both the PPO
algorithm and the (𝑠, 𝑄)-policy used as benchmarks. To further sub-
stantiate these findings, we conducted a sensitivity analysis by varying
specific demand parameters. This analysis confirmed the stability of our
results through different value combinations, also proving that exper-
iments featuring a low frequency of peaks and a small deterministic
component are more challenging to handle.

From a computational time point of view, DRLBD rapidly computes
actions, with the DRL training phase emerging as the primary poten-
tial bottleneck. This efficiency enables decision-makers to employ the
proposed heuristic as an effective tool to conduct what-if analysis in a
reasonable amount of time.

In conclusion, these findings underscore the potential of the pro-
posed heuristic in adeptly addressing the SCIM problem across a range
of distinct scenarios. Future research directions will explore more com-
plex supply chain environments, encompassing critical factors like fixed
production costs, uncertainty in item availability for the factory, and
other relevant aspects. Lastly, investigations will extend to supply
chain settings with more than two echelons to better evaluate the
applicability and performance of the proposed heuristic. Through these
efforts, we aspire to advance the understanding of the SCIM problem
in increasingly complex and dynamic environments.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The datasets generated and analyzed during the current study can
be generated using the open-source software library developed for this
research, which can be accessed through GitHub (https://github.com/
frenkowski/SCIMAI-Gym).

Acknowledgments

We are grateful to the reviewers, whose insightful comments have
significantly contributed to the enhancement of this paper. Further-
more, we extend our thanks to Enrico Robbiano (Senior Manager -
Supply Chain Analytics at Bristol-Myers Squibb) for his contribution to
validating the data and Giovanni Fantoni for his invaluable support in
improving the source code.

Funding

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Appendix A. SCIM environment parameters

Table 7 outlines the parameters defining the SCIM environment for
small and large settings. For small experiments, the indication of two
values is associated with 𝜖 ∼ (0.5) and 𝜖 as in Eq. (16), respectively.
For large experiments, the exhibition of two values corresponds to 𝐽 =
5 and 𝐽 = 10 distribution warehouses, respectively. This comparative
methodology enables the evaluation of the impact of distinct config-
urations on the overall performance and efficiency of our proposed
11

techniques.
Table 7
Parameters defining the SCIM environment for small and large settings. In small
settings, when two values are listed, the first is associated with the experiment with
𝜖 ∼ (0.5), while the second refers to 𝜖 as in Eq. (16). For the large settings, the
provided two values correspond to experiments with 𝐽 = 5 and 𝐽 = 10 distribution
warehouses, respectively.

Parameters Small settings Large settings

Maximum demand value 5 2
Production costs 1 1
Vehicles capacities 3 2
Logistic costs fixed 0.7 random(0.7, 1)
Logistic costs variable 0.03 random(0.01, 0.07)
Maximum production {8, 15} {13, 25}
Factory capacities {10, 20} {18, 36}
Distribution warehouses capacities {5, 10} {6, 6}
Factory storage costs 0.1 random(0.01, 0.1)
Distribution warehouses storage costs 1 random(1, 2)
Backorder costs 10 10

More specifically, in small settings, the demand amplitude remains
constant at 5, whereas in large ones, it is set at 2. Production costs
are consistent across experiments, with a value of 1. Vehicle capacities
differ between the two settings. Small experiments accommodate a
capacity of 3, with a fixed cost per vehicle of 0.7 and a variable cost
per batch of 0.03. Conversely, large experiments allow for a capacity of
2, with fixed costs randomly ranging between 0.7 and 1 and variable
costs that exhibit random variation within the range of 0.01 and 0.07.

Maximum production capacity also exhibits different values, with
bounds set at 8 and 15 batches for small settings and 13 and 25 batches
for large ones. Furthermore, factory capacities display differences, with
values of 10 and 20 batches in small settings and 18 and 36 batches in
large ones. Distribution warehouse capacities are lower than factory
capacities, with 5 and 10 batches for small settings and large ones that
consistently maintain a capacity of 6 batches. It is crucial to highlight
that these configurations are strategic and designed to encourage agents
to preserve stocks in advance and effectively avoid myopic behavior.

Concerning storage costs, factory storage costs are set to 0.1 in small
experiments, while they randomly vary between 0.01 and 0.1 in large
ones. In contrast, distribution warehouse storage costs remain constant
at 1 for small settings and exhibit random variations between 1 and 2
for large settings. Finally, backorder costs remain fixed at 10 across all
experiments.

Appendix B. Hyperparameters selection

Selecting appropriate values for hyperparameters in neural net-
works is complex and time-consuming, as extensively discussed in the
relevant literature (Feurer and Hutter, 2019; Yang and Shami, 2020).
Hyperparameters play a crucial role in the context of DRL algorithms
since they can significantly influence training and, consequently, rela-
tive performance (Boute et al., 2022). Our choice of hyperparameters is
based on the Ray documentation and in observance of the discussions
presented in Gijsbrechts et al. (2022) and Stranieri and Stella (2022).

Table 8 lists the selected hyperparameters for the underlying multi-
layer perceptron with two hidden layers, along with their correspond-
ing values. Through a grid search, the PPO algorithm was trained for
75k episodes for the two experiments belonging to the small settings,
100k episodes for the experiment of the large setting comprising 5
distribution warehouses (i.e., 𝐽 = 5), and 200k episodes for the
experiment of the large setting involving 10 distribution warehouses
(i.e., 𝐽 = 10). The results presented in the paper refer to the best
combination of hyperparameters identified, for which we replicated the
training and testing procedures.

Moreover, we assess the PPO agent to access the demand values of
the previous timesteps (i.e., referring to Eq. (3), we set 𝜏 = 2 in small
experiments and 𝜏 = 3 in large ones). This choice reflects a balance
between providing the PPO agent with enough information to make

https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
Table 8
Hyperparameters of the PPO algorithm selected for tuning, along with their corresponding values. Through
a grid search, we search for the best combination of hyperparameters for each experiment.
PPO hyperparameters Values

Neurons per hidden layer {(16, 16), (32, 32), (64, 64), (128, 128)}
Learning rate {5e−4, 5e−5, 5e−6}
Train batch size {200, 400, 800, 2000, 4000, 8000}
Stochastic gradient descent mini-batch size {64, 128, 256, 512}
Stochastic gradient descent iterations {15, 30, 45}
informed decision-making while not overwhelming it with excessive
historical data, which might introduce unnecessary complexity and
longer training times.

The parameters governing the (𝑠, 𝑄)-policy are determined using
a data-driven approach based on Bayesian optimization, as presented
in Stranieri and Stella (2022).

Finally, DRLBD exploits the best combination of PPO hyperparam-
eters as previously described, while to generate the scenario tree it
employs a Monte Carlo technique known as moment matching.

References

Agrawal, N., Smith, S.A., 1996. Estimating negative binomial demand for retail
inventory management with unobservable lost sales. Nav. Res. Logist. 43 (6), 839–
861. http://dx.doi.org/10.1002/(sici)1520-6750(199609)43:6<839::aid-nav4>3.0.
co;2-5.

Alonso-Ayuso, A., Escudero, L., Garín, A., Ortuño, M., Pérez, G., 2003. An approach
for strategic supply chain planning under uncertainty based on stochastic 0-
1 programming. J. Global Optim. 26 (1), 97–124. http://dx.doi.org/10.1023/a:
1023071216923.

Aviv, Y., Federgruen, A., 1997. Stochastic inventory models with limited production
capacity and periodically varying parameters. Probab. Engrg. Inform. Sci. 11 (1),
107–135. http://dx.doi.org/10.1017/s026996480000471x.

Bertsekas, D., 2021. Rollout, Policy Iteration, and Distributed Reinforcement Learning.
Athena Scientific.

Birge, J.R., Louveaux, F., 2011. Introduction to Stochastic Programming. Springer New
York, http://dx.doi.org/10.1007/978-1-4614-0237-4.

Boute, R.N., Gijsbrechts, J., van Jaarsveld, W., Vanvuchelen, N., 2022. Deep reinforce-
ment learning for inventory control: A roadmap. European J. Oper. Res. 298 (2),
401–412. http://dx.doi.org/10.1016/j.ejor.2021.07.016.

Brandimarte, P., 2006. Multi-item capacitated lot-sizing with demand uncertainty. Int.
J. Prod. Res. 44 (15), 2997–3022. http://dx.doi.org/10.1080/00207540500435116.

Brandimarte, P., 2011. Quantitative Methods. Wiley, http://dx.doi.org/10.1002/
9781118023525.

Brandimarte, P., 2014. Handbook in Monte Carlo Simulation: Applications in Financial
Engineering, Risk Management, and Economics. John Wiley & Sons.

Brandimarte, P., 2021. From Shortest Paths to Reinforcement Learning. Springer
International Publishing, http://dx.doi.org/10.1007/978-3-030-61867-4.

Brandimarte, P., Zotteri, G., 2007. Introduction to Distribution Logistics. Wiley, http:
//dx.doi.org/10.1002/9780470170052.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W., 2016. OpenAI gym. http://dx.doi.org/10.48550/ARXIV.1606.01540,
URL: https://arxiv.org/abs/1606.01540.

Chaharsooghi, S.K., Heydari, J., Zegordi, S.H., 2008. A reinforcement learning model
for supply chain ordering management: An application to the beer game. Decis.
Support Syst. 45 (4), 949–959. http://dx.doi.org/10.1016/j.dss.2008.03.007.

Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S., Hester, T.,
2021. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Mach. Learn. 110 (9), 2419–2468. http://dx.doi.org/10.1007/s10994-021-
05961-4.

Feurer, M., Hutter, F., 2019. Hyperparameter optimization. In: Automated Machine
Learning. Springer International Publishing, pp. 3–33. http://dx.doi.org/10.1007/
978-3-030-05318-5_1.

Fujimoto, S., van Hoof, H., Meger, D., 2018. Addressing function approximation error
in actor-critic methods. In: Dy, J., Krause, A. (Eds.), Proceedings of the 35th
International Conference on Machine Learning. In: Proceedings of Machine Learning
Research, vol. 80, PMLR, pp. 1587–1596, URL: https://proceedings.mlr.press/v80/
fujimoto18a.html.

Gijsbrechts, J., Boute, R.N., Mieghem, J.A.V., Zhang, D.J., 2022. Can deep rein-
forcement learning improve inventory management? performance on lost sales,
dual-sourcing, and multi-echelon problems. Manuf. Serv. Oper. Manag. 24 (3),
12

1349–1368. http://dx.doi.org/10.1287/msom.2021.1064.
Grewal, C.S., Enns, S., Rogers, P., 2015. Dynamic reorder point replenishment strategies
for a capacitated supply chain with seasonal demand. Comput. Ind. Eng. 80,
97–110. http://dx.doi.org/10.1016/j.cie.2014.11.009.

Gurobi Optimization, LLC, 2023. Gurobi optimizer reference manual. URL: https://
www.gurobi.com.

Harsha, P., Jagmohan, A., Kalagnanam, J., Quanz, B., Singhvi, D., 2021. Math pro-
gramming based reinforcement learningfor multi-echelon inventory management.
SSRN Electron. J. http://dx.doi.org/10.2139/ssrn.3901070.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2018. Deep
reinforcement learning that matters. In: AAAI’18/IAAI’18/EAAI’18, AAAI Press.

Huang, Y., Chen, C.-W., Fan, Y., 2010. Multistage optimization of the supply chains of
biofuels. Transp. Res. E 46 (6), 820–830. http://dx.doi.org/10.1016/j.tre.2010.03.
002.

Hubbs, C.D., Perez, H.D., Sarwar, O., Sahinidis, N.V., Grossmann, I.E., Wassick, J.M.,
2020. OR-gym: A reinforcement learning library for operations research problems.
http://dx.doi.org/10.48550/ARXIV.2008.06319, URL: https://arxiv.org/abs/2008.
06319.

Kemmer, L., von Kleist, H., de Rochebouët, D., Tziortziotis, N., Read, J., 2018.
Reinforcement learning for supply chain optimization. In: European Workshop on
Reinforcement Learning, Vol. 14.

Khouja, M., 2003. Optimizing inventory decisions in a multi-stage multi-customer
supply chain. Transp. Res. E 39 (3), 193–208. http://dx.doi.org/10.1016/s1366-
5545(02)00036-4.

de Kok, T., Grob, C., Laumanns, M., Minner, S., Rambau, J., Schade, K., 2018.
A typology and literature review on stochastic multi-echelon inventory models.
European J. Oper. Res. 269 (3), 955–983. http://dx.doi.org/10.1016/j.ejor.2018.
02.047.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,
Yang, Z., Paul, W., Jordan, M.I., Stoica, I., 2017. Ray: A distributed framework
for emerging AI applications. http://dx.doi.org/10.48550/ARXIV.1712.05889, URL:
https://arxiv.org/abs/1712.05889.

Mortazavi, A., Khamseh, A.A., Azimi, P., 2015. Designing of an intelligent self-adaptive
model for supply chain ordering management system. Eng. Appl. Artif. Intell. 37,
207–220. http://dx.doi.org/10.1016/j.engappai.2014.09.004.

Peng, Z., Zhang, Y., Feng, Y., Zhang, T., Wu, Z., Su, H., 2019. Deep reinforcement
learning approach for capacitated supply chain optimization under demand uncer-
tainty. In: 2019 Chinese Automation Congress (CAC). IEEE, http://dx.doi.org/10.
1109/cac48633.2019.8997498.

Powell, W.B., 2011. Approximate Dynamic Programming. John Wiley & Sons, Inc.,
http://dx.doi.org/10.1002/9781118029176.

Preusser, M., Almeder, C., Hartl, R.F., Klug, M., 2010. LP modelling and simulation of
supply chain networks. In: Supply Chain Management und Logistik. Physica-Verlag,
pp. 95–113. http://dx.doi.org/10.1007/3-7908-1625-6_4.

Ravulapati, K.K., Rao, J., Das, T.K., 2004. A reinforcement learning approach to
stochastic business games. IIE Trans. 36 (4), 373–385. http://dx.doi.org/10.1080/
07408170490278698.

Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., Ivanov, D., 2022. A review on
reinforcement learning algorithms and applications in supply chain management.
Int. J. Prod. Res. 61 (20), 7151–7179. http://dx.doi.org/10.1080/00207543.2022.
2140221.

Roy, B.V., Bertsekas, D., Lee, Y., Tsitsiklis, J., 1997. A neuro-dynamic programming
approach to retailer inventory management. In: Proceedings of the 36th IEEE
Conference on Decision and Control. IEEE, http://dx.doi.org/10.1109/cdc.1997.
652501.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal pol-
icy optimization algorithms. http://dx.doi.org/10.48550/ARXIV.1707.06347, URL:
https://arxiv.org/abs/1707.06347.

Stranieri, F., Stella, F., 2022. Comparing deep reinforcement learning algorithms in
two-echelon supply chains. http://dx.doi.org/10.48550/ARXIV.2204.09603, https:
//arxiv.org/abs/2204.09603.

Stranieri, F., Stella, F., Kouki, C., 2023. Performance of deep reinforcement learning
algorithms in two-echelon inventory control systems. Int. J. Prod. Res. Submitted

for Publication.

http://dx.doi.org/10.1002/(sici)1520-6750(199609)43:6<839::aid-nav4>3.0.co;2-5
http://dx.doi.org/10.1002/(sici)1520-6750(199609)43:6<839::aid-nav4>3.0.co;2-5
http://dx.doi.org/10.1002/(sici)1520-6750(199609)43:6<839::aid-nav4>3.0.co;2-5
http://dx.doi.org/10.1023/a:1023071216923
http://dx.doi.org/10.1023/a:1023071216923
http://dx.doi.org/10.1023/a:1023071216923
http://dx.doi.org/10.1017/s026996480000471x
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb4
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb4
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb4
http://dx.doi.org/10.1007/978-1-4614-0237-4
http://dx.doi.org/10.1016/j.ejor.2021.07.016
http://dx.doi.org/10.1080/00207540500435116
http://dx.doi.org/10.1002/9781118023525
http://dx.doi.org/10.1002/9781118023525
http://dx.doi.org/10.1002/9781118023525
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb9
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb9
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb9
http://dx.doi.org/10.1007/978-3-030-61867-4
http://dx.doi.org/10.1002/9780470170052
http://dx.doi.org/10.1002/9780470170052
http://dx.doi.org/10.1002/9780470170052
http://dx.doi.org/10.48550/ARXIV.1606.01540
https://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1016/j.dss.2008.03.007
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1007/s10994-021-05961-4
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
http://dx.doi.org/10.1007/978-3-030-05318-5_1
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
http://dx.doi.org/10.1287/msom.2021.1064
http://dx.doi.org/10.1016/j.cie.2014.11.009
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com
http://dx.doi.org/10.2139/ssrn.3901070
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb21
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb21
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb21
http://dx.doi.org/10.1016/j.tre.2010.03.002
http://dx.doi.org/10.1016/j.tre.2010.03.002
http://dx.doi.org/10.1016/j.tre.2010.03.002
http://dx.doi.org/10.48550/ARXIV.2008.06319
https://arxiv.org/abs/2008.06319
https://arxiv.org/abs/2008.06319
https://arxiv.org/abs/2008.06319
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb24
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb24
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb24
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb24
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb24
http://dx.doi.org/10.1016/s1366-5545(02)00036-4
http://dx.doi.org/10.1016/s1366-5545(02)00036-4
http://dx.doi.org/10.1016/s1366-5545(02)00036-4
http://dx.doi.org/10.1016/j.ejor.2018.02.047
http://dx.doi.org/10.1016/j.ejor.2018.02.047
http://dx.doi.org/10.1016/j.ejor.2018.02.047
http://dx.doi.org/10.48550/ARXIV.1712.05889
https://arxiv.org/abs/1712.05889
http://dx.doi.org/10.1016/j.engappai.2014.09.004
http://dx.doi.org/10.1109/cac48633.2019.8997498
http://dx.doi.org/10.1109/cac48633.2019.8997498
http://dx.doi.org/10.1109/cac48633.2019.8997498
http://dx.doi.org/10.1002/9781118029176
http://dx.doi.org/10.1007/3-7908-1625-6_4
http://dx.doi.org/10.1080/07408170490278698
http://dx.doi.org/10.1080/07408170490278698
http://dx.doi.org/10.1080/07408170490278698
http://dx.doi.org/10.1080/00207543.2022.2140221
http://dx.doi.org/10.1080/00207543.2022.2140221
http://dx.doi.org/10.1080/00207543.2022.2140221
http://dx.doi.org/10.1109/cdc.1997.652501
http://dx.doi.org/10.1109/cdc.1997.652501
http://dx.doi.org/10.1109/cdc.1997.652501
http://dx.doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.48550/ARXIV.2204.09603
https://arxiv.org/abs/2204.09603
https://arxiv.org/abs/2204.09603
https://arxiv.org/abs/2204.09603
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb37
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb37
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb37
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb37
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb37

International Journal of Production Economics 268 (2024) 109099F. Stranieri et al.
Sui, Z., Gosavi, A., Lin, L., 2010. A reinforcement learning approach for inventory
replenishment in vendor-managed inventory systems with consignment inven-
tory. Eng. Manage. J. 22 (4), 44–53. http://dx.doi.org/10.1080/10429247.2010.
11431878.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT Press.
Vanvuchelen, N., Boute, R.N., 2022. The use of continuous action representations

to scale deep reinforcement learning: An application to inventory control. SSRN
Electron. J. http://dx.doi.org/10.2139/ssrn.4253600.

Vincent, P., 1985. Exact fill rates for items with erratic demand patterns. INFOR:
Inf. Syst. Oper. Res. 23 (2), 171–181. http://dx.doi.org/10.1080/03155986.1985.
11731953.
13
Wagner, H.M., Whitin, T.M., 1958. Dynamic version of the economic lot size model.
Manage. Sci. 5 (1), 89–96. http://dx.doi.org/10.1287/mnsc.5.1.89.

Yan, Y., Chow, A.H., Ho, C.P., Kuo, Y.-H., Wu, Q., Ying, C., 2022. Reinforcement
learning for logistics and supply chain management: Methodologies, state of the
art, and future opportunities. Transp. Res. E 162, 102712. http://dx.doi.org/10.
1016/j.tre.2022.102712.

Yang, L., Shami, A., 2020. On hyperparameter optimization of machine learning
algorithms: Theory and practice. Neurocomputing 415, 295–316. http://dx.doi.org/
10.1016/j.neucom.2020.07.061.

Zipkin, P., 2000. Foundations of Inventory Management. Irwin Professional Publishing,
Maidenhead, England.

http://dx.doi.org/10.1080/10429247.2010.11431878
http://dx.doi.org/10.1080/10429247.2010.11431878
http://dx.doi.org/10.1080/10429247.2010.11431878
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb39
http://dx.doi.org/10.2139/ssrn.4253600
http://dx.doi.org/10.1080/03155986.1985.11731953
http://dx.doi.org/10.1080/03155986.1985.11731953
http://dx.doi.org/10.1080/03155986.1985.11731953
http://dx.doi.org/10.1287/mnsc.5.1.89
http://dx.doi.org/10.1016/j.tre.2022.102712
http://dx.doi.org/10.1016/j.tre.2022.102712
http://dx.doi.org/10.1016/j.tre.2022.102712
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb45
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb45
http://refhub.elsevier.com/S0925-5273(23)00331-6/sb45

	Combining deep reinforcement learning and multi-stage stochastic programming to address the supply chain inventory management problem
	Introduction
	Literature Review
	Problem Formulation
	Solution Methods
	Deep Reinforcement Learning
	Multi-Stage Stochastic Programming
	Deep Reinforcement Learning-Based Decomposition

	Numerical Experiments
	Small Settings
	Large Settings
	Sensitivity Analysis

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. SCIM Environment Parameters
	Appendix B. Hyperparameters Selection
	References

