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ARTICLE INFO ABSTRACT

Keywords: Shape sensing, i.e. the reconstruction of the displacement field of a structure from discrete strain measurements,
Structural health monitoring is becoming crucial for the development of a modern Structural Health Monitoring framework. Nevertheless,
iFEM

an obstacle to the affirmation of shape sensing as an efficient monitoring system for existing structures is
represented by its requirement for a significant amount of sensors. Two shape sensing methods have proven
to exhibit complementary characteristics in terms of accuracy and required sensors that make them suitable for
different applications, the inverse Finite Element Method (iIFEM) and the Modal Method (MM). In this work, the
formulations of these two methods are coupled to obtain an accurate shape sensing approach that only requires
a few strain sensors. In the proposed procedure, the MM is used to virtually expand the strains coming from a
reduced number of strain measurement locations. The expanded set of strains is then used to perform the shape
sensing with the iFEM. The proposed approach is numerically and experimentally tested on the displacement
reconstruction of composite stiffened structures. The results of these analyses show that the formulation is able
to strongly reduce the number of required sensors for the iFEM and achieve an extremely accurate displacement

Virtual sensor expansion
Shape sensing
Modal method
Strain pre-extrapolation

reconstruction.

1. Introduction

Shape sensing is defined as the reconstruction of the deformed shape
of a structure from discrete strain measurements. This technique is
rapidly imposing its importance for the development of a modern Struc-
tural Health Monitoring (SHM) framework. In fact, the continuous mon-
itoring of the displacements during the service life can provide crucial
information on the health status of a structure, allowing the detection of
damages and efficiently guiding the maintenance operations [1-8]. In
addition, the shape sensing can work as a feedback monitoring system
for the control of the morphing mechanism of the recently developed
smart structures [9,10].

Several shape sensing methods have been proposed during the last
two decades. They are all based on the computation of the displacement
field from discrete strain measurements, but they differ in the working
principle that they are based on. In the present work, two shape sensing
methods are considered due to their success in the open literature, the
inverse Finite Element Method (iFEM) and the Modal Method (MM).

The iFEM, firstly formulated in [11], is based on the discretisation
of the structural domain with finite elements and on the consequent

E-mail address: marco.esposito@polito.it.

https://doi.org/10.1016/j.compstruc.2024.107520
Received 27 March 2024; Accepted 1 September 2024

approximation of the strain field in terms of nodal degrees of freedom
(displacements and rotations) and shape functions. The error between
this analytical strain field and the one measured at some discrete loca-
tions is then minimised in order to compute the values of nodal degrees
of freedom that best fit the measured strains. The iFEM has been suc-
cessfully applied to the analysis of beam-like structures [12-14], of thin
walled structures [15,16] and of sandwich and multilayered composite
structures [17-20]. Recently, the modelling capabilities of the method
have been enhanced with the use of isogeometric formulations [21,22].
Moreover, in [23], iFEM has been extended to achieve damage detection
through the reconstruction of the modal parameters of plate structures.
Damage detraction for multilayered plates has also been investigated in
[24], with the introduction of refined zigzag theory (RZT) within the
iFEM framework.

The MM is based on the approximation of the strain field in terms of
known spatial functions, the modal strain shapes, and unknown weights,
the modal coordinates. The modal coordinates are computed by fitting
the so-formulated strain field to the discretely measured strains. The
displacement field is then computed by means of the strain-displacement
relations. The Modal Method has been introduced in [25,26] and applied
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to the analysis of plates in [27,28]. Recently, the MM has also been
applied to the static and dynamic analysis of a wing experiencing small
[29] and large deformations [30].

Although recent developments have been introduced in the strain
sensing technology [31,32], the availability of a sufficient number of
strain measurements for the shape sensing methods is an ongoing issue,
especially for the already designed structures that are instrumented with
few strain sensors. In this regard, the comparative studies in [33,34] dis-
cuss the relative merits and drawbacks of the iFEM and the MM. In fact,
the iFEM shows superior accuracy in the reconstruction of the displace-
ment field, but at the cost of a large number of strain sensors. On the
other hand, the MM is able of a decent accuracy with sparse sensor con-
figurations, but it is not able to reach the accuracy of the iFEM, even with
a significant number of sensors. Few studies have been performed on the
virtual extrapolation of strains from a few sensors to feed the iFEM with
more strain information. In [35], the Smoothing Element Analysis (SEA)
was introduced as a finite element based approach able to interpolate,
with a controllable degree of smoothness, single stress components over
a specific domain. The SEA has been extended to the interpolation of
strain components and, coupled with the iFEM, has been used for the ex-
perimental shape sensing of a wing-shape sandwich laminate [36] and,
recently, for the numerical shape sensing of an aluminium plate [37].
The polynomial fitting has been also adopted for the same purpose in
[38]. More recently, in [39], the performance of SEA and polynomial
fitting have been compared for the experimental case of a composite
plate subject to buckling. Despite their successful applications, these pre-
extrapolation techniques can only be applied to simple geometries. In
fact, they can expand the strain field to parts of the structural domain
that belong to the same surface of the measured strains, i.e. for a stiff-
ened panel, strains measured on the skin can not be used to extrapolate
strains on the stiffeners and vice versa. Moreover, these methods can
only be applied to scalar quantities and, therefore, the strain field needs
to be extrapolated performing a separate procedure for each component.

In this work, a method that combines the iFEM and MM’s working
principles to overcome the limitations of the two methods is proposed.
The MM, thanks to its adaptably to sparse strain sensors’ configura-
tion, is adopted as a Virtual Sensor Expansion (VSE) method for the
pre-extrapolation to a large number of strain information from a small
amount of measured strains. This pre-extrapolation technique over-
comes the limitation on the extrapolation domain highlighted for the
SEA and the polynomial fitting. The iFEM is then fed with the expanded
set of strains, thus allowing it to process a sufficient amount of strain in-
formation. This procedure is tested on the numerical and experimental
shape sensing of stiffened multilayered composite structures. The study
shows that the mixing of the two methods is able to overcome the lim-
itations of their separate application. In fact, the results prove that the
methodology can reconstruct a highly accurate displacement field, even
when using a reduced number of strain sensors.

The paper is structured as follows. In Section 2, the MM and the
iFEM are introduced. In Section 3, the proposed method that combines
the two previously described shape sensing methods is formulated. In
Section 4, the numerical experiment is described. The results of this
investigation are reported in Section 5. The experimental validation of
the introduced method is described in Section 6. Finally, the concluding
remarks are presented in Section 7.

2. Shape sensing methods

In the following section, the inverse Finite Element Method (iFEM)
and the Modal Method (MM) are summarised in order to set the numer-
ical framework for the novel approach. In particular, the formulation is
presented for the case of thin-walled structures, thus two-dimensional
inverse finite elements are considered. Nevertheless, the proposed ap-
proach is easily applicable to beam and frame structures by using one-
dimensional inverse elements.
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Fig. 1. Plate - The figure shows the notation of the plate’s kinematic variables
and the strain sensor’s back-to-back configuration for the computation of the
membrane strain measures and of the bending curvatures in the g-th location.

2.1. iFEM

The inverse Finite Element Method is based on the discretisation of
the structural domain with finite elements. As for the standard/direct
Finite Element Method, the displacement field within each element is
interpolated using unknown nodal degrees of freedom and known spa-
tial shape functions [40]. The strain field is then easily expressed in
terms of the spatial derivatives of the shape functions and of the nodal
degrees of freedom [41]. Considering the First-order Shear Deformation
Theory as the kinematic model for a thin plate, the strain field (three in-
plane strain components and two transverse shear strain components)

can be expressed in terms of eight strain measures, €, (k=1, 2, ..., 8):
Exx u,x 0y,x 31 €4
Epy (= Uy +z =0y =q¢& p+z4¢&50=e+zk
Yxy Uty (ey,y - ex,x) €3 &
(1a)

Vxz — w,x+0y}={e7}= 1b
(op-tnma)-{a)- a

where e are the membrane strain measures, k are the bending curvatures
and g are the transverse-shear strain measures. The kinematic variables
u, v, w, 0y, 0, and the coordinate z, relative to a generic plate, are
illustrated in Fig. 1.

The introduction of a FE discretisation of the structural domain leads
to the interpolation of the kinematic variables, within each finite ele-
ment, in terms of the shape functions’ matrix, N, and of the vector of
the nodal degrees of freedoms (DOFs), u®:

[u, v, w, 6., Gy]T =Nu* 2
The eight strain measures defined in Eq. (1) can be then expressed
in terms of the nodal DOFs as follows:

gu®)=Bu® (k=1,2, ..8) 3

where B, is the matrix containing the spatial derivatives of the shape
functions corresponding to the k-th strain measure.

The objective of the iFEM is to find the nodal DOFs that best fit, in
a least-squares sense, the analytic strain measures (3) with those exper-
imentally evaluated at some discrete locations on the structure. This is
obtained by minimising the error between the analytical and the mea-
sured strain measures expressed by the following functional:

8
2
Y= Y Al //(ek(ue) —eMPdxdy ()
k=1 e
In the functional, ¢]' denotes the k-th strain measure experimentally
evaluated on the structure and A° is the area of the inverse element. w}
are coefficients used to guarantee the dimensional consistency between
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the different addenda of the functional. They are set as follows: w; =1
for k =1,2,3,7,8 and wi = (2h)? for k = 4,5,6, where h is the half-
thickness of the element. On the other hand, /12 are coefficients used
to take into account for the sparsity of the experimentally evaluated
strain measures. They are set as follows: 47 =1 if the k-th strain mea-
sure is actually measured, or to a small value A¢ = (1074,1075,107%)
if the corresponding strain measure is not measured. In this case, the
corresponding €}’ is set to 0.

The first six strain measures that appear in Eq. (4) can be experimen-
tally evaluated ("), at a generic (g) location, from strain sensors located
on the bottom surface (-) and on the top (+) surface of a plate through
the computation of the membrane strains and the bending curvatures:

51" | e:x +e,
m __ m _ + -
€ =152 =5 E{fy ey (5a)
ey VANE
%) T )
. _
€ZI 1 6)-({-)( T Eyx
m __ m — —_
ki) = S'Sn o 6)}3/ g{y (5b)
€6 Vay T Vxy

@) (®)
Fig. 1 illustrates the use of a strain rosette to compute these six strain
measures. By using unidirectional sensors, only the corresponding strain
measures can be computed and the penalisation scheme based on the
A7 is adopted for the remaining strain measures. Differently, the trans-
verse shear strain measures (¢; and &g, (Eq. (1))), can never be experi-
mentally evaluated. Therefore, the /13’8 are always set to a small value

(1074,1075,107°) and the el are set to 0.

Once the functional is defined, it can be minimised to compute the
DOFs that best fit, in a least-squares sense, the measured strain field at
the sensorised locations. The minimisation of Eq. (4) leads to a system

of algebraic linear equations:

M—leue—f@—o (6a)
oue -
u=1"1ge (6b)

The assembly procedure, typical of the standard FEM, is then adopted
to extend the procedure to all the elements of the structure. As a con-
sequence, the assembly of the 1° matrices generates the global L matrix
and the assembly of the f¢ vectors generates the global F vector. The
vector of the global DOFs, U, can then be computed as:

U=L"'F )

The penalisation scheme adopted in Eq. (4) allows the application of
the method to structures with sparse strain sensors’ configurations, i.e.,
with inverse elements that do not contain strain sensors. On the other
hand, in some previous works [33,34], it has been highlighted that the
method is only able to guarantee consistent accuracy for moderately
sparse sensors’ configuration, whereas it guarantees impressive accuracy
for structures instrumented with a significant amount of sensors.

2.2. Modal method

The modal method is a shape sensing technique that uses the modal
characteristics of a structure to derive its deformed shape from a set of
discretely measured strains [25,28].

If a FE discretisation of a structural domain is considered, the vectors
of the nodal degrees of freedom, (w)p;, and of the available strain
components, (€) gy, can be expressed in terms of the vector of the modal
coordinates (q) py1:

w==®,q (8)

e=®.q ()
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where the modal matrix (®,)py,, is constituted by M columns (the i-
th column being the i-th modal eigenvector of the degrees-of-freedom).
The modal matrix (®)g,, is also constituted by M columns (the i-th
column being the i-th set of strains corresponding to the i-th mode shape
of the FE model of the structure). The generalised formulation of the MM
includes the case where the number of .S measured strains is different
from the number of M computed modes. In particular, this formula-
tion considers the most common case where .S > M. In this case, the
displacements can be computed by pseudo-inverting Eq. (9) and substi-
tuting it into Eq. (8):

w=0, (@®'®)"' @' (10

thus allowing the computation of the discretised displacement field, ex-
pressed in terms of the modal shapes, that best fits the measured strains
in a least-squares sense. The selection of the modes to be retained is
crucial for the accuracy of the method. In [28] and [29], two criteria
for the modes selection are described. Differently from the iFEM, the
MM proved to be reasonably accurate in the reconstruction of the dis-
placement field, even considering sparse strain sensors’ configurations
[33,34]. However, especially for deformed shapes that do not resem-
ble any mode shape of the structure, the MM is not as accurate as the
iFEM, even when a huge number of strain sensors is considered. This
behaviour will be demonstrated in the following of the paper.

3. Modal Virtual Sensor Expansion coupled with iFEM

The shape sensing method proposed in this paper has the objective of
combining the characteristics of the two previously described methods,
the MM and the iFEM. The purpose is to overcome the limitation of the
iFEM when sparse sensors’ arrays are available, and, on the other hand,
to exploit the adaptability of the MM to the same kind of applications.
This mixing is obtained by a two-step procedure. The first step involves
the Modal Virtual Sensor Expansion (Modal VSE) of a reduced number
of strain measurements according to a formulation based on the same
principle that the MM relies on. The expanded strain measures are then
used in the second step as an input for the shape sensing through the
iFEM.

In [42], O’ Callahan et al. formulated the System Equivalent Re-
duction Expansion Process (SEREP). The process can be applied to the
virtual expansion of a few strain measurements to a higher number. If
we consider a vector of .S strain components (€) gy, it can be split into
two subsets, one of S, measured strains, (€")g, |, and one of S, ex-
panded strains, (¢°)g 1, where S =5, +5,:

g:{ff} an
&

The modal transformation described by Eq. (9) can be applied to both
the subsets, thus resulting in:

=g (13)

where @7 and @ are the modal strain matrices relative to the €™ and
the ¢ strains, respectively.
The pseudo inversion of Eq. (12) leads to

_ T -1 T
q=[@" @]~ (@) &" 14)
that substituted into Eq. (13) results in:
€ = D@ @Y1 @) & as)

This expression allows the computation of the £¢ subset of strains from
the €™ subset, and consequently, the knowledge of the full set of ¢ strains
from the €™ strains only. If we consider that €™ is a set of actually mea-
sured strain components on a structure, Eq. (15) allows the expansion of
these measurements to strains at different locations of the structure and
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Fig. 2. Scheme of the two-step procedure that couples the Modal VSE and the iFEM.

to strains in different directions. In fact, since the modal strain shapes
are defined over the whole structural domain and for the strain com-
ponents in every direction, there is no limitation to the location and
direction of the virtual expansion, i.e. from discrete strain components
along a generic x-direction on a surface of a structure, strain compo-
nents along the y-direction on a different surface of the same structure
can be computed. This feature overcomes the limitation of other strain
pre-extrapolation techniques, like Smoothing Element Analysis (SEA),
that can only interpolate strain components in the same direction on
the same surface. As for the MM, also for this technique, it is important
to select representative modes to be retained in the formulation of ®,.
The same criteria described in [28] and [29] can be used. Moreover, the
number of considered modes (M) once again constraints the minimum
number of measured strains that can be used, i.e. S,, > M.

Once the virtually expanded set of strains is obtained, it is used to
perform shape sensing by means of the iFEM, as described in Section 2.1.
This two-step procedure is schematised in Fig. 2.

The introduction of the Modal VSE prior to the application of iFEM
will prove to be very beneficial in terms of reduction in the number of
sensors for shape sensing. However, the Modal VSE introduces a require-
ment that is not necessary when simply applying standard iFEM, which
is the knowledge of the material properties of the structure. In fact, the
iFEM is based on the strain-displacement relationship that does not in-
volve the material properties. On the contrary, Modal VSE relies on the
computation of the modal characteristics of the structure, that depend
on the material properties. Although material properties are often avail-
able in engineering problems, this aspect could limit the application of
Modal VSE coupled with iFEM to applications where these properties
are known.

4. Numerical case study

The introduced method is assessed with a numerical investigation
regarding a composite stiffened panel, deformed under a concentrated
force. This test case, which will be described in detail in the following
sections, is of particular relevance to the approach presented in the cur-
rent work. In fact, the shape-sensing analysis of the considered structure
can reveal the limitations of the iFEM and the MM when used separately.

4.1. Test case

The test case is a composite stiffened panel of length L=1000 mm
and width W=600 mm. It has three L-shaped stringers on one face,
whereas the other face is flat. The geometry of the panel is presented in
Figs. 3 and 4.

The whole panel, including the skin and the stiffeners, is made of
composite laminates with the lamina characteristics summarised in Ta-
ble 1. The lay-ups for the skins and the stringers are reported in Table 2.
The stacking sequence is symmetric with respect to each component’s
mid-surface and the reference direction for the ply angles is shown in

_ 4000

L

0°

Fig. 3. Panel’s geometry - The figure shows the geometry of the stiffened panel
along with the reference directions for the composite stacking sequences (all
dimensions are expressed in mm).

Stringer 25.8

- L LT

1 . 1
! 3.2] Skin !

Fig. 4. Stinger and skin interface - The figure shows the geometry of the stringer
and the thickness of the skin (all dimensions are expressed in mm).

Fig. 3. The directions are referred to the skin’s lay-ups. The stringers’ lay-
ups are obtained by folding the plies from the skin. As a consequence,
the reference directions result from this folding.

Two loading conditions are considered. Both configurations have
clamping boundary conditions on the shorter edges of the panel, includ-
ing the edges of the stringers in that location. The first configuration is
considered to be the primary loading condition and it is used to select
the sensors’ configuration and to prove the accuracy of the shape sens-
ing method. It consists of a concentrated force applied at the midpoint
of the panel (%; %). The force has a module of 1000 N and is applied
on the flat side of the skin along the z direction. The second configura-
tion is considered to be an accidental loading condition that the method
is challenged to solve even though it has been optimised for the primary
condition only. It is used to assess the robustness of the method to un-
expected deformations. It is obtained by moving the concentrated force
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Table 1
Lamina characteristics.
E,, [GPa] E,, [GPa] Vip G\, =G,; =G5 [GPa]  Thickness [mm]  p [kg/mm?]
111 7.857 0.34 3.292 0.2 1.5E-06
Table 2 5.231
Composites’ stacking sequences. 4.6
Component St. Sequence Total thickness [mm] 4.1
3.5
Skin [45/ —45/0/90/ — 45/45/ —45/45], 3.2
Stringers [45/ — 45/0/90], 16 £ 29
N 3 02.3
y 0 1.7
600 — " 200 1.2
800 3
x-axis 1000 O y-axis 0.6
0

Fig. 5. Loading configuration - The figure shows the two loading schemes. F,
identifies the primary loading configuration whereas F, identifies the accidental
one.

= T
R e s
e

Fig. 6. Inverse mesh - This is the mesh used for the shape sensing with the iFEM.

closer to one edge of the panel. Fig. 5 shows the loading configurations
on the panel.

4.2. Models and preliminary analysis

Two numerical models are used for the investigation. The first one
is the model used for shape sensing with the iFEM. It is constituted by
928 iQS4 inverse elements whose detailed formulation is described in
[40,43]. This model is shown in Fig. 6 and it will be defined as the inverse
mesh in the rest of the paper.

The second model, defined as the direct mesh, is a more refined
one, obtained from the inverse mesh by splitting each inverse element
into nine direct elements. It is adopted to perform the static analy-
sis under the loading configurations and for the computation of the
modal characteristics of the structure. The input strains for the shape
sensing and the deformed shape that need to be reconstructed are ex-
tracted from the static analysis of this model, analysed with the software
MSC/NASTRAN®. For the inverse and the direct meshes, the normals of
the elements are concordant with the z-axis and y-axis, for the elements
aligned with the x-y and x-z planes, respectively.

The deformed shape for the primary loading condition from the static
analysis of the direct mesh is presented in Fig. 7. This deformed shape
is the one that the shape sensing methods are tested on. The first 30
modes of the structure are computed from the modal analysis of the
direct mesh. Out of these 30 modes, those that mostly contribute to
represent the primary static deformation are selected. The selection is

Fig. 7. Primary deformed shape - This is the primary deformed shape that the
shape sensing methods is optimised to solve (all dimensions are expressed in
mm).

7.759
6.9
6.0
5.2
43
65.4
2.6
500 » ; 200 1.7

z-axis

0 .
X-axis 1000 0 y-axis 0.9
0

Fig. 8. Accidental deformed shape - This is the deformed shape that the robust-
ness of the shape sensing methods is tested on (all dimensions are expressed in
mm).

made by computing the percentage strain energy contribution of each
mode to the total strain energy of the primary static deformation [28].
The first 29 modes contribute a 95% of the total strain energy and they
are selected for the application of the MM and of the Modal VSE. It
is important to highlight once again that the accidental deformation
is not considered in this selection process at all. On the other hand, the
accidental deformed shape, used to assess the robustness of the methods
to unexpected deformations, is shown in Fig. 8.

5. Numerical results
5.1. Error assessment

The evaluation of the accuracy of the shape sensing is assessed
through the computation of two errors. Since the predominant displace-
ment of the deformed shape is the transverse one, along the z direction,
the errors are computed with respect to this component. The first error
considered is a local one. It is the percentage error on the reconstruc-
tion of the maximum transverse displacement experienced by the panel,
%Err,**. The second error takes into account the global accuracy of the
reconstruction over the 990 nodes of the inverse mesh. It is the percent-
age root mean square error computed as follows:

990 ref \ 2
%E =100 % 1 Z M 16)
oErms,, = 990 - o7
i=1 Wiax
where, w; are the reconstructed transverse displacements, w:ef are the

reference transverse displacements, computed from the analysis of the
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Fig. 9. Full set of sensors - The panel is equipped with strain rosettes in every
centroid location of the inverse mesh. The rosettes measure the strain along x, y
and x-y for the skin and the cap of the stringers (Ry,). They measure the strain
along x, z and x-z for the web of the stringers (R,,).

Table 3
Results of the preliminary analysis on the reconstruction of the de-
formed shape of the primary loading condition.

Sensor conf. MM iFEM

% Erry® %Erms,  %Errh®™  %Erms,
Full set (Fig. 9) 6.2 1.1 0.3 0.1
Reduced set (Fig. 11) 9.2 2.2 67.4 23.2

direct mesh, and w"/ _is the maximum value of the reference transverse
max
displacements.

5.2. Preliminary computations

The primary deformed shape in Fig. 7 is particularly significant for
this application and it is the only one considered for the preliminary
computations described in this section. In fact, it highlights the limita-
tions of the iFEM and the MM that are meant to be overcome by the
formulation proposed in this work.

To highlight the behaviour of the methods, at first, the full set of
strain sensors is considered, i.e. strain rosettes in a back-to-back config-
uration located at the 928 locations showed in Fig. 9, accounting for a
total of 1856 sensors (considering that, for every location, the back-to-
back configuration requires two sensors). In this case, the results relative
to the primary deformed shape, in terms of % Err!'** and % Erms,,,, ob-
tained by the iFEM and the MM, are reported in Table 3. Moreover,
Fig. 10 shows the distribution over the entire mesh of the error on the
reconstruction of the traverse deflection computed for the i-th node:

[w; — w;ef|
%Ew; =100 x —F 17)

| wmax

where the notation is the same adopted for Eq (16). When analysing the
figures and the table, it is important to consider that the maximum of
%Ew; could be located in a different location than the one where the

maximum transverse displacement (w;faf;) is experienced. Therefore, the

% Ew

(a) Modal Method
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y xy
ENEEEEEEE = EEEE = L x

Fig. 11. Reduced set of sensors - The panel is equipped with strain rosettes in 70
centroid locations of the inverse mesh. Only rosettes on the skin are considered
and they measure the strain along x, y and x-y (R,y).

maximum of % Ew; in the plots may differ from % Err]* in the table.
The table and the figures show that the displacement reconstruction
obtained with the MM is modest, especially considering that it is ob-
tained using the maximum number of installable sensors. Moreover, the
comparison with the extreme accuracy of the iFEM proves the excel-
lent performance of the latest and the moderate one of the MM for this
configuration.

When reducing the number of sensors to only 140 (70 sensors’ lo-
cations in a back-to-back configuration), the situation is reversed. The
reduced set of sensors is obtained considering 140 strain rosettes only on
the skin of the panel. They are distributed over its area, trying to cover a
broad portion of the domain and considering a higher concentration of
sensors where the strains for the primary loading condition are higher
(Fig. 11). From the results reported in Table 3 and Fig. 12, it is clear
that the overall accuracy of MM, evaluated with the % Erms,, parame-
ter, is influenced by the reduction in the amount of strain information,
but still preserves a decent accuracy. On the contrary, the iFEM’s accu-
racy becomes extremely poor. Looking at the % Err),**, the same trend
can be observed for the reconstructions of the maximum deflection.

The results of this preliminary study, where only the primary load-
ing condition is studied and the sensor expansion is not yet considered,
prove once again that the MM can achieve moderate accuracy with
a small number of sensors. Nevertheless, this accuracy seems to have
an asymptotic value, impossible to exceed, even heavily increasing the
number of sensors. They also confirm the extreme accuracy of the iFEM,
but also the necessity of a considerable amount of sensors for the method
to achieve this level.

5.3. Results after the virtual sensor expansion

The results from the preliminary computation inspired the formula-
tion of the proposed mixed approach, aimed at combining the positive
characteristics of the MM and the iFEM in order to overcome their in-
dividual limitations. The challenge is to exceed the accuracy of the MM

% Ew
0.57
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0.44
0.38
0.32
0.25
0.19
0.13
0.06
0.00

(b) iIFEM

Fig. 10. Shape sensing for the primary loading condition with the full set of sensors - Bottom view of the panel showing the distribution of the % Ew; errors for the

Modal Method and the iFEM.
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Fig. 12. Shape sensing with the reduced set of sensors - Bottom view of the panel showing the distribution of the % Ew; errors for the MM and the iFEM.
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®5, (Subset B) z
" Ryy/ Ryz(Subset B)

(b) Stringers

Fig. 13. Expanded set of sensors - The strain rosettes of subset A are illustrated
by red squares. The 10 sensing lines along x and the 5 strain rosettes of subset B
are indicated using labels from 1-10 and R1-R5, respectively. The configuration
includes the back-to-back locations of 70 rosettes on the skin (M R,,/R,.),
258 mono-directional strain gauges along x (@ S,) and 5 strain rosettes on the
stringers (1 R,,/R,,)-

when using only 140 sensors by virtually expanding them to feed the
iFEM with sufficient strain information. The virtual expansion is ob-
tained by the formulation introduced in Eq. (15).

To achieve this goal, the sensor configuration in Fig. 11, is expanded
in order to include a sufficient amount of sensors for the iFEM. The
expanded set of sensors is shown in Fig. 13. It includes the 140 strain
rosettes of the reduced set (Fig. 11), where all membrane strains (g, &,,
€3) and bending curvatures (g4, €5, £¢) are computed. This subset of sen-
sors will be defined as subset A. In addition, the configuration includes
10 sensing lines along the x-axis of the panel, where ¢! and £ are
computed, and 5 sensing locations on the stringers, where all membrane
strains (g, &,, £€3) and bending curvatures (g4, €5, £€¢) are computed.
This subset of sensors is defined as subset B. To summarise, this con-
figuration includes 258 mono-axial strain gauges (.S,) and 75 strain
rosettes (R,,/R,,), all in a back-to-back configuration, thus account-
ing for a total of 666 sensors. This configuration is designed considering

the information and results already existing in the literature about the
optimal sensing configurations for similar structures subjected to load-
ing conditions similar to the primary one [43,44]. In fact, when using
this set of sensors, without any application of VSE and thus consider-
ing that the sensors from subsets A and B are all actually measured, the
iFEM is able to accurately reconstruct the deformed shape of the struc-
ture for the primary loading condition. The results of this analysis are
reported in the first row of Table 4 and in Fig. 14a. The reconstructions
of the iFEM for this case are not as accurate as the ones obtained with
the full set of sensors, but they are consistently more accurate than the
ones obtained by the MM and the iFEM when considering the reduced
set of sensors. In fact, % Errf}®* and %Erms,, are more or less halved
when compared with the MM (Table 3).

The next step is to analyse what happens when we actually measure
only the strains coming from the reduced set of sensors and we virtu-
ally expand them according to the formulation introduced in Eq. (15).
In this case, we define €” as the vector of the strains from the sub-
set A in Fig. 13, whereas the vector £° is computed and contains the
virtually expanded strains of subset B. The ®}' and ®¢ matrices con-
tain the modal strain shapes of the measured strain components and
the expanded ones, respectively. Also, in this case, the first 29 strain
shapes are considered. When considering this configuration, out of 666
sensors of the reduced set, only the 140 rosettes of the subset A are
actually measured. When applying the iFEM, fed by the measured and
virtually extrapolated strains, the results of the shape sensing for the pri-
mary loading condition are reported in the second row of Table 4 and in
Fig. 14b. The procedure shows an % Err);* = 4.4 and an % Erms,, = 1.1.
These values prove a good accuracy that is strongly comparable with the
one shown by the iFEM when actually measuring the strains from the
sensors of subsets A and B, without any VSE, thus demonstrating the
convergence of the procedure to the solution obtained using the nomi-
nal strains. Moreover, considering the same actually measured sensors,
both errors are, once again, halved with respect to the MM. In fact, it
is important to highlight once again that these results are obtained by
only measuring the strains from the 140 sensors in Fig. 11, which are
extrapolated to obtain the sensor configuration in Fig. 13. In Table 4,
the errors in the reconstructions of the two bending curvatures, 6, and
0, are also reported. These quantities also show that the introduction
of the VSE does not compromise the accuracy of the reconstructions,
which show comparable values with respect to the configuration with
nominal strains. The analysis of Fig. 14b also proves the accuracy of the
procedure. In fact, the plot shows that the distribution of % Ew; on the
panel never exceeds 5%. Only on one edge of the panel there is a local
inaccuracy that does not appear in the reconstruction of Fig. 14a. Nev-
ertheless, this local phenomenon is within the 5% threshold and does
not compromise the overall accuracy of the procedure. In conclusion, in
terms of displacement reconstruction, the proposed procedure is able to
exceed the accuracy of the MM and reach the accuracy of the iFEM, fed
with a sufficient number of sensors, but using a strongly reduced set of
actually measured sensors.
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Fig. 14. Shape sensing for the primary loading condition with the expanded set of sensors - Bottom view of the panel showing the distribution of the % Ew; errors

for the iFEM.

Table 4

Primary loading condition - Results for the expanded set of sensors. In the first row are reported the errors when
using all measured strains from subsets A and B, whereas in the second row are reported the errors when using
the combination of measured strains from subset A and virtually expanded strains from subset B.

iFEM
Sensors’ conf. % Err® %Erms,  %Erry™  %Erms, % Erry® %Erms,
3 5 3 v
Subset A =measured; subset B=measured 4.8 1.1 1.46 3.80 5.02 1.28
Subset A =measured; subset B=virtual 4.4 1.1 -0.27 5.23 4.44 3.44
2
1 < (€ iTE :ef
%Erms, =100X | — ) (18)
N ref
i=1 Emax

© FEM (ref.)
+ MODAL VSE
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Fig. 15. Virtual strain expansion - The figure shows the distributions of the
nominal (FEM (ref.)) and extrapolated (MODAL VSE) strains over the area of
the panel. The following components are plotted: €}, (a), e, (b).

To assess the effectiveness of the proposed procedure, it is also im-
portant to verify the method’s accuracy for the extrapolation of the
strains. The parameter used to assess the accuracy of the extrapolation
is, once again, the root mean square percentage error defined as follows:

where the g, is the i-th strain component from the entire expanded set of

ref
Sensors, & i

is the correspondent i-th nominal strain component com-

:,faf;( is the
maximum value of the N e;ef strain components. For the case study
proposed here, the value of the error is small, % Erms, =4.3. In Fig. 15,
the extrapolated strains, compared with the nominal strains, are plotted
for the 10 sensing lines previously defined. The figure and the value of
%Erms, show that over the area of the panel, the extrapolation of the
strains is globally accurate. On lines 7 and 8, close to the maximum val-
ues of the deformation, the extrapolation presents some inaccuracies.
These sensing lines do not have measured strains on them and, there-
fore are more difficult to extrapolate. This behaviour can be observed
more in detail for line num. 8 in Fig. 16a. Also, the analysis of lines
3 and 9 requires further attention. These sensing lines, which are lo-
cated on the stringers, lay outside of the plane of the skin of the panel,
where the measured strains are located. This condition represents an un-
feasible problem for other strain extrapolating methods (i.e., Smoothing
Element Analysis, Polynomial extrapolation). Fig. 16b shows the extrap-
olation of &} for line 3. It proves that the proposed method is able to
reconstruct these strains, which are impossible to extrapolate with other
methods, with impressive accuracy. The result is even more impressive
when considering that no measured sensor is located on the considered
line.

The same condition applies to the strain rosettes included in the ex-
panded set of sensors (Fig. 13b). Since they are located on the stringers
of the panel, they also don’t lay on the same plane as the measured
strains. Fig. 17 shows the extrapolations of all three strain components
for the 5 rosettes. The graphs demonstrate that the extrapolation of
strains for rosettes number 1 and 5 is consistently accurate for all the
strain components. On the contrary, the extrapolation of the strains from
rosettes 2 and 3 is always incorrect and for rosette 4 only the £} and
€, components are precisely extrapolated.

Overall, the extrapolation of the strains shows good agreement with
respect to the nominal ones, even in areas where the extrapolation is
usually difficult or impossible. Some local inaccuracies are encountered

puted through the static analysis of the direct mesh and &
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Fig. 16. VSE on sensing lines number 3 and 8 - The figures show the distributions of the nominal (FEM (ref.)) and the extrapolated (MODAL VSE) ¢} along x for

the sensing line number 8 (a) and 3 (b).
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Fig. 17. Virtual strain expansion for rosettes - The figure shows the values of the nominal (FEM (ref.)) and extrapolated (MODAL VSE) strains for the 5 rosettes
in Fig. 13b. The following components are plotted: s:fx (a), g;jy (b), y;“y (o), £y (), g;y (e), y;y (f). For R3 and R4 the strain components are expressed in a local
coordinate system that has the x-axis aligned with the global x and the y-axis aligned with the global z. The global axes are reported in Fig. 13.

for areas where no actually measured strains are located. These inac-
curacies do not influence the reconstruction of the displacements with
iFEM, which is as precise as the one obtained by using the nominal
strains. This is due to the working principle of the iFEM. Since it relies on
the least-square fitting of the input strains to compute the displacement
fields, its formulation is able to smooth the influence of these outlying
strains.

5.4. Results for the accidental loading condition

Another step of this work is to prove the robustness of the introduced
procedure to a different deformation. For this purpose, the accidental
loading condition has been introduced in Section 4.2. For this loading
condition, neither the sensor configuration nor the modes for the Modal
VSE have been specifically selected. It represents the case of a deformed
shape experienced by the structure that is different from the one the
monitoring system has been designed for. Therefore, no modification
of the procedure is considered. For this test, the sensor configuration is
the expanded one (Fig. 13). Also for this case, the first analysis is per-
formed considering measured strains from the sensors subsets A and B.
The values of the errors, reported in Table 5 are close to 1%, thus prov-
ing an efficient shape sensing of the deformation. However, in Fig. 18a,

it can be noticed that a local inaccuracy is present on one stringer of the
structure, where % Ew; reaches 6.7%. Nevertheless, considering that the
sensors’ configuration is not designed for this specific loading condition,
despite this local phenomenon, it can be concluded that the iFEM shows
satisfactory robustness to the change in the loading condition.

To finally prove the robustness of the process involving the Modal
VSE combined with the iFEM, the procedure is tested on the accidental
loading condition as well. The configuration is the same adopted for the
primary loading condition and, consequently, the set of actually mea-
sured (subset A) and virtually expanded (subset B) strains is the one
plotted in Fig. 13. The results of this analysis are reported in Table 5.
The reconstruction of the displacements is satisfactory, with errors that
do not exceed 3%. Also in this case the distribution of % Ew; (Fig. 18b)
shows a local peak on the same stringer of the previous case. Moreover,
the errors relative to the bending rotations (Table 5) also show some
high values for 6, that are also present in the shape sensing with the
nominal strains. Although this is not positive, it proves once again that
this solution converges to the one obtained with the nominal strains,
thus proving the efficiency and robustness of the Modal VSE+iFEM pro-
cess. In fact, it can achieve the same accuracy, also for this accidental
deformation, using only 140 actually measured sensors, virtually ex-
panded to a total of 666 sensors.
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Accidental loading condition - Results for the expanded set of sensors. In the first row are reported the errors
when using all measured strains from subsets A and B, whereas in the second row are reported the errors when
using the combination of measured strains from subset A and virtually expanded strains from subset B.

iFEM
Sensors’ conf. %Err™  %Erms, %Err;"x“" %Ermsy %Err”f‘;’x %Ermsgy
Subset A =measured; subset B=measured 0.9 1.1 8.93 8.52 -1.41 1.23
Subset A=measured; subset B=virtual -2.9 1.2 13.25 10.95 1.94 3.36
% Ew
6.7 ! 75
6.0 6.6
52 [T 5.8
[145 5.0
37 4.2
3.0 3.3
22 25
1.5 1.7
0.7 0.8
0.0 0.0

(a) iIFEM with sensors from subsets A and B
actually measured

(b) iFEM with sensors from subset A actually
measured and sensors from subset B virtually ex-
panded

Fig. 18. Shape sensing for the accidental loading condition with the expanded set of sensors - Bottom view of the panel showing the distribution of the % Ew; errors

for the iFEM.

Fig. 19. Experimental wing-shaped composite panel.

Table 6

TWILL T-300 nominal properties.
E, [GPa] E,, [GPa]l v, Gy, =G,; =G5 [GPa]  Thickness [mm]  p [kg/mm’]
59.7 59.7 0.09 3.8 0.25 1.5E-06

6. Experimental validation
6.1. Experimental test case

The experimental validation of the introduced methodology is per-
formed on a composite wing-shaped panel (Fig. 19). The panel is stiff-
ened with three T-section stringers on one side of the panel, whereas the
other side is flat. The geometry of the experimental test case is illustrated
in Fig. 20. The panel is made of a multilayered composite whose layers
are made of a TWILL T-300 carbon-fibre fabric prepreg. The characteris-
tics of the prepreg are reported in Table 6. The layup stacking sequence
of the panel and of the stringers is [45/0/0/45/0/0/0/45],. From the
described structure, an inverse model constituted of 960 iQS4 is derived
(Fig. 21). A second high-fidelity model is also created to extract the first
eighteen modal shapes of the structure for the application of the Modal
VSE.

As for the numerical study, two loading conditions are considered to
study the different behaviour of the MM, the iFEM and the introduced
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Modal VSE+iFEM formulation. Both the load cases have simply sup-
ported boundary conditions applied at the two tips of the wing shaped
panel and a concentrated force applied at the root section of the wing.
They differ in the application point of the load and the induced defor-
mation. The Load case 1 includes a transverse concentrated force, F),
located at 106 mm from the trailing edge, as shown in Fig. 21. This
loading condition induces a primary bending deformation with a small
contribution from the torsional behaviour. On the other hand, the Load
case 2 includes a transverse concentrated load, F,, that induces a com-
bined deformation of bending and torsion.

The panel is instrumented with fibre optic distributed strain sensors
based on the Rayleigh scattering and optical frequency domain reflec-
tometry (OFDR). They are placed along the wing span of the panel, and
the strain is measured along the laying direction of the fibre. By using
two 10-meter-long fibres, the sensing of the strain in the centroid loca-
tions of the inverse mesh shown in Fig. 21 is experimentally obtained. In
addition to the fibres, 8 locations are instrumented with strain rosettes
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Fig. 20. Experimental wing-shaped panel’s geometry - The figure shows the geometry of the experimental stiffened panel (all dimensions are expressed in mm).
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Fig. 21. Experimental wing-shaped panel’s inverse mesh - The figure shows the inverse mesh of the panel, the loading configurations and the full set of experimental
sensors. (@ S, ) are the sensing locations of the fibres and (Ml R,,) are the sensing locations of the strain rosettes (all dimensions are expressed in mm).
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Fig. 22. Reduced set of experimental sensors - The figure shows the reduced set of experimental sensors. (@ S, ;) are the sensing locations of the fibres and (Il
ny) are the sensing locations of the strain rosettes (all dimensions are expressed in mm).

(Fig. 21). As in the previous numerical application, also in this case, the From this full set, a reduced set is extracted, following the instruc-
configuration considers back-to-back sensors. To summarise, the exper- tions on the distribution of sensors provided by the numerical study.
imental configuration of sensors consists of 780 strain measurements The reduced set preserves the rosettes of the full set but consists of a
coming from the fibres and 48 coming from the strain rosettes, account- strongly reduced number of strain measurements from the fibres. The
ing for a total of 828 measured strains. This configuration represents the distribution of the sensors is shown in Fig. 22. The configuration is
full set of the experimental sensors. clearly inspired by the one shown in Fig. 11 for the numerical appli-
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Fig. 23. Displacement sensors - The figure shows the configuration of the six transverse displacement sensors w,_¢ (all dimensions are expressed in mm).
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Fig. 24. Experimental configuration - The figure shows the testing configuration for the wing-shaped composite panel.

cation. Moreover, in the context of the application of the Modal VSE, it
is important to highlight once again that the reduced set does not in-
clude sensors on the stiffeners of the panel, that are present in the full
set. This reduced set consists of 106 strain measurements coming from
the fibres and 48 coming from the strain rosettes, accounting for a to-
tal of 154 measured strains. Therefore, the reduced set diminishes the
considered strain measurements by 81% with respect to the full set.

The experimental set-up is completed with the sensors that measure
the experimental displacements, which are used as a reference for as-
sessing the accuracy of the shape sensing. During the test, the panel is
equipped on the flat surface with six LVDTs, as illustrated in Fig. 23.
They measure the transverse displacements in six randomly distributed
locations over the area of the panel, thus giving information on the over-
all deformation of the structure.

6.2. Experimental results

The experimental test is performed by loading the structure on the
test bench illustrated in Fig. 24. More detail on the testing configuration
can be found in [44]. For both loading conditions, a load of 200 N is
applied. During the tests, the data from all the sensors are collected.
Several analyses are performed based on these data.

The first analysis simply considers the application of the standard
iFEM when the full set of strain sensors are included. Table 7 shows
the results of this analysis in terms of reconstructed transverse displace-
ments and percentage errors with respect to the measured ones. As
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Table 7

Results when the full set of measured sensors is considered: the
experimentally measured and the reconstructed transverse displace-
ments are reported for the two load cases. In parentheses, the per-
centage errors with respect to the experimental values are reported.
Moreover, the mean of the absolute value of the percentage error is
also reported (u(|%Err|)).

Load case 1 Load case 2

Experimental iFEM Experimental iFEM
F [N] 200 200
wy [mm] 2.44 2.55 2.42 2.50
(%Err,,) (+4.2%) (+3.5%)
w, [mm] 3.72 3.89 2.98 3.14
(%Err,,) (+4.5%) (+5.2%)
w; [mm] 3.72 3.90 2.98 3.14
(%Err,,) (+4.8%) (+5.4%)
wy [mm] 3.77 3.51 5.18 4.84
(%Err,,) (-7.0%) (-6.5%)
ws [mm] 3.42 3.19 4.72 4.35
(%Err,,) (-6.8%) (-8.0%)
we [mm] 3.29 3.36 3.75 3.82
(%Err,,) (+1.9%) (+1.8%)
u(|%Err|) 4.9% 5.1%

already demonstrated by past studies and by the previously described
numerical study, the iFEM show high accuracy when a consistent num-
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Results when the reduced set of measured sensors is considered: the experimentally mea-
sured and the reconstructed transverse displacements are reported for the two load cases.
In parentheses, the percentage errors with respect to the experimental values are reported.
Moreover, the mean of the absolute value of the percentage error is also reported (u(|% Err|)).

Load case 1 Load case 2

Experimental iFEM MM Experimental iFEM MM
F [N] 200 200
w; [mm] 2.44 0.78 2.40 2.42 0.72 2.35
(%Err,,) (-68.0%)  (-1.8%) (-70.1%)  (-2.6%)
w, [mm) 3.72 1.55 3.84 2.98 1.37 2.95
(%Erer) (-58.3%) (+3.3%) (-54.1%) (-1%)
wy [mm] 3.72 1.55 3.84 2.98 1.36 2.98
(%Err,,) (-58.2%)  (+3.3%) (-54.2%)  (0.0%)
w, [mm) 3.77 1.58 3.98 5.18 1.60 6.38
(%Err,,) (-58.0%)  (+5.7%) (-69.2%)  (+23.3%)
ws [mm) 3.42 1.29 3.60 4.72 1.26 5.67
(%Errws) (-62.2%) (+5.2%) (-73.4%) (+20.1%)
wg [mm) 3.29 1.19 3.31 3.75 1.11 3.64
(%Err,,) (-63.7%)  (+0.7%) (-70.5%)  (-2.9%)
u(|%Err|) 61.4% 3.3% 65.3% 8.3%

Table 9

Results when the reduced set of measured sensors is virtually expanded to the full
set: the experimentally measured and the reconstructed transverse displacements are
reported for the two load cases. In parentheses, the percentage errors with respect to
the experimental values are reported. Moreover, the mean of the absolute value of
the percentage error is also reported (u(|%Err|)).

Load case 1 Load case 2

Experimental =~ Modal VSE+iFEM Experimental =~ Modal VSE+iFEM
F [N] 200 200
wy [mm] 2.44 2.40 2.42 2.33
(%Err,,) (-1.7%) (-3.4%)
w, [mm] 3.72 3.86 2.98 2.73
(%Errw2) (+3.8%) (-8.3%)
w3 [mm] 3.72 3.87 2.98 2.74
(%Err,,) (+4.0%) (-8.1%)
w, [mm) 3.77 3.77 5.18 5.06
(%Err,,) (-0.1%) (-2.3%)
ws [mm) 3.42 3.42 4.72 4.58
(%Errws) (-0.0%) (-3.0%)
wg [mm] 3.29 3.28 3.75 3.46
(%Errwﬁ) (-0.4%) (-7.8%)
u(|%Err|) 1.7% 5.5%

ber of sensors are available. In fact, the percentage errors never exceed
8% for both load cases, and the mean absolute error is close to 5%.
The second analysis only considers the measured data from the re-
duced set of sensors, without any strain pre-extrapolation. The results
of this analysis are reported in Table 8. When applying the iFEM and
the MM with this reduced set of strain information, they show differ-
ent behaviour. The iFEM clearly struggles to reconstruct the transverse
displacements correctly, with errors that reach more than 65% for both
load cases. On the other hand, the MM is able to reconstruct the de-
formed shape more accurately. In particular, the simple bending load
case (Load case 1) shows very accurate reconstructions, with a mean
error of 3.3%. However, for the more complex loading condition, that
involves a consistent amount of torsion (Load case 2), the errors reach
more than 20% for the highest and most relevant displacements (w,,
ws). The formulation introduced in the present work aims at tackling
the problem related to these complex deformations, where MM struggles
to give accurate reconstructions and iFEM requires too many sensors.
The last analysis introduces the Modal VSE combined with iFEM for
the experimental test case. For this configuration, the data from the re-
suced set are the only ones actually measured from the sensors, as for
the second analysis. However, this time, these data are used as master
strains to virtually retrieve all the strains from the full set of sensors,
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through the Modal VSE procedure. Thanks to this procedure, the number
of measured sensors is 81% less with respect to the full set. By feeding
these virtually expanded strains to the iFEM, the results shown in Table 9
are obtained. These results demonstrate that the proposed formulation
is able to guarantee a high level of accuracy for the two load cases. In
particular, the most difficult deformation, relative to Load case 2, is re-
constructed with the same accuracy as the first analysis, where all the
sensors of the full set were actually measured. The mean absolute per
cent error is 5.1%, and the maximum is —8.3%. In addition, for Load
case 1, the expansion of the reduced set does not perturb the excellent
results already obtained by the MM with the reduced set of sensors. In
this case, the mean absolute per cent error is 1.7%, and the maximum
is +3.8%. The conclusions of this experimental activity confirm the re-
sults of the numerical study. The Modal VSE, coupled with the iFEM, is
able to simultaneously overcome the limitations of the iFEM and MM
for complex load cases by allowing very accurate displacement recon-
struction with a strongly reduced number of sensors.

7. Conclusions

In this work, a method to strongly reduce the number of necessary
strain sensors for the accurate shape sensing of a structure is proposed.
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The method is inspired by the performances of two existing shape sens-
ing methods, the inverse Finite Element Method and the Modal Method.
In fact, the MM has proven to be moderately accurate when sparse sensor
configurations are available, whereas the iFEM can exceed this accu-
racy when a sufficient amount of sensors are available. The proposed
procedure is meant to combine the strengths of the two formulations to
overcome their limitations when adopted separately and to obtain an
efficient shape sensing method with sparse sensor configurations.

The introduced method consists of a preliminary virtual sensor ex-
pansion process, obtained through a formulation based on the MM. This
process expands the strain information coming from a few sensors using
the modal strain shapes of the structure. The expanded set of strains is
then used to perform the shape sensing with the most accurate method,
the iFEM.

The new procedure is firstly tested on the numerical shape sens-
ing of a multilayered composite stiffened panel. Two different loading
conditions are considered, the first one being the one expected by the
structure and the one used to design the testing configuration, the sec-
ond one being an accidental condition used to test the effectiveness
and robustness of the procedure on a loading condition different from
the primary one. The preliminary analysis of the structure once again
highlighted the strengths and the limitations of the two shape sensing
methods and the need for a considerable amount of sensors to get ac-
curate displacement reconstructions. For both loading configurations,
the introduction of the Modal Virtual Sensor Expansion coupled with
the iFEM is proven to be able to overcome the limitations of the MM
and iFEM. In fact, for the specific cases, the virtual expansion of a set
of only 140 actually measured strain sensors to a set of 666 ones allows
to obtain a level of accuracy in the shape sensing that is comparable to
the one reached with 666 actually measured sensors, thus reducing the
number of required sensors by 79%. Moreover, the Modal VSE shows
an overall consistent effectiveness in the extrapolation of the strains,
even for portions of the structure not equipped with actually measured
Sensors.

The numerical results are then experimentally validated on the shape
sensing of a composite wing-shaped stiffened panel. Also, in this case,
two loading conditions are considered. The experimental campaign con-
firms the results of the numerical investigation. The introduction of the
new formulation is able to reduce the number of measured strains by
81%, without compromising the accuracy of the displacements’ recon-
structions.

In conclusion, the introduced method is able to strongly reduce
the number of strain information required for accurate shape sensing.
Nevertheless, the number of reduced sensors for the considered appli-
cations is still considerable. For this reason, although the introduced
formulation represents a big step forward, future work should focus
on the further reduction of strain sensors by means of detailed op-
timisations of the sensor configurations coupled with the Modal VSE
and iFEM. Moreover, the adoption of the Modal VSE introduces a pa-
rameter that influences the accuracy of the strain pre-extrapolations,
which is the selection of modes to retain in the expansion. In this
work, a selection criterion based on the expected deformation of the
structure, which is not always known, is adopted. By analysing dif-
ferent load cases, this work proves that the selection criteria can also
be robust for deformations different from the one directly used for
the selection. However, in some cases, the expected deformation can
not be inferred at all. Future work should investigate selection crite-
ria for the modes that do not require any knowledge of the expected
deformation.
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