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Shape sensing, i.e. the reconstruction of the displacement field of a structure from discrete strain measurements, 
is becoming crucial for the development of a modern Structural Health Monitoring framework. Nevertheless, 
an obstacle to the affirmation of shape sensing as an efficient monitoring system for existing structures is 
represented by its requirement for a significant amount of sensors. Two shape sensing methods have proven 
to exhibit complementary characteristics in terms of accuracy and required sensors that make them suitable for 
different applications, the inverse Finite Element Method (iFEM) and the Modal Method (MM). In this work, the 
formulations of these two methods are coupled to obtain an accurate shape sensing approach that only requires 
a few strain sensors. In the proposed procedure, the MM is used to virtually expand the strains coming from a 
reduced number of strain measurement locations. The expanded set of strains is then used to perform the shape 
sensing with the iFEM. The proposed approach is numerically and experimentally tested on the displacement 
reconstruction of composite stiffened structures. The results of these analyses show that the formulation is able 
to strongly reduce the number of required sensors for the iFEM and achieve an extremely accurate displacement 
reconstruction.
1. Introduction

Shape sensing is defined as the reconstruction of the deformed shape 
of a structure from discrete strain measurements. This technique is 
rapidly imposing its importance for the development of a modern Struc-

tural Health Monitoring (SHM) framework. In fact, the continuous mon-

itoring of the displacements during the service life can provide crucial 
information on the health status of a structure, allowing the detection of 
damages and efficiently guiding the maintenance operations [1–8]. In 
addition, the shape sensing can work as a feedback monitoring system 
for the control of the morphing mechanism of the recently developed 
smart structures [9,10].

Several shape sensing methods have been proposed during the last 
two decades. They are all based on the computation of the displacement 
field from discrete strain measurements, but they differ in the working 
principle that they are based on. In the present work, two shape sensing 
methods are considered due to their success in the open literature, the 
inverse Finite Element Method (iFEM) and the Modal Method (MM).

The iFEM, firstly formulated in [11], is based on the discretisation 
of the structural domain with finite elements and on the consequent 

approximation of the strain field in terms of nodal degrees of freedom 
(displacements and rotations) and shape functions. The error between 
this analytical strain field and the one measured at some discrete loca-

tions is then minimised in order to compute the values of nodal degrees 
of freedom that best fit the measured strains. The iFEM has been suc-

cessfully applied to the analysis of beam-like structures [12–14], of thin 
walled structures [15,16] and of sandwich and multilayered composite 
structures [17–20]. Recently, the modelling capabilities of the method 
have been enhanced with the use of isogeometric formulations [21,22]. 
Moreover, in [23], iFEM has been extended to achieve damage detection 
through the reconstruction of the modal parameters of plate structures. 
Damage detraction for multilayered plates has also been investigated in 
[24], with the introduction of refined zigzag theory (RZT) within the 
iFEM framework.

The MM is based on the approximation of the strain field in terms of 
known spatial functions, the modal strain shapes, and unknown weights, 
the modal coordinates. The modal coordinates are computed by fitting 
the so-formulated strain field to the discretely measured strains. The 
displacement field is then computed by means of the strain-displacement 
relations. The Modal Method has been introduced in [25,26] and applied 
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to the analysis of plates in [27,28]. Recently, the MM has also been 
applied to the static and dynamic analysis of a wing experiencing small 
[29] and large deformations [30].

Although recent developments have been introduced in the strain 
sensing technology [31,32], the availability of a sufficient number of 
strain measurements for the shape sensing methods is an ongoing issue, 
especially for the already designed structures that are instrumented with 
few strain sensors. In this regard, the comparative studies in [33,34] dis-

cuss the relative merits and drawbacks of the iFEM and the MM. In fact, 
the iFEM shows superior accuracy in the reconstruction of the displace-

ment field, but at the cost of a large number of strain sensors. On the 
other hand, the MM is able of a decent accuracy with sparse sensor con-

figurations, but it is not able to reach the accuracy of the iFEM, even with 
a significant number of sensors. Few studies have been performed on the 
virtual extrapolation of strains from a few sensors to feed the iFEM with 
more strain information. In [35], the Smoothing Element Analysis (SEA) 
was introduced as a finite element based approach able to interpolate, 
with a controllable degree of smoothness, single stress components over 
a specific domain. The SEA has been extended to the interpolation of 
strain components and, coupled with the iFEM, has been used for the ex-

perimental shape sensing of a wing-shape sandwich laminate [36] and, 
recently, for the numerical shape sensing of an aluminium plate [37]. 
The polynomial fitting has been also adopted for the same purpose in 
[38]. More recently, in [39], the performance of SEA and polynomial 
fitting have been compared for the experimental case of a composite 
plate subject to buckling. Despite their successful applications, these pre-

extrapolation techniques can only be applied to simple geometries. In 
fact, they can expand the strain field to parts of the structural domain 
that belong to the same surface of the measured strains, i.e. for a stiff-

ened panel, strains measured on the skin can not be used to extrapolate 
strains on the stiffeners and vice versa. Moreover, these methods can 
only be applied to scalar quantities and, therefore, the strain field needs 
to be extrapolated performing a separate procedure for each component.

In this work, a method that combines the iFEM and MM’s working 
principles to overcome the limitations of the two methods is proposed. 
The MM, thanks to its adaptably to sparse strain sensors’ configura-

tion, is adopted as a Virtual Sensor Expansion (VSE) method for the 
pre-extrapolation to a large number of strain information from a small 
amount of measured strains. This pre-extrapolation technique over-

comes the limitation on the extrapolation domain highlighted for the 
SEA and the polynomial fitting. The iFEM is then fed with the expanded 
set of strains, thus allowing it to process a sufficient amount of strain in-

formation. This procedure is tested on the numerical and experimental 
shape sensing of stiffened multilayered composite structures. The study 
shows that the mixing of the two methods is able to overcome the lim-

itations of their separate application. In fact, the results prove that the 
methodology can reconstruct a highly accurate displacement field, even 
when using a reduced number of strain sensors.

The paper is structured as follows. In Section 2, the MM and the 
iFEM are introduced. In Section 3, the proposed method that combines 
the two previously described shape sensing methods is formulated. In 
Section 4, the numerical experiment is described. The results of this 
investigation are reported in Section 5. The experimental validation of 
the introduced method is described in Section 6. Finally, the concluding 
remarks are presented in Section 7.

2. Shape sensing methods

In the following section, the inverse Finite Element Method (iFEM) 
and the Modal Method (MM) are summarised in order to set the numer-

ical framework for the novel approach. In particular, the formulation is 
presented for the case of thin-walled structures, thus two-dimensional 
inverse finite elements are considered. Nevertheless, the proposed ap-

proach is easily applicable to beam and frame structures by using one-
2

dimensional inverse elements.
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Fig. 1. Plate - The figure shows the notation of the plate’s kinematic variables 
and the strain sensor’s back-to-back configuration for the computation of the 
membrane strain measures and of the bending curvatures in the 𝑔-th location.

2.1. iFEM

The inverse Finite Element Method is based on the discretisation of 
the structural domain with finite elements. As for the standard/direct 
Finite Element Method, the displacement field within each element is 
interpolated using unknown nodal degrees of freedom and known spa-

tial shape functions [40]. The strain field is then easily expressed in 
terms of the spatial derivatives of the shape functions and of the nodal 
degrees of freedom [41]. Considering the First-order Shear Deformation 
Theory as the kinematic model for a thin plate, the strain field (three in-

plane strain components and two transverse shear strain components) 
can be expressed in terms of eight strain measures, 𝜀𝑘 (𝑘 = 1, 2, ..., 8):

⎧⎪⎨⎪⎩
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

𝑢,𝑥
𝑣,𝑥

𝑣,𝑥 + 𝑢,𝑦

⎫⎪⎬⎪⎭+ 𝑧

⎧⎪⎨⎪⎩
𝜃𝑦,𝑥
−𝜃𝑥,𝑦

(𝜃𝑦,𝑦 − 𝜃𝑥,𝑥)

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
𝜀1
𝜀2
𝜀3

⎫⎪⎬⎪⎭+ 𝑧

⎧⎪⎨⎪⎩
𝜀4
𝜀5
𝜀6

⎫⎪⎬⎪⎭ = 𝒆+ 𝑧𝒌

(1a){
𝛾𝑥𝑧
𝛾𝑦𝑧

}
=
{

𝑤,𝑥 + 𝜃𝑦
𝑤,𝑦 − 𝜃𝑥

}
=
{

𝜀7
𝜀8

}
= 𝒈 (1b)

where 𝒆 are the membrane strain measures, 𝒌 are the bending curvatures 
and 𝒈 are the transverse-shear strain measures. The kinematic variables 
𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦 and the coordinate 𝑧, relative to a generic plate, are 
illustrated in Fig. 1.

The introduction of a FE discretisation of the structural domain leads 
to the interpolation of the kinematic variables, within each finite ele-

ment, in terms of the shape functions’ matrix, 𝐍, and of the vector of 
the nodal degrees of freedoms (DOFs), 𝐮𝑒:

[𝑢, 𝑣, 𝑤, 𝜃𝑥, 𝜃𝑦]𝑇 =𝐍𝐮𝑒 (2)

The eight strain measures defined in Eq. (1) can be then expressed 
in terms of the nodal DOFs as follows:

𝜀𝑘(𝐮𝑒) = 𝐁𝑘𝐮𝑒 (𝑘 = 1, 2, ...,8) (3)

where 𝐁𝑘 is the matrix containing the spatial derivatives of the shape 
functions corresponding to the k-th strain measure.

The objective of the iFEM is to find the nodal DOFs that best fit, in 
a least-squares sense, the analytic strain measures (3) with those exper-

imentally evaluated at some discrete locations on the structure. This is 
obtained by minimising the error between the analytical and the mea-

sured strain measures expressed by the following functional:

Ψ𝑒(𝐮𝑒) =
8∑

𝑘=1
𝜆𝑒
𝑘
𝑤𝑒

𝑘∬
𝐴𝑒

(𝜀𝑘(𝐮𝑒) − 𝜀𝑚
𝑘
)2𝑑𝑥𝑑𝑦 (4)

In the functional, 𝜀𝑚
𝑘

denotes the 𝑘-th strain measure experimentally 
evaluated on the structure and 𝐴𝑒 is the area of the inverse element. 𝑤𝑒

𝑘

are coefficients used to guarantee the dimensional consistency between 
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the different addenda of the functional. They are set as follows: 𝑤𝑒
𝑘
= 1

for 𝑘 = 1, 2, 3, 7, 8 and 𝑤𝑒
𝑘
= (2ℎ)2 for 𝑘 = 4, 5, 6, where ℎ is the half-

thickness of the element. On the other hand, 𝜆𝑒
𝑘

are coefficients used 
to take into account for the sparsity of the experimentally evaluated 
strain measures. They are set as follows: 𝜆𝑒

𝑘
= 1 if the 𝑘-th strain mea-

sure is actually measured, or to a small value 𝜆𝑒
𝑘
= (10−4, 10−5, 10−6)

if the corresponding strain measure is not measured. In this case, the 
corresponding 𝜀𝑚

𝑘
is set to 0.

The first six strain measures that appear in Eq. (4) can be experimen-

tally evaluated (𝑚), at a generic (𝑔) location, from strain sensors located 
on the bottom surface (-) and on the top (+) surface of a plate through 
the computation of the membrane strains and the bending curvatures:

𝐞𝑚(𝑔) =
⎧⎪⎨⎪⎩
𝜀𝑚1
𝜀𝑚2
𝜀𝑚3

⎫⎪⎬⎪⎭(𝑔)

= 1
2

⎧⎪⎨⎪⎩
𝜀+
𝑥𝑥

+ 𝜀−
𝑥𝑥

𝜀+
𝑦𝑦
+ 𝜀−

𝑦𝑦

𝛾+
𝑥𝑦

+ 𝛾−
𝑥𝑦

⎫⎪⎬⎪⎭(𝑔)

(5a)

𝐤𝑚
(𝑔) =

⎧⎪⎨⎪⎩
𝜀𝑚4
𝜀𝑚5
𝜀𝑚6

⎫⎪⎬⎪⎭(𝑔)

= 1
2ℎ

⎧⎪⎨⎪⎩
𝜀+
𝑥𝑥

− 𝜀−
𝑥𝑥

𝜀+
𝑦𝑦
− 𝜀−

𝑦𝑦

𝛾+
𝑥𝑦

− 𝛾−
𝑥𝑦

⎫⎪⎬⎪⎭(𝑔)

(5b)

Fig. 1 illustrates the use of a strain rosette to compute these six strain 
measures. By using unidirectional sensors, only the corresponding strain 
measures can be computed and the penalisation scheme based on the 
𝜆𝑒
𝑘

is adopted for the remaining strain measures. Differently, the trans-

verse shear strain measures (𝜀7 and 𝜀8, (Eq. (1))), can never be experi-

mentally evaluated. Therefore, the 𝜆𝑒
7,8 are always set to a small value 

(10−4, 10−5, 10−6) and the 𝜀𝑚7,8 are set to 0.

Once the functional is defined, it can be minimised to compute the 
DOFs that best fit, in a least-squares sense, the measured strain field at 
the sensorised locations. The minimisation of Eq. (4) leads to a system 
of algebraic linear equations:

𝜕Ψ𝑒(𝐮𝑒)
𝜕𝐮𝑒

= 𝐥𝑒𝐮𝑒 − 𝐟𝑒 = 0 (6a)

𝐮𝑒 = 𝐥𝑒−1𝐟𝑒 (6b)

The assembly procedure, typical of the standard FEM, is then adopted 
to extend the procedure to all the elements of the structure. As a con-

sequence, the assembly of the 𝐥𝑒 matrices generates the global 𝐋 matrix 
and the assembly of the 𝐟𝑒 vectors generates the global 𝐅 vector. The 
vector of the global DOFs, 𝐔, can then be computed as:

𝐔 = 𝐋−1𝐅 (7)

The penalisation scheme adopted in Eq. (4) allows the application of 
the method to structures with sparse strain sensors’ configurations, i.e., 
with inverse elements that do not contain strain sensors. On the other 
hand, in some previous works [33,34], it has been highlighted that the 
method is only able to guarantee consistent accuracy for moderately 
sparse sensors’ configuration, whereas it guarantees impressive accuracy 
for structures instrumented with a significant amount of sensors.

2.2. Modal method

The modal method is a shape sensing technique that uses the modal 
characteristics of a structure to derive its deformed shape from a set of 
discretely measured strains [25,28].

If a FE discretisation of a structural domain is considered, the vectors 
of the nodal degrees of freedom, (𝒘)𝐷×1, and of the available strain 
components, (𝜺)𝑆×1, can be expressed in terms of the vector of the modal 
coordinates (𝒒)𝑀×1:

𝒘 =𝚽𝑑 𝒒 (8)
3

𝜺 =𝚽𝑠 𝒒 (9)
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where the modal matrix (𝚽𝑑 )𝐷×𝑀 is constituted by 𝑀 columns (the i-
th column being the i-th modal eigenvector of the degrees-of-freedom). 
The modal matrix (𝚽𝑠)𝑆×𝑀 is also constituted by 𝑀 columns (the i-th 
column being the i-th set of strains corresponding to the i-th mode shape 
of the FE model of the structure). The generalised formulation of the MM 
includes the case where the number of 𝑆 measured strains is different 
from the number of 𝑀 computed modes. In particular, this formula-

tion considers the most common case where 𝑆 > 𝑀 . In this case, the 
displacements can be computed by pseudo-inverting Eq. (9) and substi-

tuting it into Eq. (8):

𝒘 =𝚽𝑑 (𝚽𝑇
𝑠
𝚽𝑠)−1 𝚽𝑇

𝑠
𝜺 (10)

thus allowing the computation of the discretised displacement field, ex-

pressed in terms of the modal shapes, that best fits the measured strains 
in a least-squares sense. The selection of the modes to be retained is 
crucial for the accuracy of the method. In [28] and [29], two criteria 
for the modes selection are described. Differently from the iFEM, the 
MM proved to be reasonably accurate in the reconstruction of the dis-

placement field, even considering sparse strain sensors’ configurations 
[33,34]. However, especially for deformed shapes that do not resem-

ble any mode shape of the structure, the MM is not as accurate as the 
iFEM, even when a huge number of strain sensors is considered. This 
behaviour will be demonstrated in the following of the paper.

3. Modal Virtual Sensor Expansion coupled with iFEM

The shape sensing method proposed in this paper has the objective of 
combining the characteristics of the two previously described methods, 
the MM and the iFEM. The purpose is to overcome the limitation of the 
iFEM when sparse sensors’ arrays are available, and, on the other hand, 
to exploit the adaptability of the MM to the same kind of applications. 
This mixing is obtained by a two-step procedure. The first step involves 
the Modal Virtual Sensor Expansion (Modal VSE) of a reduced number 
of strain measurements according to a formulation based on the same 
principle that the MM relies on. The expanded strain measures are then 
used in the second step as an input for the shape sensing through the 
iFEM.

In [42], O’ Callahan et al. formulated the System Equivalent Re-

duction Expansion Process (SEREP). The process can be applied to the 
virtual expansion of a few strain measurements to a higher number. If 
we consider a vector of 𝑆 strain components (𝜺)𝑆×1, it can be split into 
two subsets, one of 𝑆𝑚 measured strains, (𝜺𝑚)𝑆𝑚×1, and one of 𝑆𝑒 ex-

panded strains, (𝜺𝑒)𝑆𝑒×1, where 𝑆 = 𝑆𝑚 +𝑆𝑒:

𝜺 =
{

𝜺𝑚

𝜺𝑒

}
(11)

The modal transformation described by Eq. (9) can be applied to both 
the subsets, thus resulting in:

𝜺𝑚 =𝚽𝑚
𝑠
𝒒 (12)

𝜺𝑒 =𝚽𝑒
𝑠
𝒒 (13)

where 𝚽𝑚
𝑠

and 𝚽𝑚
𝑠

are the modal strain matrices relative to the 𝜺𝑚 and 
the 𝜺𝑒 strains, respectively.

The pseudo inversion of Eq. (12) leads to

𝒒 = [(𝚽𝑚
𝑠
)𝑇𝚽𝑚

𝑠
]−1(𝚽𝑚

𝑠
)𝑇 𝜺𝑚 (14)

that substituted into Eq. (13) results in:

𝜺𝑒 =𝚽𝑒
𝑠
[(𝚽𝑚

𝑠
)𝑇𝚽𝑚

𝑠
]−1(𝚽𝑚

𝑠
)𝑇 𝜺𝑚 (15)

This expression allows the computation of the 𝜺𝑒 subset of strains from 
the 𝜺𝑚 subset, and consequently, the knowledge of the full set of 𝜀 strains 
from the 𝜺𝑚 strains only. If we consider that 𝜺𝑚 is a set of actually mea-

sured strain components on a structure, Eq. (15) allows the expansion of 

these measurements to strains at different locations of the structure and 
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Fig. 2. Scheme of the two-step procedure that couples the Modal VSE and the iFEM.
to strains in different directions. In fact, since the modal strain shapes 
are defined over the whole structural domain and for the strain com-

ponents in every direction, there is no limitation to the location and 
direction of the virtual expansion, i.e. from discrete strain components 
along a generic x-direction on a surface of a structure, strain compo-

nents along the y-direction on a different surface of the same structure 
can be computed. This feature overcomes the limitation of other strain 
pre-extrapolation techniques, like Smoothing Element Analysis (SEA), 
that can only interpolate strain components in the same direction on 
the same surface. As for the MM, also for this technique, it is important 
to select representative modes to be retained in the formulation of 𝚽𝑠 . 
The same criteria described in [28] and [29] can be used. Moreover, the 
number of considered modes (𝑀) once again constraints the minimum 
number of measured strains that can be used, i.e. 𝑆𝑚 > 𝑀 .

Once the virtually expanded set of strains is obtained, it is used to 
perform shape sensing by means of the iFEM, as described in Section 2.1. 
This two-step procedure is schematised in Fig. 2.

The introduction of the Modal VSE prior to the application of iFEM 
will prove to be very beneficial in terms of reduction in the number of 
sensors for shape sensing. However, the Modal VSE introduces a require-

ment that is not necessary when simply applying standard iFEM, which 
is the knowledge of the material properties of the structure. In fact, the 
iFEM is based on the strain-displacement relationship that does not in-

volve the material properties. On the contrary, Modal VSE relies on the 
computation of the modal characteristics of the structure, that depend 
on the material properties. Although material properties are often avail-

able in engineering problems, this aspect could limit the application of 
Modal VSE coupled with iFEM to applications where these properties 
are known.

4. Numerical case study

The introduced method is assessed with a numerical investigation 
regarding a composite stiffened panel, deformed under a concentrated 
force. This test case, which will be described in detail in the following 
sections, is of particular relevance to the approach presented in the cur-

rent work. In fact, the shape-sensing analysis of the considered structure 
can reveal the limitations of the iFEM and the MM when used separately.

4.1. Test case

The test case is a composite stiffened panel of length L=1000 mm 
and width W=600 mm. It has three L-shaped stringers on one face, 
whereas the other face is flat. The geometry of the panel is presented in 
Figs. 3 and 4.

The whole panel, including the skin and the stiffeners, is made of 
composite laminates with the lamina characteristics summarised in Ta-

ble 1. The lay-ups for the skins and the stringers are reported in Table 2. 
The stacking sequence is symmetric with respect to each component’s 
4

mid-surface and the reference direction for the ply angles is shown in 
Fig. 3. Panel’s geometry - The figure shows the geometry of the stiffened panel 
along with the reference directions for the composite stacking sequences (all 
dimensions are expressed in mm).

Fig. 4. Stinger and skin interface - The figure shows the geometry of the stringer 
and the thickness of the skin (all dimensions are expressed in mm).

Fig. 3. The directions are referred to the skin’s lay-ups. The stringers’ lay-

ups are obtained by folding the plies from the skin. As a consequence, 
the reference directions result from this folding.

Two loading conditions are considered. Both configurations have 
clamping boundary conditions on the shorter edges of the panel, includ-

ing the edges of the stringers in that location. The first configuration is 
considered to be the primary loading condition and it is used to select 
the sensors’ configuration and to prove the accuracy of the shape sens-

ing method. It consists of a concentrated force applied at the midpoint 
of the panel ( 𝐿

2 ; 
𝑊

2 ). The force has a module of 1000 N and is applied 
on the flat side of the skin along the z direction. The second configura-

tion is considered to be an accidental loading condition that the method 
is challenged to solve even though it has been optimised for the primary 
condition only. It is used to assess the robustness of the method to un-
expected deformations. It is obtained by moving the concentrated force 
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Table 1

Lamina characteristics.

𝐸11 [GPa] 𝐸22 [GPa] 𝜈12 𝐺12 =𝐺23 =𝐺13 [GPa] Thickness [mm] 𝜌 [kg/mm3]

111 7.857 0.34 3.292 0.2 1.5E-06
Table 2

Composites’ stacking sequences.

Component St. Sequence Total thickness [mm]

Skin [45∕ − 45∕0∕90∕ − 45∕45∕ − 45∕45]𝑠 3.2

Stringers [45∕ − 45∕0∕90]𝑠 1.6

Fig. 5. Loading configuration - The figure shows the two loading schemes. 𝐹1
identifies the primary loading configuration whereas 𝐹2 identifies the accidental 
one.

Fig. 6. Inverse mesh - This is the mesh used for the shape sensing with the iFEM.

closer to one edge of the panel. Fig. 5 shows the loading configurations 
on the panel.

4.2. Models and preliminary analysis

Two numerical models are used for the investigation. The first one 
is the model used for shape sensing with the iFEM. It is constituted by 
928 iQS4 inverse elements whose detailed formulation is described in 
[40,43]. This model is shown in Fig. 6 and it will be defined as the inverse 
mesh in the rest of the paper.

The second model, defined as the direct mesh, is a more refined 
one, obtained from the inverse mesh by splitting each inverse element 
into nine direct elements. It is adopted to perform the static analy-

sis under the loading configurations and for the computation of the 
modal characteristics of the structure. The input strains for the shape 
sensing and the deformed shape that need to be reconstructed are ex-

tracted from the static analysis of this model, analysed with the software 
MSC/NASTRAN®. For the inverse and the direct meshes, the normals of 
the elements are concordant with the z-axis and y-axis, for the elements 
aligned with the x-y and x-z planes, respectively.

The deformed shape for the primary loading condition from the static 
analysis of the direct mesh is presented in Fig. 7. This deformed shape 
is the one that the shape sensing methods are tested on. The first 30 
modes of the structure are computed from the modal analysis of the 
direct mesh. Out of these 30 modes, those that mostly contribute to 
5

represent the primary static deformation are selected. The selection is 
Fig. 7. Primary deformed shape - This is the primary deformed shape that the 
shape sensing methods is optimised to solve (all dimensions are expressed in 
mm).

Fig. 8. Accidental deformed shape - This is the deformed shape that the robust-

ness of the shape sensing methods is tested on (all dimensions are expressed in 
mm).

made by computing the percentage strain energy contribution of each 
mode to the total strain energy of the primary static deformation [28]. 
The first 29 modes contribute a 95% of the total strain energy and they 
are selected for the application of the MM and of the Modal VSE. It 
is important to highlight once again that the accidental deformation 
is not considered in this selection process at all. On the other hand, the 
accidental deformed shape, used to assess the robustness of the methods 
to unexpected deformations, is shown in Fig. 8.

5. Numerical results

5.1. Error assessment

The evaluation of the accuracy of the shape sensing is assessed 
through the computation of two errors. Since the predominant displace-

ment of the deformed shape is the transverse one, along the z direction, 
the errors are computed with respect to this component. The first error 
considered is a local one. It is the percentage error on the reconstruc-

tion of the maximum transverse displacement experienced by the panel, 
%𝐸𝑟𝑟𝑚𝑎𝑥

𝑤
. The second error takes into account the global accuracy of the 

reconstruction over the 990 nodes of the inverse mesh. It is the percent-

age root mean square error computed as follows:

%𝐸𝑟𝑚𝑠𝑤 = 100 ×

√√√√√ 1
990

990∑
𝑖=1

(
𝑤𝑖 −𝑤

𝑟𝑒𝑓

𝑖

𝑤
𝑟𝑒𝑓
𝑚𝑎𝑥

)2

(16)

where, 𝑤𝑖 are the reconstructed transverse displacements, 𝑤𝑟𝑒𝑓

𝑖
are the 
reference transverse displacements, computed from the analysis of the 
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Fig. 9. Full set of sensors - The panel is equipped with strain rosettes in every 
centroid location of the inverse mesh. The rosettes measure the strain along x, y 
and x-y for the skin and the cap of the stringers (𝐑𝐱𝐲). They measure the strain 
along x, z and x-z for the web of the stringers (𝐑𝐱𝐳).

Table 3

Results of the preliminary analysis on the reconstruction of the de-

formed shape of the primary loading condition.

Sensor conf. MM iFEM

%𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

%𝐸𝑟𝑚𝑠𝑤 %𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

%𝐸𝑟𝑚𝑠𝑤

Full set (Fig. 9) 6.2 1.1 0.3 0.1

Reduced set (Fig. 11) 9.2 2.2 67.4 23.2

direct mesh, and 𝑤𝑟𝑒𝑓
𝑚𝑎𝑥 is the maximum value of the reference transverse 

displacements.

5.2. Preliminary computations

The primary deformed shape in Fig. 7 is particularly significant for 
this application and it is the only one considered for the preliminary 
computations described in this section. In fact, it highlights the limita-

tions of the iFEM and the MM that are meant to be overcome by the 
formulation proposed in this work.

To highlight the behaviour of the methods, at first, the full set of 
strain sensors is considered, i.e. strain rosettes in a back-to-back config-

uration located at the 928 locations showed in Fig. 9, accounting for a 
total of 1856 sensors (considering that, for every location, the back-to-

back configuration requires two sensors). In this case, the results relative 
to the primary deformed shape, in terms of %𝐸𝑟𝑟𝑚𝑎𝑥

𝑤
and %𝐸𝑟𝑚𝑠𝑤, ob-

tained by the iFEM and the MM, are reported in Table 3. Moreover, 
Fig. 10 shows the distribution over the entire mesh of the error on the 
reconstruction of the traverse deflection computed for the i-th node:

%𝐸𝑤𝑖 = 100 ×

(|𝑤𝑖 −𝑤
𝑟𝑒𝑓

𝑖
||𝑤𝑟𝑒𝑓

𝑚𝑎𝑥|
)

(17)

where the notation is the same adopted for Eq (16). When analysing the 
figures and the table, it is important to consider that the maximum of 
%𝐸𝑤𝑖 could be located in a different location than the one where the 
maximum transverse displacement (𝑤𝑟𝑒𝑓

𝑚𝑎𝑥) is experienced. Therefore, the 

Fig. 10. Shape sensing for the primary loading condition with the full set of sensors - Bottom view of the panel showing the distribution of the %𝐸𝑤𝑖 errors for the 

Fig. 11. Reduced set of sensors - The panel is equipped with strain rosettes in 70 
centroid locations of the inverse mesh. Only rosettes on the skin are considered 
and they measure the strain along x, y and x-y (𝐑𝐱𝐲).

maximum of %𝐸𝑤𝑖 in the plots may differ from %𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

in the table. 
The table and the figures show that the displacement reconstruction 
obtained with the MM is modest, especially considering that it is ob-

tained using the maximum number of installable sensors. Moreover, the 
comparison with the extreme accuracy of the iFEM proves the excel-

lent performance of the latest and the moderate one of the MM for this 
configuration.

When reducing the number of sensors to only 140 (70 sensors’ lo-

cations in a back-to-back configuration), the situation is reversed. The 
reduced set of sensors is obtained considering 140 strain rosettes only on 
the skin of the panel. They are distributed over its area, trying to cover a 
broad portion of the domain and considering a higher concentration of 
sensors where the strains for the primary loading condition are higher 
(Fig. 11). From the results reported in Table 3 and Fig. 12, it is clear 
that the overall accuracy of MM, evaluated with the %𝐸𝑟𝑚𝑠𝑤 parame-

ter, is influenced by the reduction in the amount of strain information, 
but still preserves a decent accuracy. On the contrary, the iFEM’s accu-

racy becomes extremely poor. Looking at the %𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

, the same trend 
can be observed for the reconstructions of the maximum deflection.

The results of this preliminary study, where only the primary load-

ing condition is studied and the sensor expansion is not yet considered, 
prove once again that the MM can achieve moderate accuracy with 
a small number of sensors. Nevertheless, this accuracy seems to have 
an asymptotic value, impossible to exceed, even heavily increasing the 
number of sensors. They also confirm the extreme accuracy of the iFEM, 
but also the necessity of a considerable amount of sensors for the method 
to achieve this level.

5.3. Results after the virtual sensor expansion

The results from the preliminary computation inspired the formula-

tion of the proposed mixed approach, aimed at combining the positive 
characteristics of the MM and the iFEM in order to overcome their in-

dividual limitations. The challenge is to exceed the accuracy of the MM
6

Modal Method and the iFEM.
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Fig. 12. Shape sensing with the reduced set of sensors - Bottom view of the panel showing the distribution of the %𝐸𝑤𝑖 errors for the MM and the iFEM.
Fig. 13. Expanded set of sensors - The strain rosettes of subset A are illustrated 
by red squares. The 10 sensing lines along x and the 5 strain rosettes of subset B 
are indicated using labels from 1-10 and R1-R5, respectively. The configuration 
includes the back-to-back locations of 70 rosettes on the skin (■ 𝑅𝑥𝑦∕𝑅𝑥𝑧), 
258 mono-directional strain gauges along x ( 𝑆𝑥) and 5 strain rosettes on the 
stringers (■ 𝑅𝑥𝑦∕𝑅𝑥𝑧).

when using only 140 sensors by virtually expanding them to feed the 
iFEM with sufficient strain information. The virtual expansion is ob-

tained by the formulation introduced in Eq. (15).

To achieve this goal, the sensor configuration in Fig. 11, is expanded 
in order to include a sufficient amount of sensors for the iFEM. The 
expanded set of sensors is shown in Fig. 13. It includes the 140 strain 
rosettes of the reduced set (Fig. 11), where all membrane strains (𝜀1 , 𝜀2, 
𝜀3) and bending curvatures (𝜀4, 𝜀5, 𝜀6) are computed. This subset of sen-

sors will be defined as subset A. In addition, the configuration includes 
10 sensing lines along the x-axis of the panel, where 𝜀+

𝑥𝑥
and 𝜀−

𝑥𝑥
are 

computed, and 5 sensing locations on the stringers, where all membrane 
strains (𝜀1, 𝜀2, 𝜀3) and bending curvatures (𝜀4, 𝜀5, 𝜀6) are computed. 
This subset of sensors is defined as subset B. To summarise, this con-

figuration includes 258 mono-axial strain gauges (𝑆𝑥) and 75 strain 
rosettes (𝑅𝑥𝑦∕𝑅𝑥𝑧), all in a back-to-back configuration, thus account-
7

ing for a total of 666 sensors. This configuration is designed considering 
the information and results already existing in the literature about the 
optimal sensing configurations for similar structures subjected to load-

ing conditions similar to the primary one [43,44]. In fact, when using 
this set of sensors, without any application of VSE and thus consider-

ing that the sensors from subsets A and B are all actually measured, the 
iFEM is able to accurately reconstruct the deformed shape of the struc-

ture for the primary loading condition. The results of this analysis are 
reported in the first row of Table 4 and in Fig. 14a. The reconstructions 
of the iFEM for this case are not as accurate as the ones obtained with 
the full set of sensors, but they are consistently more accurate than the 
ones obtained by the MM and the iFEM when considering the reduced 
set of sensors. In fact, %𝐸𝑟𝑟𝑚𝑎𝑥

𝑤
and %𝐸𝑟𝑚𝑠𝑤 are more or less halved 

when compared with the MM (Table 3).

The next step is to analyse what happens when we actually measure 
only the strains coming from the reduced set of sensors and we virtu-

ally expand them according to the formulation introduced in Eq. (15). 
In this case, we define 𝜺𝑚 as the vector of the strains from the sub-

set A in Fig. 13, whereas the vector 𝜺𝑒 is computed and contains the 
virtually expanded strains of subset B. The 𝚽𝑚

𝑠
and 𝚽𝑒

𝑠
matrices con-

tain the modal strain shapes of the measured strain components and 
the expanded ones, respectively. Also, in this case, the first 29 strain 
shapes are considered. When considering this configuration, out of 666 
sensors of the reduced set, only the 140 rosettes of the subset A are 
actually measured. When applying the iFEM, fed by the measured and 
virtually extrapolated strains, the results of the shape sensing for the pri-

mary loading condition are reported in the second row of Table 4 and in 
Fig. 14b. The procedure shows an %𝐸𝑟𝑟𝑚𝑎𝑥

𝑤
= 4.4 and an %𝐸𝑟𝑚𝑠𝑤 = 1.1. 

These values prove a good accuracy that is strongly comparable with the 
one shown by the iFEM when actually measuring the strains from the 
sensors of subsets A and B, without any VSE, thus demonstrating the 
convergence of the procedure to the solution obtained using the nomi-

nal strains. Moreover, considering the same actually measured sensors, 
both errors are, once again, halved with respect to the MM. In fact, it 
is important to highlight once again that these results are obtained by 
only measuring the strains from the 140 sensors in Fig. 11, which are 
extrapolated to obtain the sensor configuration in Fig. 13. In Table 4, 
the errors in the reconstructions of the two bending curvatures, 𝜃𝑥 and 
𝜃𝑦 are also reported. These quantities also show that the introduction 
of the VSE does not compromise the accuracy of the reconstructions, 
which show comparable values with respect to the configuration with 
nominal strains. The analysis of Fig. 14b also proves the accuracy of the 
procedure. In fact, the plot shows that the distribution of %𝐸𝑤𝑖 on the 
panel never exceeds 5%. Only on one edge of the panel there is a local 
inaccuracy that does not appear in the reconstruction of Fig. 14a. Nev-

ertheless, this local phenomenon is within the 5% threshold and does 
not compromise the overall accuracy of the procedure. In conclusion, in 
terms of displacement reconstruction, the proposed procedure is able to 
exceed the accuracy of the MM and reach the accuracy of the iFEM, fed 
with a sufficient number of sensors, but using a strongly reduced set of 

actually measured sensors.
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Fig. 14. Shape sensing for the primary loading condition with the expanded set of sensors - Bottom view of the panel showing the distribution of the %𝐸𝑤𝑖 errors 
for the iFEM.

Table 4

Primary loading condition - Results for the expanded set of sensors. In the first row are reported the errors when 
using all measured strains from subsets A and B, whereas in the second row are reported the errors when using 
the combination of measured strains from subset A and virtually expanded strains from subset B.

iFEM

Sensors’ conf. %𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

%𝐸𝑟𝑚𝑠𝑤 %𝐸𝑟𝑟𝑚𝑎𝑥
𝜃𝑥

%𝐸𝑟𝑚𝑠𝜃𝑥
%𝐸𝑟𝑟𝑚𝑎𝑥

𝜃𝑦

%𝐸𝑟𝑚𝑠𝜃𝑦

Subset A=measured; subset B=measured 4.8 1.1 1.46 3.80 5.02 1.28

Subset A=measured; subset B=virtual 4.4 1.1 -0.27 5.23 4.44 3.44
Fig. 15. Virtual strain expansion - The figure shows the distributions of the 
nominal (FEM (ref.)) and extrapolated (MODAL VSE) strains over the area of 
the panel. The following components are plotted: 𝜀+

𝑥𝑥
(a), 𝜀−

𝑥𝑥
(b).

To assess the effectiveness of the proposed procedure, it is also im-

portant to verify the method’s accuracy for the extrapolation of the 
strains. The parameter used to assess the accuracy of the extrapolation 
8

is, once again, the root mean square percentage error defined as follows:
%𝐸𝑟𝑚𝑠𝜀 = 100 ×

√√√√√ 1
𝑁

𝑁∑
𝑖=1

(
𝜀𝑖 − 𝜀

𝑟𝑒𝑓

𝑖

𝜀
𝑟𝑒𝑓
𝑚𝑎𝑥

)2

(18)

where the 𝜀𝑖 is the i-th strain component from the entire expanded set of 
sensors, 𝜀𝑟𝑒𝑓

𝑖
is the correspondent i-th nominal strain component com-

puted through the static analysis of the direct mesh and 𝜀𝑟𝑒𝑓𝑚𝑎𝑥 is the 
maximum value of the 𝑁 𝜀

𝑟𝑒𝑓

𝑖
strain components. For the case study 

proposed here, the value of the error is small, %𝐸𝑟𝑚𝑠𝜀 = 4.3. In Fig. 15, 
the extrapolated strains, compared with the nominal strains, are plotted 
for the 10 sensing lines previously defined. The figure and the value of 
%𝐸𝑟𝑚𝑠𝜀 show that over the area of the panel, the extrapolation of the 
strains is globally accurate. On lines 7 and 8, close to the maximum val-

ues of the deformation, the extrapolation presents some inaccuracies. 
These sensing lines do not have measured strains on them and, there-

fore are more difficult to extrapolate. This behaviour can be observed 
more in detail for line num. 8 in Fig. 16a. Also, the analysis of lines 
3 and 9 requires further attention. These sensing lines, which are lo-

cated on the stringers, lay outside of the plane of the skin of the panel, 
where the measured strains are located. This condition represents an un-

feasible problem for other strain extrapolating methods (i.e., Smoothing 
Element Analysis, Polynomial extrapolation). Fig. 16b shows the extrap-

olation of 𝜀+
𝑥𝑥

for line 3. It proves that the proposed method is able to 
reconstruct these strains, which are impossible to extrapolate with other 
methods, with impressive accuracy. The result is even more impressive 
when considering that no measured sensor is located on the considered 
line.

The same condition applies to the strain rosettes included in the ex-

panded set of sensors (Fig. 13b). Since they are located on the stringers 
of the panel, they also don’t lay on the same plane as the measured 
strains. Fig. 17 shows the extrapolations of all three strain components 
for the 5 rosettes. The graphs demonstrate that the extrapolation of 
strains for rosettes number 1 and 5 is consistently accurate for all the 
strain components. On the contrary, the extrapolation of the strains from 
rosettes 2 and 3 is always incorrect and for rosette 4 only the 𝜀+

𝑥𝑥
and 

𝜀−
𝑥𝑥

components are precisely extrapolated.

Overall, the extrapolation of the strains shows good agreement with 
respect to the nominal ones, even in areas where the extrapolation is 

usually difficult or impossible. Some local inaccuracies are encountered 
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Fig. 16. VSE on sensing lines number 3 and 8 - The figures show the distributions of the nominal (FEM (ref.)) and the extrapolated (MODAL VSE) 𝜀+
𝑥𝑥

along x for 
the sensing line number 8 (a) and 3 (b).

Fig. 17. Virtual strain expansion for rosettes - The figure shows the values of the nominal (FEM (ref.)) and extrapolated (MODAL VSE) strains for the 5 rosettes 
in Fig. 13b. The following components are plotted: 𝜀+

𝑥𝑥
(a), 𝜀+

𝑦𝑦
(b), 𝛾+

𝑥𝑦
(c), 𝜀−

𝑥𝑥
(d), 𝜀−

𝑦𝑦
(e), 𝛾−

𝑥𝑦
(f). For R3 and R4 the strain components are expressed in a local 

coordinate system that has the x-axis aligned with the global x and the y-axis aligned with the global z. The global axes are reported in Fig. 13.
for areas where no actually measured strains are located. These inac-

curacies do not influence the reconstruction of the displacements with 
iFEM, which is as precise as the one obtained by using the nominal 
strains. This is due to the working principle of the iFEM. Since it relies on 
the least-square fitting of the input strains to compute the displacement 
fields, its formulation is able to smooth the influence of these outlying 
strains.

5.4. Results for the accidental loading condition

Another step of this work is to prove the robustness of the introduced 
procedure to a different deformation. For this purpose, the accidental 
loading condition has been introduced in Section 4.2. For this loading 
condition, neither the sensor configuration nor the modes for the Modal 
VSE have been specifically selected. It represents the case of a deformed 
shape experienced by the structure that is different from the one the 
monitoring system has been designed for. Therefore, no modification 
of the procedure is considered. For this test, the sensor configuration is 
the expanded one (Fig. 13). Also for this case, the first analysis is per-

formed considering measured strains from the sensors subsets A and B. 
The values of the errors, reported in Table 5 are close to 1%, thus prov-
9

ing an efficient shape sensing of the deformation. However, in Fig. 18a, 
it can be noticed that a local inaccuracy is present on one stringer of the 
structure, where %𝐸𝑤𝑖 reaches 6.7%. Nevertheless, considering that the 
sensors’ configuration is not designed for this specific loading condition, 
despite this local phenomenon, it can be concluded that the iFEM shows 
satisfactory robustness to the change in the loading condition.

To finally prove the robustness of the process involving the Modal 
VSE combined with the iFEM, the procedure is tested on the accidental 
loading condition as well. The configuration is the same adopted for the 
primary loading condition and, consequently, the set of actually mea-

sured (subset A) and virtually expanded (subset B) strains is the one 
plotted in Fig. 13. The results of this analysis are reported in Table 5. 
The reconstruction of the displacements is satisfactory, with errors that 
do not exceed 3%. Also in this case the distribution of %𝐸𝑤𝑖 (Fig. 18b) 
shows a local peak on the same stringer of the previous case. Moreover, 
the errors relative to the bending rotations (Table 5) also show some 
high values for 𝜃𝑥 that are also present in the shape sensing with the 
nominal strains. Although this is not positive, it proves once again that 
this solution converges to the one obtained with the nominal strains, 
thus proving the efficiency and robustness of the Modal VSE+iFEM pro-

cess. In fact, it can achieve the same accuracy, also for this accidental 
deformation, using only 140 actually measured sensors, virtually ex-
panded to a total of 666 sensors.
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Table 5

Accidental loading condition - Results for the expanded set of sensors. In the first row are reported the errors 
when using all measured strains from subsets A and B, whereas in the second row are reported the errors when 
using the combination of measured strains from subset A and virtually expanded strains from subset B.

iFEM

Sensors’ conf. %𝐸𝑟𝑟𝑚𝑎𝑥
𝑤

%𝐸𝑟𝑚𝑠𝑤 %𝐸𝑟𝑟𝑚𝑎𝑥
𝜃𝑥

%𝐸𝑟𝑚𝑠𝜃𝑥
%𝐸𝑟𝑟𝑚𝑎𝑥

𝜃𝑦

%𝐸𝑟𝑚𝑠𝜃𝑦

Subset A=measured; subset B=measured 0.9 1.1 8.93 8.52 -1.41 1.23

Subset A=measured; subset B=virtual -2.9 1.2 13.25 10.95 1.94 3.36

Fig. 18. Shape sensing for the accidental loading condition with the expanded set of sensors - Bottom view of the panel showing the distribution of the %𝐸𝑤𝑖 errors 
for the iFEM.

Fig. 19. Experimental wing-shaped composite panel.

Table 6

TWILL T-300 nominal properties.

𝐸11 [𝐺𝑃𝑎] 𝐸22 [𝐺𝑃𝑎] 𝜈12 𝐺12 =𝐺23 =𝐺13 [𝐺𝑃𝑎] Thickness [mm] 𝜌 [𝑘𝑔∕𝑚𝑚3]

59.7 59.7 0.09 3.8 0.25 1.5E-06
6. Experimental validation

6.1. Experimental test case

The experimental validation of the introduced methodology is per-

formed on a composite wing-shaped panel (Fig. 19). The panel is stiff-

ened with three T-section stringers on one side of the panel, whereas the 
other side is flat. The geometry of the experimental test case is illustrated 
in Fig. 20. The panel is made of a multilayered composite whose layers 
are made of a TWILL T-300 carbon-fibre fabric prepreg. The characteris-

tics of the prepreg are reported in Table 6. The layup stacking sequence 
of the panel and of the stringers is [45∕0∕0∕45∕0∕0∕0∕45]𝑠. From the 
described structure, an inverse model constituted of 960 iQS4 is derived 
(Fig. 21). A second high-fidelity model is also created to extract the first 
eighteen modal shapes of the structure for the application of the Modal 
VSE.

As for the numerical study, two loading conditions are considered to 
10

study the different behaviour of the MM, the iFEM and the introduced 
Modal VSE+iFEM formulation. Both the load cases have simply sup-

ported boundary conditions applied at the two tips of the wing shaped 
panel and a concentrated force applied at the root section of the wing. 
They differ in the application point of the load and the induced defor-

mation. The Load case 1 includes a transverse concentrated force, 𝐹1 , 
located at 106 mm from the trailing edge, as shown in Fig. 21. This 
loading condition induces a primary bending deformation with a small 
contribution from the torsional behaviour. On the other hand, the Load 
case 2 includes a transverse concentrated load, 𝐹2, that induces a com-

bined deformation of bending and torsion.

The panel is instrumented with fibre optic distributed strain sensors 
based on the Rayleigh scattering and optical frequency domain reflec-

tometry (OFDR). They are placed along the wing span of the panel, and 
the strain is measured along the laying direction of the fibre. By using 
two 10-meter-long fibres, the sensing of the strain in the centroid loca-

tions of the inverse mesh shown in Fig. 21 is experimentally obtained. In 

addition to the fibres, 8 locations are instrumented with strain rosettes 
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Fig. 20. Experimental wing-shaped panel’s geometry - The figure shows the geometry of the experimental stiffened panel (all dimensions are expressed in mm).

Fig. 21. Experimental wing-shaped panel’s inverse mesh - The figure shows the inverse mesh of the panel, the loading configurations and the full set of experimental 
sensors. ( 𝑆𝑥𝑓𝑖𝑏𝑟𝑒) are the sensing locations of the fibres and (■ 𝑅𝑥𝑦) are the sensing locations of the strain rosettes (all dimensions are expressed in mm).

Fig. 22. Reduced set of experimental sensors - The figure shows the reduced set of experimental sensors. ( 𝑆𝑥𝑓𝑖𝑏𝑟𝑒) are the sensing locations of the fibres and (■
𝑅𝑥𝑦) are the sensing locations of the strain rosettes (all dimensions are expressed in mm).
(Fig. 21). As in the previous numerical application, also in this case, the 
configuration considers back-to-back sensors. To summarise, the exper-

imental configuration of sensors consists of 780 strain measurements 
coming from the fibres and 48 coming from the strain rosettes, account-

ing for a total of 828 measured strains. This configuration represents the
11

full set of the experimental sensors.
From this full set, a reduced set is extracted, following the instruc-

tions on the distribution of sensors provided by the numerical study. 
The reduced set preserves the rosettes of the full set but consists of a 
strongly reduced number of strain measurements from the fibres. The 
distribution of the sensors is shown in Fig. 22. The configuration is 

clearly inspired by the one shown in Fig. 11 for the numerical appli-
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Fig. 23. Displacement sensors - The figure shows the configuration of the six transverse displacement sensors 𝑤1−6 (all dimensions are expressed in mm).

Fig. 24. Experimental configuration - The figure shows the testing configuration for the wing-shaped composite panel.
cation. Moreover, in the context of the application of the Modal VSE, it 
is important to highlight once again that the reduced set does not in-

clude sensors on the stiffeners of the panel, that are present in the full 
set. This reduced set consists of 106 strain measurements coming from 
the fibres and 48 coming from the strain rosettes, accounting for a to-

tal of 154 measured strains. Therefore, the reduced set diminishes the 
considered strain measurements by 81% with respect to the full set.

The experimental set-up is completed with the sensors that measure 
the experimental displacements, which are used as a reference for as-

sessing the accuracy of the shape sensing. During the test, the panel is 
equipped on the flat surface with six LVDTs, as illustrated in Fig. 23. 
They measure the transverse displacements in six randomly distributed 
locations over the area of the panel, thus giving information on the over-

all deformation of the structure.

6.2. Experimental results

The experimental test is performed by loading the structure on the 
test bench illustrated in Fig. 24. More detail on the testing configuration 
can be found in [44]. For both loading conditions, a load of 200 N is 
applied. During the tests, the data from all the sensors are collected. 
Several analyses are performed based on these data.

The first analysis simply considers the application of the standard 
iFEM when the full set of strain sensors are included. Table 7 shows 
the results of this analysis in terms of reconstructed transverse displace-
12

ments and percentage errors with respect to the measured ones. As 
Table 7

Results when the full set of measured sensors is considered: the 
experimentally measured and the reconstructed transverse displace-

ments are reported for the two load cases. In parentheses, the per-

centage errors with respect to the experimental values are reported. 
Moreover, the mean of the absolute value of the percentage error is 
also reported (𝜇(|%𝐸𝑟𝑟|)).

Load case 1 Load case 2

Experimental iFEM Experimental iFEM

𝐹 [𝑁] 200 200

𝑤1 [𝑚𝑚] 2.44 2.55 2.42 2.50

(%𝐸𝑟𝑟𝑤1
) (+4.2%) (+3.5%)

𝑤2 [𝑚𝑚] 3.72 3.89 2.98 3.14

(%𝐸𝑟𝑟𝑤2
) (+4.5%) (+5.2%)

𝑤3 [𝑚𝑚] 3.72 3.90 2.98 3.14

(%𝐸𝑟𝑟𝑤3
) (+4.8%) (+5.4%)

𝑤4 [𝑚𝑚] 3.77 3.51 5.18 4.84

(%𝐸𝑟𝑟𝑤4
) (-7.0%) (-6.5%)

𝑤5 [𝑚𝑚] 3.42 3.19 4.72 4.35

(%𝐸𝑟𝑟𝑤5
) (-6.8%) (-8.0%)

𝑤6 [𝑚𝑚] 3.29 3.36 3.75 3.82

(%𝐸𝑟𝑟𝑤6
) (+1.9%) (+1.8%)

𝜇(|%𝐸𝑟𝑟|) 4.9% 5.1%

already demonstrated by past studies and by the previously described 

numerical study, the iFEM show high accuracy when a consistent num-
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Table 8

Results when the reduced set of measured sensors is considered: the experimentally mea-

sured and the reconstructed transverse displacements are reported for the two load cases. 
In parentheses, the percentage errors with respect to the experimental values are reported. 
Moreover, the mean of the absolute value of the percentage error is also reported (𝜇(|%𝐸𝑟𝑟|)).

Load case 1 Load case 2

Experimental iFEM MM Experimental iFEM MM

𝐹 [𝑁] 200 200

𝑤1 [𝑚𝑚] 2.44 0.78 2.40 2.42 0.72 2.35

(%𝐸𝑟𝑟𝑤1
) (-68.0%) (-1.8%) (-70.1%) (-2.6%)

𝑤2 [𝑚𝑚] 3.72 1.55 3.84 2.98 1.37 2.95

(%𝐸𝑟𝑟𝑤2
) (-58.3%) (+3.3%) (-54.1%) (-1%)

𝑤3 [𝑚𝑚] 3.72 1.55 3.84 2.98 1.36 2.98

(%𝐸𝑟𝑟𝑤3
) (-58.2%) (+3.3%) (-54.2%) (0.0%)

𝑤4 [𝑚𝑚] 3.77 1.58 3.98 5.18 1.60 6.38

(%𝐸𝑟𝑟𝑤4
) (-58.0%) (+5.7%) (-69.2%) (+23.3%)

𝑤5 [𝑚𝑚] 3.42 1.29 3.60 4.72 1.26 5.67

(%𝐸𝑟𝑟𝑤5
) (-62.2%) (+5.2%) (-73.4%) (+20.1%)

𝑤6 [𝑚𝑚] 3.29 1.19 3.31 3.75 1.11 3.64

(%𝐸𝑟𝑟𝑤6
) (-63.7%) (+0.7%) (-70.5%) (-2.9%)

𝜇(|%𝐸𝑟𝑟|) 61.4% 3.3% 65.3% 8.3%

Table 9

Results when the reduced set of measured sensors is virtually expanded to the full 
set: the experimentally measured and the reconstructed transverse displacements are 
reported for the two load cases. In parentheses, the percentage errors with respect to 
the experimental values are reported. Moreover, the mean of the absolute value of 
the percentage error is also reported (𝜇(|%𝐸𝑟𝑟|)).

Load case 1 Load case 2

Experimental Modal VSE+iFEM Experimental Modal VSE+iFEM

𝐹 [𝑁] 200 200

𝑤1 [𝑚𝑚] 2.44 2.40 2.42 2.33

(%𝐸𝑟𝑟𝑤1
) (-1.7%) (-3.4%)

𝑤2 [𝑚𝑚] 3.72 3.86 2.98 2.73

(%𝐸𝑟𝑟𝑤2
) (+3.8%) (-8.3%)

𝑤3 [𝑚𝑚] 3.72 3.87 2.98 2.74

(%𝐸𝑟𝑟𝑤3
) (+4.0%) (-8.1%)

𝑤4 [𝑚𝑚] 3.77 3.77 5.18 5.06

(%𝐸𝑟𝑟𝑤4
) (-0.1%) (-2.3%)

𝑤5 [𝑚𝑚] 3.42 3.42 4.72 4.58

(%𝐸𝑟𝑟𝑤5
) (-0.0%) (-3.0%)

𝑤6 [𝑚𝑚] 3.29 3.28 3.75 3.46

(%𝐸𝑟𝑟𝑤6
) (-0.4%) (-7.8%)

𝜇(|%𝐸𝑟𝑟|) 1.7% 5.5%
ber of sensors are available. In fact, the percentage errors never exceed 
8% for both load cases, and the mean absolute error is close to 5%.

The second analysis only considers the measured data from the re-

duced set of sensors, without any strain pre-extrapolation. The results 
of this analysis are reported in Table 8. When applying the iFEM and 
the MM with this reduced set of strain information, they show differ-

ent behaviour. The iFEM clearly struggles to reconstruct the transverse 
displacements correctly, with errors that reach more than 65% for both 
load cases. On the other hand, the MM is able to reconstruct the de-

formed shape more accurately. In particular, the simple bending load 
case (Load case 1) shows very accurate reconstructions, with a mean 
error of 3.3%. However, for the more complex loading condition, that 
involves a consistent amount of torsion (Load case 2), the errors reach 
more than 20% for the highest and most relevant displacements (𝑤4 , 
𝑤5). The formulation introduced in the present work aims at tackling 
the problem related to these complex deformations, where MM struggles 
to give accurate reconstructions and iFEM requires too many sensors.

The last analysis introduces the Modal VSE combined with iFEM for 
the experimental test case. For this configuration, the data from the re-

suced set are the only ones actually measured from the sensors, as for 
the second analysis. However, this time, these data are used as master 
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strains to virtually retrieve all the strains from the full set of sensors, 
through the Modal VSE procedure. Thanks to this procedure, the number 
of measured sensors is 81% less with respect to the full set. By feeding 
these virtually expanded strains to the iFEM, the results shown in Table 9

are obtained. These results demonstrate that the proposed formulation 
is able to guarantee a high level of accuracy for the two load cases. In 
particular, the most difficult deformation, relative to Load case 2, is re-

constructed with the same accuracy as the first analysis, where all the 
sensors of the full set were actually measured. The mean absolute per 
cent error is 5.1%, and the maximum is −8.3%. In addition, for Load 
case 1, the expansion of the reduced set does not perturb the excellent 
results already obtained by the MM with the reduced set of sensors. In 
this case, the mean absolute per cent error is 1.7%, and the maximum 
is +3.8%. The conclusions of this experimental activity confirm the re-

sults of the numerical study. The Modal VSE, coupled with the iFEM, is 
able to simultaneously overcome the limitations of the iFEM and MM 
for complex load cases by allowing very accurate displacement recon-

struction with a strongly reduced number of sensors.

7. Conclusions

In this work, a method to strongly reduce the number of necessary 

strain sensors for the accurate shape sensing of a structure is proposed. 
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The method is inspired by the performances of two existing shape sens-

ing methods, the inverse Finite Element Method and the Modal Method. 
In fact, the MM has proven to be moderately accurate when sparse sensor 
configurations are available, whereas the iFEM can exceed this accu-

racy when a sufficient amount of sensors are available. The proposed 
procedure is meant to combine the strengths of the two formulations to 
overcome their limitations when adopted separately and to obtain an 
efficient shape sensing method with sparse sensor configurations.

The introduced method consists of a preliminary virtual sensor ex-

pansion process, obtained through a formulation based on the MM. This 
process expands the strain information coming from a few sensors using 
the modal strain shapes of the structure. The expanded set of strains is 
then used to perform the shape sensing with the most accurate method, 
the iFEM.

The new procedure is firstly tested on the numerical shape sens-

ing of a multilayered composite stiffened panel. Two different loading 
conditions are considered, the first one being the one expected by the 
structure and the one used to design the testing configuration, the sec-

ond one being an accidental condition used to test the effectiveness 
and robustness of the procedure on a loading condition different from 
the primary one. The preliminary analysis of the structure once again 
highlighted the strengths and the limitations of the two shape sensing 
methods and the need for a considerable amount of sensors to get ac-

curate displacement reconstructions. For both loading configurations, 
the introduction of the Modal Virtual Sensor Expansion coupled with 
the iFEM is proven to be able to overcome the limitations of the MM 
and iFEM. In fact, for the specific cases, the virtual expansion of a set 
of only 140 actually measured strain sensors to a set of 666 ones allows 
to obtain a level of accuracy in the shape sensing that is comparable to 
the one reached with 666 actually measured sensors, thus reducing the 
number of required sensors by 79%. Moreover, the Modal VSE shows 
an overall consistent effectiveness in the extrapolation of the strains, 
even for portions of the structure not equipped with actually measured 
sensors.

The numerical results are then experimentally validated on the shape 
sensing of a composite wing-shaped stiffened panel. Also, in this case, 
two loading conditions are considered. The experimental campaign con-

firms the results of the numerical investigation. The introduction of the 
new formulation is able to reduce the number of measured strains by 
81%, without compromising the accuracy of the displacements’ recon-

structions.

In conclusion, the introduced method is able to strongly reduce 
the number of strain information required for accurate shape sensing. 
Nevertheless, the number of reduced sensors for the considered appli-

cations is still considerable. For this reason, although the introduced 
formulation represents a big step forward, future work should focus 
on the further reduction of strain sensors by means of detailed op-

timisations of the sensor configurations coupled with the Modal VSE 
and iFEM. Moreover, the adoption of the Modal VSE introduces a pa-

rameter that influences the accuracy of the strain pre-extrapolations, 
which is the selection of modes to retain in the expansion. In this 
work, a selection criterion based on the expected deformation of the 
structure, which is not always known, is adopted. By analysing dif-

ferent load cases, this work proves that the selection criteria can also 
be robust for deformations different from the one directly used for 
the selection. However, in some cases, the expected deformation can 
not be inferred at all. Future work should investigate selection crite-

ria for the modes that do not require any knowledge of the expected 
deformation.
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