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THE SEARCH FOR NLS GROUND STATES ON A HYBRID DOMAIN:

MOTIVATIONS, METHODS, AND RESULTS.

RICCARDO ADAMI, FILIPPO BONI, RAFFAELE CARLONE, AND LORENZO TENTARELLI

Abstract. We discuss the problem of establishing the existence of the Ground States
for the subcritical focusing Nonlinear Schrödinger energy on a domain made of a line and
a plane intersecting at a point. The problem is physically motivated by the experimental
realization of hybrid traps for Bose-Einstein Condensates, that are able to concentrate
the system on structures close to the domain we consider. In fact, such a domain ap-
proximates the trap as the temperature approaches the absolute zero. The spirit of the
paper is mainly pedagogical, so we focus on the formulation of the problem and on the
explanation of the result, giving references for the technical points and for the proofs.

AMS Subject Classification: 35R02, 81Q35, 35Q55, 35Q40, 35B07, 35B09, 35R99
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1. Introduction

Modeling Bose-Einstein Condensation has been a major challenge in the Mathematical
Physics of the last decades. The phenomenon consists in a phase transition undergone by
systems made of a large number, i.e. around 104, of identical bosons at low temperature,
namely 10´7 K and below. In the new phase all bosons of the system share the same
quantum state called Ground State of the condensate, and such state occupies all the
available space. Notice that the fact that every boson possesses a quantum state is not a
natural property: indeed, even assuming that the whole system lies in a quantum state,
its parts may not. In the mathematical description, this means that a wave function of
the whole system may not be the product of single-particle wave functions. This is what
happens in the presence of entanglement among the particles. Therefore, in the transition
to a Bose-Eintein condensate every particle acquires an individual quantum state, i.e.
bosons in a Bose-Einstein condensate lying in its Ground State are not entangled to one
another.

Such a new physical phase was first foreseen one hundred years ago [13, 20] and experi-
mentally realized seventy years later [8, 18], when the techinques of laser and evaporative
cooling made possible to reach the necessary temperature. Since then, the mathematical
investigation on condensates has become topical and has involved several approaches: op-
erator theory, nonlinear evolution equation, calculus of variation, analysis on Fock spaces
and the formalism of second quantization. An important part of such a research con-
sisted in singling out the conditions under which the so-called Gross-Pitaevskii regime
([12, 29, 35]) holds. In such a regime it is possible to approximate the fundamental linear
N -body dynamics of the bosons with an effective, nonlinear one-body dynamics: if, on
the one hand, the problem becomes more difficult for the presence of the nonlinearity, on
the other hand there is a great simplification in passing from an N -body to a one-body
problem, and the simplification greatly overcomes the additional difficulty.

Let us be more specific. First, a quantum mechanical description of the N -boson system
is made through the N -boson wave function ΨN,tpx1, . . . xN q, that represents the quantum
state of the system at time t. By xj we denote the three-dimensional coordinate of the jth
boson. The function ΨN,t is symmetric under permutation of its variables, as it describes
the state of N identical bosons. The evolution of the system is described by the N -body
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Schrödinger equation

iBtΨN,t “ ´
Nÿ

j“1

∆jΨN,t `
ÿ

1ďiăjďN

wpxi ´ xjqΨN,t `
Nÿ

j“1

V pxjqΨN,t, (1)

where w represents the two-body interaction between the bosons and V is the potential
of an external field whose role is typically to confine the system.

The already mentioned Gross-Pitaevskii regime is the physical setting in which the
dynamics of a Bose-Einstein condensate is effectively described by the one-body nonlinear
Gross-Pitaevskii equation

iBtψt “ ´∆ψt ` V pxqψt ` 8πα|ψt|2ψt, (2)

where α is the scattering length of the two-body interaction w between the particles in
the condensate. It turns then out that the nonlinearity is the mark of the interaction
between the bosons that are the elementary constituents of the condensate. Of course,
the problem of deducing (1) from (1) is of paramount importance in understanding the
underlying physics. It is nowadays well understood that the transition to the Gross-
Pitaevskii regime happens if the interacting potential scales with respect to the number
N of bosons as

wpxq Ñ N2wpNxq (3)

and if the initial data fulfil at least approximately a bosonic Stosszahlansatz, namely
ΨN,0 “ ψbN

0 . The scaling law (1) means that the Gross-Pitaevskii regime is a good
approximation of the fundamental dynamics (1) if the interacting potential is strong, due
to the factor N2, and concentrated, as expressed by the argument Nx that shrinks the
range of the potential to a scale N´1. The Stosszahlansatz hypothesis states in turn that
the correlations between the particles are small, which is more likely the case if the system
is dilute. Notice that at the level of the dynamics the process that makes the system
uncorrelated is not described, as one has to impose the Stosszahlansatz on the initial
data. Under such hypothesis, one has that in the Gross-Pitaevskii regime every particle
possesses an individual state, so particles are not entangled with one another, and that at
every time t such a state is represented by a complex-valued function ψt to be interpreted
according the usual Born’s rule: the modulus square of ψt gives the probability density
of finding one particle of the condensate in a specified spatial region. Such interpretation
imposes ψt to be normalized at 1, but in fact it is often preferable to normalize it to the
number N of particles in the condensate, so that

ż

R3

|ψt|2 dx “ N,

thus |ψt|2 is better understood as a particle density rather than as a probability density.
Besides their relevance in the physical understanding of the phenomenon, the rigorous

proofs of Bose-Einstein condensation in the static framework ([32]) and of the stability of
the condensates under time evolution ([4, 21, 22, 31]) greatly enriched the mathematical
techniques employed in the derivation of nonlinear one-body equations from linear N -body
quantum dynamics of interacting particles. In particular, the scaling (1) is highly singular,
so a main breakthrough was accomplished as it was understood how to rigorously deal
with it.

Later, a major challenge was to get a good estimate of the error made in approximating
the fundamental linear N -body description with the effective nonlinear one-body evolution
equation ([38, 30, 9, 34, 11]).

In the following we focus on the existence and the shape of the Ground State for a
condensate in the Gross-Pitaevskii regime under the action of a trap whose shape can
be modeled as the union of a plane and a line orthogonal to it. Since the Bose-Einstein
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condensation occurs at low energy, it does not involve neither the creation nor the annihi-
lation of particles, therefore the natural notion of Ground State is that of the minimizer
of the energy functional EGP whose value is conserved by the flow of the Gross-Pitaevskii
equation, under the constraint that the number of particles, i.e. the L2-norm, is fixed. In
the following the L2-norm will be called mass and will be denoted by µ. We will refer to
the prescription that it has to be a fixed quantity as to the mass constraint.

We then get to the problem of finding the minimizers of the Gross-Pitaevskii energy

EGP pψq “ 1

2
}∇ψ}2L2pR3q ` 2πα}ψ}4L4pR3q ` 1

2

ż

R3

V pxq|ψpxq|2 dx (4)

with the constraint ż

R3

|ψpxq|2 dx “ µ,

provided they exist.
Usually the potential V is referred to as the trap. Of course, the actual shape of a

condensate depends on its particular state, thus it has become customary to think of the
spatial distribution of the Ground State as the shape of the trap.

Early condensates ([8, 18]) were subject to an external harmonic and isotropic potential,
so that their shape was approximately spherical, but the subsequent impressive technologi-
cal advances in magnetic and optical confinement made it possible to build up condensates
with various shapes: disc-shaped, cigar-shaped, branched, and others.

We assume that the trapping potential V is so effective that the Ground State of the
condensate can be approximated as supported in a region Ω Ă R3, so that

Epψq “ 1

2
}∇ψ}2L2pΩq ` 2πα}ψ}4L4pΩq.

Clearly, the Ground State ψt evolves in time just by periodically changing its phase,
namely

ψtpxq “ eiωtψ0pxq,
so that its spatial profile and therefore the associated density of particles remain unaltered.
It is a stationary state.

1.1. Hybrid traps. As already mentioned, we are interested in describing an experimen-
tal arrangement in which the trap has the shape of a plane with a line attached to it, as
in Fig. 1. This structure results from gluing together two components of different dimen-
sionality and will be referred to as the hybrid structure H. Traps of this kind have been
realized by employing a magnetic trap together with an optical trap ([33]). Because of the
use of two different physical mechanisms, in the physical literature such traps are called
hybrid, while for us the same word refers to the resulting multi-dimensional geometry of
the system. Serendipitously, it happens that hybrid traps give rise to hybrid geometry,
although the two terms were introduced independently with different meaning.

Let us describe more closely the effect of a hybrid trap. The confining potential V
decomposes into a term VM , describing the magnetic trap, and a term VO, related to the
optical trap, so that

V pxq “ VM pxq ` VOpxq, x “ px, y, zq P R
3,

where, according to the description given in [33], the effective shape of the two potentials
can be modeled as

VM pxq “ 2νB|z|, VO “ 1

2
mω2

Opx2 ` y2q.

Here ν is the magnetic moment of the particles in the condensate and m their mass, B is
the magnetic field generated by the trap, and ωO is the frequancy of the optical trap. The
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H

Π

J

ℓ

Figure 1. The hybrid H. The origin of the coordinates on both the line
ℓ and the plane Π is set at the junction J .

net effect of the double trap is that the resulting spatial distribution of the condensate is

npxq “ n0 e
´ 2νB

kT
|z|e´

mω2

O
2kT

px2`y2q, (5)

where k is the Boltzmann constant and T is the temperature of the system. Notice that
the first factor concentrates the condensate on the plane z “ 0, while the second factor on
the z axis.

One can then distinguish three regions in the hybrid, according to the size of the density:

(1) the origin, where both exponentials in (1.1) equal one, so the density is of order 1;
(2) the px, yq-plane, where the density n is dumped by the optical trap, namely by

the second exponential factor in (1.1), and the z-axis, where the first exponential
factor, representing the magnetic trap, attenuates the density of particles;

(3) the rest of the space, where the density is shrunk by both traps.

Moreover, notice that as the temperature goes to the absolute zero, the density concen-
trates at the origin, with an exponential tail on H, and a double exponentially tiny rest
outside H. Our aim is to describe such profile at least qualitatively.

Hybrids were first introduced in [23], then further investigated in [24] and later in
[15, 16]. In such works the physical context ranges from classical electromagnetism to
quantum mechanics, and the dynamics is always linear. The hybrid structure considered
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there is made of a plane with a halfline attached at its origin. On the same hybrid
manifold we studied the problem of the Ground State of condensates in [3]. The problem
we investigate here is a simple variant of that, so we refer to that work for the technical
aspects of the proofs. Here we aim at discussing the meaning and the formulation of the
problem. Therefore, in Section 2 we construct the energy functional onH and compare it to
the classical Nonlinear Schrödinger energies. In Section 3 we give the Gargliardo-Nirenberg
estimates, that are crucial for the existence of a Ground State, and present the main result.
Technically it deals with the lack of compactness of minimizing sequences, but it can be
told quite simply, by saying that a Ground State exists if the hybrid is energetically more
convenient than the line. In other words, the hybrid must compete, at an energetical level,
with the line and not with the plane. Finally, we give sufficient conditions to make the
hybrid energetically convenient, namely, conditions on the parameters of the system in
order to get this convenient.

One can sketch such conditions as follows. If one aims at constructing an effective trap
for a Bose-Einstein condensate with a shape close to H, namely a trap able to capture the
system in a geometry of that kind, then the junction must unfold an attractive effect on
the condensate. Now, since the most general junction can produce a contact interaction
on the line, another contact interaction on the plane, and a coupling between the two,
one has to consider the possible attractive feature of the three of them. More precisely, to
trap a condensate on a region modeled by H, one must ensure that:

(1) the junction between the line and the plane deploys an attractive action on the
part of the condensate located on the line, towards the origin of the line; indeed,
this makes the system “line + junction” energetically convenient with respect to
the line alone, and so the hybrid prevails on the line;

(2) if the previous condition is not fulfilled, then one has to make the plane more
convenient than the line, so the hybrid will be more convenient too;

(3) if both the previous conditions are not fulfilled, then one has to provide that the
coupling between the plane and the line is strong: indeed its effect always proves
energetically convenient and, above a certain threshold, it makes the hybrid more
convenient than the line.

These prescriptions are stated more precisely in Corollary 3.7.
On the other hand, if none among the conditions (1), (2), and (3) is satisfied, then it

may happen that the condensate tends to escape through the line far from the junction.
According to our analysis, this runaway phenomenon cannot take place on the plane.

We stress here that in our model we are not able to treat the fourth power nonlinearity
for the component of the energy on the plane, for technical reasons that will be clarified
in the next section. We can of course approach such power arbitrarily, but this does not
guarantee that our result can be transposed by continuity to the physical case with the
power four.

Propositions 3.2 and 3.5 are proved in some detail since their direct proof is not in [3].

2. The problem

We assume that the spatial domain in which the condensate is confined by the trap is
represented by the hybrid domain H and aim at investigating whether, given the number
of particles N that compose the condensate, there is a Ground State. Let us translate
such problem in the terms of the Calculus of Variations.

2.1. Heuristic construction of the energy functional. First, we write the hybrid
domain H as

H “ ℓY Π,
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where ℓ is the z-axis and Π is the px, yq-plane. Second, we introduce a mathematical
object that plays the role of a wave function defined on H. It is natural to assume that
the state of the condensate is represented by a two-component function U “ pu, vq, where
u : ℓ Ñ C is the portion of the wave function supported on the line, while v : Π Ñ C is the
part supported on the plane. In order to establish to which spaces the functions u and
v belong, we have to introduce an energy functional E that adapts the energy (1) to the
structure of H. It is natural to assume that such energy functional is composed by three
terms:

EpUq “ Eαpu, ℓq ` Eσpv,Πq ` EJ pUq,
where

¨ Eαp¨, ℓq is the energy of the portion of U on ℓ. It comprises the kinetic energy
of the one-dimensional wave packet u, the self-consistent nonlinear term, and the
contact interaction between the line and the junction. Then, we write it as

Eαpu, ℓq “ 1

2
}u1}2L2pRq ´ 1

p
}u}pp ` α

2
|up0q|2, 2 ă p ă 6, α P R. (6)

Notice that the contact interaction corresponds here to the action of a Dirac’s
delta potential.

¨ Eσpv,Πq is the energy of the portion of U on Π. It includes a nonlinear term and
a contact interaction at the junction. Now, as widely known ([7, 36]), a point-
wise contact interaction in dimension two cannot be described by a distributional
delta potential as in dimension one, i.e. it cannot be written as |vp0q|2, since in
two dimensions a generic function in H1 has no pointwise evaluation. More pre-
cisely, contrarily to the one-dimensional case, in two dimensions such a pointwise
perturbation is not small with respect to the kinetic term in the sense of the qua-
dratic forms, therefore the definition of the point interaction cannot be achieved
in the same way. It is nowadays well understood that the construction of such
kind of interaction can be equivalently realized by following two different paths: a
renormalization procedure [10] or the use of the theory of self-adjoint extensions of
hermitian operators [37]. Even though the two approaches end up with the same
result, they are complementary to each other, as the renormalization procedure
highlights the interpretation of contact interactions as limits of spatially extended
potentials, while the self-adjoint extension theory provides a simple algorithm that
directly gives all possible point interactions [7].

Eventually the introduction of a contact interaction modifies the energy domain
by introducing a singularity at the site of the interaction. More specifically such a
domain results in

D2 “
"
u “ φ` q

K0

2π
, φ P H1pR2q, q P C

*
, (7)

whereK0 is a function of the Bessel family, more precisely the MacDonald function
of order zero whose asymptotic behaviour at the origin is K0pxq „ ´ log |x| and
that decays exponentially fast for large |x| [28]. Notice that the presence of a point
interaction in dimension two results in the formation of a logarithmic singularity.
The complex factor q is usually called the charge and represents the size of the
singularity of the function v. Notice that this prescription concentrates a significant
portion of the state around the origin unless q “ 0.

The energy functional Eσp¨,R2q acts as follows:

Eσpv,Πq “ 1

2
}φ}2H1pR2q ´ 1

2
}v}2L2pR2q

` σ

2
|q|2 ´ 1

r
}v}rLrpR2q, 2 ă r ă 4, σ P R.

(8)
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We stress that here the coupling constant σ does not coincide with its analogous
ρ employed in [3] as well as with the parameter σ previously used in [1]. Indeed,
one has

σ “ ρ` γ ´ log 2

2π
,

where γ is the Euler-Mascheroni constant.
¨ EJ pUq is the energy of the interaction between ℓ and Π that takes place at the
junction. It describes exclusively the exchange of energy between the line and the
plane. In other words, it is the only term which, under a dynamical point of view,
realizes the transmission of a signal from ℓ to Π and vice versa. For its precise
shape we choose the simplest possible option, namely a quadratic coupling:

EJ pUq “ ´βRepqup0qq, β ě 0. (9)

Summarizing, we constructed the energy functional

EpUq “Eαpu, ℓq `Eσpv,Πq ` EJ pUq

“ 1

2
}u1}2L2pRq ` α

2
|up0q|2 ´ 1

p
}u}p

LppRq ` 1

2
}φ}2H1pR2q ´ 1

2
}v}2L2pR2q

` σ
|q|2
2

´ 1

r
}v}rLrpR2q ´ βRepqup0qq,

with 2 ă p ă 6, 2 ă r ă 4, α, σ P R, β ě 0,

(10)

defined on the energy domain

D :“
"
U “ pu, vq s.t. u P H1pRq, v “ φ` q

K0

2π
, φ P H1pR2q, q P C

*
.

2.2. Some comments on the energy functional E. Let us explain the meaning of the
choice of the parameters in the construction of the energy functional (2.1).

Concerning the term Eαpu, ℓq notice that in (2.1) we consider an arbitrary nonlinearity
power p and limit our analysis to the focusing case, namely the case in which the nonlin-
earity has a negative sign and thus, dynamically, an attractive effect. The upper bound
p ă 6 means that we restrict to nonlinearities that can be controlled by the kinetic term,
as described by the one-dimensional Gagliardo-Nirenberg estimate

}u}p
LppRq ď C}u1}

p
2

´1

L2pRq
}u}

p
2

`1

L2pRq
, u P H1pRq, (11)

showing that, while for p ă 6 the nonlinearity grows slower than the kinetic term, for
p “ 6 it may grow at the same rate of the kinetic term, making the energetic balance more
delicate. Eventually, it is well-known [17] that if α “ 0 then the choice p “ 6 results in a
phenomenology that radically differs from that of the case p ă 6, both in the statics and
in the dynamics: if p “ 6 then existence of Ground States depends on the chosen value of
µ, and in the related evolution problem blow-up solutions appear whose existence cannot
be extended to arbitrarily large time. Both features are not present if p ă 6, for which
a Ground State for E0pu, ℓq is present at every value of the mass and all solutions to the
dynamical problem in the energy space are defined globally in time.

For its peculiar character, the power nonlinearity with p “ 6 is called critical, and here
we treat subcritical nonlinearities only.

Let us point out that for α “ 0 the resulting energy functional E0p¨, ℓq is the standard
NLS energy functional with focusing subcritical power nonlinearity. It is a long standing
result [40, 17] that for every value of the mass there is a family of ground states, called
solitons, that are obtained by translating and multiplying by a phase the unique positive,
even Ground State

ϕµpxq “ µ
2

6´pϕpµ
p´2

6´pxq, (12)
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where

ϕpxq “ Cp sech
2

p´2 pcpxq,
with Cp and cp constants depending on the power p only.

Furthermore, the energy of the solitons scales as

E0,ℓpµq “ E0pϕµ, ℓq “ ´θpµ
p`2

6´p ,

where θp is a positive constant that depends on p only, and we introduced the symbol

Eα,ℓpµq “ inf
uPH1pRq,

ş
ℓ

|u|2“µ
Eαpu, ℓq.

The problem of the Ground States for Eαp¨, ℓq was studied in [27, 26]. For an exhaustive
review see [39].

Concerning the term Eσpv,Πq in (2.1), we introduced the strength of the contact inter-
action σ with either sign, restricted to the focusing nonlinearity by choosing a negative
sign for the last term, and moved from the physical fourth power to a generic power r. In
fact, in this paper we do not allow the values r ě 4 because r “ 4 is the critical power in
dimension two, as described by the two-dimensional Gagliardo-Nirenberg inequality:

}v}rLrpR2q ď C}∇v}r´2
L2pR2q

}v}2L2pR2q,

that states that from r “ 4 the kinetic term in Eσp¨,Πq ceases to control the nonlinear
term. From the construction of the two-dimensional point interaction follows that in
order to recover the standard focusing two-dimensional NLS energy, one has to set σ “ 8
instead of the more intuitive σ “ 0. This delicate point can be heuristically explained by
considering that for σ “ 8 in order to get a finite energy it must be q “ 0, that reduces
the domain D2 to H1pR2q through v “ φ and makes the energy Eσp¨,Πq equal to

E8pv,Πq “ 1

2
}∇v}2L2pR2q ´ 1

r
}v}rLrpR2q,

that is the standard NLS energy.
We will use the symbol

Eσ,Πpµq “ inf
vPD2,

ş
Π

|v|2“µ
Epv, ℓq.

The problem of the Ground States for Eσp¨,Πq was analyzed in [1] and in [25] for the
action functional of the same model.

Concerning the term EJ pUq in (2.1) we point out that considering a non-negative
strength β is not restrictive, since for every complex β it is possible to reduce to (2.1)
by suitably modulating the relative phase between q and up0q. The negative sign corre-
sponds to the choice for which having the same constant phase on ℓ and Π is energetically
convenient.

2.3. Formulation of the problem. As anticipated, the problem we investigate is the
existence of Ground States. Among the several notions of Ground States present in the
literature and consistently with the physical features of the Ground States in a condensate,
we choose the one which generalizes the ordinary quantum mechanical notion of Ground
State to a nonlinear setting.

Definition 2.1. Given µ ą 0, a Ground State at mass µ for the energy functional E
defined by (2.1) on the domain D Ă L2pHq, is an element of D that satisfies the mass
constraint ż

H

|U |2 “
ż

ℓ

|u|2 `
ż

Π

|v|2 “ µ (13)

and minimizes E among all functions in D satisfying the same constraint.



NLS ON A HYBRID DOMAIN 9

It is convenient to introduce the notation

Dµ :“ tU P D s.t. U fulfils the constraint (2.1)u
and to denote

Epµq “ inf
UPDµ

EpUq.

We are then led to the following formulation of the problem of the Ground States for
the Nonlinear Schrödinger Equation on the hybrid H:

Let α, σ P R, β ě 0, 2 ă p ă 6, 2 ă r ă 4, and µ ą 0. Establish whether there exist
Ground States at mass µ of the energy (2.1).

Notice that without imposing the mass constraint there would be no Ground State,
since EpλUq Ñ ´8 as λ Ñ 8 for every non-zero U P D. However the presence of the
constraint alone does not ensure the existence for the following reasons:

¨ first, the energy, although constrained to a fixed mass, may not be lower bounded.
This happens for instance in the problem on the line ℓ in the supercritical case
p ą 6 for every value of the mass. To realize it, consider a function u of a real
variable and the family of functions uλpxq “

?
λupλxq. Then,

Eαpuλ, ℓq “ λ2

2
}u1}2L2pRq ´ λ

p
2

´1

p
}u}p

LppRq ` λ2α

2
|up0q|2 Ñ ´ 8, λ Ñ `8.

Therefore, since }uλ}L2pRq “ }u}L2pRq we have that the energy Eαp¨, ℓq constrained

to the arbitrary mass }u}2
L2pRq ą 0 is not lower bounded. Notice that the assump-

tion p ą 6 is crucial to this conclusion;
¨ on the other hand, consider the subcritical case p ă 6 on the line; then the
Gagliardo-Nirenberg inequality (2.2) applied to Eαp¨, ℓq with α ą 0 gives the uni-
form lower bound

Eαpu, ℓq ě 1

2
}u1}2L2pRq ´ C}u1}

p
2

´1

L2pRq
µ

p
4

` 1

2 ě M ą ´8,

where we crucially used p ă 6 and denoted µ “ }u}2
L2pRq. Therefore, owing to the

constraint the energy functional Eαp¨, ℓq is lower bounded for every mass, so that

inf
uPH1pRq,

ş
ℓ

|u|2“µ
Eαpu, ℓq ą ´8.

On the other hand, for any u P H1pRq such that
ş
R

|u|2dx “ µ, due to the choice
α ą 0 it holds

Eαpu, ℓq ě E0pu, ℓq ě E0pϕµ, ℓq, (14)

where ϕµ is the soliton introduced in (2.2). One then gets

Eα,ℓpµq ě E0,ℓpµq. (15)

On the other hand, consider the family of translations ϕµ,λpxq “ ϕµpx ´ λq of
the Ground State ϕµ at mass µ for E0p¨,Rq, so

Eαpϕµ,λ, ℓq “ E0pϕµ, ℓq ` α

2
|ϕµpλq|2 Ñ E0pϕµ, ℓq, λ Ñ 8,

Eα,ℓpµq ď E0,ℓpµq. (16)

Then, from (2.3) and (2.3) one concludes

Eα,ℓpµq “ E0,ℓpµq.
Now, the first inequality in (2.3) is an equality if and only if up0q “ 0, while the

second is an equality if and only if u “ ϕµ up to translations and multiplications
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by a phase. But as ϕµ is strictly positive, the two inequalities cannot be both
equalities, so that

Eαpu, ℓq ą E0pϕµ, ℓq, @u P H1pRq s.t.

ż

R

|u|2 “ µ,

from which it follows that there is no function u that attains the infimum Eα,ℓpµq,
so that there is no ground state at mass µ.

Summing up, the existence of a Ground State at mass µ is equivalent to two conditions:
first, the infimum of the constrained energy must be finite. Second, it must be attained
by some function. We stress that, contrarily to what happens in standard Quantum
Mechanics, when a nonlinearity is involved these two conditions are not guaranteed.

3. The main result

Here we give a condition equivalent to the existence of Ground States at mass µ. For
the proof we refer to the proof of the analogous result given in [3] for the hybrid plane I.

3.1. Lower boundedness of the constrained energy. First, like in the case of classical
domains, the lower boundedness of the constrained energy is guaranteed by subcriticality
through the Gagliardo-Nirenberg estimates, which establish that every subcritical nonlin-
earity can be controlled by the kinetic term of the energy. Now, such estimates are widely
known for functions in Sobolev spaces, but here one needs them to hold in the energy
domain D, that strictly contains the space H1pRq ‘ H1pR2q. In [3] it was shown how to
extend Gagliardo-Nirenberg estimates to the hybrid plane I, and the very same method
can be applied for the hybrid manifold H.

First of all notice that, in the nonlinear term

´1

p
}u}p

LppRq ´ 1

r
}v}2LrpR2q,

the first term can be treated by the classical Gagliardo-Nirenberg estimate (2.2). The
same is not true for the second term, which lies outside H1pR2q unless q “ 0. Following

[1, 3], for the case q ‰ 0 we rewrite v P D2, v “ φ` qK0

2π
, as

vpxq “ φqpxq ` q
K0p|q|xq

2π
, φq P H1pR2q, (17)

which is possible since K0p|q|xq „ K0pxq „ ´ log |x| as x Ñ 0. Then

φqpxq “ φpxq ` q

2π
pK0pxq ´K0p|q|xqq. (18)

One has the following proposition:

Proposition 3.1 (Gagliardo-Nirenberg estimate). Let U “ pu, vq P Dµ. Write

vpxq “
"
φqpxq ` q

K0p|q|xq
2π

, q ‰ 0
φ0pxq, q “ 0

Then,

}u}p
LppRq ď C}u1}

p
2

´1

L2pRq

}v}rLrpR2q ď Cp}∇φq}r´2
L2pR2q

` |q|r´2q,
(19)

where the mass µ was absorbed in the constants C.

As in the standard case, Gagliardo-Nirenberg estimates are useful in the proof of the
lower boundedness of the constrained energy. To show this, we first rewrite the energy of
the planar component v in terms of the decomposition (3.1). We get the following result.
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Proposition 3.2. Let v P D2 with q ‰ 0 and consider the decomposition (3.1). Then

Eσpv,Πq “ 1

2
}∇φq}2L2pR2q` |q|2

2
}φq}2L2pR2q´ |q|2

2
}v}2L2pR2q`

ˆ
σ

2
` log |q|

4π

˙
|q|2´1

r
}v}rLrpR2q.

(20)

Proof. We define the Fourier transform as

pfpkq “ 1

2π

ż

R2

fpxqe´ik¨x dx

for f P L1pR2q, then extend it to L2pR2q by continuity. With such a definition the Fourier
transform is a unitary operator in all Sobolev spaces HspR2q, s P R. Now, by properties
of the Bessel functions it is known that, in the space of distributions,

p´∆ ` 1qK0 “ 2πδ

and, since in Fourier space the gradient is mapped into the multiplication by the vector
ik, one has

pK0pkq “ 1

k2 ` 1
k2 :“ |k|2,

then by (3.1) one gets

pφpkq “ pφqpkq ` q

2π

1 ´ |q|2
pk2 ` |q|2qpk2 ` 1q .

The two first terms of (2.1) can be rewritten as

1

2
}φ}2H1pR2q ´ 1

2
}v}2L2pR2q

“1

2

ż

R2

pk2 ` 1q
ˇ̌
ˇ̌ pφqpkq ` q

2π

1 ´ |q|2
pk2 ` |q|2qpk2 ` 1q

ˇ̌
ˇ̌
2

dk ´ 1

2

ż

R2

ˇ̌
ˇ̌ pφqpkq ` q

2πpk2 ` |q|2q

ˇ̌
ˇ̌
2

dk

“1

2

ż

R2

k2|pφqpkq|2dk ´ Re

ż

R2

|q|2q pφqpkq
2πpk2 ` |q|2qdk ` |q|2

8π2

ż

R2

dk

k2 ` |q|2
ˆp1 ´ |q|2q2

k2 ` 1
´ 1

˙
(21)

On the other hand, the three first terms in (3.2) can be rewritten as

1

2
}∇φq}2L2pR2q ` |q|2

2
}φq}2L2pR2q ´ |q|2

2
}v}2L2pR2q

“1

2

ż

R2

pk2 ` |q|2q|φqpkq|2dk ´ |q|2
2

ż

R2

ˇ̌
ˇ̌pφqpkq ` q

2πpk2 ` |q|2q

ˇ̌
ˇ̌
2

dk

“1

2

ż

R2

k2|φqpkq|2dk ´ |q|2Re q
ż

R2

pφqpkq dk
2πpk2 ` |q|2q ´ |q|4

8π2

ż

R2

dk

pk2 ` |q|2q2 .

(22)

Then, taking the difference between the quantities computed in (3.1) and (3.1) we conclude

1

2
}φ}2H1pR2q ´ 1

2
}v}2L2pR2q ´

ˆ
1

2
}∇φq}2L2pR2q ` |q|2

2
}φq}2L2pR2q ´ |q|2

2
}v}2L2pR2q

˙

“ |q|2
8π2

ż

R2

dk

pk2 ` |q|2q2
ˆp1 ´ |q|2q2

k2 ` 1
´ 1 ` |q|2

˙

“ |q|2
8π2

ż

R2

|q|2 ´ 1

pk2 ` |q|2qpk2 ` 1qdk “ |q|2
4π

log |q|.

(23)

Therefore, from (2.1) and (3.1)

Eσpv,Πq “ 1

2
}∇φq}2L2pR2q ` |q|2

2
}φq}2L2pR2q ´ |q|2

2
}v}2L2pR2q ` |q|2

4π
log |q|` σ

2
|q|2´ 1

r
}v}2L2pR2q,

and the proof is complete. �
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Plugging estimate (3.1) in the expression of the energy (2.1) one has the following

Proposition 3.3. Let 2 ă p ă 6 and 2 ă r ă 4. Then the functional (2.1) with the
constraint (2.1) is lower bounded.

The proof given in [3] for the hybrid plane I can be closely repeated for H. Here we
recall the main passage. After estimating the coupling term by

´βRe pqup0qq ě ´Cp|q|2 ` ?
µ}u1}L2pRqq,

through (3.1) we have

EpUq ě 1

2
}u1}2L2pRq ´ C

´
}u1}

p
2

´1

L2pRq
` }u1}L2pRq

¯
` 1

2
}∇φq}2L2pR2q

´ C}∇φq}r´2
L2pR2q

` |q|2
2

plog |q| ´ Cq ´ C|q|r´2,

where the mass was absorbed in the constants and the contributions of }u1}L2pRq, }∇φq}L2pR2q,
and q are separated from one another, so that one can introduce three functions f, g, h
that are lower bounded due to the subcritical character of the nonlinearities. Then one
gets

EpUq ě fp}u1}L2pRqq ` gp}∇φq}L2pR2qq ` hp|q|q, (24)

and it follows that the constrained energy is lower bounded too.

3.2. Minimizing sequences. Let tUnu Ă Dµ be a minimizing sequence for the energy
E at mass µ. This means that every element of the sequence has mass µ and that

limEpUnq “ Epµq.
We aim at singling out the Ground States as limits of the minimizing sequences.

Writing Un “ pun, vnq and considering the decomposition

vnpxq “ φn,qnpxq ` qn
K0p|qn|xq

2π

by (3.1) one has
EpUnq ě fp}u1

n}L2pRqq ` gp}∇φn,qn}q ` hp|qn|q.
Now, since EpUnq is a convergent real sequence, it has to be bounded, so none of the
three terms can diverge, which implies that the three quantities }u1

n}L2pRq, }∇φn,qn}, |qn|
are bounded too. As a consequence, un is a bounded sequence in H1pRq, φn,qn is a bounded
sequence in H1pR2q, qn is a numerical bounded sequence.

Remark 3.4. Therefore, up to subsequences,

¨ By Banach-Alaoglu theorem un converges to some u weakly in H1pRq.
¨ qn converges to some q in C.

¨ qnK0p|qn|xq
2π

converges strongly to qK0p|q|xq
2π

in LppR2q for 2 ď p ă 8 if q ‰ 0. It

converges to zero weakly in L2pR2q if q “ 0.
¨ By Banach-Alaoglu theorem φn,qn converges to some φq weakly in H1pR2q. From
this one can easily see that φn, that appears in the decompositon (2.1) of vn,
converges weakly in H1pR2q to the function φ that decomposes v according to
(2.1), namely

v “ φ` q
K0

2π
.

¨ vn converges weakly to some v in LppR2q, 2 ď p ă 8.

As a consequence, Un converges weakly to U in L2pHq. Now, U may not belong to the
minimizing domain Dµ since, as a weak limit, its mass could be strictly smaller than µ.
However, it turns out that, if the mass is conserved in the weak limit so that U P Dµ, then
U is a Ground State.
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Proposition 3.5. Let us consider a minimizing sequence tUnu Ă Dµ, and denote by U a
weak limit of it in the sense specified by Remark 3.4.

If }U}2
L2pHq “ µ, then U is a Ground State at mass µ for the energy functional E.

Proof. By weak convergence,

}Un ´ U}2L2pHq “ 2µ´ 2RepUn, UqL2pHq Ñ 0,

so conservation of mass in the weak limit ensures strong convergence. This immediately
entails that un, vn and φn converge strongly to u, v and φ in the respective L2 spaces, while,
as already seen, qn converges to q. Now, since Banach-Steinhaus’ Theorem guarantees
boundedness in L2 for the weakly convergent sequences tu1

nu, t∇φnu, then by Gagliardo-
Nirenberg estimates one gets

}un ´ u}p
LppRq ď C}u1

n ´ u1}
p
2

´1

L2pRq}un ´ u}
p
2

`1

L2pRq

thus un converges strongly to u in LppRq. On the other hand

}vn ´ v}rLrpR2q ď C}φn ´ φ}rLrpR2q ` C|qn ´ q|r

ď C}φn ´ φ}2L2pR2q}∇φn ´ ∇φ}r´2
L2pR2q

` C|qn ´ q|r

thus vn converges strongly to v in LrpR2q. Therefore, the nonlinear terms in EpUnq
converge to the corresponding terms in EpUq. All other terms converge except the two
kinetic terms 1

2
}u1

n}2
L2pRq and 1

2
}∇φn}2

L2pR2q. Then, since U P Dµ, one has the following

double inequality

0 ě Epµq ´EpUq “ limEpUnq ´ EpUq

“ 1

2
plimp}u1

n}2L2pRq ` }∇φn}2L2pR2qq ´ }u}2L2pRq ´ }∇φ}2L2pR2qq
ě 0

by weak convergence. Then Epµq “ EpUq so U is a Ground State at mass µ and the
proof is complete.

�

Now it is necessary to give conditions that guarantee that the weak limit of a minimizing
sequence preserves the mass, so to apply Proposition 3.5. It turns out that there is a simple
necessary and sufficient condition.

Theorem 3.6. A Ground State at mass µ for the energy functional EpUq defined in (2.1)
exists if and only if there is a function U P Dµ such that

EpUq ď E0,ℓpµq. (25)

Such a result is relevant for two reasons: first, it provides a practical criterion for proving
the existence of a Ground State by exhibiting a function U that fulfils (3.6); second, it
states that the infimum of the constrained energy can be reached in two ways only: either
by constructing a Ground State or by escaping at infinity through the line. This alternative
greatly simplifies the options foreseen by the concentration-compactness theory. Let us
further examine this point.

According to the concentration-compactness theory (see e.g. [17]), a weakly convergent
sequence can preserve its mass or lose it. Furthermore, the loss can be partial or complete.
For the present model, we proved in Proposition 3.5 that if for a given minimizing sequence
there is no loss of mass, then the sequence converges to a Ground State. One can show
that the partial loss of mass is never energetically convenient due to the subadditivity of
the energy, so that it never applies to minimizing sequences (see the proof of Theorem 1 in
[3]). The complete loss of mass can happen through three mechanisms: dispersion of the
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sequence, with vanishing }un}LppRq and }vn}LrpR2q, escape at infinity through the plane or
escape at infinity through the line. It turns out that ([3]):

(1) if among the three mechanisms involved by the complete loss of mass the most
convenient is the dispersion, then

EpUnq Ñ ElinpΨµq “ EpΨµq ` 1

p
}ψµ}p

LppRq ` 1

r
}ςµ}rLrpR2q,

with Ψµ “ pψµ, ςµq the Ground State at mass µ of the quadratic part Elin of E.
Therefore, Epµq “ ElinpΨµq and

Epµq ď EpΨµq “ ElinpΨµq ´ 1

p
}ψµ}p

LppRq ´ 1

r
}ςµ}rLrpR2q ă Epµq,

which is absurd. So there cannot be complete loss of mass by dispersion;
(2) if the most convenient mechanism is the escape at infinity through the plane, then

EpUnq Ñ E8pξµ,Πq, where ξµ is the soliton of the standard nonlinear Schrödinger
equation in dimension two. But in this case one has Ξµ “ p0, ξµq P Dµ and so Ξµ

is a Ground State and one proves existence.
(3) If, finally, the most convenient mechanism is the escape at infinity through the

line, then EpUnq Ñ E0pϕµ, ℓq. Of course the state Φµ “ pϕµ, 0q belongs to Dµ, but

EpΦµq “ E0pϕµ, ℓq ` α

2
|ϕµp0q|2,

thus if α ą 0, then the escape at infinity is a convenient choice for the soliton.

The previous discussion is aimed at clarifying why the only hindrance to the existence of
a Ground State is the possibility, for a minimizing sequence, to run to infinity through
the line. In other words, the plane is not dangerous since it can always host the two-
dimensional soliton centered at the origin, equalling the optimal energy E8pξµ,Πq reached
when escaping through the plane. In fact, it has been proved in [1] that on the plane it is
possible to make better: for every σ P R there exist a Ground State at mass µ whose energy
is strictly less than E8pξµ,Πq. Then one can say that the plane is strictly attractive,
regardless of the sign of σ. An analogous result for the analogous three-dimensional
problem was proved in [2].

Gathering together the previous comments, one ends up with the following

Corollary 3.7. Inequality (3.6) and therefore the existence of a Ground State at mass µ
for the energy functional (2.1) is guaranteed by one of the following conditions:

(1) The contact interaction between the plane and the line is non-repulsive on the
line, i.e. α ď 0. This entails that a soliton at the infinity on the line is not less
energetic than the same soliton centred at the origin, and therefore the escape at
infinity along the line is not strictly convenient.

(2) Given the mass µ, the nonlinearity powers p and r are such that the plane is
energetically more convenient than the line, in the sense that

Eσpςµ,Πq ď Eαpϕµ, ℓq.
More precisely, this is accomplished by the following condition: there exists a
threshold value µ‹ for the mass, that depends on p and r, such that

if µ ą µ‹ and
2

4 ´ r
ą p` 2

6 ´ p

or

if µ ă µ‹ and
2

4 ´ r
ă p` 2

6 ´ p
,

then there is a Ground State at mass µ for (2.1).
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(3) The contact interaction between the plane and the line is attractive enough on
the plane, which means that σ lies below a threshold σ‹. Indeed, since Eσ,Π is a
monotonically increasing function of σ and

Eσ‹,Πpµq Ñ ´8, σ Ñ ´8,

then either
E`8,Πpµq ă E0,ℓpµq

or there exists σ‹ P R such that

Eσ‹,Π “ E0,ℓpµq,
Then, for σ ď σ‹ possibly infinite, there exists a Ground State.

(4) The junction energy EJ is strong enough, namely β ě β‹ for a certain threshold
β‹. In this case, EH is a monotonically decreasing function of β, so one has

Epµq Ñ ´8, β Ñ `8
and then the result immediately follows.

Notice that the previous Corollary makes more precise the prescriptions given in Section
1.1 in order to construct a trapping hybrid plane.

We point out that the criterion given at (1) is simpler than the analogous condition
given in [1] for the hybrid I. This reflects the fact that the problem of the existence of
Ground States on a halfline with a delta interaction at the origin is more complicated than
the same problem on the line, as detailed in [14].

3.3. Further results. We list here for the sake of completeness some results that imme-
diately translate from [3] to this context.

(1) A Ground State always exists for small mass. Indeed, the linear ground state
Ψµ is energetically more convenient than the one-dimensional soliton, as it scales
linearly with the mass while E0,ℓ scales superlinearly.

(2) Fixed µ ą 0, if α and σ are large enough, while β is small enough, then there is no
Ground State. Here we are in fact denying the hypotheses of existence theorem.
Notice that the threshold depends on µ.

(3) If β “ 0 and there exists a Ground State, then it is supported either on ℓ or on Π
and it coincides with a Ground State of the problem on ℓ or on Π.

(4) If β ‰ 0, then every Ground State U “ pu, vq has non-trivial components u and
v. Moreover, u P H2pRzt0uq X H1pRq, while v “ φ ` qK0

2π
with φ P H2pR2q. More

precisely, u is an even function made by glueing together two chunks of a soliton,
while v is a radially symmetric function whose shape is that of a Ground State for
the Nonlinear Schrödinger Equation on the plane with a point interaction at the
origin. They are connected by the matching conditions$

&
%

u1p0`q ´ u1p01q “ αup0q ´ βq

φp0q “ ´βup0q ` σq

Remark 3.8. In our search for Ground States we excluded the cases α “ 8 and σ “ 8.
This was done because such cases lead to modifications of the functional E and of the
energy domain D and including them would make the formulation of the problem too
cumbersome. However, since they are not completely trivial, we quickly summarize the
results.

The condition α “ 8 amounts to imposing Dirichlet boundary conditions at the origin
of the line. As a consequence, both the contact interaction on the line and the coupling
term vanish. Therefore one has

EpUq “ E8pu, ℓq ` Eσpv,Πq “ E0pu, ℓq ` Eσpv,Πq
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on the domain

Ddir “ tU “ pu, vq, u P H1pRq s.t. up0q “ 0, v P D2u.
The problem reduces then to a competition between ℓ and Π. If p, r, σ and µ are such that
the line turns out to be more convenient, then minimizing sequences leave the plane and
seek the lowest energy on the line, which is given by the energy of the soliton that cannot
be attained beacuse of the Dirichlet boundary condition at the origin. Then there is no
Ground State. If vice versa the chosen parameters make the plane energetically convenient
with respect to the line, then minimizing sequences concentrate on the plane and converge
to the two-dimensional Ground State according to the results of [1].

In the case with σ “ 8 the line and the plane are decoupled too since, as discussed
in 2.2, such conditions entail q “ 0. Therefore minimizing sequences concentrate on the
most convenient component among ℓ and Π. In the first case, the issue of the existence of
a Ground State reduces to that of the existence for Eαpu, ℓq. In the second case, a Ground
State exists.

If α “ σ “ 8, then the existence of Ground States is determined by the competition
between the free line and the free plane.

Lastly, we stress that the energy functional (2.1) does not exhaust all possible choices
for the contact interactions. In fact, if one starts from the linear case and seeks for
all possible interactions taking place at the junction, then one is led to consider a nine-
parameter family of possible energy functionals. This family includes several rich dynamics
as the one generated by the so-called delta-prime interaction, that on ℓ would give rise to
singular phenomena like symmetry breaking bifurcation on the Ground State ([5, 6]). We
plan to investigate such dynamics in a forthcoming study. A further point that we left
untouched concerns the uniqueness of Ground States. This is in general a delicate point
that requires ad hoc techniques. For instance, for the analysis on uniqueness on metric
graphs instead of hybrids see [19].
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[24] Exner P., Šeba P., Mathematical models for quantum point-contact spectroscopy, Czechoslovak J.

Phys. B 38 (1988), no.1, 1–11.
[25] Fukaya N., Georgiev V., Ikeda M., On stability and instability of standing waves for 2d-nonlinear

Schrödinger equations with point interaction, J. Differential Equations 321 (2022), 258–295.
[26] Fukuizumi R., Jeanjean L., Stability of standing waves for a nonlinear Schrödinger equation with a

repulsive Dirac delta potential, Discrete Contin. Dyn. Syst. 21 (2008), no.1, 121–136.
[27] Fukuizumi R., Ohta M., Ozawa T., Nonlinear Schrödinger equation with a point defect, Ann. Inst.
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