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Abstract: This paper investigates the commutation transients of MOSFET and GaN FET devices
in motor drive applications during hard-switching and soft-switching commutations at dead time
operation. This study compares the switching behaviors of MOSFETs and GaN FETs, focusing on
their performance during dead time in inverter legs for voltage source inverters. Experimental
tests at various phase current levels reveal distinct switching characteristics and energy dissipation
patterns. A validated simulation model estimates the experimental energy exchanged and dissipated
during switching transients. The results demonstrate that GaN FETs exhibit lower overall losses at
shorter dead times compared to MOSFETs, despite higher reverse conduction voltage drops. The
study provides a quantitative framework for selecting optimal dead times to minimize energy losses,
enhancing the efficiency of GaN FET-based inverters in low-voltage motor drive applications. Finally,
a dead time optimization strategy is proposed and described.

Keywords: motor drive; inverter leg; dead time; switching losses; reverse conduction; GaN FET; MOSFET

1. Introduction

The performance limitations of silicon-based power devices are increasingly evident,
moving the semiconductor industry towards alternative materials like silicon carbide (SiC)
and gallium nitride (GaN). GaN, in particular, has gained significant traction due to its
superior switching speed capabilities [1,2]. Traditional silicon power MOSFETs have faced
challenges in balancing conduction and switching losses, as efforts to reduce on-resistance
often result in increased parasitic capacitances, leading to higher switching losses [3].

In Pulse-Width Modulation (PWM) motor drive applications, the adoption of GaN
technology offers the potential to achieve higher switching frequencies, which in turn
reduces torque ripple and improves the waveform quality of the motor current [4]. In a
motor drive powered by a voltage source inverter, the dead time is necessary to avoid
cross-conduction [5]. Unfortunately, dead time always causes the waveform distortion
phenomenon in a motor drive, and dead time compensation strategies are required [6].
Moreover, voltage source inverters used in these applications require dead time to prevent
cross-conduction, introducing waveform distortion. This distortion originates from the
inherent delays in switching devices and the characteristics of the devices themselves, such
as turn-on and turn-off delays and reverse conduction voltage drop [7].

GaN FETs are particularly attractive in power electronics due to their low on-resistance
and ability to operate at very high frequencies [8]. For low-voltage (V < 100 V) motor drives,
GaN FET-based inverters have demonstrated advantages in reducing the size of passive
components and minimizing motor current distortion and torque ripple. On the other
hand, an advanced motor insulation layout and a deep investigation of the commutation
transient in the inverter leg are required due to the dV/dt increase [9].
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Properly setting the dead time is crucial to minimize both reverse conduction [10].
Numerous studies have aimed to optimize dead time settings, exploring solutions like gate
driver ICs with adjustable or adaptive dead time capabilities. While some methods, such as
programmable dead time settings, lack adaptability in real-world applications [11], others
have shown promise but often lack generality or theoretical underpinning [12,13]. Recent
research has highlighted the importance of theoretically derived optimal dead time values,
which have demonstrated improvements in efficiency [14]. These research studies require a
deep knowledge of the considered device behavior, depending on the operative conditions
and the technology features [15,16].

This paper investigates the commutation transients of MOSFET and GaN FET devices
during dead time for motor drive applications. Experimental tests are conducted in an
inverter leg board controlling the phase current. Results reveal different switching behav-
iors depending on the working conditions. The energy exchanged between the high-side
and low-side devices during commutations and the energy losses are estimated through a
validated model of the system. The contribution to switching losses during hard-switching
and soft-switching commutations and the differences between GaN FET and MOSFET
results are distinguished and deeply investigated. Findings aim to provide insights and
guidelines for optimizing dead time based on the specific technology for different operating
conditions. Furthermore, an optimization strategy for the dead time related to the GaN
FET in inverter leg application is presented and described.

2. GaN FET and MOSFET Commutation Transients in Motor Drive Application

The motor drive system used consists of a GaN FET-based inverter powering a 3-phase
permanent magnet (PM) motor. Figure 1 shows the system composed of the inverter and
the electrical machine. The inverter is composed of three legs, one for each motor phase.
The stator phase currents Ia, Ib, Ic are controlled by the high-side QHS and the low-side
QLS using a Pulse-Width Modulation (PWM). The modulation works at the switching
frequency fsw, significantly higher than the AC stator phase current frequency of the motor
in order to ensure control stability. A dead time (tdt) is introduced between the devices’
commutation in which both driving signals are off-state. This tdt is set by the user to avoid
shoot-through in the inverter leg [17]. Nevertheless, the introduction of tdt creates voltage
harmonic distortion affecting the phase current waveform [18,19].
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Figure 1. A 2-Level inverter using GaN FETs powering a 3-phase AC permanent magnetic motor.

In AC motor drive systems, each inverter leg operates with a sinusoidal phase current
of various amplitudes. These currents are directed either from the inverter leg’s switching
node to the motor phase or in the reverse direction. Figure 1 shows that a current entering
the stator phase is considered positive.

To study commutation transients in switching legs with MOSFET and GaN FET
devices, we used two half-bridge experimental board PCBs. These boards only differed in
device technology. This setup ensured consistent parasitic effects from the PCB, allowing a
fair comparison. Nevertheless, the different packages of GaN FET and MOSFET cannot
be removed. However, the choice of the technology leads to the use of the corresponding
parasitic elements introduced by the case of the selected device [20,21]. Moreover, tests are
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carried out using equal operating conditions for both the GaN FET-based board and the
MOSFET-based one.

The GaN FET board featured EPC2065 GaN FET, while the MOSFET one featured
Onsemi FDMS2D5N08C. The device features are reported in Table 1.

Table 1. MOSFET Onsemi FDMS2D5N08C and GaN FET EPC2065 features.

Parameter Symbol MOSFET GaN FET

Breakdown voltage BVDSS 80 V 80 V
Conduction resistance RDs,on 2.7 mΩ 3.6 mΩ
Driving gate voltage Vq 10 V 5 V

Figure 2a depicts the schematic of the inverter leg. Figure 2b,c show the pictures of
the GaN FET board and the MOSFET one, respectively.
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Precise measurement results are particularly challenging to obtain, especially when
they aim to distinguish different events that happen in a short time (e.g., during the
switching transient of WBG devices). Therefore, a dedicated experimental setup controlling
the system variables is required [22].

Testing occurred at an ambient temperature of 25 ◦C with a DC input voltage of
VDC = 48 V. A second inverter board is used to control the phase current Ia connecting
an LCL filter to the half-bridge switching node (point a of Figure 2a). An STM32H7
microcontroller generated PWM signals and controlled the phase current. The PWM
operated at a fsw = 20 kHz, switching frequency with a duty cycle of 0.1 to reduce current
ripple. This fsw is sufficient to ensure that the switching transient has been completed before
a new switching. Despite the fact that WBG devices can operate at a higher switching
frequency, the fsw selection does not affect the switching transient’s investigation [23].
Additionally, fsw = 20 kHz is a reasonable settlement for the MOSFET, which operates
at a lower fsw than the GaN FET; tdt duration needs to be chosen long enough to prevent
shoot-through and obtain hard-switching for commutations with low phase current [24].
Furthermore, significant distortion effects due to the duration of the dead time need to
be avoided [25]. In the experimental test, both GaN FET and MOSFET boards have a
dead time of tdt = 150 ns, which is a good trade-off between the GaN FET and MOSFET
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requirements. During tdt, transitioning from high-side (QHS) turn-off to low-side (QLS)
turn-on can cause zero-voltage transients at different current levels [26].

Experimental tests carried out with tdt = 150 ns reveal that the MOSFET switching leg
achieves zero voltage switching (ZVS) [27] for currents Ia ≥ 1.5 A. The GaN FET achieves
ZVS at lower Ia.

The voltage waveforms are measured using a digital scope featuring a bandwidth of
500 MHz, an output resistance of 10 MΩ, and an output capacitance of 10 pF.

The experimental setup of the controlled current-level system is shown in Figure 3.
It includes the half-bridge board under test, the power converter regulating Ia, and the
STM32H7 microcontroller.
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Tests are conducted for positive Ia current values (exiting from the switching node and
entering the converter regulating current) at Ia = 0.5 A, 1 A, 1.5 A, 2 A, 5 A, 7.5 A, 10 A.
Two commutation characteristics for two transitions are analyzed:

• High-Side Turn-Off, Low-Side Turn-On: This commutation features a negative
voltage slew rate (dVa/dt < 0) as the switching node voltage (Va) decreases;

• Low-Side Turn-Off, High-Side Turn-On: This had a positive voltage slew rate
(dVa/dt > 0) as the switching node voltage (Va) increased to VDC.

The experimental test result achieved in these two commutations for various Ia ampli-
tudes are each reported separately.

2.1. Commutation with dva/dt < 0 and Positive Ia

Figure 4 shows the voltage waveforms measured on the half-bridge boards using GaN
FETs and MOSFETs. Figure 4a displays the switching node voltage Va, while Figure 4b
illustrates the gate-source voltages for the high-side device (VGS,HS) and the low-side
device (VGS,LS). The Va waveforms correspond to the current amplitudes Ia indicated by
the arrows.
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Figure 4. Voltages measured on GaN FET and MOSFET during the QHS turn-off and QLS turn-on
commutation with Ia > 0 A (tdt = 150 ns). (a) Switching node voltage Va. (b) Gate-source voltages
VGS. Va = 10 V/div; VGS = 2 V/div; timestep = 50 ns/div.

Depending on the tdt length and the Ia, three different switching events can happen
for the switching node voltage:

• Zero voltage switching (ZVS);
• Voltage variation and partial hard switching (PHS);
• Voltage fall transient and reverse conduction (RC).

When the high-side switch (QHS) turns off, Va starts to fall. The rate of Va decline
is steeper with higher Ia due to the parasitic output capacitances of the devices (COSS =
CGD + CDS) and the load [28]. Since COSS is not constant with voltage, the dynamics of Va
can be described using an equivalent capacitance Ceq. This Ceq is derived as the average
value resulting from the Va slew rate (dVa/dt) measured at different Ia amplitudes and
considering the time (tV f all) taken for Va to fall to 0 V when QHS turns off. Integrating the
constitutive equation of a capacitance (I = C · dV/dt), it is possible to calculate Ceq as

Ceq =
VDC

tV f all ·Ia
(1)

ZVS occurs when the low-side switch (QLS) turns on exactly as Va reaches 0 V. This is
the condition in which tV f all = tdt. As shown in Figure 4, ZVS for MOSFET happens at a
phase current amplitude of Ia = 1.5 A, while for GaN FET, it occurs between Ia = 0.5 A
and Ia = 1 A. The GaN FET has a lower COSS = 750 pF, compared to the MOSFET’s
COSS = 1800 pF. The lower COSS of the GaN FET results in a shorter tV f all , enabling ZVS
at lower Ia compared to the MOSFET.

When Ia is lower than the ZVS threshold, a PHS event follows the Va transient. In this
case, QLS turns on before Va has fully dropped to 0 V. After tdt, Va falls to QLS’s conduction
value within the partial hard switching duration time (tPHS), causing PHS losses. Figure 4
shows MOSFET experiencing PHS at Ia = 0.5 A and Ia = 1 A, while the GaN FET exhibits
PHS only at Ia = 0.5 A.

In the cases of higher Ia values than those required for ZVS, Va drops to 0 V before tdt
ends tV f all < tdt. Subsequently, QLS operates in RC mode until QHS turns on. The reverse
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conduction duration is tRC = tdt − tV f all . Va is negative at Va = −VRC due to the activation
of the body-diode in the MOSFET or the equivalent diode behavior in the GaN FET. The
reverse conduction voltage VRC is higher for GaN FET (VRC = 1.4 V) than for MOSFET
(VRC = 0.8 V), causing higher RC losses in the GaN FET than in the MOSFET. No losses
follow tdt as QHS turns on.

In Figure 5a are highlighted tdt and tPHS in the example of the PHS event achieved
with the GaN FET with Ia = 0.5 A. Figure 5b indicates the time intervals of tV f all and tRC
relative to the Va curves achieved with Ia = 2 A for the GaN FET.

Energies 2024, 17, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 4. Voltages measured on GaN FET and MOSFET during the 𝑄  turn-off and 𝑄  turn-on 
commutation with 𝐼 > 0 A (𝑡 = 150 ns). (a) Switching node voltage 𝑉 . (b) Gate-source voltages 𝑉 .  𝑉 = 10 V/div; 𝑉 = 2 V/div;  𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 = 50 ns/div. 

When 𝐼  is lower than the ZVS threshold, a PHS event follows the 𝑉  transient. In 
this case, 𝑄  turns on before 𝑉  has fully dropped to 0 V. After 𝑡 , 𝑉  falls to 𝑄 ’s con-
duction value within the partial hard switching duration time (𝑡 ), causing PHS losses. 
Figure 4 shows MOSFET experiencing PHS at 𝐼 = 0.5 A  and 𝐼 = 1 A , while the GaN 
FET exhibits PHS only at 𝐼 = 0.5 A. 

In the cases of higher 𝐼  values than those required for ZVS, 𝑉  drops to 0 V before 𝑡  ends 𝑡 < 𝑡 . Subsequently, 𝑄  operates in RC mode until 𝑄  turns on. The re-
verse conduction duration is 𝑡 =  𝑡 𝑡 . 𝑉  is negative at 𝑉 = 𝑉  due to the ac-
tivation of the body-diode in the MOSFET or the equivalent diode behavior in the GaN 
FET. The reverse conduction voltage 𝑉   is higher for GaN FET (𝑉 = 1.4 V ) than for 
MOSFET (𝑉 = 0.8 V), causing higher RC losses in the GaN FET than in the MOSFET. No 
losses follow 𝑡  as 𝑄  turns on. 

In Figure 5a are highlighted 𝑡  and 𝑡  in the example of the PHS event achieved 
with the GaN FET with 𝐼 = 0.5 A. Figure 5b indicates the time intervals of 𝑡  and 𝑡  
relative to the 𝑉  curves achieved with 𝐼 = 2 A for the GaN FET. 

 
Figure 5. Switching node voltages measure on GaN FET during the 𝑄  turn-off and 𝑄  turn-on 
commutation: (a) PHS event at 𝐼 = 0.5 A ; (b) RC event at 𝐼 = 2 A . 𝑉 = 10 V/div;  𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 =50 ns/div. 
Figure 5. Switching node voltages measure on GaN FET during the QHS turn-off and QHS turn-on
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2.2. Commutation with dVa/dt > 0 and Positive Ia

Figure 6 shows voltage waveforms with dVa/dt > 0 for both the half-bridge board
using GaN FETs and the one using MOSFETs at the same current variations as in Figure 4.
Figure 6a presents the switching node voltage Va, while Figure 6b illustrates the gate-source
voltages (VGS,LS for the low-side device and VGS,HS for the high-side device).
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The phase voltage Va waveforms rise with no differences for all Ia amplitudes used in
the tests. The difference in dVa/dt is determined by the device technology. The parasitic
capacitance COSS of the device affects the voltage rise time tHS. The reverse conduction (RC)
phase begins when QLS turns off and ends when QHS turns on. During RC, Va = −VRC
due to the body-diode of the MOSFET or the equivalent diode in the GaN FET. A hard
switching (HS) event follows the dead time, lasting a few nanoseconds, and is a dissipative
process because VDS of QHS equals Va = VRC + VDC.

2.3. Commutation with dVa/dt < 0 and Negative Ia

The results for negative current are dual to those with positive current. The switch-
ing event of Ia < 0 A and dVa/dt < 0 is characterized by an RC phenomenon lasting
tRC = tdt. During RC, Va reaches the value of Va = VRC + VDC. Consequently, an HS event
with a rapid Va rising happens, and it elapses in lasting a few nanoseconds (tHS). All
considerations made for Va/dt > 0 and Ia > 0 (Section 2.2) are valid.

Figure 7 illustrates Va measured on the boards with GaN FETs and MOSFET during
the commutation with dVa/dt < 0 when testing with Ia < 0 A. Figure 7a depicts the falling
Va waveforms, while Figure 7b shows the gate-source voltages for QLS and QHS (VGS,LS
for the low-side device and VGS,HS for the high-side device).
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2.4. Commutation with dVa/dt > 0 and Negative Ia

For dVa/dt > 0 and Ia < 0 A, the commutation dynamics are influenced by the
parasitic capacitance. Depending on the amplitude of Ia, Zero Voltage Switching (ZVS),
Partial Hard Switching (PHS), and Reverse Conduction (RC) events can occur. The same
considerations discussed for dVa/dt < 0 and Ia > 0 A apply here. At higher Ia amplitudes,
the voltage rise time (tVrise) is shorter. Figure 8 shows the voltages measured on GaN FET
and MOSFET boards with Ia = −1.5 A,−2 A,−5 A,−7.5 A,−10 A during commutation
with dVa/dt > 0. Figure 8a illustrates the rising Va waveforms, while Figure 8b presents
the gate-source voltages for QLS and QHS (VGS,LS and VGS,HS, respectively).
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Figure 8. Voltages measured on GaN FET and MOSFET during the QLS turn-off and QHS turn-on
commutation with Ia < 0 A (tdt = 150 ns). (a) Switching node voltage Va. (b) Gate-source voltages
VGS. Va = 10 V/div; VGS = 2 V/div; timestep = 50 ns/div.

3. GaN FET vs. MOSFET Commutation Energy Evaluation

The board used for experimental tests does not incorporate current sensing to measure
the current of transistors in a half-bridge configuration. This is intentionally designed
to prevent any impact on the switching board’s performance. Nevertheless, measuring
transistor current is crucial for evaluating power trends and energy during commutations.
To achieve the current waveform of devices, LTSpice simulations are used. The simulation
models for MOSFET and GaN FET are sourced from the manufacturer’s official websites.

The simulated electrical circuit replicates the experimental setup (see Figure 2a) and
maintains the same operating conditions: VDC = 48 V; fsw = 20 kHz and duty-cycle 0.1.
The half-bridge circuit model is validated by ensuring it produces waveforms consistent
with those obtained in the experimental tests, as depicted in Figures 4 and 6 [29]. The phase
currents exiting the switching node (positive Ia) in the simulations are
Ia = 0.5 A, 1 A, 1.5 A, 2 A, 5 A, 7.5 A, 10 A, emulating the experimental conditions.

Simulations are performed twice with dead times tdt = 20 ns and tdt = 150 ns.
These tdt values are typical for the respective devices (20 ns for GaN FETs and 150 ns for
MOSFETs) and are relevant for motor drive applications. The energy values computed
from the simulations pertain to the low-side device (QLS).

Figures 9 and 10 show the QLS waveforms of the current ILS, the phase voltage Va,
and the power PLS during the commutation with dVa/dt < 0, load current of Ia = 2 A, and
a dead time of tdt = 20 ns and with tdt = 150 ns, respectively. Figures 9a and 10a refer to
the GaN FET, while Figures 9b and 10b refer to the MOSFET.

Comparing the GaN FET waveforms of Figures 9a and 10a with the MOSFET ones
in Figures 9b and 10b shows that the Va and current variations last longer in the MOSFET
than in the GaN FET. As a result, during the Va fall the GaN FET power PGAN has a peak
comparable with those of the MOSFET PMOS, but PGAN lasts shorter. In the case of soft
switching following the Va fall in Figure 9a,b, GaN FET features a higher reverse conduction
voltage drop (VRC). The current flowing through the device operating in reverse conduction
is Ia and it is equal for both the GaN FET or the MOSFET. Therefore, the higher VRC of
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the GaN FET leads to higher reverse conduction losses than the MOSFET [30]. Due to
the higher voltage drop of the GaN transistor during reverse conduction operation, the
device in the third quadrant must work with reduced timing to optimize performance and
losses. In the hard-switching event with Ia = 2 A and tdt = 20 ns shown in Figure 10a,b,
the overall GaN FET hard switching losses are much lower than the MOSFET ones.
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FET IGaN = 10 A/div; Va = 10 V/div; power PGaN = 25 W/div. (b) MOSFET IMOS = 10 A/div;
Va = 10 V/div; power PMOS = 25 W/div. timestep = 20 ns/div.
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Figure 10. Waveforms of the commutation with Ia = 2 A, tdt = 20 ns, and dVa/dt < 0. (a) GaN
FET IGaN = 10 A/div; Va = 10 V/div; power PGaN = 200 W/div. (b) MOSFET IMOS = 10 A/div;
Va = 10 V/div; power PMOS = 200 W/div. timestep = 5 ns/div.

During the commutation exhibiting dVa/dt < 0 (QHS turning off and QLS turning on)
with a positive Ia, it is possible to distinguish between the Ia amplitudes that result in ZVS
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or RC and those that cause PHS. The energy of QLS during the voltage variation, EVV , is
determined by the equation:

EVV =
∫ tV f all

0
| V a · ILS| · dt (2)

where ILS is the current through QLS and tV f all is the time taken for the switching node
variation Va. The time tV f all varies according to the Va falling slew rate. If Va drops to 0
V before the end of tdt, RC conditions appear. ZVS condition appears when tV f all equals
the maximum value of tdt if Va reaches 0 V at the end of tdt. The PHS conditions occur if
the theoretical voltage fall time tV f all exceeds tdt. When tV f all is followed by RC conditions
lasting tRC, the energy losses during tdt are denoted as ERC and calculated as

ERC =
∫ tV f all+tRC

tV f all

| V RC · ILS

∣∣·dt (3)

where tRC is the RC time interval when Va is negative and equal to Va = −VRC for the GaN
FET or MOSFET. The upper integral limit at t = tV f all + tRC is close to tdt and includes
turn-on delays of QLS and the driving circuit’s propagation delay uncertainty.

If Va does not drop to 0 V within tdt, the voltage variation during tV f all = tdt is
followed by PHS. The energy losses due to the PHS EPHS are calculated as

EPHS =
∫ tdt+tPHS

tdt

| Va · I LS |·dt (4)

where tPHS is the duration of the PHS phenomenon, starting at the end of tdt and ending as
ILS = 0 A.

In the ZVS condition, ERC = 0 J and EPHS = 0 J. EVV is the only energy involved in
the switching event.

Figures 11 and 12 illustrate the energies involved during the QHS turn-off and QLS
turn-on with positive Ia from 0.5 A to 10 A. Figure 11 refers to results with tdt = 20 ns,
while Figure 12 refers to those achieved with tdt = 150 ns. In particular, Figures 11a and
12a depict the energy EVV as a function of Ia. On the other hand, Figures 11b and 12b show
the energy losses due to RC (ERC) and PHS (EPHS) as a function of Ia. ZVS is marked with
a dashed line, while PHS and RC are marked with dotted lines. MOSFET curves are blue,
and GaN FET curves are green.
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Figure 11. Energies of QLS (MOSFET in blue and GaN FET in green) versus phase current during
the commutation with Ia > 0 A and dVa/dt < 0 using tdt = 20 ns. (a) Energy of voltage variation;
(b) PHS and RC energies. ZVS event is highlighted with a dashed line. PHS and RC are highlighted
with dotted lines. E = 0.5 µJ/div; Ia = 2 A/div.
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Figure 12. Energies of QLS (MOSFET in blue and GaN FET in green) versus phase current during the
commutation with Ia > 0 A A and dVa/dt < 0 using tdt = 150 ns. (a) Energy of voltage variation;
(b) PHS and RC energies. ZVS event is highlighted with a dashed line. PHS and RC are highlighted
with dotted lines. E = 0.5 µJ/div; Ia = 2 A/div.

GaN FET achieves ZVS at Ia = 6 A with tdt = 20 ns and at Ia = 0.8 A with tdt = 150 ns.
Differently, the MOSFET achieves ZVS at Ia = 1.5 A with tdt = 150 ns, while it does not
achieve ZVS with tdt = 20 ns for currents up to Ia = 10 A. RC losses occur for Ia higher
than the one causing ZVS, while PHS occurs for Ia lower than the ZVS.

Commutation with dVa/dt < 0 starts with the initial conditions of COSS,LS of QLS
charged to VDC and COSS,HS of QHS discharged to nearly 0 V. Immediately after turning
off QHS, COSS,LS of QLS discharges to 0 V and COSS,HS of QHS charges to VDC. During this,
both devices are in the off-state, but the variation of Va causes an exchange of energy EVV
between them. The amount of EVV exchanged varies depending on the switching event:

• ZVS or RC: COSS,LS of QLS discharges of EVV until Va stabilizes at 0 V, while COSS,HS
of QHS charges of EVV up to VDC. EVV is maximum (EVVmax) since COSS,LS of QLS
fully discharges using the charging energy of COSS,HS of QHS. EVVmax is calculated as

EVV max =
1
2
· Ceq · V2

DC (5)

and looking at Figures 11a and 12a, EVVmax ≈ 0.75 µJ for GaN FET and EVVmax ≈ 1.5 µJ
for MOSFET.

• PHS: COSS,LS of QLS does not discharge completely because after tdt the phase voltage
is not null, Va > 0 V. COSS,HS of QHS charges of EVV < EVV max, and COSS,LS of QLS
does not fully charge to Va = VDC. GaN FET’s smaller COSS results in a steeper Va
fall and a shorter tV f all for exchanging EVV . As a result, MOSFET features a greater
quantity of EPHS losses than the GaN FET when using the same tdt.

ZVS condition features zero energy losses ERC + EPHS = 0 J. Only EVV is involved
due to the energy exchange between the switching leg devices’ output capacitances
(COSS,HS and COSS,LS). Differently, PHS and RC are dissipative phenomena following
tV f all (Figures 11b and 12b).

Considering the same Ia, PHS energy losses EPHS is lower with long tdt because QLS
turns on with a lower VDS = Va > 0 V (closer to ZVS). Additionally, elapsed tdt, GaN FET’s
smaller COSS results in a steeper Va fall than MOSFET, leading to lower EPHS for GaN FET.
On the other hand, MOSFET features a lower voltage drop VRC and corresponding losses
ERC than the GaN FET. ERC increase proportionally with tdt and Ia whatever the technology
is considered.

Figures 13 and 14 show the GaN FET and MOSFET waveforms of the QLS cur-
rent ILS, the phase voltage Va and the device power PLS during the commutation with
dVa/dt > 0. Additionally, Figures 13a and 14a show the GaN FET power PGaN , while
Figures 13b and 14b depict the MOSFET reverse recovery current and the body-diode
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power, respectively. In particular, Figure 13 refers to the case with Ia = 2 A and Figure 14
to Ia = 7.5 A.
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Figure 13. Waveforms of the commutation with Ia = 2 A and dVa/dt > 0. (a) GaN FET IGaN =

5 A/div; Va = 5 V/div; power PGaN = 100 W/div. (b) MOSFET IMOS = 5 A/div; Va = 5 V/div; power
PMOS = 100 W/div; reverse recovery current Irr = 5 A/div; body-diode power Pdiode = 100 W/div.
timestep = 5 ns/div.
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Figure 14. Waveforms of the commutation with Ia = 7.5 A and dVa/dt > 0. (a) GaN FET IGaN =

5 A/div; Va = 5 V/div; power PGaN = 100 W/div. (b) MOSFET IMOS = 5 A/div; Va = 5 V/div; power
PMOS = 100 W/div; reverse recovery current Irr = 5 A/div; body-diode power Pdiode = 100 W/div.
timestep = 5 ns/div.

During commutation with dVa/dt > 0 (QLS turn off and QHS turn on), the transient
event starts with the COSS,LS of QLS being discharged, and COSS,HS of QHS being charged
to VDC. With positive Ia, QLS works in reverse conduction for all tdt. At the end of tdt, QHS
turns on with a drain-source voltage of Va = VDC, causing hard switching (HS). The device
QLS has a current peak and an almost instantaneous COSS,LS charge.

GaN FET waveforms in Figures 13a and 14a exhibit negligible differences with
the Ia level. Furthermore, GaN FET shows a faster dynamic than the MOSFET one of
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Figures 13b and 14b because of the low GaN FET COSS. Additionally, MOSFET features
a reverse recovery current Irr due to the body-diode which causes an increase of Pdiode in
switching losses PMOS. A higher Ia leads to a higher Irr peak and higher Pdiode, as shown
comparing Figures 13b and 14b. GaN FET does not feature reverse recovery current and
corresponding losses. The IGaN peak is due only to the charging COSS.

The reverse conduction energy ERC achieved by QLS both for GaN FET and MOSFET
is illustrated in Figures 15a and 16a as a function of Ia. Figures 15b and 16b depict the
hard switching energy losses (EHS) as a function of Ia. Figure 15 refers to the case with
tdt = 20 ns, while Figure 16 refers to the one with tdt = 150 ns. GaN FET curves are
depicted in green, while MOSFET curves are shown in blue.
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Figure 15. Energies of QLS (MOSFET in blue and GaN FET in green) versus phase current Ia during
the commutation with Ia > 0 A and dVa/dt < 0 using tdt = 20 ns. (a) Energy dissipation for reverse
conduction ERC; (b) Energy dissipation for hard switching EHS. E = 0.5 µJ/div; Ia = 2 A/div.
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Figure 16. Energies of QLS (MOSFET in blue and GaN FET in green) versus phase current Ia during
the commutation with Ia > 0 A and dVa/dt < 0 using tdt = 150 ns. (a) Energy dissipation for reverse
conduction ERC; (b) Energy dissipation for hard switching EHS. E = 0.5 µJ/div; Ia = 2 A/div.

The comparison of the GaN FET and MOSFET ERC curves in Figures 15a and 16a
demonstrates that GaN FET losses are higher than MOSFET during tRC due to higher
VRC [30]. Despite this, ERC losses are significantly low (up to 0.3 µJ for GaN FET and 0.1 µJ
for MOSFET) considering tdt = 20 ns. ERC increases linearly with tdt and the level of Ia.

Figures 15b and 16b show that HS energy losses EHS of GaN FET are significantly
lower than the MOSFET ones. GaN FET features a EHS = 0.75 µJ regardless of tdt and
Ia. Differently, MOSFET, and EHS has a minimum EHSmin = 1.5 µJ for low Ia levels which
persist according to tdt duration: Ia < 6 A for tdt = 20 ns and Ia < 2 A for tdt = 150 ns.



Energies 2024, 17, 3855 14 of 18

EHSmin corresponds to the energy required to charge the COSS,LS of QLS to VDC (no energy
comes from COSS,HS of QHS) and it is calculated as

EHS min =
1
2
· Ceq · V2

DC (6)

where Ceq is the constant equivalent value of COSS (which is a non-linear parameter with the
voltage). EHSmin is not affected by tdt and closely matches the maximum energy capacity of
COSS (EVVmax), as arises comparing in Figures 12a and 16b.

When Ia level is higher, EHS of the MOSFET grows with the Ia amplitude, while the
GaN FET one remains constant. The MOSFET EHS increase is due to the additional reverse
recovery charge Qrr in the MOSFET’s P-N junction, which grows with longer tdt and
higher reverse recovery current Irr [31,32]. Conversely, the GaN FET maintains a constant
EHS = EHSmin due to the absence of a P-N junction, thereby featuring Qrr = 0 nC [33]. In
general, EHS significantly exceeds ERC, particularly at tdt = 20 ns. When considering both
energy dissipation components, the GaN FET exhibits reduced energy losses during the
switching transient, especially with a shorter dead time (tdt = 20 ns).

4. Dead Time Reduction Strategy

A reduction switching losses strategy can be developed acting on the dead time
length. In particular, it is aimed to set the dead time differently for the switching events of
dVa/dt < 0 (QHS turn off and QLS turn on) and Va/dt > 0 (QLS turn off and QHS turn on),
according to the load current sign:

1. Ia > 0 A

a. dVa/dt > 0: set tdt = tdt,min
b. dVa/dt < 0: set tdt = tdt,opt

2. Ia < 0 A

c. dVa/dt > 0: set tdt = tdt,opt

d. dVa/dt < 0: set tdt = tdt,min

Where tdt,min is the minimum dead time which ensures a safe switching event accord-
ing to the gate propagation delay uncertainty; tdt,opt is the optimum dead time minimizing
the reverse conduction duration. Furthermore, in motor drive applications, it may be useful
to maintain tdt,opt between a maximum value tdt,max and the minimum tdt,min. The dead
time tdt,max is chosen according to the maximum admissible hard-switching losses and
avoids increasing the total harmonic distortion (THD) in the phase motor current [33,34].

4.1. Operation with Constant Minimum Dead Time Conditions

When turning on GaN FET HS with a Ia > 0 A, case a, (see Figure 6) and GaN FET
LS with Ia < 0 A, case d, (see Figure 7), reverse conduction phenomenon persists for all
the dead time duration, regardless of the Ia amplitude. Reverse conduction is minimized
by simply setting the minimum tdt duration (tdt,min). The tdt = tdt,min condition can be
enabled after having monitored the Ia sign and applied only for the turn-on transient of the
corresponding GaN FET: HS turns on when Ia > 0 A; LS turns on when Ia < 0 A.

4.2. Operation with Reduced Dead Time Conditions

The control strategy for turning on GaN FET LS when Ia > 0 A, case b, (see Figure 4),
or GaN FET HS when Ia < 0 A, case c, (see Figure 8) requires a preliminary estimation of
the optimum dead time tdt,opt. A comparator is used to monitor the drain-source voltage
VDS of the GaN FET to turn on, as depicted in the circuit schematic of Figure 17a. A
constant reference voltage Vre f ON is set as a threshold. The comparator compares VDS with
a threshold reference value Vre f ON . The dead time control block in Figure 17a generates
the driving signal Vq when VDS falls below Vre f ON , as shown in Figure 17b. Additionally, a
maximum dead time value tdt,max in the dead time control block is considered [35].
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If VDS < Vre f ON is not triggered within the maximum dead time tdt,max, the turn-on
signal is generated regardless of the comparator output (the dead time is fixed and equal to
tdt,max).

In Figure 17b, td represents the turn-on driving time which corresponds to the time
when the condition VDS = Vre f ON is triggered. The threshold Vre f ON is chosen according
to the highest Ia amplitude that does not cause reverse conduction within tdt,max. This
condition is equivalent to ZVS with tdt = tdt,max. Vq generation can be anticipated by the
comparator delay time tcd. Vre f ON is set equal to the value of VDS when tD = tdt,max − tcd.

This approach ensures that the turn-on signal is sent only when the voltage variation
has been completed, thereby minimizing reverse conduction. The commutation behavior is
thus adapted to the current amplitude, differing from constant dead time methods.

4.3. Validation in Motor Drive Setup

For instance, the presented dead time reduction strategy is developed in a GaN FET-
based inverter board supplying a BLDC motor (nominal voltage of 36 V, nominal power
of 250 W, and 26 pole pairs). A maximum dead time of tdt,max = 100 ns and a minimum
of tdt,min = 20 ns are selected. At the time tdt,max = 100 ns the Ia current in ZVS is 1.2 A.
For the phase current below 1.2 A, the PHS condition appears. This td,mx value choice is a
trade-off between the quality of the sinusoidal output current and reduced energy losses
during the partial hard switching conditions (EPHS contribute).

The Va waveforms measured for Ia = 1.2 A, 1.6 A, 2.5 A, 4 A, 6 A utilizing the dead
time reduction strategy are shown in Figure 18a for commutations with dVa/dt < 0 and in
Figure 18b for commutations with dVa/dt > 0.
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Figure 18. Va waveforms measured for Ia = 1.2 A, 1.6 A, 2.5 A, 4 A, 6 A utilizing the dead time
reduction strategy. (a) dVa/dt < 0; (b) dVa/dt > 0; Va = 5 V/div. timestep = 20 ns/div.

The Va voltage fall in Figure 18a shows that with higher Ia it is possible to minimize
the reverse conduction phenomenon shortening the dead time. Moreover, for Ia < 1.2 A
the dead time is maximum tdt,max = 100 ns, while for Ia > 6 A the dead time is minimum
tdt,min = 20 ns. On the other hand, in Figure 18b, when Va rises with Ia > 0 A, the dead
time is minimum tdt,min = 20 ns independently from the Ia amplitude.

5. Conclusions

This paper presents a comprehensive investigation into the commutation transients
of MOSFET and GaN FET devices in motor drive applications, with a focus on hard-
switching and soft-switching commutations. Through experimental tests and validated
simulations, the study reveals distinct differences in switching behaviors and energy
dissipation patterns between MOSFETs and GaN FETs. The key findings highlight that
GaN FETs exhibit significantly lower overall losses at shorter dead times compared to
MOSFETs, despite a higher reverse conduction voltage drop. Additionally, the lower
output parasitic capacitance of GaN FETs contributes to faster commutations and reduced
energy losses.

These insights provide a quantitative framework for optimizing dead time duration
to minimize energy losses in GaN FET-based low-voltage inverters for motor drive ap-
plications. Furthermore, a strategy to optimize the dead time choice for the different
operative conditions in the inverter leg is presented and described. The proposed strategy
for dynamically adjusting dead time based on load conditions shows potential for further
reducing commutation losses and enhancing inverter efficiency. Future research will focus
on developing algorithms to adapt dead time duration in real-time, thereby optimizing
performance and reducing energy consumption in motor drive systems.
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