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A B S T R A C T

Algorithmic trading enables the execution of orders using a set of rules determined by a computer program.
Orders are submitted based on an asset’s expected price in the future, an approach well suited for high-volatility
markets, such as those trading in cryptocurrencies. The goal of this study is to find a reliable and profitable
model to predict the future direction of a crypto asset’s price based on publicly available historical data. We
first develop a novel labeling scheme and map this problem into a Machine Learning classification problem.
The model is then validated on three major cryptocurrencies through an extensive backtest over a bull, bear
and flat market. Finally, the contribution of each feature to the classification output is analyzed.
1. Introduction

A financial trading system on public market exchanges comprises
a set of rules and tools that help the trader agent make the best
decisions during the investment phase. These rules and tools are trading
algorithms applied to data relating to one or more financial assets, in
order to identify and exploit profit opportunities. Multiple data sources
can be used to make trading decisions, and one of the most widely
publicized projects using such techniques in financial applications is
Standard & Poor’s Neural Fair Value 25 portfolio. This uses an artificial
neural network to select 25 stocks on a weekly basis from a total
of 3000 stocks, with the aim of outperforming the market by calcu-
lating a stock’s weekly fair value based on fundamental analysis. In
the field of securities trading, the utility of complex models such as
Neural Networks (NN), Support Vector Machines (SVM) and hybrid
models has been extensively studied and promising results have been
obtained (Kumbure et al., 2022). However, information regarding the
incorporation of such methods into trading floor operations tends to re-
main hidden to the public, for commercial proprietary reasons (Gerlein
et al., 2016). Hence, there is an ample of room to explore automated
trading using modern machine learning (ML) approaches.

In this paper, we are interested in cryptocurrency trading. We aim
to explore the possibility to learn generic price patterns (that is, not
bound to specific assets) and evaluate them over a large period of time
on off-label data. In particular, we propose a viable trading strategy
that, once trained a NN on a large quantity of market historical data of
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hundreds of crypto assets, might automatically operate on the market to
get positive profits. Our novel approach, differently from others, takes
into account a single rich dataset of many different cryptocurrencies
which turns out to be, as we show later, very effective compared to
other approaches which take into account historical data of one or few
assets at a time.

Cryptocurrency-related assets have seen a significant increase in
market acceptance and have developed rapidly in recent years. As a
result, many hedge funds and investors are beginning to include this
type of asset in their financial portfolios, which has had a significant
impact on the overall market and has generated considerable interest
in trading algorithms for cryptocurrencies. According to Fang et al.
(2022), the field of cryptocurrency trading research has experienced
a significant surge in interest and activity in recent years. Specifically,
the authors note that a staggering 85% of all the published scientific
papers on algorithmic trading of cryptocurrency-related assets have
been published just in the last five years. This suggests that the field
of cryptocurrency trading research is rapidly evolving and that there
is a growing interest in developing new strategies and approaches for
trading cryptocurrencies.

While strategies applied to traditional financial markets can be
adapted to the cryptocurrency market, they have certain unique char-
acteristics that require new research efforts from the scientific commu-
nity. Standard trading approaches are based on fundamental and techni-
cal analysis. The fundamental approach aims to determine whether an
vailable online 28 September 2023
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asset is currently traded at its fair market value using financial metrics
and by conducting thorough research of the asset’s business-related
information. Technical analysis, on the other hand, analyzes price and
volume series in order to predict an asset’s future value, although this
is founded on the assumption that future market prices can, in fact, be
predicted.

According to the Efficient Market Hypothesis, Malkiel (2003), mar-
ket agents are rational and new information is immediately reflected in
the price, whereas the Adaptive Market Hypothesis (Chu et al., 2019)
suggests that investors may behave irrationally in response to market
volatility, thereby creating buying opportunities. This can be ascribed
to human behavior, such as loss aversion, overconfidence and overreac-
tion, which can increase market volatility in certain circumstances. The
inefficiency of the major cryptocurrencies is investigated by Zhang et al.
(2018) concluding that ‘‘results indicate that all these cryptocurrencies
are inefficient markets’’. This makes the cryptocurrency market a fertile
scenario for applying technical analysis using automated agents.

In fact, using algorithms for the trading might weaken these human
behaviors. Another peculiarity of this scenario is that digital exchanges,
and especially cryptocurrency exchanges, have lower fees than tradi-
tional brokers, which can make a significant difference in the high
volume and frequencies of trades typical in this market. At present, a
transaction fee on cryptocurrency exchanges can be as low as 0.1% per
trade (at the time of writing, such fees are reduced to 0% on specific
currency pairs). Additionally, most exchanges provide free trading API,
thus further reducing barriers to entry for algorithmic trading.

1.1. Our contribution

We have developed a trading algorithm based on a Multi-Layer Per-
ceptron (MLP) as a classifier with three classes, Buy, Hold and Sell.
We designed a complete usual analysis pipeline: first we gathered
price and volume time-series from a popular cryptocurrency exchange,
then preprocessed them by feature extraction and labeling, and finally
trained and tested the MLP. One of the peculiarities of our work is
the dataset labeling algorithm, which is based on two thresholds to
intercept significant market movements and two temporal windows,
one in the past and one in the future for the forecasting of price trends.

A true trading strategy must be profitable in every phase of the
market cycle: both in the bull market characterizing the past 10 years,
in the bear/highly volatile market such as the one at the time of
writing and in the flat one, like the period 2019–2021. Our findings
show that a perfectly validated model with good performance standard
metrics might perform poorly when used in a real simulation of a highly
volatile market. To further validate our model, we set a simulation on
a real scenario based on long term off-label historical data for different
currencies (backtest phase).

We built a massive dataset of hundreds of cryptocurrencies spanning
several years at a 4-h time resolution. The strategy was then evaluated
over two different time intervals in order to assess its behavior on
a long-term and a short-term real case scenario, which yielded very
positive results in terms of Return On Investment (ROI). We then
concluded the study with an analysis of the feature importance.

The Python source code developed for this research, datasets and
output of the analysis can be found at Parente et al. (2023).

This paper is organized as follows: in Section 2 we review the
relevant literature, analyzing it according to the different types of data
sources used to predict cryptocurrency market trends. In Section 3
we show the preprocessing and feature extraction pipeline and the
algorithm for data labeling. In Section 4 we describe the design of the
MLP neural networks and rank these models according to the accuracy
achieved in the testing phase. In Section 5 we report the results of the
simulation. In Section 6 we describe the feature importance analysis
conducted. Finally in Section 7 we give some conclusions and hints on
2

future directions to be explored.
2. Related works

Forecasting the asset price or its direction calls for significant work
on data integration and feature extraction from raw market data and/or
other sources.

In Kraaijeveld and De Smedt (2020), Sattarov et al. (2020) and
Valencia et al. (2019) sentiment analysis is employed on Twitter data
feeds to predict the prices of major cryptocurrencies using standard
ML models (Random Forest Regressor, SVM, MLP). Kim et al. (2016)
uses messages from cryptocurrency-related web forums as primary
data sources employing a probabilistic model based on Averaged One-
Dependence Estimators (AODE).

In Guo et al. (2021) data are taken from blockchain, coin exchanges
and Google Trends to predict Bitcoin price. The authors derived new
features from the size of transactions and employed a proprietary
model based on wavelet decomposition for preprocessing data and a
Causal Multi-Head Attention Temporal Convolutional Network (WT-
CATCN) for the modeling layer. Similarly, Li and Du (2023) encodes
transactions found in the Bitcoin blockchain into a graph, searches
for recurrent patterns, and correlates them with price changes using
standard ML models (MLP, SVM). The authors in Saad et al. (2020) find
that the Ethereum price is strongly positively correlated with various
user activities on its blockchain, but they also identify an inverse
correlation with the crude oil trend, probably due to the rise in energy
costs.

Some research methods borrowed from traditional market method-
ologies seek correlations between cryptocurrencies and macroeconomic
and/or financial indicators. Walther et al. (2019) evaluates macro
and financial indexes to model the volatility of prices for five major
cryptocurrencies by utilizing a GARCH-MIDAS framework (Engle et al.,
2013). Similarly, Parvini et al. (2022) predicts the daily Bitcoin price by
using data from other commodities and indexes, transforming them into
the time–frequency domain using wavelet decomposition, and feeding
the data into a Long Short-Term Memory (LSTM) network. Kim et al.
(2021) also uses macroeconomic indexes and blockchain information
to forecast the Ethereum price.

In addition to external data sources, some papers exploit the in-
formation in the order book. The order book contains the limit orders
on both Buy and Sell sides, registered by the market participants. The
orders placed by big market players, are often used as a source of
information to predict the near-term direction of the asset’s prices. Alec
and Kercheval (2015), Tsantekidis et al. (2017) use Convolutional NN
and SVM models respectively. Similarly, Guo et al. (2018) uses order
book data to complement the price and volume information in order to
extract features and predict prices.

Seasonality is another area of research borrowed from standard
assets whose effects are evaluated on cryptocurrencies, see Baur et al.
(2019) and Kaiser (2019).

Many papers rely on prices and volumes time series, basing the
feature extraction on technical analysis or using techniques for time
series forecasting/regression. In Lahmiri and Bekiros (2019) the daily
prices of the 3 topmost cryptocurrencies are used to forecast the next
day’s prices with LSTM and Generalized Regression Neural Network.
Similarly, Alonso-Monsalve et al. (2020) uses different neural network
architectures to assess the predictability of trend direction in a minute
time frame and finds that the hybrid LSTM with the Convolutional layer
between the input and the Neural Network yields the best results.

The labeling of datasets for supervised learning is an open problem
that is, broadly speaking, tackled using variations of two main ideas:
price regression and price direction forecasting. In the former the
differences lie in the size of the time frame used to assign a label
(minutes, hours, days, etc.) and in the latter the difference is whether 2
or 3 labels are used, for Buy/Sell or Buy/Hold/Sell. In this paper
we use three labels for the classification (as Kraaijeveld & De Smedt,

2020 and Tsantekidis et al., 2017).
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Fig. 1. Cryptocurrency samples distribution over time.

. The dataset

In this section we describe the dataset used to apply our supervised
L algorithm. It consists of raw data gathered from the price and

olume data time series of a popular cryptocurrency exchange. Then we
how how the features were extracted from the raw data by computing
andlestick patterns and financial indicators, and by moving average
rossovers and temporal data. Finally, we design an algorithm to label
he observations, parameterized in such a way that it can be used to
aximize classification accuracy and the profitability of a given trading

trategy.

.1. Data collection

Data were downloaded from a popular crypto exchange platform
xposing web based APIs and were collected in the usual OHLC +
volume format, which encodes price variation in a given time frame in
terms of High, Open, Low, Close prices and Volume exchanged during the
given time frame. As usual OHLC is represented by ‘‘candlesticks’’ in the
sset’s price charts. As said in Section 1, we collected data in a single
ataset consisting of 402 different crypto assets and set the time frame
ength at 4 h. The assets were all those available on the platform from
ugust 17, 2017 to December 4, 2022. For those assets not available at

he starting date, data were collected as soon as they were listed on the
xchange. All the cryptocurrencies are those paired with the stable coin
nited States Dollar Tether (USDT). After the feature extraction phase,
e obtained a dataset of 1.5 million samples with the distribution

hown in Fig. 1.

.2. Feature extraction

Extracting features from raw data is a delicate step in the standard
L pipeline process since it pertains to the field of making information

f a phenomenon (social, physical, etc...) easily accessible to an ML
odel. An established method to summarize the trading market behav-

ors are the technical indicators. These, by using past prices, compute
quantitative estimation for the future price direction. The input of

hose indicators are past prices and volumes and they often use plain
r exponential moving averages of the past prices and/or volumes (e.g
ACD, CCI, ADX, . . . ). The rationale behind our choice of technical

ndicators is to use simpler indicators (MA crossovers, Z-Scores) often
sed in computation of more complex indicators (MACD, CCI, ADX,
. . ), and few other commonly used indicators, to let the NN discover
seful patterns. We complemented these indicators with some temporal
nformation and with the standard candlesticks patterns.

andlestick patterns. Candlestick charts are typically used to visualize
rice fluctuations. A series of candlesticks may form a pattern and
3

constitute a technical analysis tool that can suggest future price move-
ments on the basis of past price behavior. By definition, the patterns are
independent of the size of the time frame (Murphy, 1999). Our study
considers 23 of the most popular candlestick patterns, both single and
multiple candles, in their bullish and bearish version, e.g. Three Black
Crows, Doji, Engulfing, Hammer. In this paper we use all the patterns
mentioned in Pring (1991).

Technical indicators, known as oscillators, can assume values in a zero-
centered interval and can be used as-is as features in ML applications.
We use 6 of the most common technical indicators: Bollinger bands,
ULTOSC, RSI, Close price percentage variation, Z-Score and volume
Z-Score. Moreover, we also consider the Exponential Moving Average
crossover so as to take into account the trends and trend reversals.
See Kardile et al. (2021) and Murphy (1999) for more on technical
indicators for financial markets.

• Bollinger bands. These are used to check whether prices are high
or low on a relative basis. Given n periods, the price calculated
using the n-period moving average is used as a reference price.
Two lines are plotted above and below one standard deviation
away from the reference price. The standard deviation of the price
in the previous n-periods is used as a measure of volatility.

• RSI. The Relative Strength Index is a momentum indicator that
measures the magnitude of recent price changes in order to
evaluate overbought and oversold conditions. A lower RSI value
indicates that the asset is oversold, while a higher value means
that the asset is overbought.

• ULTOSC. The Ultimate Oscillator uses the values of three differ-
ent moving averages with multiple time periods (or cycles), to
identify overbought and oversold conditions in the market, thus
improving the accuracy of the signals generated by the indicator.

• Close price percentage variation. This measures the percentage
difference between the current price and the previous close price.

• Z-Score. This uses the z-score of the close price in a given number
of time frames. In our implementation we used 30 close price past
samples to compute the Z-Score of the actual time frame.

• Volume Z-score: In order to convert transaction volumes for
comparing those of different cryptocurrencies, we used z-score
normalization.

• EMA crossovers. The Exponential Moving Average crossovers are
an established source of information for trend following and
inversion. We considered 4 EMA crossovers based on 1 and 20,
20 and 50, 50 and 100, and 1 and 50 periods.

Temporal information. In Section 2 we noted that temporal information
adds a statistical edge to price direction prediction. Thus, we have also
added three other features based on time. Every single OHLC sample
has an associated timestamp, used to extract the month of the year,
the day of the week and the number of samples in the day (six a day).
Summarizing, the overall feature vector has 36 entries: 23 candlestick
patterns, 6 financial indicators, 4 EMA crossovers, and 3 temporal
features.

3.3. Labeling algorithm

We propose the utilization of three distinct labels for classification
purposes, analogously as in Kraaijeveld and De Smedt (2020) and
Tsantekidis et al. (2017). The choice of using three labels aims to
enhance the accuracy of the classification process, with respect to the
use of only two, by addressing potential ambiguities that may arise
when determining whether to open or close a position. By considering
also the Hold label, we try to avoid confusion that may arise when
deciding whether to refrain from opening a Buy position initially or
to avoid triggering subsequent Buy orders after the same position has

been opened. Furthermore, the use of the Hold label is a critical
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Fig. 2. Visual representation of label boundary based on the 𝛼 and 𝛽 parameters.
i
p
a
c

4

o
M
l

4

l
t
f
e
b
a
o
a
t

a
a
n
A
o
e
t
d

h
f
a
c

4

t
H

tep towards aligning our classification algorithm to real-world trading
ractices.

The analysis we conducted uses a supervised ML model, thus each
ample of the dataset has to be labeled for the model’s training phase.

First let us define the temporal windows and the return for a single
rade operation.

efinition 1. Given a time frame at time 𝑡 and a cryptocurrency 𝑐, a
orward Window of size 𝑘,  𝑡,𝑐 (𝑘), is the sequence of time frames

𝑡, 𝑡+1,… , 𝑡+ 𝑘−1 and a Backward Window of size 𝑘,  𝑡,𝑐 (𝑘), is the
sequence of time frames 𝑡 − 𝑘 + 1, 𝑡 − 𝑘 + 2,… , 𝑡.

In the following we drop the subscripts 𝑡 and 𝑐 when the context is
clear. Opening a position in the market at the open price of the time
frame at time 𝑡, 𝑂𝑝𝑒𝑛𝑡, and closing the position at the close price of the
time frame 𝑡 + 𝑘, 𝐶𝑙𝑜𝑠𝑒𝑡+𝑘, yields a revenue or a loss, formally defined
as follows.

Definition 2. The return of the trade of a cryptocurrency 𝑐, opened
at time 𝑡 and closed at the time frame 𝑡 + 𝑘, is given by:

𝑡,𝑐 (𝑘) =
(1 − 𝑓 ) ⋅ 𝐶𝑙𝑜𝑠𝑒𝑡+𝑘 − (1 + 𝑓 ) ⋅ 𝑂𝑝𝑒𝑛𝑡

𝑂𝑝𝑒𝑛𝑡
here 𝑓 is the fee applied by the exchange for each trade operation.1

Here too we drop the subscripts 𝑡 and 𝑐 and retain only the duration
𝑘 of the opened position, when clear from the context.

The labeling algorithm, depicted in Fig. 3, has two parameters, 𝛼
nd 𝛽, which are used to set the thresholds of the return values (𝑘),
here 𝑘 is the size of the Forward window. The former is used to
stablish a low value below which it is not convenient to place a trading
rder and the latter is a high value above which we consider a price
ariation not influenced by the technical framework but by exogenous
orces. In this extreme scenario we likewise do not place orders. In
ummary, in order to trigger a Buy, Sell or Hold signal, given
𝑝𝑒𝑛𝑡 we want to predict the price variation at the end of the Forward
indow 𝐶𝑙𝑜𝑠𝑒𝑡+𝑘. Fig. 2 depicts the behavior of the labeling algorithm
s a function of the 𝛼 and 𝛽 parameters.

The algorithm in Fig. 3 initiates with five input parameters: the
rray of closing prices 𝑐𝑙𝑜𝑠𝑒𝑃 𝑠, the Backward and Forward window
izes (𝑏𝑎𝑐𝑘𝑊 and 𝑓𝑜𝑟𝑊 respectively), and the two threshold values
and 𝛽.

The first step of the algorithm is to update the close prices with their
xponential Moving Average (𝐸𝑀𝐴), utilizing the 𝑏𝑎𝑐𝑘𝑊 window size.

The algorithm then enters a loop on each such close price and
omputes its return. Next, the algorithm determines if the absolute
alue of the return falls within the range ]𝛼, 𝛽[. If this condition is met,
he algorithm then distinguishes between positive and negative returns.

positive return labels the time frame as Buy, while a negative return
abels the time frame Sell.

On the other hand, if the condition is not met, the algorithm
roceeds to the ‘‘Set label to Hold’’ block. This situation arises when
he return value is either too small (less than 𝛼) or too large (greater
han 𝛽), indicating that it is advisable to avoid making any transactions
t that time.

1 The fee is given here as a percentage of the investment and, for
implicity’s sake, is assumed to be equal for both a buy and a sell operation.
4

Fig. 4 depicts a price chart. The rectangles represent the windows
around a price sample, marked with an arrow. The Backward window
s of size 5 and the Forward window is of size 2. The 5EMA of the close
rices in the backward window is the starting point of a trend, shown
s a dotted line, giving the price direction to compute the label of the
urrent price sample.

. MLP models, training and testing

In this section we introduce the classification model and the method-
logy applied for the training and the testing phase. We adopted the
LP model with four layers as a classifier, trained on the dataset

abeled with the labeling algorithm reported in Fig. 3.

.1. Multi-layer perceptron

The MLP consists of an input layer, two hidden densely connected
ayers and a categorical output layer with three nodes. When defining
he MLP architecture in terms of the number of layers and neurons, we
ollowed two guidelines: the universal approximation theorem (Hornik
t al., 1989) and the principle that an MLP should have the least num-
er of neurons to generalize well (Hunter et al., 2012). The universal
pproximation theorem ensures that a feedforward neural network with
ne input layer, one hidden layer and one output layer can approximate
ny function of the input with any desired degree of accuracy, provided
hat a sufficient number of hidden units are available.

Using a bottom-up approach, see e.g. Setiono (2001), we began with
small number of neurons on each hidden layer and compared the

ccuracy on the train and test set. On undersized networks, these two
umbers are comparable up to the second digit after the decimal point.
s we added neurons to each hidden layer, the network began to overfit
n the training set. We selected the minimum number of neurons that
xhibited slight overfitting and provided the highest accuracy on the
est set. This approach allowed us to avoid managing overfitting with
ropout layers or l1/l2 penalty terms on the weights of the network.

Specifically, the input layer has 128 nodes, the two hidden layers
ave 64 and 32 nodes, respectively, all with the LeakyReLU activation
unction. Finally, the output layer has three nodes with the Softmax
ctivation function, which ensures a probabilistic output for the three
lasses.

.2. Window sizes, 𝛼 and 𝛽 parameters

Forward and Backward windows, and 𝛼 and 𝛽, described in Sec-
ion 3.3, are the parameters and the thresholds used to label the dataset.
ere we describe how these values are computed. The thresholds 𝛼

and 𝛽 emerge from a statistical analysis of the open-close percentage
change in prices for the whole dataset. The value of 𝛼 is set to the 85-
th percentile and the value of 𝛽 is set to the 99.7-th percentile. The
absolute values of the thresholds are thus 𝛼 = 0.038 and 𝛽 = 0.24. The
𝛽 marking the outlier boundary, see Fig. 2, is incremented by 10% each
time the size of the Forward window is increased. Thus, for windows
of size 2, 𝛽 = 0.24 + 0.024, for size 3, 𝛽 = 0.24 + 2 ∗ 0.024 and so on.

This choice of 𝛼 leads to an unbalanced dataset towards the Hold
class, which represented approximately the 70%, resulting in poor clas-
sification results. To overcome this, we used a random undersampling

on the majority class to balance the dataset, see e.g. Buda et al. (2018).
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Fig. 3. Labeling algorithm flowchart.
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Fig. 4. A price chart with backward and forward windows of sizes 5 and 2,
respectively, with a positive price variation.

Finally, to obtain the best combination of Forward and Backward
window sizes, a grid search was conducted using the sizes from 1 to 5,
hence considering 25 labeling schemes. The training and testing dataset
was built with data on currencies from August 17, 2017 to December
31, 2021, and from April 1, 2022 to December 4, 2022 with the 25
5

S

Table 1
Top 5 models ranked by accuracy (third column) and the corresponding combination
of Backward and Forward window sizes (first and second column).
𝐵𝑎𝑐𝑘𝑊 𝐹𝑜𝑟𝑊 Acc Buy Hold Sell Samples

Pre Rec Pre Rec Pre Rec

5 1 0.72 0.71 0.75 0.67 0.59 0.76 0.81 463k
4 1 0.70 0.69 0.72 0.65 0.60 0.74 0.77 422k
3 1 0.67 0.65 0.67 0.65 0.58 0.69 0.74 379k
5 2 0.66 0.66 0.66 0.61 0.57 0.70 0.75 610k
4 2 0.64 0.64 0.64 0.61 0.55 0.68 0.73 582k

ifferent labeling schemes (the first three months of the year 2022
ere later used to select the best model by profitability as described

n Section 5).
For each combination of Forward and Backward window sizes, we

rained and tested the model three times, with a proportion of 70%–
0%, using different random seeds and averaging the results. We then
elected the top five accuracy value combinations of Forward and Back-
ard windows as reported in Table 1. The different window lengths
ay lead to considerable variations in the size of the samples reported

n the last column (due to the rebalancing of the majority class).

.3. Comparisons with other models

Our choice to use MLP model has derived from a thoroughly ex-
erimentation of our dataset on others classifiers: XGBoost, Logit and
GDLinear. Here follows the analyses we have done on all these models.
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Table 2
Model comparison for the combination of forW and backW whose accuracy is
maximized: forW = 5 and backW = 1.

Model Accuracy Buy Hold Sell Samples

Prec Rec Prec Rec Prec Rec

MLP 0.72 0.71 0.75 0.67 0.59 0.76 0.81 463k
XGB 0.70 0.71 0.73 0.65 0.58 0.74 0.78 463k
Logit 0.64 0.67 0.72 0.52 0.41 0.69 0.77 463k
SGDLinear 0.59 0.58 0.84 0.60 0.03 0.60 0.87 463k

XGBoost. XGBoost is a supervised classification algorithm that employs
n ensemble technique to construct a model. By combining predictions
rom multiple models, it aims to attain superior predictive performance.
his model supports multi-class problems and exhibits high ability

n solving non-linear problems. In our experimental setup, we utilize
GBoost, a variant of the Random Forest algorithm that incorporates
gradient boosting mechanism. During the learning process, XGBoost

rains a random forest, but instead of aggregating trees, it utilizes
radient boosted trees that learn from errors at each boosting round.
n the construction of each tree, a loss function with a regularization
erm, is optimized to maximize classification accuracy.

ogit. Logit is a binary classifier that learns a vector of weights [𝑤1,… ,
𝑤𝑛] and a bias term 𝑏 and uses a logistic binary function to map the
linear combination of weight vector and the new observations into a
0,1 classes.

SGDLinear. The SGDLinear binary classifier is a ML algorithm that
learns a vector of weights by using the Stochastic Gradient Descent
(SGD) technique, updating model parameters incrementally with in-
dividual data samples. It can handle large datasets efficiently and is
suitable for online learning, making it a popular choice for various clas-
sification tasks. (Let us note that in our experiments, it outperforms the
SVM classifier by many order of magnitude in terms of computational
time.)

To compare the binary classifiers Logit and SGDLinear with our
model which adopts three classes, we used One-vs-Rest strategy. A
number 𝑁 of binary classifiers were trained, one for each class vs
the other two remaining classes. To predict a new observation, the 𝑁
classifiers are queried and the values constitute the membership of the
observation to the specific class, then 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐𝑙𝑎𝑠𝑠1, 𝑐𝑙𝑎𝑠𝑠2,… , 𝑐𝑙𝑎𝑠𝑠𝑁)
is chosen as the predicted class.

We implemented the above models using a hyperparameters grid
searching and have reported their performance in Table 2. The MLP
and XGBoost performance overcome all linear models, with the former
slightly better. MLP and XGBoost clearly excel at modeling highly non
linear phenomena, differences in the performance metrics are small
but constant during many runs with different seeds. MLP is clearly the
best of the group, this has led to our choice. The linear models exhibit
behaviors in line with other papers (Akyildirim et al., 2021; Jaquart
et al., 2021; Ozer & Okan Sakar, 2022) in terms of accuracy, but the
performances are still below those of MLP and XGB. It is worth noting
that the recall of the Hold class for the SGDLinear model is surprisingly
quite low.

5. Backtesting

In Section 4 we described the design and the training of an MLP and
selected the top five combinations, in order of accuracy, of Forward
and Backward window sizes used to label the dataset (see Table 1).
Then we computed the profit on a simple trading strategy using the
same data on these 5 models and we obtained a different ranking of
the combination of window sizes. Hence, profitability is an evident and
irrefutable metric when assessing algorithmic trading strategies (see
e.g. Olorunnimbe & Viktor, 2023) and we were, therefore, induced to
6

further investigate this situation. Backtesting is a standard method for
Table 3
Performance and metrics for the model selected for the backtest.

Acc Buy Hold Sell Samples

Pre Rec F1 Pre Rec F1 Pre Rec F1

Test 0.66 0.65 0.68 0.67 0.65 0.52 0.57 0.70 0.78 0.73 201k
Train 0.68 0.66 0.70 0.68 0.66 0.53 0.58 0.71 0.80 0.75 469k
Dummy 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.36 0.36 0.36 201k

Table 4
MLP and dummy model backtesting generated ROI by different stop-losses. Models
trained on labels generated with 𝑏𝑎𝑐𝑘𝑊 = 5 and 𝑓𝑜𝑟𝑊 = 2.

coin ROIs Stop loss

MLP Long MLP Short Dum Long Dum Short

ALGOUSDT 0,22 0,89 0,27 0,80 0,00
BTCUSDT 0,23 0,84 0,06 0,69 0,00
ETHUSDT 0,08 0,76 0,08 0,69 0,00

ALGOUSDT 0,29 1,41 0,02 0,67 0,01
BTCUSDT 2,33 0,94 0,09 0,67 0,01
ETHUSDT 2,40 1,68 0,12 0,78 0,01

ALGOUSDT 0,65 1,44 0,03 0,57 0,025
BTCUSDT 17,76 0,82 0,15 0,67 0,025
ETHUSDT 24,18 1,76 0,21 0,69 0,025

ALGOUSDT 11,89 1,85 0,01 0,58 0,05
BTCUSDT 53,25 1,05 0,23 0,56 0,05
ETHUSDT 82,58 1,75 0,09 0,59 0,05

ALGOUSDT 36,18 2,08 0,01 0,47 0,10
BTCUSDT 61,22 1,18 0,14 0,50 0,10
ETHUSDT 165,91 2,30 0,08 0,51 0,10

evaluating ex-post the performance of an algorithmic trading strategy
which uses profitability as a measure of the goodness of the model
adopted. To simulate a real trading scenario, it uses historical data
and does not open multiple long or short positions on the same asset
simultaneously. At the end of the simulation period, all positions are
closed and the profit is computed.

The model to be used in backtesting was selected by means of
a specially designed simulation algorithm implementing a standard
strategy (see e.g. Pring, 1991): the algorithm scans the list of OHLC
prices searching for the first Buy, which is the signal to enter the
market, whereupon it places an order. The algorithm then looks for
the next Sell label and the position is closed. The earning/loss is
capitalized and the strategy restarts, thus obtaining compound interest.
In our accounts we included the commission fees of 0.1% applied by
some market brokers at the time of writing. The strategy used the data
from the first three months of 2022, (not used in the training/testing
phases, see Section 4.2). The period was chosen since the Bitcoin and
Ethereum assets were following a downward trend (final price < initial
price). The model with the windows sizes (5, 2), the fourth in Table 1,
obtained the greatest return, averaged over all the assets, and it was
thus selected for the final backtesting. This model was then trained
on the data from August 17, 2017 to December 4, 2022 for all the
currencies apart from the data relative to Bitcoin, Ethereum and Algorand
which were later used for backtesting.

The result of the test is reported in Table 3. The performance metrics
are comparable to those in Table 1, even though the data for Bitcoin,
Ethereum and Algorand are missing. We interpret this as an indicator
of good model generalization on generic technical patterns not bound to
specific coins.

The size of the dataset is different because of the differences in the
composition of the datasets: those in Table 1 had all the coins except
for 3 months of data for everyone, in Table 3 there are all coins except
those 3 selected for the backtest.

Once the model had been selected, trained and tested, we extracted
the features to finalize the backtesting for the above three currencies
over 5 years and 4 months for Bitcoin and Ethereum and 3 years and
6 months for Algorand, and then queried the model. Trading strategies
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Fig. 5. ETHUSDT backtest.
can be described unambiguously using regular expressions on an al-
phabet composed of three symbols: Hold, Buy, Sell. In this way the
trading strategy described above can be written as:

(𝙱𝚞𝚢[𝙱𝚞𝚢|𝙷𝚘𝚕𝚍]∗𝚂𝚎𝚕𝚕)+ (1)

where ∗ and + are the transitive closures, see Hopcroft et al. (2006) for
more on regular expressions.

To assess the quality of the equity curves, we compared our model
with a baseline dummy classifier that randomly responds with the
same distribution of labels in the unbalanced original dataset, where
the Hold, Buy, Sell labels are approximately in the 70, 15, 15
proportion, respectively. The overall return 𝑅 for 𝑛 trades on the coin
𝑐, is then computed as follows:

𝑅 =
𝑛
∏

𝑖=1
(1 +𝑖

𝑐 (2)) (2)

where: 𝑛 is the number of trades executed and 𝑖
𝑐 (2) is the return of a

single trade computed according to Definition 2 on a Forward window
of size 2.

Table 4 reports the ROIs of all the periods for every single backtest,
both for the MLP and the Dummy models, for 5 different stop-loss
thresholds, computed as:

𝑅𝑂𝐼 =
𝐹 𝑖𝑛𝑎𝑙𝑉 𝑎𝑙𝑢𝑒𝑜𝑓𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 − 𝐼𝑛𝑖𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒𝑜𝑓𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡

𝐼𝑛𝑖𝑡𝑎𝑙𝑉 𝑎𝑙𝑢𝑒𝑜𝑓𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
(3)

To better simulate a real scenario, a safeguard stop-loss has been
implemented. Precisely, we have experimented five values of stop-loss,
ranging from 0% to 10%, see Table 4. Wide stop-losses show a better
performance than narrow ones, thus in the following we consider the
10% stop-loss threshold.

The ROIs are largely positive: the peak is reached for Ethereum
in the long period with a ROI of 165.91. We have highlighted the
whole period (called long) and a period ranging from May 15 to
December 4, 2022, called short. We chose the latter interval to better
assess the model under heavily volatile market conditions impacted
by two exogenous events. The first of these occurred in June 2022:
the TerraUSD-Classic (USTC) lost its Dollar peg, wiping out about
$500 billion of market capitalization (see Briola et al., 2023 for a
detailed description of the event). The second crash occurred in Novem-
ber 2022 and involved a popular cryptocurrency exchange: FTX. This
constitutes a good example of an exogenous-force-driven crash; Jalan
7

Table 5
MLP and dummy model backtesting number of transactions and max return.

Period Coin MLP Max Ret Dummy Max Ret MLP trs Dummy trs

long ALGO 0.54 −0.99 376 643
short ALGO 0.18 −0.42 36 110
long BTC 0.29 −0.77 246 893
short BTC 0.16 −0.44 28 106
long ETH 0.76 −0.91 379 930
short ETH 0.26 −0.41 37 111

and Matkovskyy (2023) concludes that the major fault lay with the
management and not in the crypto environment.

In order to acquire a complete overview of the trading, we also
reported the number of trades and the maximum return per trade
obtained in the period in Table 5.

As expected, the Dummy model returns slowly decrease to zero,
yielding negative ROIs, reported in the figures in logarithmic scale. The
long backtest shown in Figs. 5(a), 6(a) and 7(a) depicts a curve that is
typical of a trading strategy with a statistical edge over a random one:
a slow but stable increase in the return.

The short backtests in Figs. 5(b), 6(b) and 7(b) during the crashes
expose the behavior expected from a strategy, mostly based on lagged
indicators. In the next section will illustrate how lagged indicators
determine most of the output of the MLP classifier. The initial Terra-
Luna crash is smoothed by the MLP model in comparison to the Dummy
model. The same behavior can be inferred from the FTX crash, near the
end of the charts.

5.1. Comparisons with recent papers

Comparing methodologies on price forecasting and trading strate-
gies is a complex task. A fair comparison of different results requires
to have some invariants in the experiment setup. To compare models
from different methodologies a not empty intersection of the datasets is
required. This way researchers can use shared data to evaluate models
using the same metrics. This is on the data science side. On the financial
side the same problem arises because of the added step of backtesting,
since this requires a shared period of the data in common, at the same
(or similar) time sampling interval, to be used as evaluation set. Just
to mention, the model is a component of a trading strategy: it acts as
an oracle that guesses the future price, but the final decisions is up to
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Fig. 6. BTCUSDT backtest.
Fig. 7. ALGOUSDT backtest.
he trading strategy. It uses information like commission fees, analysis
f previous model prediction, (e.g. buy only after two buy signals in a
ow), money management. Finally often there is a difficulty to acquire
nformation to reproduce the tests, since the source code is missing.

In what follows we compare our work with five recent papers (Aky-
ldirim et al., 2021; Alonso-Monsalve et al., 2020; Cavalli & Amoretti,
021; Jaquart et al., 2021; Ozer & Okan Sakar, 2022) and in Tables 6
nd 7 we report a summary. Each paper uses a 2 classes labeling and a
imeframe of 1 min, or 1, 4, and 24 h, spanning over different periods
f time. The data sources are OHLC+V for all of them, plus some
ther sources, like Twitter (Tw), Blockchain (Bch) and others financial
ndices. We have chosen their best accuracy to compare with ours. For
apers that backtest their models, to compare ROIs, we wrote specific
ode that apply our own strategy to the common coins on the same
eriod. We reported the results o backtest comparisons in Table 7.

In the paper (Alonso-Monsalve et al., 2020) the price direction for
ix popular coins (Bitcoin, Dash, Ether, Litecoin, Monero, and Ripple) is
8

forecasted, spanning one year (third quarter of 2018 to second quarter
of 2019) at a time frame of 1 min. They use technical indicators and
moving averages as features to feed different neural networks: CLSTM,
MLP, CNN, RBFNN. To compare their metrics with ours, since they
report for each model the accuracy of the prediction on each coin, we
have computed the mean accuracy of the best model, the CLSTM, for
the six coins.

The paper (Ozer & Okan Sakar, 2022) forecasts price direction for
Bitcoin, Ethereum and Litecoin. Data belongs to the period between
July 1, 2017 and April 30, 2021. The features have been determined
from technical indicators. The authors use 5 different classical models.
We report the accuracy of the logistic classifier, which is their best
average accuracy computed. A backtest was conducted on all of the
three coins at 4H and 1D time frame. The timespan and the coin set
has a non empty intersection with ours, and this allowed us to compare
the results of BTC and ETH. The period spans from the beginning of
May 2020 to the end of April 2021, a period with a sideway trend that
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Table 6
Comparing post 2020 similar works by accuracy.
Ref Coins Model Acc TF Period Source

Alonso-Monsalve et al. (2020) 6 Topmost CLSTM 68.17 1M 1 Year OHLC+V
Ozer and Okan Sakar (2022) BTC, ETH, LTC Various 55.9 4H 4 Years OHLC+V
Jaquart et al. (2021) BTC LSTM 56 1H 9 Month OHLC+V, others
Akyildirim et al. (2021) 12 Topmost SVM 53 1H 5 Year OHLC+V
Cavalli and Amoretti (2021) BTC CNN 74.2 1D 7 Years Price, Tw, Bch

Our paper 402 coins MLP 72 4H 5 Year OHLC+V
Table 7
Comparison of ROIs.
Coin Our paper Ozer and Okan Sakar (2022) Period Fee

Btc 39 63 May 2020–Apr 2021 0.1%
Eth 66.5 106 May 2020–Apr 2021 0.1%

Coin Our paper Jaquart et al. (2021) Period Fee

Btc −0.6 Negative Set–Dic 2019 30 Bps – 0.3%

Coin Our paper Cavalli and Amoretti (2021) Period Fee

Btc 99.6 96.1 Feb–Oct 2020 no fee
Btc −4.4 −28.3 Feb–Mar 2020 no fee
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ends with a strong bullish move. The backtest was done with buy-only
strategy, like ours. The main difference in the experiment is the number
of trades, our system trades at a lower frequency. Nothing can be said to
the edge of the strategy in a bearish market, as the trend in the period
is sideway with a short bullish in the last months.

The paper (Jaquart et al., 2021) predicts Bitcoin price direction.
Data span from March 4, 2019 to December 10, 2019 and use Twitter
sentiments, blockchain transactions and a variety of minute level prices
for commodities and indices: Bitcoin, gold, oil, the indices MSCI World,
S&P 500, and VIX. The models used are neural networks and decision
trees, plain or boosted ensemble. The accuracy is reported for each
model for 1, 5, 15 and 60 min time frame. In Table 6 we reported the
accuracy of the best model in the 60 min time frame. The authors did
a backtest from September to December 2019 and exhibit a ROI on
the best model (LSTM) of 115% but without commission fees applied.
The Bitcoin trend in this interval is bearish and it is stated that by
applying fee at 0.3% turns the ROI negative, without quantifying the
loss. The peculiarity of the work is the very high frequency trading
strategy, which executes 2852 trades during the backtesting, (ours just
4). We can try to estimate the loss by supposing that no compounding
is applied and 0.1% fees, the transactions reported sum to a 258% loss
due to the fees plus the earning or loss for the trades.

In Akyildirim et al. (2021) the authors predict price direction of the
12 most popular cryptocurrencies (BTC, BCH, DSH EOS, ETC, ETH, IOT,
LTC, OMG, XMR, XRP, ZEC), whose data span from August 10, 2017 to
June 23, 2018. The dataset is composed by OHLC+V data at different
time frames along with trading data taken from a popular broker. The
features are computed by OHLC+V and pure traded data and then
by transforming them using technical indicators, moving averages and
log returns for different time intervals. The labels are computed by
𝑆𝑖𝑔𝑛𝑢𝑚(𝐶𝑙𝑜𝑠𝑒−𝑂𝑝𝑒𝑛). The accuracy reported in the paper is the average
for the 1H time frame, which is also close to the best accuracy (low
variance) on the test set.

The paper (Cavalli & Amoretti, 2021) forecasts price direction
for Bitcoin. Data span from April 28, 2013 to February 15, 2020.
The feature set uses data from market prices, Twitter sentiment and
blockchain. The model adopted is a 1D Convolutional Neural Network.
The backtest is arranged in two different runs, the first one from
February to October 2020 (bullish) and the second one from February
to March 2020 (a short period downtrend). No commission fees are
applied to the transactions. In the first run the performance values are
similar to ours, though in a slight advantage. In the second run the
system registered a loss of 28% (without commission fees), whereas
our system exhibits a loss of 4.4% (with fees).
9
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6. Feature importance

The field of interpretability/explainability in ML pertains to the
comprehension of a model’s behavior in predicting outcomes by map-
ping input to output. It is a continuously evolving area of study that
aims to enhance the transparency of ML models (Doshi-Velez & Kim,
2017). Despite some exceptions (e.g. linear models, decision trees,
random forests), where explanation of the model’s behavior is acces-
sible in terms of how much a feature determines the global model
ehavior, Molnar (2022), MLP models have no direct way for their
nterpretation and are often treated as a black box oracle. Global
odel behavior provides a general understanding of how the model
orks: which features are most important, and how they interact with
ach other. Global explanations are usually computed based on the
nalysis of multiple instances and are more suitable for generalizing
he behavior of the model.

SHAP (SHapley Additive exPlanations), Lundberg and Lee (2017), is
game theoretic approach to explain the output of any black-box ML
odel. SHAP computes a value for the feature importance attribution,
hich is an implementation of the popular Shapley Values (Shapley,
953). It is used to solve an attribution problem, by distributing the
rediction of a model for a specific input to its base set of features
nd showing how influential a feature is in making a decision. Clearly,
his approach provides a local explanation for each specific input of
he model. In the implementation, we encoded the label Buy with
1, Hold with 0 and Sell with 1. SHAP values are in the range
f the classifier output, and thus the values are in the ]−1,1[ range
lthough they may sometimes assume values slightly outside the range
oundaries.

Overall feature importance can be inferred by computing the mean
f SHAP absolute values for each feature, as shown in Fig. 8.

The chart in Fig. 9 shows the top-10 contributions of each feature
o each prediction. More precisely this chart can be used to spot
orrelations between feature values and SHAP values using colors. For
xample, the Bollinger feature has a clear correlation with the output
f the classifier, increasing the Bollinger value (on the vertical axis)
nd the output steers from Sell to Buy (on the horizontal axis). It
s counterintuitive since in the trading literature a higher value of the
ollinger indicator means trend inversion. However, the model learned
ollinger values as a trend continuation feature. EmaCross1_21 and RSI,
isplay a similar behavior. EmaCross21_50, instead, shows an inverse
orrelation with its SHAP value. The remaining features do not exhibit
behavior that can be correlated with SHAP values.

As a local explanation, the SHAP values may be used to ask how a

pecific input can be explained in terms of feature values, or in other
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Fig. 8. Top-10 feature mean contributions.
Fig. 9. Feature impact on model output.
words, how a specific feature value steers the output of the classifier
into the prediction. Waterfall plots achieve this by charting the con-
tribution of each feature to the prediction. The chart in Fig. 10 shows
the SHAP values for the ten most important features. The vertical axis
lists the features and their standardized values, while the horizontal
10
axis reports the classifier output. The arrows show the extent to which
every feature contributes to the prediction.

The impact of the remaining 26 features on the output is almost 0.
In Fig. 11, the output strays a few hundredths from the expected

value 0 for the Hold label.
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Fig. 10. Prediction of an input vector in terms of top-10 features whose standardized values are on the left.
Fig. 11. Prediction of an input vector in terms of top-10 features whose standardized values are on the left.
In conclusion, the investigation of the feature importance indicates
hat the top-10 most valuable features are comprised solely of techni-
al indicators, moving average crossovers and temporal information.
andlestick patterns are seen to be relatively ineffective due to their

nfrequency or absence in some cases, and their ability to provide
elevant information for determining the output of the classifier is
imited.

. Conclusion

The trading automation poses various challenges related to the
eature extraction and labeling process, as well as the practical im-
lementation of predictive models in real or simulated market set-
ings. Prediction of the trend direction of a blockchain-based asset
rice presents multiple technical complexities due to poor regulation
y authorities and market manipulations resulting in the pumping
nd dumping of selected assets (Eigelshoven & Ullrich, 2021; Fratrič
. Sileno et al., 2022; Gandal et al., 2018) which leads to high volatility.
igher price fluctuations imply higher profit opportunities, but these
rofit opportunities are not easy to spot. The proposed approach re-
ormulates the traditional forecasting model as a classification process.
n particular, we have shown that a simpler approach supported by a
assive dataset and smart labeling can achieve a comparable or better

ccuracy than more complex models. For example, a recent work (Ozer
11

Okan Sakar, 2022) achieves a 56% accuracy on a binary labeled
scheme. Under the assumption of a balanced dataset, this is only 6%
over a random baseline. Whereas we have achieved a 66% accuracy,
which is an excellent performance compared to a 33% baseline with a
3-classes problem.

We have developed a comprehensive pipeline for predicting short-
term price trends and leveraging them to generate profitable trading
strategies. Our findings reveal that the accuracy of price trend predic-
tions is highly dependent on the use of a large dataset that enables the
identification of patterns via technical analysis tools. We have shown
that our trading system is profitable in every market conditions: bull,
flat and in the more difficult bear/high volatile ones.

Moreover, we have also implemented a backtesting process proving
that a technical analysis approach can provide a clear statistical edge
over random trading operations or a simple ‘‘buy and hold’’ approach.
In fact the backtest phase has shown a desirable characteristic in a
trading system: the low volatility of the equity curves. Furthermore,
by employing various stop-loss thresholds, it is possible to fine-tune
the risk profile showing thus that high thresholds corroborate the well-
established principle that higher risks are typically associated with
higher rewards. It is important to note that our results do not guarantee
that the same level of performance can be replicated in different time
periods or with different coins. Moreover real market setups have to
cope with liquidity issues that minor coins often experience, which may

unpredictably and adversely impact the system’s performance.



Expert Systems With Applications 238 (2024) 121806M. Parente et al.

A

A

B

F

G

G

G

G

H

H

H

J

J

K
K

K

K

K

K

L

L

L

M

M

Based on the analysis of feature importance, it has been determined
that the top ten valuable features exclusively consist of technical in-
dicators, moving average crossovers, and temporal information, with
candlestick patterns showing a relatively low level of effectiveness.

These results lay the groundwork for future research endeavors
that aim to augment the existing pipeline with additional information
gleaned from multi-timeframe price action analysis. This approach
can be accomplished by combining the pipeline’s key components,
such as the large dataset, labeling algorithm, best features and neural
network, with novel information derived from a detailed analysis of
price behavior across multiple timeframes.

Furthermore, technical analysis has ample room to explore with the
support of ML techniques. Technical indicators are just one tool, other
sources of information used by traders to spot price directions com-
prises technical patterns, supports and resistances (fixed and dynamic),
Fibonacci levels, cross assets analysis.

As a prospective avenue for future research, it is worthwhile to
subject our trading system to empirical testing across diverse financial
markets, including FOREX, individual stocks, stock indexes, commodi-
ties, and CFDs (Contracts for Difference). This endeavor is based on the
premise that these markets exhibit congruence in terms of adhering to
similar technical patterns.

Nonetheless, prudent consideration must be given to CFDs, as they
represent leveraged derivatives characterized by elevated risk exposure.
While CFDs generally exhibit substantial correlation with the prices of
underlying securities, this association is not always exact. The notable
feature of CFDs lies in their requirement for a comparatively small
amount of capital (via margin trading) to facilitate trading activities.
This aspect significantly reduces the entry threshold for implementing
the trading system in actual financial markets, making the exploration
of real-world experimentation a feasible pursuit.
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