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1.1. Introduction

In the last decade, the development of Deep Neural Networks (DNNs) has driven the Ar-
tificial Intelligence (AI) research to unforeseeable achievements in several fields [1, 2, 3].
Nonetheless, the increased complexity of the adopted models has entailed several issues
for their applications [4]: an opaque decision process [5], the need for large amounts of
training data [6], and the exposure to adversarial attacks [7], to name a few. EXplainable
Artificial Intelligence (XAI) aims at whitening the decision process of machine learning
models making their predictions more trustworthy for human users. For instance, this is
especially important to use these models in safety-critical domains [8, 9]. However, most
XAI techniques are not able to explain how DNNs compose the input features to make
final predictions, and even less provide concise and unambiguous explanations whose
validity can be assessed quantitatively. In order to make some advancements in this di-
rection, in [10, Ciravegna et al.] and [11, Barbiero et al.] we proposed Logic Explained
Networks (LENs), a novel class of “explainable-by-design” deep learning models whose
predictions are explained by a set of First-Order Logic (FOL) formulas. The FOL expla-
nations may describe the decision process of the LEN itself or of another DNN, e.g. ex-



plaining how the DNN elaborates input samples to provide output predictions or pointing
out the relationships among the labels predicted for a certain example.

In the past few years, we have successfully applied LENs: (i) with different learn-
ing paradigms, supervised [12] and unsupervised [13]; (ii) for different explanation ob-
jectives, explaining existing black-box models or for self-explainable classification [10];
(iii) by using different architectures, ψ-networks, ReLU-networks, µ-networks [10] and
Entropy networks [11]; (iv) in different domains, from textual data and computer vision,
to natural language processing [14] and graph domains [15, 16, 17]. LENs have been im-
plemented as whole models1, or as single PyTorch layers that can be integrated in differ-
ent type of architectures2. However, LENs contributions are currently scattered in differ-
ent papers using slightly different notations adapted according to specific requirements,
domains and architectures. After all these contributions, the LENs literature is still short
of a unified notation and overview.

For this reason, in this chapter we aim at providing a compact unified vision on
LENs framework, providing a common notation for different architectures and domains
of applications. Some background on Explainable AI and Concept-Based Explanations
is introduced in Section 1.2. Section 1.3 summarizes the different learning criteria to ap-
ply according to the use cases (Section 1.3.1), how we can extract different explanations
from a LEN (Section 1.3.2), and how to sparsify the network so that the explanations
can be a faithful representation of the model behaviour (Section 1.3.3). We also describe
some out-of-the-box LENs with different interpretability-vs-accuracy trade-offs (Section
1.3.4). In Section 1.4, we show how LEN can be applied in different domains by modify-
ing the architectural pipeline. Finally, in Section 1.5 we conclude the chapter analysing
the limitations of the current proposal and drawing possible future work.

1.2. Background

Explainable AI. In the last few years, the scientific community has developed a wide
variety of XAI techniques, with different properties and goals [18, 19]. For instance,
XAI methods can be distinguished according to their ROLE (being an interpretable model
or explaining an existing black-box), the TYPE of the produced explanation (feature
scoring or rule-based) and their SCOPE (local or global). In the literature, existing ap-
proaches cover different ROLES, acting as intrinsically interpretable models or as expla-
nation methods. Interpretable models are white-box models whose decision process is
considered transparent. In principle, they are the best models to support decision sys-
tems. However, their decision function is often not complex enough, impairing their gen-
eralization ability [20]. On the other hand, explanation methods can be applied to get ap-
proximated interpretations of state-of-the-art models. These methods are known as “post
hoc” techniques (often also model-agnostic), as the explanations are produced once the
training procedure is concluded. LENs can be employed to cover both roles, either work-
ing as an interpretable model or training them as a model-agnostic explainer that mimic
the behaviour of another model. Concerning the type of produced explanation, most of
the methods focus on scoring the input features [21, 22, 23, 24, 25]. However, feature-
scoring techniques may not be so useful to support decision processes. Rule-based meth-

1https://github.com/pietrobarbiero/logic_explained_networks
2https://github.com/pietrobarbiero/pytorch_explain

https://github.com/pietrobarbiero/logic_explained_networks
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ods are generally more appropriate for this objective, since they explain how the selected
input features correlate and produce a certain output [26, 27, 28]. For this reason, LENs
employ FOL to provide meaningful explanations. Finally, the SCOPE of the provided
explanations strongly characterizes explainable methods. Indeed, local explanations are
valid only for a single sample (and its neighbourhood), while global explanations hold
on the whole input space. LENs have been designed to provide both local and global
explanations according to user preference.

Concept-based Explanation. In all domains where the input features are not human-
understandable, there is the need to find higher level representation. As an example,
in [23] when working with images, LIME is trained to find the super-pixels causing a
given classification (rather than the single pixels). However, super-pixels representation
do not encode concepts that are understandable by human users. For this reason, concept-
based models are receiving ever-growing consideration [29, 30, 31], as they provide ex-
planations in terms of human-understandable symbols (the concepts) rather than raw
features. For instance, a concept-based explanation may describe a high-level category
through its attributes, as in “a human has hands and a head”. This makes these methods
more suitable for decision-making tasks and allows them to provide also global expla-
nations (which cannot be provided in terms of raw features). However, while concept
ranking is a common feature of concept-based techniques, there are very few approaches
formulating hypotheses on how black-boxes combine concepts to arrive to a decision
and even less providing synthetic explanations whose validity can be quantitatively as-
sessed [32]. LENs, on the contrary, by providing FOL explanations based on concepts
can serve both purposes. In Section 1.4, we will show through different pipelines how to
obtain concept representations when working with different kind of data.

1.3. Logic Explained Networks

A Logic Explained Network (LEN) is a function f : X →Y designed according to specific
criteria that we illustrate below in this section. We refer to X = [0,1]d as the input space
and to Y = [0,1]c as the output space, whereas x j and fi denote the j-th component of a
certain x∈X and the i-th component of f . LENs are neural models whose behaviour can
be interpreted by FOL explanations φ involving symbols associated either to components
of the input and/or the output space. In particular, a LEN f is designed according to a
certain role (Section 1.3.1), a FOL rule-extraction algorithm (Section 1.3.2), a pruning
criterion (Section 1.3.3), a neural architecture (Section 1.3.4) and a training set (X,Y)
with input data X⊂ X and labels Y⊂Y . The FOL explanations φ extracted from a LEN
f can correctly explain the prediction f (x) for x ∈ X, as shown in Fig. 1.

1.3.1. Roles and Learning Criteria

A LEN f can mostly be used in two scenarios, either as an interpretable model per se
or to explain a black-box model b. In both cases, f can be trained with supervised or
unsupervised learning criteria.
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Figure 1. Overall view of the LEN structure.

Interpretable Model. When used as an interpretable model, a LEN is required to both
classify and explain its predictions on each input sample. To accomplish this task, we
train f to minimize the following loss function:

L ( f ,X,Y) = Ll( f ,X,Y)+Lp( f ,X) (1)

where Ll is the learning criterion and Lp is a parsimony criterion that allows us to
regularize the network and extract FOL explanations. Hereafter, we focus on Ll , while
Lp will be discussed in Section 1.3.3. According to whether we are facing a super-
vised or an unsupervised learning task, different loss functions can be employed. In
case of classification tasks, the learning criterion may be expressed by the standard
cross-entropy loss Ll( f ,X,Y) = ∑x∈X,y∈Y ∑

c
i=1 yi log( fi(x)). In this case, the explana-

tion φi will consist in the mutual implication between the class i and some input fea-
tures, like “¬longPetal(x)⇔ irisSetosa(x)” if we consider the case of the Iris classifica-
tion task. On the other hand, when facing an unsupervised learning task, we need to em-
ploy different learning techniques, like maximizing the Mutual Information Ll( f ,X) =
H ( f )−H ( f |X), where we respectively indicated with H ( f ) and H ( f |X) the entropy
of the output predictions and the conditional entropy of the predictions when the input
data are known. In this latter cases, the explanations will point out the common character-
istics of the samples belonging to a certain cluster, like “longPetal(x)∧¬widePetal(x)”.

Explaining a Black-Box Model. When explaining an existing model, a LEN can be
trained following the same criteria, with some minor modifications. Indeed, if we want
to explain some class predictions of a black-box model b, we can replace the supervision
labels y with the black-box network predictions b(x). More precisely, the supervised
learning criteria become Ll( f ,b,X) = ∑x∈X ∑

c
i=1 b(x) log( fi(x)). Instead, if we do not

have any preference on the class to explain, the LEN takes as input all the predictions
of b and tries to find significant correlations by using an unsupervised learning criterion.
In this case, we can maximize the Mutual Information between the explained network
predictions b(x) and the output of the LEN f (b(x)), i.e., Ll( f ,b,X) =H ( f )−H ( f |b).

1.3.2. Extracting Logic Explanations

After the training stage, LENs are capable of providing accurate logic explanations that
can be used to make predictions at test time. In the following, we describe how LENs



provide explanations both for single samples and for the entire fi, that can represent
either a class or a cluster3 in case of supervised or unsupervised learning, respectively.

Example-level Explanations. For a given sample x, the prediction fi(x) = 1 is locally
explained by the conjunction φ l

i (x) of the most relevant input features for the class i on
the current example:

LEN Local Explanation: φ
l
i (x) =

∧
j∈Ai(x)

xj(x) (2)

where we indicated with xj(x) the logic predicate (or its negation) associated to the
j-th input feature and with Ai(x) the set of relevant features for the i-th task on the
current sample x. The way in which a LEN finds Ai(x) strongly depends on the se-
lected parsimony criterion and it will be better clarified in Section 1.3.3. Each xj(x)
can be either a positive or a negative literal, according to a given threshold, e.g.
xj(x) = [x j > 0.5]. For any fi, the set of all its local explanations is denoted by Φl

i , i.e.
Φl

i = {φ l
i : φ l

i (x) is the local explanation of fi(x) for some x ∈ X with fi(x) = 1}.

Class-level Explanations. To globally explain fi, a LEN considers the disjunction of
the most important local explanations:

LEN Global Explanation: φ
g
i = ∀x :

∨
φ l

i ∈Bi

φ
l
i (x)↔ fi(x) (3)

Here fi indicates the logic predicate associated to fi and Bi collects the k-most
frequent local explanations of the training set that is computed as Bi = {φ l

i ∈
argmaxk

φ l
i ∈Φl

i
µ(φ l

i )}, where we indicated with µ(·) the frequency counting operator.

However, the way Bi is determined can be refined by employing a greedy strategy grad-
ually aggregating frequent local explanations only if they improve the validation accu-
racy, as in [10, Ciravegna et al.] and [11, Barbiero et al.], or by employing an exhaus-
tive search and selecting the set of local explanations providing the highest accuracy, as
in [14, Jain et al.]. Finally, the kind of implication depends on the learning criteria: if we
use the losses introduced in Sec. 1.3.1 we extract formulas with the double implication
↔, but others can be used (see [12, Ciravegna et al.]).

1.3.3. Parsimony Criteria and Sparsification (Pruning)

Parsimony criteria influence the learning process towards specific solutions. These con-
figurations are generally those achieving higher generalization accuracy, and reducing
the bias of the network. The most commonly employed regularizations are the L1(W )
and L2(W ) regularizations applied to the network weight W with reuse strategies [10].
In alternative, in [11, Barbiero et al.] we have shown that minimizing the Entropy of the
input weights is also an effective regularizer, producing sharper configurations. Once the
model is converging, the effort can be accelerated and finalized by pruning the neural
network [33, 34] i.e., removing connections whose likelihood of carrying important in-

3In unsupervised learning tasks, with fi(x) = 1 we indicate that the example x belongs to the i-th cluster.



formation is low. Furthermore, by forcing the network to rely on few connections, we
can better understand which are the relevant features for a certain class, and determine
Ai(x). We notice that the choice of the connections to be pruned may have a profound
impact on the quality of the explanations, but also on the classification performance [35].
In the following, we propose three different strategies with decreasing impacts on the
network and we refer for convenience to the underlying graph structure of a LEN f as
G = (N,E).

Node Pruning. A straightforward pruning strategy considers each neuron indepen-
dently. This strategy allows to set a maximum fan-in ζ ∈ N for each neuron of the net-
work, i.e., the number of non-pruned incoming connections that each neuron can have.
More precisely, the pruning strategy iteratively removes the connections associated to
the smallest weights until the required fan-in is reached. Let us consider the i-th output
neuron of a LEN. We define as Gi = (Ni,Ei) the sub-portion of G composed of the neu-
rons and connections participating to just valid paths (i.e. paths involving only non-zero
weights) whose destination is the i-th output neuron. In this case, the set of important
features Ai is fixed for every sample and is defined as Ai = { j ∈ [1,d] | j ∈ Ni}. This
strategy yields higher interpretability, because limiting the number of neuron connec-
tions can allow to extract compact local and global explanations not only for the entire
model but also for each hidden neuron. On the contrary, since this pruning entails each
neuron, it significantly reduces the learning capability of the network.

Network Pruning. To select a small set of important input features Ai, pruning all the
neurons can be unnecessary. Indeed, it is sufficient to iteratively prune only the weights
connected to the first layer of hidden neurons, i.e. for each i we have Ai = A = { j ∈
[1,d] | ∃k ∈ [1,h1] : w j,k ̸= 0}, where h1 is the number of hidden neurons at the first layer
of the network. However, as a consequence the set of important input features would be
the same for all the classes (i.e. it does not depend on the class i), which is quite unlikely.
To overcome this issue in [11, Barbiero et al.], we introduced the Entropy Layer, that
is composed of a 3-dimensional input layer providing different weights for each class.
It therefore allows us to prune a different set of weights for each class i, and to define
Ai = { j ∈ [1,d] | ∃k ∈ [1,h1] : w j,k,i ̸= 0}. This strategy allows us to retain a network-
level interpretability without losing much performance.

Example-level Pruning. When employing a LEN whose activation functions in all hid-
den layers are Rectified Linear Units (ReLU Network), G can be reduced to Ĝ , the sub-
graph only retaining the units corresponding to active neurons (i.e. the ones for which
the ReLU activation is non-zero) and the corresponding edges, also referred to as “firing
path”. Since all neurons operate in linear regime (affine functions), in Ĝ the multi-layer
feed-forward ReLU network can be simplified with a single affine function, leading to
∀x ∈ X , f (x) = σ(Ŵ (x)x + b̂(x)), being σ the activation of the output layer and Ŵ (x),
b̂(x) the simplified weight matrix and biases, respectively. We refer the reader to [10,
Ciravegna et al.] for the theorem proving this result. For each sample x, this allows us to
only consider the simplified weights ŵ(x) to locally explain the prediction of the model.
More precisely, in this case we define Ai(x) = { j ∈ [1,d] | ŵ(x)

j,i ̸= 0}.

1.3.4. Architectures

The creation of an explainable-by-design neural network comes in general at the cost of
a reduced learning capability. However, the methods introduced in Section 1.3.3 allow to



reach different accuracy vs. interpretability trade-offs. In the following, we show three
out-of-the-box Logic Explained Networks (LENs).

ψ Network [13, 12]. The ψ Network is a fully interpretable model, but with limited
learning capacity. It employs a node-level pruning strategy, with the same fan-in across
all neurons. The fan-in should be sufficiently low (suggested values between 2 and 9)
since it is directly proportional to the number of terms involved in the explanations.
The pruning process is conducted during the training by progressively zeroing the least
important weights in input to each neuron. The explanation extraction process is con-
ducted for all neurons in the network. This allows to reach high interpretability, even if
at the cost of low classification performances. Indeed, it requires to employ strong L1-
regularization and [0,1]-valued activation functions (like e.g. sigmoids) in all the layers.
The final explanations can then be extracted by composing the layer-level explanations.
This reduces the explanation quality as well, since it sums the approximation errors, but
it can be avoided by directly extracting explanations at network-level.

Entropy Network [11]. The Entropy Network utilizes a network-level pruning strat-
egy to provide high classification accuracy and still retains good explainability and inter-
pretability. More precisely, it employs an entropy layer as the first layer of the network.
This layer is trained to minimize the entropy of the importances of the input features,
in such a way to rely on few features. For each feature j, the importance for a class i is
represented by the attention score α i

j, which is computed as:

α
i
j =

eγ i
j/τ

∑
k
l=1 eγ i

l /τ
(4)

where τ is a user-defined temperature parameter and γ i
j = ||W i

j ||1 . The entropy H (α)

is minimized when a single α i
j is one, thus representing the extreme case in which only

one concept matters, while it is maximum when all concepts are equally important. Each
score α i is used to further weight the input features x̃i = x⊙ α̃ i.

ReLU Network [10]. The ReLU network is a LEN, providing a slightly different ac-
curacy vs. interpretability trade-off. This model is based on three design principles:
(i) all activation functions of hidden neurons are rectified linear units; (ii) a mild L1-
regularization is applied to all the weights associated to each layer of the network; (iii)
an example-level pruning strategy, which can be applied due to the presence of recti-
fied linear unit activation functions. What makes a ReLU Network significantly different
from previous LENs is that the pruning strategy does not alter the network structure at
all. This is due to the fact that pruning is applied to the weights that belong to Ŵ (x) and
are only computed for rule-extraction purposes. This means that the original capacity of
the model is fully preserved, eventually leading to state-of-the-art classification perfor-
mances. However, this type of pruning does not provide general insights about the model
behaviour, as it is only about the considered example x. To mitigate this issue, a mild
L1-regularization is imposed to encourage the network to employ the same connection
patterns to classify similar samples and, in turn, provide explanations.
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Figure 2. Tabular data pipeline

1.4. Applications

LENs are not restricted to a specific neural architecture and therefore can perform pretty
well on very different scenarios and kind of data. So far, LENs have been successfully
applied in a wide variety of learning frameworks ranging from standard classification
tasks on tabular data to natural language processing, computer vision and graph analysis.
Since LENs are meant to provide explanations in terms of human understandable con-
cepts, their only requirement is to take input features in X = [0,1]d . This means that in
case of, e.g., real-valued inputs X ′ = Rd , we may need to map the original raw data into
[0,1]-valued vectors before applying LENs. This may be necessary with slight variations
also for other application cases, so basically different pipelines may need to be defined
to apply LEN in the different contexts. More precisely, it can be necessary to map the
raw input features x′ ∈ X ′ to the LEN input space X . This can be achieved by means
of standard input preprocessing or by employing an additional model g : X ′ → X , e.g.
another neural network, that can be directly co-trained with the LEN f : X → Y .

1.4.1. Tabular Data

In case of tabular data, the pipeline is pretty straightforward, as the input features can be
already regarded as concepts. There are mostly two options: (i) X ′ = [0,1]d , (ii) X ′ =Rd .
In case (i), we trivially have X ′ = X . As an example, in Fig. 2 we can appreciate a LEN
application in the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-
II) [36] medical domain. Here the input features were already binary X = {0,1}d and
therefore no preprocessing was required. A LEN has been used to predict and explain
whether patients entering intensive care units will recover or not, according to their
starting condition. An example of explanation provided by the network in this case
is φ g = ∀x : liverImpairment(x)∧¬Stroke(x)∧¬cancerAggressive(x) ↔ Recover(x).
In case (ii), each input sample x′ ∈ X ′ ⊂ X ′ needs to be rescaled into a [0,1]-value.
This can be done by discretizing the feature values with opportune thresholds, like e.g.
[0 ≤ age(x) < 60] and [age(x) ≥ 60], or by fuzzyfication in the unit interval, like e.g.
mapping highSalary(x) ∈ [0,1] with values near 0 corresponding to the minimum wage
and 1 to the maximum salary. You can find further examples in [10, Ciravegna et al.] and
[11, Barbiero et al.]. In [37, Ciravegna et al.], we have also shown that the explanation
provided by LENs in this scenario can be used to select the data labels within an active
learning scenario.

1.4.2. Natural Language Processing

Like in the previous case, when dealing with textual data, we can regard each word
directly as an understandable concept certifying the presence/absence of the word it-
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self in an input stream of text and, therefore, we only need to map the words into
the unit interval. This can be easily achieved in different ways, like e.g. by using
TF-IDF as shown in Fig. 3, showing a LEN application on the “StackSample: 10%
of Stack Overflow Q&A” [38] tag classification task. The LEN receives in input the
preprocessed text and output the corresponding tag and an explanation, in this case:
φ g = ∀x : python(x)∧¬android(x)∧¬c(x)∧¬php(x)→ Python(x). By means of a hu-
man survey, in [14, Jain et al.] we have also showed that the explanations provided by
LENs can be useful in a variety of tasks (e.g. in detecting biased models), and that better
serve these purposes than feature-based explanations provided by LIME.

1.4.3. Computer Vision

In Computer Vision tasks, pixels cannot be properly considered as meaningful concepts
to provide logic explanations. For this reason, we employ the Concept-bottleneck Model
pipeline introduced in [31], which considers a Convolutional Neural Network (CNN) g
mapping the input images x′ ∈ X ′ into a set of concepts x ∈ X . In Fig. 4, we reported an
example of this pipeline on the Caltech-UCSD Birds 200 (CUB200) [39] according to the
following steps. First, the CNN g predicts a set of low-level bird attributes for the given
input image. Then these attributes are fed in input to a LEN f . Finally, the LEN detects
e.g. blackwingWarbler(g(x′)) from the input image and provides an explanation in terms
of the bird attributes, i.e., φ g = ∀x′ : blackWings(x′)∧¬redBeak(x′)∧blackHead(x′)↔
blackWingWarbler(g(x′)). Further examples of LEN application in the computer vision
domains can be found in [13, 12, Ciravegna et al.] [11, Barbiero et al.]. Furthermore, in
[10, Ciravegna et al.], we have shown that the explanations provided by the LEN can be
effectively employed to detect adversarial data.

1.4.4. Graph Domain

In relational domains, LENs have been applied on top of different neural architectures
with the aim of providing global concept-based logic explanations of Graph Neural Net-
works (GNNs, [40]), as in [16, Magister et al.] and [17, Azzolini et al.], or for explain-
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ing Neural Algorithmic Reasoning (NAR, [41]) and sub-symbolic heuristics as in [15,
Georgiev et al.]. To explain GNNs, both [16, Magister et al.] and [17, Azzolin et al.] use
message passing to generate a set of concepts corresponding to graph motifs. LENs are
then used to solve typical relational tasks (e.g. node and graph classification) providing
logic explanations in terms of the motifs identified by the GNN in the input graph. To ex-
plain sub-symbolic heuristics, [15, Georgiev et al.] trained NAR to learn a set of relevant
concepts (e.g. node colours for graph colouring or visited edges for minimum spanning
trees). At each NAR iteration, LENs are used to predict and provide a logic explanation
for nodes and edges states at next iteration.

1.5. Conclusions and Future Work

This chapter presents a concise view of the Logic Explained Network (LEN) framework
and some existing applications. LENs are “explainable-by-design” neural networks that
can be trained to provide FOL explanations of their predictions or of other black-box
models. One of the main advantages of LENs is their versatility in realizing different ac-
curacy vs. interpretability trade-offs, that can be forced by means of a few learning prin-
ciples according to user preferences. Experimentally, LENs have been shown to achieve
performances close to state-of-the-art black-boxes on a wide variety of learning sce-
narios, while also providing concept-based logic explanations. As we discussed in the
chapter, achieving high accuracy while providing human-understandable explanations is
fundamental for decision support problems, especially in safety-critical applications.

Open Challenges. One weaker point for LENs application is that they rely on concept-
based input features, that may require the instantiation of ad hoc pipelines to deal with
raw input data. Even if we propose different alternatives to face this issue, for future
work would be interesting to automatically extract from a DNN low-level concepts on
the original inputs, and use these newly-devised concepts as ingredient to provide logic
explanations of the predictions of the final classes. Another interesting application field
that we plan to investigate is the use of LENs in a continual learning setting, where
predictions and explanations may depend on a temporal coordinate and can be revised
as time goes by. In this regard, LENs contribution could be twofold, as they can be used
both as a neural model learning in a dynamic environment and to produce different set
of formulas in different timestamps. In this context, a fundamental role could be played
by temporal logic that allows formulas to be referred as valid into specific time intervals.
Finally, within the interactive Machine Learning (iML) scenario, it would be interesting
to progressively train and explain a model at the same time. By iteratively feeding the
network with new samples, we could select those that allows the network to address



mistakes and mitigate the biases that it might have learnt. In this context, translating the
logic formulas into natural language may facilitate the interaction between the human
and the machine.
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