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Abstract — Accurate large-signal (LS) modeling of Fin
Field-Effect Transistors (FinFETs) plays an important role
in designing microwave circuits for the next generation of
communication systems and quantum sensing. In this work
we propose preliminary results on a novel approach to LS
FinFET modeling, that translates the X-parameters from
physical TCAD analysis into deep neural networks (DNNs). The
proposed method includes two phases. First, the X-parameters
of nonlinear active device are extracted trough accurate
TCAD physical simulations. Then, a long short-term memory
(LSTM)-based DNN is employed for ANN modelling, to
reproduce the scattered waves for any given incident waves up to
the 5th harmonic. Similarly to X-parameters, the proposed DNN
model simulates the transistor behavior around the large-signal
operating point. Unlike the original X-parameter method,
though, the DNN approach can incorporate the dependency on
bias or other technological and physical parameters in a seamless
and numerically efficient way. Hence, once implemented into
circuit simulators, it allows for faster and more accurate circuit
design.

Keywords — Deep neural network (DNN), fin field-effect
transistor (FinFET), long short-term memory (LSTM),
large-signal modeling, predict, X-parameter.

I. INTRODUCTION

The need of high-performance semiconductor devices
operating in the radio frequency (RF) and microwave
frequency range is fostered by many applications ranging
from the rapid development of the next generation of
communications systems, the precise control and readout
of quantum states [1] and the space economy. In this
scenario, the FinFET becomes a key enabling technology. In
fact, their nanometer scale makes them ideal for quantum
sensing while their compatibility with digital applications
makes them ideal candidates for the deployment of integrated
microwave transceivers in 5G/6G communication networks,
e.g. in small-cells and vehicular radars [2].

For these nonlinear circuits, FinFET large-signal models
become essential, both at the physical level to optimize the
device structure, and at the circuit level for the PA design and
optimization [3]–[7]. Accuracy and numerical efficiency are
key requirements for nonlinear models, typically addressing
the simulation of time-domain waveforms, high-order
harmonics, noise and frequency conversion.

Various approaches have been proposed for nonlinear
transistor modeling. While compact models based on
equivalent circuits are still the most common approach

[8], behavioral models are also gaining growing attention,
e.g. using polyharmonic distortion [9], X-parameters [10],
[11] or the Padé model [12]. Behavioral models are
promising solutions for device modeling since they can
include more physical features with respect to compact
models (e.g. thermal effects, low frequency dispersion, or
technological variability) and reproduce characterisation data
more accurately. However, their accuracy relies importantly
on large characterization data. Furthermore, behavioral
models entirely loose the link to the underlying fabrication
technology and have poor extrapolation capability. Finally,
behavioral models are often based on large look-up tables
(LUTs), requiring large memory allocation and repeated
numerical interpolation on LUT data.

Recently, intelligent-based methods including artificial
neural networks (DNN), have proven their validity for highly
accurate FET modeling [13]. By reviewing the fast expanding
literature in this field, though, it can be recognized that the
published ANN-based studies only address either the FET
DC current-voltage characteristics, also including dynamic
trapping effects [14], [15], or the S-parameters [16], [17].
Large-signal FET models based on DNNs are instead at the
pioneering level. Although various works focus on extracting
the values of the equivalent large-signal circuit, little work has
been dedicated on DNNs directly simulating the large-signal
port waves.

This paper presents a pioneering methodology to model
the nonlinear behavior of a FinFET transistor through incident
and scattered waves. The proposed approach generalizes
the X-parameter approach, that is in turn an extended
version of S-parameters. Instead of extracting X-parameters
from characterization, we exploit accurate TCAD simulations
carried out by an in-house developed software [18],
enabling the nonlinear device physical analysis through a
drift-diffusion code implementing the Harmonic Balance
algorithm. Here, TCAD-based X-parameters are used to train
a DNN for nonlinear FinFET modeling [19], [20].

The advantage of the concurrent TCAD and ANN
modelling is double: 1) a direct link to technological and
physical parameters (e.g. FinFET geometry, temperature, etc.)
can be seamlessly included in the ANN model to incorporate
technological variability and temperature dependency; 2)
compared to conventional X-parameters, which are ultimately
a look-up table based model, ANNs large signal models don’t



Fig. 1. Cross-section of the FinFET (individual finger) used for the
X-parameter extraction [21].

exploit data interpolation, hence DNNs require less memory
allocation, lower numerical effort and allow faster and more
accurate simulations.

The paper is organized as follows: Sec. II introduces
the proposed approach. Sec. III reviews X-parameters and
explains how the DNN is trained. Sec. IV explains the
practical implementation of proposed LSTM- based DNN.
Finally, Sec. V concludes this work.

II. PROPOSED METHODOLOGY IN A NUTSHELL

The aim of this work is to extract a deep neural network
(DNN) to mimic an FET device in large-signal operation.

To fix ideas, let us consider a FinFET device, used as
the building block of a class A power amplifier operating
at the frequency of 70 GHz for small-cells applications.
The amplifier is designed assuming a multifinger device
(10 fingers of 30 fins each) with a fin height of 25 nm,
corresponding to a total gate periphery of 15 µm (only the two
lateral channels for each fin are considered). The optimum DC
bias has been selected at VG = 0.675 V and VD = 0.6V. The
output port is terminated on the device optimum load (see
[21] for details). The cross-section of each finger, reported
in Fig. 1, has been simulated with our in-house TCAD
simulator, at increasing level of input power, driving the
device into nonlinear operation. At each power level, SS-LS
analysis allows for the extraction of X-parameters [11], [21].
X-parameters could be directly plugged into circuit simulators
(e.g. Keysight PathWave/ADS) for use in circuit analysis [22].
Here, instead, TCAD-based X-parameters are used to train a
DNN for superior nonlinear FinFET modeling.

Fig. 2 presents the general extraction flow for our
proposed method. X-parameters are extracted through the
TCAD simulation at increasing level of input power and
are then stored in a .xnp file. Then, a DNN is trained on
the TCAD-based X-parameters, using the long short-term
memory (LSTM), leading to predict the scattered waves
for any incident wave. As the result, the extracted DNN
effectively represents an equivalent model of the FinFET
for large signal analysis, see Fig. 3, fully retaining the
accuracy of the underlying physical analysis. Any variation
of the technology can be further included in the DNN model.
For example, in this preliminary work X-parameters are
considered only at the temperature of 300 K, but the extension
to a temperature-dependent DNN model, despite beyond the
aim of this work, can be addressed simply retraining the DNN
and adding an extra input neuron.

Fig. 2. General view of proposed methodology.

Fig. 3. DNN-based modeling of FinFET device. Input and output neurons
represent the harmonic amplitudes of the incident and reflected waves, as in

III. DNN TRAINING THROUGH X-PARAMETERS

X-parameters represent a particular approach to transistor
large-signal modelling. It is generally understood that
X-parameters are a generalization of S-parameters, since the
input and output waveforms are divided into a large-signal
part, corresponding to the transistor operating point, and a
small-signal one, corresponding to the wave variations. Due
to linearity, small perturbations are linearly linked. In the
S-parameter case, the operating condition is static (DC) and
the perturbations are the incident and reflected waves at
frequency f adding to the DC point. In the X-parameter
case, the working point itself is periodic, characterized
by the fundamental frequency f0 and harmonics nf0. The
perturbations are incident and reflected waves adding to the
large-signal operating conditions at the same harmonics. Due
to the nonlinearity, frequency conversion can occur among
the harmonics and the device ports. Figure 4 shows the idea
of X-parameters in terms of frequency components.

Matematically, (1) describes the development of the
incident and reflected waves in terms of X-parameters.
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Fig. 4. The periodic large signal operating condition of a nonlinear device
(left) is characterized by large amplitudes harmonics. The perturbation of
the large signal operating point adds small contributions at each harmonic.
X-parameters describe the link of the incident and reflected perturbations at
each device port and frequency.

The reflected waves Bpm (labeled as port p and harmonic
m) depend on the large signal input tone

∣∣A11

∣∣ at port 1 and
fundamental frequency, and on the small excitation tones Aqn

( labeled as port q and harmonic n).
X-parameters include three sets of terms: XF , XS ,

and XT . XF describes the large signal harmonic operating
condition; and XS with XT capture the small signal
variations around the large-signal working point, linking the
incident and scattered waves [23].

Turning to the DNN model extraction, we select the input
layer which includes the incident waves (real and imaginary
parts) A11, A12, ..., A15 for the first port and up to the fifth
harmonic. Correspondingly, the output layer predicts the real
and imaginary parts of scattered waves as B11, B12 ,..., B15,
see Fig. 5. Notice that all the waves are divided into real and
imaginary sections.

As the fundamental and important preliminary step for
the DNN identification, a suitable amount of data is required
for start training. Starting from the TCAD-based X-parameter
data, a set of random incident waves A11, A12, ..., A15 is
used in (1), obtaining the corresponding reflected waves B11,
B12 ,..., B15 (Step-3, Step-4). This dataset is divided into
three parts as: training (XTrain), validation (XVal), testing data
(XTest) with a ratio of 70%, 15%, and 15%, respectively. For
each of these input data, the corresponding output data can
be presented as: YTrain, YVal, and YTest as well.

Wwith these data the DNN is trained using the Eq. (3)
(Step-5). Afterwards, the accuracy of DNN is calculated using
(4) in MATLAB tool (Step-6).

net = trainNetwork(XTrain, YTrain, layers, options) (3)

YPred = predict(net, XTest) (4)

The trained DNN is the regression one with LSTM hidden
layers. The activation function is the rectified linear unit
(ReLU) function where the normalized root mean square
error (RMSE) is used for presenting the convergence of the
proposed DNN.

For achieving the optimal hyperparameters, i.e., number
of neurons and hidden layers, the rule of thumb is used
(Step-7). By accurate training of DNN, the scattered wave
can be predicted by any given incident wave (Step-8).

Fig. 5. Proposed LSTM-based DNN for large-signal modeling of FinFET
transistors through X-parameters.

Algorithm 1 summarizes the employed steps for training
and construing the regression LSTM-based DNN leading to
model the FinFET transistor.

Algorithm 1 Summary of proposed large-signal modeling
through DNN

1: X-parameter simulation environment in TCAD tool;
2: Extracting output file namely as ’.xnp’ file;
3: Preparing A11, A12,...,A15 data series to be used in (1);
4: Calculating B11, B12,...,B15 from (1);
5: Constructing the DNN structure includes input layer,
hidden layers, and output layer as shown in Fig. 5;
6: Training the LSTM-based DNN by Eq. (3);
7: Optimizing the hyperparameters of DNN through the ’rule
of thumb’;
8: Validating the DNN output data through scattered waves
for any given incident waves data.

IV. PRACTICAL IMPLEMENTATION OF DNN

The proposed method is validated by implementing it in
the CPU execution environment (Intel Core i7-4790 CPU @
3.60 GHz and 32.0 GB RAM). As the first step, FinFET
transistor namely as is inserted into the ADS environment.

As the initial step, the .xnp file including XF , XS ,
and XT data for each port and harmonic is read by
MATLAB. Afterwards, random A11, A12,...,A15 are provided
for calculating the output responses for the first port and
harmonic B11, B12,...,B15 from (1). In total 1000 random
As includes real and imaginary parts are provided and
respectively 1000 Bs are obtained. By using these data, the
LSTM-based DNN is trained.

For updating the weights and biases of the DNN,
adam optimization algorithm and standard gradient descent
algorithm are used properly. The training options are set
as solver to ’adam’ and ’gradient threshold’ to 1. The
rule of thumb is employed for achieving the optimal
hyperparameters. Fig. 6 shows the accuracy of trained DNN
where in the third hidden layer at the 200th neuron, the



Table 1. COMPARISON OF SELECTED SAMPLES OF WAVE HARMONICS RESULTING FROM THE XPAR MODEL VIA EQ.(1) AND FROM THE TRAINED DNN

Xpar model via eq. (1) DNN model
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1 0.0067 0.0038 0.0100 0.0137 0.0073 0.0030 0.0122 0.0129
2 0.0090 0.0063 0.0060 0.0079 0.0083 0.0054 0.0065 0.0070
3 0.0147 0.0100 0.0057 0.0042 0.0203 0.0136 0.0069 0.0034
4 0.0229 0.0242 0.0265 0.0345 0.0314 0.0298 0.0301 0.0301
5 0.0179 0.0240 0.0379 0.0482 0.0136 0.0319 0.0291 0.0542
6 0.0275 0.0358 0.0522 0.0607 0.0203 0.0434 0.0501 0.0541
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Fig. 6. Effects of hidden layer numbers in training an accurate DNN.

Fig. 7. Loss result of trained DNN over the iterations.

testing accuracy of proposed DNN in terms of normalized
RMSE is around 0.10. Fig. 6 also shows that increasing
the number of hidden layers the accuracy of DNN also
increases. This suggests that in RF designs it is recommended
to employ DNNs instead of shallow neural networks (SNNs).
Additionally, the loss specification of trained DNN for 300
iteration is depicted in Fig. 7. Once the DNN is constructed
and trained appropriately for any given incident waves
(includes real and imaginary parts), the scattered waves in
terms of real and imaginary sections can be predicted. Tab. 1
reports the comparison between the wave harmonics resulting
from mathematical calculation through Eq. (1) and the trained
DNN for a set of sample incident waves. The accuracy is quite
good and proves that the proposed approach opens the way
to develop reliable DNNs replacng X-pars.

V. CONCLUSION

This work presents an entirely new methodology for
predicting the harmonic components of the waveforms in an
electron device operated in Large Signal nonlinear conditions.
In particular, akin to X-pars, the waveforms represent the
variations with respect to a nominal operating condition,
resulting either from a load mismatch or from a deviation
of the device characteristics from a nominal device (nominal
technology and material properties). The proposed approach
exploits neural networs to replicate the Xpar device large
signal model: this allows for a number of advantages in
terms of numerical burden, speed and dependency on multiple
physical parameters, such as temperature, device size and
doping. As such, the proposed approach is a viable candidate
to directly mimic the TCAD Large Signal simulations in terms
of DNNs. In this preliminary paper, we have demonstrated
how to provide a suitable amount of data to train the
DNN: this is achieved by randomizing the incident waves
and calculating the scattered waves through the X-parameter
definition. The X-parameters (i.e., XF , XS , and XT ) have
been obtained through accurate X-parameter simulation set-up
in a TCAD environment. We trained a DNN by regression
LSTM-based approach and demonstrated the accuracy of a
DNN in comparison with a SNN, in terms of normalized
RMSE and test samples. Once implemented into circuit
simulators employing the Harmonic Balance algorithm, the
proposed model will be a valuable nonlinear model for the
microwave designer, including variability analysis and load
sensitivity.
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