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Summary 

The use of machine learning in chemical engineering has the potential to greatly improve the 

design and analysis of complex systems. However, there are also risks associated with its 

adoption, such as the potential for bias in algorithms and the need for careful oversight to 

ensure the safety and reliability of machine learning-powered systems. This paper explores 

the opportunities and risks of using machine learning in chemical engineering, and provides a 

perspective on how it may be integrated into engineering practices in a responsible and 

effective manner. 

We generated the text of this abstract with GPT-3, OpenAI’s large-scale language-generation 

model. Upon generating the draft, we ensured that the language was to our liking and we 

take ultimate responsibility for the content of this publication. 
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1 Introduction 

Science and engineering, being both human activities, are not immune to fashion trends. 

Indeed, the use of machine learning, and artificial intelligence in general, is part of this trend. 

It is now extremely fashionable to work in this area and the pressure on researchers to include 

some of these elements in their research proposals, daily research activities, and papers is 

tremendous. Different reactions are observed within the community, ranging between two 

extremes which we have labelled as: (1) the conformist and (2) the obstinate opposer. The 

conformist will adopt machine learning in their work, even if not needed, necessary, or 

useful, just because it is fashionable, and the conformist likes to be fashionable. They want to 

do exactly what everybody else is doing. The obstinate opposer will NOT adopt machine 

learning in their work, even if needed, necessary, or useful, just because it is fashionable, and 

the obstinate opposer hates to be fashionable. They have more important things to do than 

simply what the others are doing. 
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And then, of course, all the shades of grey in between. 

It is evident that working in this area is now challenging for many reasons, among which is a 

certain bias which, depending on the individuals involved, ranges from naïve enthusiasm for 

anything that has something to do with machine learning to nonconstructive criticism for the 

very same reasons. We want to contribute to the very polarized ongoing discussion on 

machine learning in chemical engineering by sharing with our scientific community our 

perspective on this controversial topic. We want to do it not because we think we have 

something to teach, but because we feel it could be useful to share our path, to explain why 

we are using machine learning in our daily job, and to confide what we think would be 

exciting to do in the near future. 

2 Computational modelling 

Computational modelling is huge in chemical engineering. In the investigation of (molecular) 

transport phenomena, a plethora of methods and tools are involved ranging from ab initio 

quantum chemistry methods, classical full atom and coarse-grained molecular dynamics 

methods, mesoscopic methods, and continuum models, among which are computational fluid 

dynamics, chemical reaction engineering models, and process models. Each of these tools is 

characterized by a certain degree of empiricism, which increases when moving from ab initio 

calculations to process modelling. The computational models we deal with now are way more 

complex than what we used to have in the past, but we can still distinguish between first-

principle models and data-driven models, to which we have recently added hybrid models. In 

first-principle models, when we observe disagreement with experimental data, we improve 

the theory. In data-driven models, when we observe disagreement, we improve the “fitting”, 

or maybe we should say we improve the regression. Indeed, also in first-principle models, 

there are unknown parameters that are identified through fitting, but still the difference 

persists. 

In the ongoing discussion, we think it is also useful to reflect on why we use models. One 

reason might be because by building the model we gain deeper understanding. At the end we 

might not even use the model anymore, because we now have understood everything and we 

can throw the model away. In this first case, usually first-principle models are employed. 

Another reason might be because we want quantitative reliable predictions for designing a 

process, for optimizing it, or for scaling it up and down. In this context, we do not care about 

the deeper understanding; we just care about the predictions. In this second case, a data-

driven model can indeed be employed. In many cases, one does computational modelling for 

both reasons. 

3 Why machine learning in computational modelling? 

One problem with machine learning is that you often need “big data”. In many contexts, “big 

data” is available; for example, for social media and search engines, which collect individual 
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data from our devices. In chemical engineering, this “big data” is not always there, except if 

the data is produced already within a computer, as is the case with computer simulations 

obtained from computational models. This is very easy to realize now, thanks to high 

performance computing, software orchestrators, and high throughput workflows, which allow 

the production of a huge amount of simulation data in a short time and at little cost. 

High performance computing represents a good reason why machine learning is now so 

popular. Especially with graphical processing unit architectures, a large amount of data can 

be collected, stored, and employed to train data-driven models. Another reason for the recent 

increase in popularity of machine learning is that we have now libraries that are easy to use 

and integrated into complex workflows. Even though the fundamentals of the deep learning 

theory were introduced before the 90s, only with the advent of the CUDA platform in 2007 

has the training of those algorithms become computationally feasible for the practitioners of 

machine learning (i.e., data and computer scientists). Then, when in 2015 and 2016 

respectively Tensorflow and Pytorch were released as open-source Python libraries by 

Google and Facebook, deep learning tools became concretely available to a wider 

community, including chemical engineers, by greatly reducing their barrier to entry. 

The availability of these libraries together with an outstanding open community online and, 

above all, training on the theory of deep learning has given to traditional modelling 

researchers, who are familiar with statistics and coding, the opportunity to move quickly 

through the learning curve and take an active role in machine learning research. Open-source 

physics-based toolboxes (like OpenFOAM for computational fluid dynamics, LAMMPS for 

molecular dynamics, and the different codes for discrete element methods available) made 

chemical engineers developers, rather than simple users. Nowadays in machine learning their 

contribution can go beyond being the creators of the dataset or passive end-users of the 

simplest codes. 

The objective of the deep learning model has to be clear and bounded; in fact, the dataset 

creation and repartition, the training strategy, and the model architecture must be set in order 

to target the level of generalization required. Researchers should be aware of the level of 

generalization achieved by their model, which constitutes the basis of a study about reliability 

of the model, when it is employed in end-applications such as optimization or multiscale 

modelling. It has been shown for some type of machine learning tools, such as neural 

networks, that tailoring the model in terms of architecture, loss function, and input features to 

the prediction objective can improve their generalization efficacy and reduce significantly the 

amount of data required during training. This activity can be performed knowing in depth the 

physics of the problem, and a computer scientist cannot easily do that. We think that the 

research process cannot be cleanly split into chemical engineering competence and data 

science competence. 

4 Some good reasons why you should give it a try 

We list a few examples in which we think machine learning can have an impact on chemical 

engineering. These are also exciting areas to be working in the next decades.  
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 Molecular dynamics force fields. Ab initio quantum chemistry methods are 

extremely expensive, but very accurate. Moreover, in their different 

formulations, the codes implementing them do not scale as efficiently as classical 

molecular dynamics codes. It does, therefore, make sense to run an incredibly 

large number of small ab initio quantum chemistry calculations to train an 

artificial neural network and generate interatomic potentials. This allows the 

investigation of (very) large systems, for (very) long times, with classical 

molecular dynamics simulations, characterized however by quantum accuracy. 

These calculations would be inaccessible by ab initio methods. The total 

computational costs of producing the dataset for training and of the training 

itself are completely paid off by the very efficient scaling of classical molecular 

dynamics codes.[1, 2] 

 Multiphase CFD model closures. Similarly to what was just discussed, in the 

simulation of polydisperse multiphase systems with computational fluid 

dynamics codes, direct numerical simulations methods, with fully-resolved 

interfaces, are very accurate, but extremely computationally expensive. On the 

contrary, modelling approaches in which the interface is not resolved, either by 

using point-particles and Lagrangian tracking or Eulerian multi-fluid models, are 

extremely cheap and can be employed to investigate (very) large systems for 

(very) long times. Also in this case, direct numerical simulations can be used to 

formulate closures for less detailed simulations. One typical closure is for the 

drag force, for dense polydisperse multiphase systems, for which elements of the 

disperse phase (i.e., particles, droplets, or bubbles) interact indirectly with each 

other via three-way coupling. In a context in which it turns out to be very 

challenging to come up with an accurate analytical closure (i.e., for the drag 

force), even with available data from direct numerical simulations, the use of 

machine learning, to do the fitting, can be extremely promising.[3, 4] 

 Multiscale modelling. Most of the systems of interest in chemical 

engineering have an intrinsic multiscale nature. It is necessary to rely on 

constitutive equations to consider lower-scale phenomena. Constitutive 

equations are simplifications of the real microscale behaviour, and they fail 

outside of the range of their validity hypotheses. Detailed microscale simulations 

could be called by macroscale simulations in order to consider the actual 

complexity among scales; however, this approach can be unfeasible when 

physics-based models are computationally expensive. In this case, machine 

learning models can be trained on a dataset of microscale simulations to convey 

the information to a higher scale. This approach has been proposed for complex 

rheologies [5] and porous media problems.[6–8] In microscale simulations of 

porous media, the actual geometry of the porous structure is the boundary for 

the solution of the transport equations. Conversely, in macroscale models, 

geometrical parameters and source terms appear in the transport equations. 
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Those terms can be evaluated by constitutive equations, but when geometries 

become complex,[9] they fail, so microscale simulations are necessary for their 

evaluation. Since microscale simulations cannot be integrated directly into 

macroscale solvers, they can be employed to train a surrogate model, which 

becomes a feasible bridge between scales. 

 Identifying physics-based model parameters. In many cases in continuum 

models, the transport equations include terms not directly representing the 

physical reality of the phenomenon at the molecular scale, but an appropriately 

calibrated model: for example, in the case of population balance equations,[10] 

this happens for the parameters of the aggregation or breakage kernels. Some of 

the parameters are often only obtainable by repeated runs of CFD simulations 

and an iterative comparison with available experimental data. In this case, if one 

is able to train a reasonably accurate data-driven model which is able to give a 

fast response, it is possible to conduct this parameter optimization much faster, 

and create a finely-tuned CFD model which is coherent with the experimental 

ground truth. 

 Process optimization and control. The idea of “optimization by means of a 

fast and accurate model” is not exhausted in the application just mentioned of 

optimizing unknown parameters so to obtain a physically coherent model. When 

an accurate data-driven model of the process is available (such as a neural 

network surrogating the full simulation results,[11]) it is possible to use it to 

optimize the design of a process,[12, 13] be it its geometrical definition or the 

operating conditions at which the process performance is maximum. Moreover, 

the fast response model that has been used upstream in the design phase for the 

process can also be used downstream when the process is in place: the 

instantaneous predictions opening the way for large parameter-space 

optimization during the design of the process will also prove invaluable for its in-

line control, where an advanced model predictive control system can then be 

developed to smoothly and accurately keep a process inside the desired 

parameters of operation. 

 Simulation on the loop: Building a data-driven model with sparse 

experimental data. One of the key features of machine learning is the necessity 

of a dataset with which to train the model. Experimental points are usually 

limited to small campaigns of experiments and the operating conditions are 

usually explored in a rigid structured way. In this case, the dataset can be 

enriched by physics-based simulations, validated on the available experimental 

points. This validated computational tool allows for a flexible operating 

conditions exploration and the possibility to obtain a dataset wide enough for 

the generalization purposes of the machine learning model. Finally, the obtained 

data-driven model can be easily called to address new experimental campaigns. 
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 Artificial intelligence in the laboratory. Machine learning models can find 

employment in laboratory routines when there is a lack of fast models for 

decision-making. In this case, computationally expensive simulations can hardly 

be used, so fast response models can find application. The first works in this 

perspective are found in the energy storage field.[14] In the production process 

of electrodes for batteries, researchers and technicians must follow many steps, 

each of them characterized by different operating conditions to be set. Knowing 

in advance the quantitative effect of operating conditions on a final desired 

property can decrease the trial-and-error phase and the cost of the 

experiments.[15] 

5 Putting it all together: How to (carefully) move forward 

Given all of these examples, we cannot but think that the place where machine learning and 

chemical engineering modelling meet constitutes fertile ground for new and exciting 

research. This is true both for industrial research but also, increasingly, in the field of research 

for informing public policy about the management of collective spaces and resources: 

examples of the latter range from sustainable management of natural resources (dealing with 

groundwater availability, irrigation policies, forest management, etc.), [16, 17] resulting in 

policies for infrastructure funding allocation, to models dealing with predictions of the wider 

effects of global climate change.[18] 

That is not to say, however, that this new playground comes without pitfalls and risks—

especially for the very fast uptake that this kind of modelling is seeing both in the private and 

the public spheres. Science suffers, and has suffered for quite some time, from what has been 

called a reproducibility crisis. This crisis is due to many factors, two chief among these. First, 

a proliferation of the published scientific production which led to, and is caused by, an 

increased focus on producing research with new positive results with correspondingly less 

emphasis on reproducing already published results. Secondly, a researcher wanting to 

reproduce results is sometimes faced with an actual inability to do that: this is most often not 

due to these results being wrong or incorrectly presented, but instead it is in many cases due 

to the inaccessibility of the tools used to obtain these results. One example of this in 

computational modelling is the use of commercial or closed-source software, which is being 

partly counteracted by the now widespread effort in using open-source alternatives, together 

with the push for FAIR data practices (Findable, Accessible, Interoperable, Reusable). 

In this context, there is the possibility of data-driven modelling adding another (and, in our 

opinion, more subtle) layer of risk. While first-principles models, as implemented in current 

computer simulations, are able to trace a clear and explainable line from the solved equations 

to the results they produce, machine learning models are instead able to function as black 

boxes in which the relationships between the user inputs and the resulting outputs are less 

clear. Beyond the problem of interpretability and explainability of these (seemingly, as we 

will see) black box models, there is the even greater risk of bias in artificial intelligence 

algorithms. 
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Specifically, while wrong scientific models have always been dangerous, their ailment was 

almost always technical in nature, to be cured with technical tools (e.g.: careful statistical 

analysis, better models), whereas the additional layer of complexity in the construction of 

machine learning models opens the way for mistakes in the human conceptualization of the 

investigated problem, coming especially with the way the starting data is collected—scientific 

data that by its very nature gives the appearance of being, and which should be, objective. 

Since the new resurgence of the use of AI in the 2010s,[19] problems related to bias have 

been at the forefront of both the public discussion and the technical discussion around 

AI.[20–22] Misplaced analyses or an incorrect model construction resulting in a final model 

whose skewed results touch the dimensions of gender, language, race, and so on can have 

hugely damaging societal impacts in crystallizing or reinforcing existing biases. These 

failures have (most often) been promptly identified and pointed out, resulting in quick 

corrections. This is due both to the (highly justified) great level of global scrutiny around 

these topics, and also because biased models resulting in skewed, politically biased, or 

otherwise socially unpalatable results fail in an apparent manner. Or, to put it in another way, 

they fail in a way for which it is simpler for the layman to recognize they are looking at 

something wrong, making these kind of biases very serious but also somewhat easier to 

recognize. Herein lies the issue: we are, as a society and as individuals, more equipped to 

recognize when an algorithm violates our intuitive vision of equality, than when it would give 

us an equally damaging answer in the form of a very technical, but very impactful, public 

steering policy. 

That being said, it is our opinion that this is not reason enough to not engage with this 

exceedingly fascinating (and still evolving) technology: the use of machine learning in the 

physical sciences comes with a wealth of new possibilities, and as with all disruptive 

changes, they have to be managed with great responsibility, of which we should be conscious 

both in our work and in the evaluation of the work of others. Several steps in this direction 

have already been made, dealing for example with the problem of interpretability, revealing 

modern machine learning models to be not-so-black boxes after all: classical machine 

learning models have been explored,[23] as well as the results from convolutional neural 

networks,[24, 25] also building on frameworks developed in other disciplines, such as game 

theory.[26, 27] Then, careful data provenance has to be of course an ongoing effort on part of 

each research team, which has to be able to answer to the question of why their data looks the 

way it does, why it was collected that way, and what its limitations are. 

Chemical and materials engineers, if willing to contaminate their expertise with experience in 

computer science and in the art of artificial intelligence thinking, may surely be (and maybe 

should be) the stewards of an aware and responsible transition to an ever more digital 

practice and understanding of the scientific process. This will be no different than what we 

did as a community when scientists first delving in numerical simulation had to arm 

themselves with a deep knowledge of machine numerical analysis in addition to transport 

phenomena: the field of numerical verification flourished,[28, 29] and numerical modelling is 

now an invaluable tool at our disposal, notwithstanding its pitfalls and the risks in a careless 

use of its results. 
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We should approach deep learning and artificial intelligence much in the same way: with 

openness to new ideas, conscious care, and great enthusiasm. 
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