
Doctoral Dissertation
Doctoral Program in Computer and Control Enginering (36.th cycle)

Creativity injection into
AI-powered Multimedia

Storyboards

Bartolomeo Vacchetti
* * * * *

Supervisors
Prof. Tania Cerquitelli, Supervisor
Prof. Elena Baralis. Co-supervisor

Doctoral examination committee
Dr. Genoveva Vargas Solar, CNRS, France
Prof. Barbara Catania, Università di Genova, Italy
Prof. Maribel Acosta, Technische Universität München, Germany
Prof. Paolo Garza, Politecnico di Torino, Italy
Prof. Rossano Schifanella, Università di Torino, Italy

Politecnico di Torino
October 31, 2024

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Bartolomeo Vacchetti
Turin, October, 2024

www.creativecommons.org

Summary

In recent years, deep learning has revolutionized the field of computer vision,
enabling machines to interpret and understand the visual world with unprecedented
accuracy. This impressive technology empowers computers to recognize objects, un-
derstand scenes, and even generate realistic images and videos. The recent boost
impacted many fields, from autonomous vehicles and medical diagnostics to facial
recognition and photo and video editing. One area of video editing that so far
has not been investigated in depth is the operation of cutting and concatenating
multiple video shots to create a scene. This PhD thesis focuses on integrating ma-
chine learning and deep learning approaches to automate the task of concatenating
various shots into a meaningful scene. In other words we want to study and teach
algorithms what are video editing structures and elements. By video editing struc-
tures and elements, we mean the concatenation of shots used to represent a scene
or a specific moment in a movie. To complete this complex task we have focused
our efforts to address the following three objectives: (i) learn to extract editing
sequences from videos; (ii) analyze the correlation between the editing structures
and their corresponding videos; (iii) generate new editing patterns and storyboards.
A storyboard is a sequence of sketched frames used to pre-visualize a movie, es-
sentially serving as blueprints for the final video. In other words, it is the visual
representation of an editing sequence.

To address the different research objectives we have made the following contri-
butions: (i) created a shot size dataset and trained an algorithm to perform shot
size classification; (ii) developed a methodology to analyze the correlation between
the editing structures and their corresponding videos; (iii) developed a methodol-
ogy to generate images with the shot size constraint; (iv) developed a methodology
to convert textual data into editing sequences.

Shot size classification consists of labeling images into shot sizes. It is an im-
portant step because shots are the building blocks of editing sequences. Shots can
be categorized by their size based on how close the camera is to the subject. To
achieve this, we have created a shot-size dataset and tested different deep-learning
algorithms and machine-learning techniques to develop an effective methodology.
The results of our research efforts are a shot size dataset with 10 545 images and
an algorithm that has an overall accuracy of 80%, which rises up 99% with an

iii

assumption that doesn’t distort the model performance. These results show that
deep learning models are able to correctly classify images into shot classes. Since
we are able to work with basic video elements we can use these simple elements to
study more complex movie features and structures.

To analyze what type of correlation there is between editing sequences and
videos we have developed a novel methodology to analyze short sequences of shots.
Our approach was developed and tested on the Cinescale dataset, in which the
shots are characterized only by the shot size, and the Anatomy of Video Editing
(AVE) dataset, in which the shots are characterized by also other features. This
methodology groups similar sequences of shots based on shot size and other fea-
tures, exploiting their structural similarities to understand how they reflect in the
respective videos. On the Cinescale dataset we tested our approach in different
scenarios and analyzed in depth a 16 classes case, a classifier achieved 96% overall
accuracy in classifying the sequences labeled by our methodology. On the AVE
dataset the accuracy drops to 92.8%, but the classes considered are 50. These re-
sults show not only that there is a correlation between what is shown in the video
and the sequence of shots used to represent it, but also that deep learning models
can correctly identify these structures.

In order to generate new editing sequences and storyboards, we have divided
this complex operation into two separate tasks. The first one focuses on image
generation with the additional constraint of shot size, essentially recreating single
shots from prompts. We have evaluated our approach quantitatively using CLIP-T
and DINO scores, and qualitatively, with a survey on 55 subjects. The second task
involves creating sequences of shots that can be used to represent movie scenes.
Specifically we input textual prompt and as output our methodology gives a se-
quence of shots that can be used to represent it. Our methodology, which was
trained with sequences extracted from the Condensed Movie Dataset, achieved a
0.9280 average cosine similarity score on the training set and 0.8140 on the test
set. To sum it up, the first task focuses on recreating individual shots that com-
pose videos, while the second aims to recreate the editing structures that form the
overall video or storyboard.

iv

Acknowledgements

There are many people that supported me during these years and I would like
to thank them all. First of all, I would like to thank my Ph.D. supervisors, espe-
cially Tania Cerquitelli, without whom this whole experience would not have been
possible. Then I would like to thank my parents (Arianna and Marco) and their
beloved ones (Riccardo and Lisa), for always supporting (and enduring) me. I also
want to thank my siblings (Sisca, Sara, Artu), for always cheering me up without
even realizing it. Maybe it’s not my place to say but you are the ones that make
me proud the most. A special thank to Sarah and Emily for their support in the
beginning (Sarah) and at the end(Emily) of this experience. Without the both of
you it would have not been the same.

I also want to thank Professor Jean François Lalonde for hosting and guiding
me at Laval University in Quebec. A special thanks also to Akshaya Justine and
Yannick for their friendship and advice.

A special thanks goes also to Dawit Mureja Argaw, from KAIST, for his helpful
collaboration while working on the LEMMS methodology.

I also want to thank the SMARTDATA center and the DBDMG group for their
contribution to this doctorate.

Last but not least I want to thank all my friends and extended family. There
are too many of you to thank you personally, so I’m just going to do a list (sorry).
So Filo, Moga, Gusta, Chiara, Pliz, Flavio, Dadde, Lello, Lollo, Samiro, Ila, Nonno,
Nonna, Nonna Elda, Giovi, Pietro, Marghe, Otta, Cate, Ale, Ales, Paolo, Guido
and whoever else I forgot thanks.

vi

"E poi boh..."

Contents

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Context . 1
1.2 Main Achievements . 5

1.2.1 Creativity Injection into AI-powered multimedia Storyboards 5
1.2.2 Other research contributions 6

2 Shot Size Classification 9
2.1 Introduction . 9
2.2 Related Works . 10
2.3 Shot Size Classification: preliminary results 11

2.3.1 Dataset . 12
2.3.2 Methodology . 13
2.3.3 Results . 15
2.3.4 Discussion . 18

2.4 Enhanced Shot Size Classification 20
2.4.1 Dataset . 21
2.4.2 Methodology . 24
2.4.3 Results . 27
2.4.4 Discussion . 35

2.5 Chapter Conclusions . 36

3 Video Editing Pattern Analysis 37
3.1 Introduction . 37
3.2 Related Work . 39
3.3 Movielens . 41

3.3.1 Cinescale Dataset . 42
3.3.2 Methodology . 43
3.3.3 Experimental results . 45

viii

3.3.4 Discussion . 54
3.4 LEMMS . 54

3.4.1 Dataset: AVE to Sequenced AVE 54
3.4.2 LEMMS methodology . 57
3.4.3 Exsperimental Validation . 60
3.4.4 Discussion . 64

3.5 Chapter Conclusions . 65

4 Toward Automatic Storyboard Creation 67
4.1 Introduction . 67
4.2 Related Work . 68
4.3 Dreamshot . 69

4.3.1 Data preparation . 71
4.3.2 Methodology . 71
4.3.3 Results . 73
4.3.4 Discussion . 78

4.4 TEdit: Text to Editing . 80
4.4.1 Data . 81
4.4.2 Methodology . 81
4.4.3 Results . 85
4.4.4 Discussion . 93

4.5 Chapter Conclusions . 93

5 Conclusions 95

A Short Sequence generation from AVE 97
A.1 Introduction . 97
A.2 Dataset . 97
A.3 Methodology . 98
A.4 Results . 98
A.5 Discussion . 100

Bibliography 103

ix

List of Tables

2.1 VGG-16 Classification report . 16
2.2 MLP Classification report . 17
2.3 Generic CNN Classification report 17
2.4 number of shots and percentage per class. 22
2.5 Confusion Matrix of a VGG-16 trained on the Original Dataset.

reading it orizontally we can see how many of the samples were
correctly classified and how many where mistaken for other shots . 28

2.6 Confusion Matrix of a VGG-16 trained on the Segmented Dataset.
Reading it orizontally we can see how many of the samples were
correctly classified and how many where mistaken for other shots . 28

2.7 Confusion Matrix of a VGG-16 trained on the Hypercolumn Dataset.
Reading it orizontally we can see how many of the samples were
correctly classified and how many where mistaken for other shots . 28

2.8 Confusion Matrix of the MLP trained on the VGG-16’s predictions
on their training sets. Reading it orizontally we can see how many of
the samples were correctly classified and how many where mistaken
for other shots . 29

2.9 precision, recall and f-1 score of the MLP classifier 29
2.10 Comparison with VGG-16 and ResNet-50. 31
2.11 precision, recall and f-1 score of the scenario 1 32
2.12 Stacking learning variations. 33
2.13 precision, recall and f-1 score of the vit model 33
2.14 Confusion Matrix of a Vit trained on the Dataset. Reading it orizon-

tally we can see how many of the samples were correctly classified
and how many where mistaken for other shots 34

3.1 Performance of the MLP classifier with a different amount of classes
considered. 46

3.2 Precision, recall, and f1-score of the MLP classifier with 16 classes. . 48
3.3 Performance of the MLP classifier with a different amount of classes

considered. 49
3.4 Precision, recall and f1-score of the LSTM classifier with 32 classes 50
3.5 Shot Sizes . 55

x

3.6 Shot Subjects . 56
3.7 Editing paces: definition and cardinality. 57
3.8 Trend classes: composition and cardinality. 57
3.9 LSTM performance in different scenarios. 58
3.10 The different clusters identified after the first two clustering phases. 60
3.11 On the right are the clusters identified from the first two phases; on

the right are the final labels identified for those classes. 61
3.12 Total trainable parameters 357,450 61
3.13 Overall performance of the LSTM classifier on 50 classes. 62
4.1 The pararameters used for generation during testing 74
4.2 Results for the CLIP-T and DINO metrics on the 1500 pairs test. . 74
4.3 Results for the CLIP-T and DINO metrics on the ablation test. . . 75
4.4 Results collected from a survey conducted on 55 subjects. The score

are expressed as percentage over the total number of answers. . . . 76
4.5 precision, recall and f1-score of the Vision Transformer. 87
4.6 Confusion matrix of the Vision Transformer. 87

xi

List of Figures

1.1 Storyboard example . 3
1.2 Altered storyboard example . 3
2.1 Four shots considered in this preliminary study 13
2.2 Close up shot of an elderly woman 18
2.3 Close up shot of an elderly man. 19
2.4 Eight shots used . 22
2.5 Example of white balance operation 23
2.6 Example of image from Segmented dataset 24
2.7 Example of image from Hypercolumn dataset 25
2.8 Overall methodology . 25
2.9 On the left medium close up, on the right close up, in the center the

shot size is ambiguous . 35
3.1 People interacting with objects . 38
3.2 Shot reverse shot . 38
3.3 Eight shots used . 42
3.4 The two Movielens blocks . 44
3.5 Results of elbow graph and wards’method. 46
3.6 Average of the values contained in the sequences to represent them. 47
3.7 Character and environment presented together 52
3.8 Example of a sequence taken from class 11 with long shots and ex-

treme long shots. 52
3.9 Charachter character interaction . 53
3.10 Data preprocessing steps . 55
3.11 LEMMS methodology . 58
3.12 Precision, recall and f1-score of the LSTM on 50 classes 62
3.13 30 seconds sequence from "Star Trek: Insurrection". 63
3.14 30 seconds sequence from "Children of a Lesser God" 63
3.15 Sequence 1 . 64
3.16 Sequence 2 . 64
3.17 30 second sequence from "Pacific Rim" 65
4.1 Generated examples of shot sizes considered. 69
4.2 Methodology overview . 70

xii

4.3 Prompt: a high-quality close_shot picture of a woman holding a cup
of coffee in front of a brick building 73

4.4 Some examples of the generation of the same subject with the three
different trainings (close, medium, and long shot) with different levels
of α . 77

4.5 Image generation with shot constaint: baseline vs ours. 78
4.6 Example of a storyboard enhacement 79
4.7 Methodology . 80
4.8 Overall training process . 82
4.9 Scene description embedding extraction 83
4.10 Editing embedding extraction . 83
4.11 Video to sequence of frames . 84
4.12 From sequence of frames to sequence of shot sizes. 84
4.13 Sequence of shot embedding creation. 86
4.14 Shot icon representation . 89
4.15 Examples of reconstructed sequences, on top the reconstructed on

bottom the original. 90
4.16 Examples of reconstructed sequences. On top the reconstructed on

bottom the original. 91
4.17 Generated editing sequence with the prompt "Sarah bids farewell to

her sister" . 91
4.18 Generated editing sequence with the prompt "the two armies battle

each other in a final duel". 92
4.19 Generated editing sequence with the prompt "The hero and the an-

tagonist fight each other in a final duel". 93
4.20 Generated storyboard draft. 94
A.1 Overall distribution, blu dots represent the original distribution, red

dots the new one. 98
A.2 3D and 2D distribution of classes 0,1,2,3. 99
A.3 3D and 2D distribution of classes 4,5,6,7. 100

xiii

Chapter 1

Introduction

1.1 Context
Recently, deep learning has revolutionized the field of computer vision. As

a result, it enabled machines to interpret and understand the visual world with
unprecedented accuracy. The marriage of deep learning and computer vision has
paved the way for innovations across a multitude of applications—from autonomous
vehicles and medical diagnostics to facial recognition and photo and video editing.

At its core, deep learning in computer vision leverages neural networks with
multiple layers—hence the term "deep"—to learn hierarchical representations of
data. Convolutional Neural Networks (CNNs), a cornerstone of this approach,
have demonstrated exceptional prowess in tasks such as image classification, object
detection, and segmentation. These networks, which mimic the visual processing
mechanisms of the human brain, are able to capture intricate patterns and features
in images.

The evolution of vision models has seen significant milestones, from simple feed-
forward networks to advanced architectures like VGGs[70], ResNet [79], Efficient-
Net [81], and Vision Transformers (ViTs)[24]. Each new model has pushed the
boundaries of what is possible, achieving even more astonishing performance than
its predecessors. ResNet introduced the concept of residual connections, addressing
the problem of vanishing gradients in deep networks. EfficientNet optimized model
scaling by balancing network depth, width, and resolution. Vision Transformers
brought the attention mechanism from natural language processing to vision tasks,
enabling the model to focus on relevant parts of an image more effectively.

The rise of diffusion models represents another leap forward, with the ability
to generate photorealistic images and videos from textual inputs. These models
have opened new frontiers in content creation, allowing for the generation of highly
detailed and realistic visuals. However, one aspect that has not yet been thoroughly
investigated is the video editing process. Video editing, in this context, refers to
the process of cutting and concatenating single video clips with limited meaning

1

Introduction

into a cohesive and meaningful video. While current models excel at generating
content, the seamless integration of these capabilities into advanced video editing
workflows remains a promising area for future research and development.

This PhD thesis focuses on integrating machine learning and deep learning
to automate various tasks in video editing. To do so we analyze video editing
structures and their elements, briefly described below:

• video editing: time consuming process that combines multiple audio and
video sources to create a movie scene;

• scene: concatenation of different shots;

• shot: video captured by a camera, usually characterized by a shot size and
other features;

• shot size: class that represent the field of view of the camera;

• frame: still image extracted from a shot;

• storyboard: concatenation of sketches that represent a movie scene;

• sketch: more or less refined drawing of a single frame that represents the
whole shot;

• editing structure: layered structure with multiple different video and audio
channels that combine the different sources in the final video;

• editing sequence/pattern: concatenation of symbols, where each symbol
represent a different shot size, that represent the video;

.
Specifically we analyze the shots and their concatenation to study video editing.

Storyboards, which are sequences of sketched frames used to pre-visualize a movie,
effectively illustrate these structures. An example of a storyboard can be seen in
Figure 1.1.

Figure 1.1 shows a simple storyboard composed of six frames characterized by a
sketch. Each sketch represents what the video will show and how close the camera
has to be to the subject. While some frames have more meaning than others
together they give a much better idea of the final scene.

Storyboards can be more complicated and add additional information, however
every storyboard has to at least show a basic sketch of how the characters are
arranged. Since we have a sketch we have an indication of the shot size to use.
In other words, a storyboard can be thought of as a sequence of sketched shots.
More refined storyboards also include camera movements, character dialogues, real

2

1.1 – Context

Figure 1.1: Storyboard example

drawings instead of sketches, and so on. To show the power of editing and story-
boards let’s consider the following example. If we take the short storyboard shown
in Figure1.1 and we substitute a single frame we can significantly change the scene.
The original storyboard shows a playful guy who smiles while cooking. If we change
the first frame as shown in Figure 1.2 we have a creepy guy that poisons food while
smiling. Hence storyboards and their editing structures deeply impact the video
narrative.

Figure 1.2: Altered storyboard example

Hence, editing structures and their elements, the shots, are the main objects of
study of this thesis, since they can impact the mood and structure of a scene. In
order to study them, we have divided this complex task into the three following
research objectives to highlight and gain knowledge on different aspects of these
structures and their elements;

• Challenge 1: Extract and characterize editing sequences from videos. This

3

Introduction

step is important because the better the characterization of the sequences,
the better the data modeling that can be achieved in subsequent steps;

• Challenge 2: Study the correlation between the editing sequences and the
corresponding videos. In other words we want to see if similar editing se-
quences have similar videos;

• Challenge 3: Generate new editing patterns and storyboards. Leveraging
some of the techniques and algorithms previously seen and new models we
want to generate new editing sequences and storyboards;

.
To address these challenges, we have made the following contributions.
Main contributions addressing Challenge 1 In order to extract editing

sequences from videos we focused on the shot size classification, which is the task
of labeling images according to the shot size used. By being able to label frames
into shot sizes we can represent a movie scene as a sequence of shot sizes. To
address this task we have created a new dataset with 10,545 images divided into
8 classes to train and finetune models. Machine [15] [19] [33] and deep learning
[70] [6] [59] models have been used in the past to classify the shot size or other
movie features [33] in the past, but usually the classes taken into account are
less. We have developed a methodology that combines pretrained convolutional
neural networks and ensemble learning that reached an overall accuracy of 77%.
Additionally our approach reduces the severity of their predictions errors. In other
words the majority of prediction errors are made between similar classes. When
Vision Transformers became available we tested them reaching an overall accuracy
of 81%. The results of this research are described in chapter 2.

Main contributions addressing Challenge 2 In order to analyze the corre-
lation between editing sequences and videos we have developed a clustering based
methodology to group short editing sequences based on their similarities. We tested
this methodology on 2 datasets: Cinescale and Anatomy of Video Editing dataset.
After grouping the editing sequences we trained a classifier to label unseen se-
quences and we analyze its performance and results. Some early studies [50] [78]
[8] on the topic were done in the past, however the majority of studies, such as [69]
[61] [91], focus on different aspects of video editing, while the editing sequences,
the concatenations of shots, have not been investigated in depth. Still many movie
critics highlighted the central role of this process in the creation of a video. The
research on this topic is presented in chapter 3.

Main contributions addressing Challenge 3 To generate new editing pat-
terns and storyboards, due to the complexity of the task, we have divided our efforts
in two directions. On the one hand, we developed a methodology that combines
Stable Diffusion with novel fine-tunig techniques and tools [64] [35] to generate im-
ages with the shot size constraint. On the other hand, we focused on developing a

4

1.2 – Main Achievements

methodology to generate new editing sequences that can be represented as story-
boards, given some textual descriptions. This approach relies on textual and video
data in conjunction with large language models, vision transformers, sequence to
sequence models and autoencoders. This last contribution motivated the title of
the thesis, "Creativity Injection into AI-powered Multimedia Storyboards". The
creativity injection comes from the users that have to generate prompts describing
possible movie scenes, while the Ai powered multimedia storyboard is the output
of TEdit, our methodology to recreate editing sequences. In the wider context of
text to image and video generation [51] [63] [71], some studies focused on similar
topics, but either not considering features like the shot size [45], or implementing
solid but costly solutions [60]. Instead we propose solutions that rely on light or
pretrained models, reducing the computational effort.

The research is presented in Chapter 4.
Finally in chapter 5 we present the general conclusions.
To sum it up, the contributions of this thesis project are the following:
• a new shot size dataset with 10,545 images divided into 8 classes and a fine-

tuned algorithm able to perform shot size classification;

• a new methodology to analyze the correlation between the editing structures
and their corresponding videos;

• a new methodology to generate images from text with the constraint of the
shot size;

• a new methodology to create editing sequences from textual directions.

1.2 Main Achievements
In this section, we present the main achievements obtained during the doctorate.

Overall, I contributed to 10 research papers: 2 journal papers, 7 conference papers
on different topics, and 1 paper recently submitted to the IEEE Transactions on
Knowledge and Data Engineering (TKDE) (whose pre-print is available on ArXive).

1.2.1 Creativity Injection into AI-powered multimedia Sto-
ryboards

shot size classification

The research on the shot size classification resulted in two publications. In
[84], published in the proceedings of the Conference on Computers, Software, and
Applications (COMPSAC), we presented an early stage of our methodology and
some preliminary results. Later, we published [82] the fully developed methodology
on a much more complex scenario in the ELECTRONICS journal.

5

Introduction

Editing sequences analysis

The research efforts devoted to the analysis of short movie sequences resulted
in two publications. The first version of our methodology was presented at the
Creative Video Editing and Understanding (CVEU) workshop [83] at the European
Conference on Computer Vision (ECCV) 2022. I met Dawit Mureja Argaw, from
KAIST, one of the paper’s authors presenting the Anatomy of Video Editing (AVE)
dataset[3]. We have published a follow-up work with him in which we adapted the
methodology to his dataset. The results of our research efforts were presented at
the CVEU workshop at the International Conference on Computer Vision (ICCV)
2023 the following year[85].

Towards storyboard recreation

The results obtained in the context of shot recreation with the shot size as an
additional constraint were presented at the Advances in Databases and Information
Systems (ADBIS) workshop at the International Conference on Extending Database
Technology (ICDT/EDBT 2024) and published in [25]. As for results concerning
the generation of shot sequences we are currently working on the paper to submit
it at Journal of Imaging.

Research period abroad

During ECCV 2022 I also met professor Jean-François Lalonde, who later hosted
me at Laval University in Quebec, from April 2023 up to July 2023. During these
4 months, I carried out research activities within the Professor Lalonde’s computer
vision group. During this period, we started a collaboration, presented in the
appendix, in which we studied editing sequence generation. Even if this approach
was later discarded in favor of TEdit, some of TEdit’s intuitions and key concepts
come from this research.

1.2.2 Other research contributions
Concept Drift

In this context, we have worked toward the creation of a framework that can
detect concept drift. Concept drift refers to the phenomenon where the data’s
statistical properties change over time in unforeseen ways. This can cause the pre-
dictive performance of the model to degrade as the model becomes less accurate
and relevant. Hence it is important to detect when the data properties change too
much. Our drift detection framework, DRIFTLENS, is unsupervised and works
with deep-learning models Rather than directly analyzing the data, our methodol-
ogy focuses on the data embedding representation extracted from deep models. To

6

1.2 – Main Achievements

see if the newly arrived data is drifting, we see how the model’s internal representa-
tion changes with respect to the usual distribution. Additionally, DRIFTLENS is
able to characterize the drift, showing which labels were the most impacted. Since
our framework works with internal data representation, it can work with different
unstructured data types. We tested it on text, images, and audio data with an ex-
tensive experimental session in which we compared our framework with other drift
detection algorithms, achieving or outperforming Sota performance in all scenarios.

On this topic, we have published a demo paper at the International Conference
on Extending Database Technology (EDBT/ICDT) 2024, presenting a tool for drift
detection based on our methodology. Furthermore, we recently submitted an article
to the IEEE Transactions on Knowledge and Data Engineering (TKDE), whose
pre-print is available on Arvix [29].

Applied Machine Learning

This research branch started with a collaboration with Iveco Group. The project
started back in 2021, when Iveco was part of CNH. The initial idea was to develop a
machine learning methodology to predict the execution time of simulations launched
on an HPC cluster. In order to train a model to predict the running time, we have
characterized the simulations in terms of different features, some generic to every
simulation, like the number of CPUs, and others specific to the launched simulation
itself. To make the prediction we have created a hierarchical structure of XGBoost
classifiers. Due to the encouraging results obtained in the first project a follow up
project started with Iveco Group and Doit Systems in late 2022.

In this second phase, in addition to increasing the number of past simulations
under analysis, we have integrated the prediction time algorithm in the Altair user
interface to allow users to estimate the running time before launching a simula-
tion. Additionally we have added a drift module in order to detect shifts in the
data distribution and eventually retrain the model if needed. The drift solution
adopted comes from the studies made on the subject on other research projects. In
[11], presented at the Data Analytics solution for Real Life Applications (DARLI-
AP) workshop at the International Conference on Extending Database Technology
(ICDT/EDBT) 2022, we introduce the methodology developed in the first project.
The results of the second collaboration were presented at the International Confer-
ence on Control, Automation and Diagnosis (ICCAD) 2024 [86].

GINN: Gender Inclusion Neural Network

Due to many factors related mainly to gender biases or unawareness of the
problem, many data collection systems are designed with a binary understanding
of gender, typically offering only "male" and "female" options. This design inher-
ently excludes individuals who do not identify with the male-female dichotomy.

7

Introduction

Consequently, the non-binary community is underrepresented or not considered at
all. The underrepresentation of non-binary individuals in data collection leads to
gaps in research and the development of policies and services. To address this is-
sue, we have focused our research efforts on developing a methodology to counter
the current oversimplification of gender concepts in data-driven systems. To this
end, we developed GINN: Gender Inclusion Neural Network, our initial attempt to
create an equitable neural network that goes beyond the binary concept of gender
and treats it as a multiclass context, including individuals whose gender identity
does not conform to the binary male/female spectrum. To highlight the limitations
of the current method, we have performed a comparative analysis of several fine-
tuned neural network models. To further analyze our results we have integrated
explainable AI techniques. The results of our research were presented at the 2023
IEEE International Conference on Big Data [9].

ESCAPE: a self-tuning framework to analyze large text data collections

The number and diversity of large scientific datasets have been growing steadily
in recent years. Analyzing these datasets is not a trivial task, as numerous al-
gorithms can handle large datasets, but each requires specific parameter settings.
Additionally, larger datasets come with increased complexity, necessitating the de-
velopment of innovative, scalable, and parameter-free solutions. In this research
project, we have collaborated to create a self-tuning framework to analyze large
text data collections. The developed framework, ESCAPE (enhanced self-tuning
characterization of document collections after parameter evaluation), integrates two
solutions for document clustering and topic modeling: the joint approach and the
probabilistic approach. In both methods, specialized self-optimization strategies
have been implemented to configure the algorithm parameters. Additionally, novel
visualization techniques and quality metrics have been incorporated to evaluate
both approaches’ performance and help domain experts interpret the discovered
knowledge. Both methods can accurately identify meaningful partitions of a docu-
ment corpus by grouping documents according to topics.

The results of this research were published in the Applied Sciences journal [23].

8

Chapter 2

Shot Size Classification

2.1 Introduction
Shot classification is the task of labeling video and image data, such as movie

frames, into shot categories. The shot can be defined by one or more attributes,
among which there is the shot size. The shot size is determined by the portion of
the subject and of the environment shown in the field of view of the camera. This
type of classification can be more or less refined, with a varying number of classes.
In addition to the shot size other features, like camera movements or the subject
in the scene, can be taken into account to further characterize the data.

In the context of editing structures and storyboards shot constitute the building
blocks of a video. The choice of a shot is not random and directors prefer a certain
shot with respect to another according to what they want to show and how much
they want the viewer to empathize with the subject in the scene [8]. Hence this
type of classification can be used to gain ulterior knowledge on video structures.

Automating this task brings numerous advantages, spanning various sub-fields
of the creative industry. Analyzing the types of shots used provides valuable insights
for film analysis, encompassing both stylistic and narrative elements [6] [66]. For
instance, in [78], the authors conduct an automatic authorship attribution of films
by examining two features: recording time and cinematographic shot class. This
approach reveals intriguing differences in the editing styles of various directors.

Shot size classification can also be used in conjunction with other techniques
and algorithms. For instance it can be used to gain knowledge on video structures
(see Chapter 3 and 4) or add more control on prompts for text to image tasks
(Chapter 4).

In the context of image classification, this task is slightly more challenging
than typical image classification because it involves classifying the style of the
image rather than its subject. In other words, the classification is based on how
the elements within the image are arranged and presented, rather than just the
subjects themselves. This chapter presents the research done in the context of shot

9

Shot Size Classification

size classification. In the first part of this chapter we will give an overview of other
studies conducted in this field and we will briefly present a preliminary study with
4 shot size classes using machine and deep learning models. Starting from the
preliminary study we have then developed a more complex methodology to address
shot size classification in a 8 class scenario, which will be shown in the second part
of this chapter. The complete methodology combines predictions from different
convolutional neural networks (CNNs) through stacking learning. One CNN makes
the prediction on the original image while other two model make prediction on
altaration of the same image. Each image alteration focuses on different features.

2.2 Related Works
Once a relatively small branch of research, as new computer vision models and

algorithms were introduced, also in this sub-field of image classification there have
been significant improvements.

One of the first studies on the topic is [15]. In this study the authors gathered
3000 images divided in the following shot types: long shots, medium shots and close
ups. However, instead of classifying the images directly they extracted 5 features for
every image and then fed these features to two different models: Decision Trees and
Support Vector Machine. The features that they extracted were the following: 2D
scene geometric composition, frame color, intensity properties, motion distribution
and spectral amplitude. A similar study with focus on new shots was proposed a
few years later in [77] by the same team. An interesting approach was proposed
in [19]. Here using the size of the subjects head and its position in relation to the
rest of the image as discriminants the images are classified into the following seven
shot types: extreme long shot, long shot, medium long shot, medium shot, medium
close up, close up and extreme close up.

In [33] the authors introduce a nonparametric camera motion descriptor com-
bined with support vector machine classifier for video shot classification. Instead of
characterizing the shots by their size, they classify various camera motion patterns
as static, tilt, pan or zoom. Other studies that focus on different features other than
the shot size are [89] [12]. Like in the previous study also in [12] the authors focus
on camera motion features but for a different purpose. Specifically they present a
method to represent video shots based on camera motion for complex event recog-
nition. For every shot the method generates time series features that are then
used to train SVM classifiers. In [89] the authors explore motion-based indexing in
films by developing a taxonomy for film directing semantics. Using a novel Markov
random field-based motion segmentation algorithm with edge occlusion reasoning,
they demonstrate its success by classifying shots from Hollywood movies according
to the proposed taxonomy.

10

2.3 – Shot Size Classification: preliminary results

More recent works, like [7] [67] [84] [66] focus on shot size classification by re-
lying on convolutional neural networks (CNN) [70] to predict the shot size of an
image. With respect to previous studies there are usually more shot classes con-
sidered or extra features, like camera movements [33]. In [6] the authors improve
the performance of a resnet-50 model in classyfying shot sizes into three classes,
close up, medium shot and long shot, by integrating semantic segmentation as image
preprocessing step. In another study [59] shots are classified based on the camera
movement and the following shots sizes: long shot, full shot, medium shot, close-up
and extreme close-up. In order to do so they propose SGNet, a learning frame-
work for shot type recognition. SGNet utilizes separate streams for subject and
background guidance, enhancing accuracy in classifying scale and movement types.
In addition to the new framework they introduce MovieShots, a large dataset of
46K shots from 7K movie trailers with annotations. In [37] the authors present
MovieNet, a dataset intended to address movie understanding. The dataset can be
used to address different tasks, among which there is the shot size classification.
It is a comprehensive dataset designed for research in video understanding that
provides a rich collection of data that includes not only raw video clips but also
detailed annotations and metadata. This dataset is aimed at facilitating various
tasks such as scene recognition, action detection and character identification.

MovieNet and MovieShots are not the only movie dataset that are available.
In the last years a certain variety of movie dataset have been released to address
different tasks. Some of these datasets are for natural language processing tasks,
like IMSDB, a dataset of movie scripts [42], and IMDB, a dataset of movie metadata
used for sentiment analysis [14]. Other datasets instead are intended for computer
vision tasks, like Cinescale [65], Anatomy of Video Editing Dataset (AVE)[3] or
Movieshots[59]. Then there are those dataset that can be used for both fields or
in a multimodal context, like the Condensed Movie Dataset [5] and MovieNet[37].
Unfortunately some of these dataset were released during publication or after our
research on the shot size classification was conducted, however they were used
for other research tasks. Hence they will be analyzed more in depth later. Our
methodology is able to handle a more complex scenarios compared to most of these
studies that take into cosideration fewer shot size classes. In addition thanks to the
image alterations created we are able to reduce the severity of the predition errors,
sice they are made among similar classes.

2.3 Shot Size Classification: preliminary results
This first research effort resulted in a data-driven methodology to automatically

classify video frames and images into shots through a supervised model in conjunc-
tion with a visual explanator to analyze more in depth the model’s predictions.

Among various supervised models, convolutional neural networks (CNNs) excel

11

Shot Size Classification

in analyzing unstructured data like images and videos by capturing essential prop-
erties. CNNs have achieved outstanding accuracy in large-scale image and video
recognition tasks, particularly with deep architectures [70]. Despite their success,
practical application of CNNs is often hindered by their opaque internal workings
and the substantial data requirements for training precise models.

To address these issues, we opted to fine-tune a VGG-16 model [70] pre-trained
on ImageNet, a deep convolutional neural network developed by the Visual Geom-
etry Group of Oxford. By fine-tuning the model on our data we are able to keep
what the model has previously learned in pattern recognition. To gain more insight
on the model’s predictions we have used a local visual explanation tool, LIME [62],
which clarifies the model’s decision-making process.

Our approach was evaluated through various experiments, modifying dataset
properties and comparing performance against existing literature. We conducted
tests on two datasets containing identical images, differing only in grayscale versus
RGB profiles, to assess color’s impact on VGG-16’s performance. Comparisons
with state-of-the-art methodologies affirm the effectiveness of our fine-tuned VGG-
16 model for this specific classification tasks.

In this phase work we focused on the following 4 shot size classes: close up, half
torso, half figure and full figure. Instead of considering a classic scenario with just
close ups, medium shots and long shots, already addressed in other research(see
related works), we have chosen these types of shots because they all focus on the
human figure and hence present a harder and unexplored scenario to classify.

2.3.1 Dataset
The initial dataset consisted of 1 500 images, that with data augmentation

became 3 000. The data augmentation performed was a 180 flip on the vertical
ax, to mirror the images. More sophisticated techniques like cropping cannot be
applied, due to the similarity of the classes. If we crop a half torso it could turn
into a close up. The final dataset had 750 full figures, 744 half figures, 758 half
torsos and 750 close ups.

The 4 classes considered in this study can be described as follows:

• Full Figure(FF): a shot in which the human figure is shown entirely and
occupies the whole screen in height

• Half Figure (HF): a shot in which the subject is shown from the waist above.

• Half Torso (HT): a shot in which the human figure is shown from the upper
chest to the head

• Close Up (CU): a shot in which the subject is shown from the shoulders to
the head

12

2.3 – Shot Size Classification: preliminary results

Figure 2.1: Four shots considered in this preliminary study

The original dataset was built by integrating images from multiple sources. The
primary source, from which we gathered 56% of the total amount of samples, were
video frames downloaded from the Internet. The remaining images were photos
taken by amateur(15.67% of the total) and professional photographers (28.33% of
the total). The images had a resolution of 160 x 90 pixels to have an aspect ratio
of 16:9. This specific format was chosen as is it the most common one, for both
images and videos. Additionally other aspect ratios can be converted into the 16:9
without altering the image too much.

2.3.2 Methodology
Due to our limited dataset of 3000 samples, we opted to leverage a pre-trained

model and fine-tune it. Fine-tuning allows us to utilize the knowledge gained by
the model on a different dataset by training specific parts of the model on our
data. This approach enables us to exploit the model’s previous knowledge to solve
a different task effectively. In our case we have used a VGG-16 trained on the
Imagenet dataset.

Model

The VGG-16 is a convolutional neural network architecture [70, 80, 79] proposed
by the Visual Geometry Group (VGG) at the University of Oxford. It is character-
ized by its deep structure, consisting of 16 convolutional and fully connected layers.
VGG-16 is known for its simplicity and effectiveness in image recognition tasks. It
achieved state-of-the-art performance on the ImageNet[21] dataset in 2014, and its
architecture has been widely adopted as a base model in various computer vision
applications and transfer learning scenarios.

Fine-tuninig

Fine-tuning is a transfer learning technique in machine learning, particularly in
deep learning, where a pretrained model is further trained on a new, often smaller,
dataset to adapt it to a specific task. In our case the model was pre-trained on
ImageNet.

13

Shot Size Classification

The process began by replacing the fully connected layers, responsible for clas-
sification, at the end of the network with new ones. In this way we retain the
knowledge from the earlier dataset within the remaining convolutional and pooling
layers, while the new fully connected layers have to be trained. Before training
on the new dataset, some of the old layers were frozen to preserve their learned
information, while others were left unfrozen. During training, only the unfrozen
convolutional layers and the new fully connected layers adjusted their weights via
backpropagation, enabling the model to recognize both simple and complex pat-
terns specific to the new images. The replacement of the old fully connected layers
and the partial retraining of some convolutional layers was necessary because the
original VGG-16 model trained on ImageNet was not tailored for shot size classifi-
cation.

Classification phase

After fine-tuning, the updated VGG-16 model demonstrates its capability to
classify new images into various shot sizes. As it processes new images, the convo-
lutional layers of the VGG-16 scan across the input, generating feature maps that
are then passed to subsequent layers, which could include additional convolutional
or pooling layers. The pooling layers aggregate the most significant values from
each feature map and pass them forward in the network hierarchy. To manage the
scale and complexity of the data, a nonlinear activation function is applied before
pooling to regulate the values within a manageable range and prevent potential
evaluation issues.

Once processed through the convolutional and pooling layers, the data is flat-
tened into a one-dimensional array by the flatten layer. This transformation pre-
pares the data for the classification performed by the fully connected layers. The
output from these layers is then directed to the final layer, the output layer, which
makes the ultimate predictions based on the model’s classification criteria. This
approach ensures that the fine-tuned VGG-16 model not only adapts to new images
efficiently but also integrates learned patterns effectively to classify images into shot
sizes accurately.

Visual explanation

Then as now, machine and deep learning models make a lot of decisions that can
be critical and have a social impact, using millions of parameters that are, by their
own nature, black-boxes [43]. The CNNs capacity of making decisions exploiting
visual information is more and more exploited, especially with the consolidation
of architectures that are more complex but also more stable, such as the VGG-
16. In order to provide a visual explanation to the user we decided to use LIME,
although other methodologies, such as EBANO [87] could have been exploited.

14

2.3 – Shot Size Classification: preliminary results

LIME [62], in addition to being an easy and efficient approach, can work with both
structured and unstructured data and it is able to, given a predictive model, produce
a local explanation of a prediction. In order to compute the local explanation, a
local approximation of the prediction is performed by LIME. Such approximation
is performed by training a local model, which is simpler and more interpretable
compared to the original, around little variations of the input data. Thanks to
LIME[62],it is possible to show which parts of an image the classifier takes into
account while making predictions.

2.3.3 Results
We tested our methodology against other classical machine and deep learning

models. First we show the technical details then we move to the different experi-
ments and scenarios.

Technical Details

The VGG-16 architecture conventionally comprises five blocks, each containing
two or three convolutional layers followed by a pooling layer. Beyond these blocks,
three fully connected layers handle classification, with the final layer employing
softmax activation for predictions. In our study, we utilized a fine-tuned VGG-16
model, where the last convolutional block and subsequent fully connected layers
were retrained on our specific dataset.

To assess the efficacy of our approach, we employed Stratified K-Fold Cross
Validation (with K=10) and evaluated several metrics: accuracy, precision, recall,
and f1-score. Accuracy provides an overall measure of model performance, while
precision and recall are particularly valuable for assessing performance on individ-
ual classes in datasets with uneven class distributions. Precision is a metric that
measures the accuracy of positive predictions made by a model. It is calculated as
the ratio of true positive predictions to the sum of true positives and false positives.
In other words, precision assesses how many of the predicted positive instances are
actually positive. Recall on the other hand measures the completeness of positive
predictions made by a model. It is calculated as the ratio of true positive predic-
tions to the sum of true positives and false negatives. Recall assesses how many of
the actual positive instances are correctly predicted by the model. The F1 score,
or F-measure, is the harmonic mean of precision and recall. It provides a single
metric that balances both precision and recall, making it a useful overall measure
of a model’s performance when dealing with imbalanced datasets or when both
precision and recall are important.

The computer used to run the simulations was a MacBook Pro from 2018 with
a 2,6 GHz Intel Core i7 6 core processor.

15

Shot Size Classification

Comparisons with state-of-the-art approaches

Here we discuss the comparison of the proposed methodology with other types of
state-of-the-art networks to better evaluate the quality of our fine-tuned VGG-16.
To see if the fine-tuning approach is effective we tested it against two state-of-the art
models: a multilayer perceptron network MLP and a generic CNN, with a simpler
architecture compared to the VGG-16. Since the VGG-16 was fine-tuned on the
dataset, while previously it was trained on imagenet it could use the previously
learned knowledge to improve its performance. This leads to a sensible difference
in terms of performance with respect to the other two algorithms.

CNN) Convolutional Neural Networks are a class of deep neural networks, very
used until the rise of vision transformers, most commonly used to perform tasks
like image classification , object detection and image segmentation. It is a type of
deep learning model specifically designed for processing and analyzing visual data.
CNNs are highly effective at recognizing patterns and features in images due to
their architecture that concatenates convolutional and pooling layers.

MLP)Multilayer Perceptron is a type of feedforward artificial neural network
designed to map sets of input data onto appropriate outputs. It consists of three
or more layers of nodes: an input layer, one or more hidden layers, and an out-
put layer. Each node in one layer connects with a certain weight to every node
in the subsequent layer, and the nodes in each layer are fully connected to the
nodes in the adjacent layers. MLPs are considered one of the simplest forms of
neural networks, yet they are powerful for a variety of classification and regression
tasks. However while they achieve good performance in capturing complex rela-
tionships in data they struggle while handling high-dimensional data like images
spatial understanding. We will see that this observation is true also in this context.

Table 2.1: VGG-16 Classification report

precision recall f1-score support
Full Figure 0.90 0.84 0.87 75
Half Figure 0.82 0.85 0.83 74
Half Torso 0.77 0.76 0.76 76
Close Up 0.81 0.81 0.81 75
Accuracy 0.81 300

Macro Avg 0.82 0.81 0.81 300
Weighted Avg 0.82 0.81 0.81 300

Both the MLP and CNN models underwent training using a cross-validation
technique with K=50 folds. However, each fold of the CNN was trained for 30
epochs, whereas the MLP was trained for 60 epochs.

A first comparison between VGG-16 MLP and CNN first focuses on accuracy,

16

2.3 – Shot Size Classification: preliminary results

Table 2.2: MLP Classification report

precision recall f1-score support
Full Figure 0.60 0.63 0.61 75
Half Figure 0.66 0.57 0.61 75
Half Torso 0.48 0.48 0.48 74
Close Up 0.57 0.54 0.55 76
Accuracy 0.55 300

Macro Avg 0.58 0.55 0.56 300
Weighted Avg 0.58 0.55 0.56 300

Table 2.3: Generic CNN Classification report

precision recall f1-score support
Full Figure 0.74 0.75 0.75 75
Half Figure 0.71 0.62 0.66 75
Half Torso 0.55 0.59 0.57 74
Close Up 0.68 0.67 0.68 76
Accuracy 0.65 300

Macro Avg 0.67 0.65 0.66 300
Weighted Avg 0.67 0.65 0.66 300

where VGG-16 demonstrates superior performance. The training accuracy of VGG-
16 stabilizes between 95% and 100% before the twentieth epoch, whereas MLP
reaches around 85% after 60 epochs and CNN similar performances to the VGG
after 25 epochs. The Test accuracies for the three models are lower than their
respective training accuracies, meaning that all the models overfit, with VGG-16
that has an overall accuracy of 81.29%, the MLP model that has only 55.43% and
the CNN that achieves 65.44%.

Additionally, a comparison of the loss function trends on the training set reveals
significant differences between the models. All models rely on the categorical cross-
entropy as their loss function. The mean training loss for VGG-16 and the CNN
model is slightly below 0.6, while MLP averages around 1.6.

A detailed analysis using classification reports (refer to Table 2.1 for VGG-16
and Table 2.2 MLP and Table 2.3) further confirms VGG-16’s superior performance
across various metrics.

RGB vs BW images

Given that colors contribute but are not definitive in discerning whether an
image depicts a "close-up" or another perspective, we wanted to see how their
absence impacted the model performance. To explore this aspect, we have created

17

Shot Size Classification

a black and white version of our dataset by desaturating the images in it.
In our experiments, we observed that using DatasetRGB, the original dataset,

led to a consistent increase in accuracy for VGG-16 compared to DatasetBW, the
dataset with desaturated images. Without colors the model overall accuracy in
classifying images into shots drops from 81.29% to 74.56%. This decrease in per-
formance shows that for the model the color information is relevant in order to
classify an image into a shot size class. This can be explained with the richer con-
tent provided by colored images compared to their grayscale counterparts. This
also suggests potential gaps in the model knowledge, since ideally it should be able
to discern shot sizes irrespective of color cues.

(a) Original (b) LIME’s highlighted patterns

Figure 2.2: Close up shot of an elderly woman

Local Explanation

To further test our theory concerning the model incompleteness we used a local
explanator to see which part of the images influenced the model the most in pre-
dicting its label. For example, Figures 2.2 and 2.3 show which pixels are considered
relevant by the VGG-16 in order to make the prediction on DatasetRGB. If the pix-
els are gray they are considered not important, otherwise they are relevant. Figure
2.3a is an close up correctly classified. As the reader can see in 2.3b the network
considered some useful elements, such as the nose, the hair and the mouth, and
some useless ones, such as the wall behind. Figure 2.2a shows a close up classified
as a full figure. In this case the VGG-16 misclassified the image, it did not consider
at all the face of the old woman, while it considered the landscape and the dead
tree, that vaguely resembles a human figure, in the background, as shown in 2.2b.

2.3.4 Discussion
The VGG-16 definitely outperformed other methodologies, with no surprises,

since it could exploit previously learned patterns. However from the black and

18

2.3 – Shot Size Classification: preliminary results

(a) Caption 1 (b) Caption 2

Figure 2.3: Close up shot of an elderly man.

19

Shot Size Classification

white test and the local explanator emerges that its knowledge is far from complete
in order to correctly classify the images. Additionally the LIME visual explanator
showed that while in some cases the identified pattern makes sense in other contexts
the patterns that lead the model to classify an image are not meaningful or lead to
misclassification errors. However, overall the performance of the fine-tuned VGG-
16 is satisfying considering the size of the dataset and the similarity of the shot size
classes considered.

To compensate for the small dataset size and the small amount of class con-
sidered we have expanded the dataset and we have developed a more complex
methodology to achieve even better performance. This research work which will be
described in the next section.

2.4 Enhanced Shot Size Classification
Encouraged by the preliminary results described in the previous section, we in-

creased the number of classes from four to eight. The whole set of shot size classes
is shown in 2.4. Additionally the dataset size has been increased from the initial
size of 1 500 images up to 10 545 images. Due to the increased complexity of the
problem, just fine-tuning a VGG-16 is not enough to obtain satisfying performance.
One common approach to increase performance is to implement data augmenta-
tion techniques. However traditional data augmentation techniques, like cropping
in this context can be counterproductive, as for instance it would turn a close up
into an extreme close up. Hence, instead of adopting regular data augmentation
techniques, we augmented the data by exploiting other neural networks. By doing
so we were able to create two alterations of the original dataset. The image alter-
ations were obtained taking into account the following considerations. As shown
in [27] ImageNet pre-trained CNNs are biased toward recognizing texture patterns
rather than edge patterns. Hence we tried to give more emphasis on the edge pat-
terns without excluding the knowledge from texture patterns. To do so we have
created two variations of images, one that emphasized the texture patterns and one
that focused on the edge patterns. Then we finetuned three separated VGG-16 on
the different types of images: normal, edge, texture. After fine-tuning the model
we combine their prediction into a final one using stacking learning technique [54].
By doing so we were able to improve the overall accuracy up to. In addition the
misclassified samples belong to similar classes, while before the errors were noisier.

The main contribution of this research are the following:

1. a two-stage methodology to effectively label images into shots. The method-
ology relies on an ensemble of VGG-16 and stacking learning to make the pre-
dictions, where each model receives a different type of image (normal, edge
and texture) and a stacking learning strategy to correctly classify different
classes of movie shots.

20

2.4 – Enhanced Shot Size Classification

2. An intensive experimental session to validate our approach with a large amount
of real movie frames belonging to 8 classes to show the effectiveness of our
methodology in performing shot size classification.

3. The creation of a new large dataset of 10,545 images divided into 8 shot sizes
classes.

2.4.1 Dataset
Here we take into consideration a more refined classification, with 8 shot size

classes, that range from extreme close up to long shot, shown in figure 2.4. The
complete list is:

• Long Shot (LS): a shot in which the human figure can be absent or occupy
less than a third of the screen height.

• Medium Shot (MS): a shot in which the human figure occupies from a third
to two thirds of the screen height

• Full Figure (FF): a shot in which the human figure occupies from two thirds
to the totality of the screen height

• American Shot (AS): a shot in which the human figure is shown from above
the knee above

• Half Figure (HF): a shot in which the human figure is shown from the waist
above

• Half Torso (HT): a shot in which the human figure is shown from the upper
chest to the head

• Close Up (CU): a shot in which the subject is shown from the shoulders above

• Extreme Close Up (ECU): a shot in which the face of the subject occupies
most of the image

There are different datasets implemented in this work; however, since two of
them are variations of the original dataset we will start to describe this one first.

The original dataset was created from different datasets and sources, culminat-
ing in a total of 10 545 images, distributed across the eight shot classes considered.
Initially, 1,500 images were sourced from the dataset utilized in [84]. An additional
5,000 frames were taken from YouTube videos, particularly from movie trailers
and reviews. To do so we have employed a straightforward script that implements
the youtube-dl library, allowing us to sample frames from entire video sequences.

21

Shot Size Classification

Figure 2.4: Eight shots used

Although the total number of frames could have been significantly higher, we im-
plemented rigorous selection criteria to refine the dataset.

These criteria involved eliminating frames that were too similar to those already
included and discarding any frames with blurry resolution. At the end of this
first data gathering phase there was a substantial imbalance among the different
classes. To address this, we supplemented the dataset with samples from other
datasets originally intended for different purposes but deemed suitable for our needs.
Specifically, we incorporated images from the MPII Human Pose dataset [2] and
the Labeled Faces in the Wild dataset [36]. This approach helped to mitigate
the imbalance and ensured a more representative distribution of images across the
various shot classes.

The final composition of the dataset is show in table 2.4.

Class n samples percentage
LS 1 359 12.88%
MS 1 270 12.04%
FF 1 080 10.24%
AS 935 8.86%
HF 1 315 12.47%
HT 1 673 15.86%
CU 1 731 16.41%

ECU 1 183 11.22%

Table 2.4: number of shots and percentage per class.

Since the images in the original dataset come from different sources we have
regulated their white balance, in order to reduce a bit the impact of color editing
and correction applied to the different movies. An example of this operation can be
seen in 2.5. As previously mentioned by fine-tuning a VGG-16 only on the original
dataset we obtain discrete results. However there is room for improvement. To
improve the overall classification performance we have created two alterations of

22

2.4 – Enhanced Shot Size Classification

the original dataset; the Segmented dataset and the Hypercolumn dataset.

Figure 2.5: Example of white balance operation

Segmented dataset

This dataset was obtained using semantic segmentation. In order to perform
the semantic segmentation we used DeepLabv3 [16], a model with state of the art
performances, using an approach similar to the one described in [6]. DeepLab
V3 is a semantic segmentation model developed by Google that is designed to
handle various challenges in image segmentation, such as object boundaries and
scale variations. The output of the model is an image in which the subject’s edges
are well separated from the background. An example is shown in 2.6. By reducing
the image to such a format we help the model to focus on the edges of the shapes
contained in the edited image and we completely ignore texture patterns. This
dataset variation was created to counter the bias of CNN toward texture patterns
[27] by creating images with only edge patterns. On the other hand relying only
on this type of images can be counterproductive, since they still withhold less
information than before. Additionally while texture patterns can mislead the model
in classifying images, they can also be helpful to differentiate between different
classes. Since texture patterns also cover an important role in classification, we
have developed the next dataset variation.

Hypercolumns Dataset

This dataset contains images where the most relevant patterns were highlighted
through hypercolumn extraction [32]. A hypercolumn is a concept used in convo-
lutional neural networks (CNNs) to represent a comprehensive feature descriptor
for a specific pixel or region in an image. It is formed by concatenating the ac-
tivation outputs of all the convolutional layers at a particular spatial location. A

23

Shot Size Classification

Figure 2.6: Example of image from Segmented dataset

hypercolumn is a vector that aggregates the outputs from multiple layers of a CNN
at a specific spatial position. This vector includes features from different levels of
abstraction, from low-level details to high-level semantics These patterns serve not
only to emphasize significant texture patterns but also to diminish the visibility
of irrelevant ones. After extracting the hypercolumns we recreated the image as
shown in 2.7.The darker part of the image is for the less relevant patterns, while
the brightest is for the most relevant ones. For the extraction of hypercolumns,
we employed a VGG-16 model that had been pre-trained on the ImageNet dataset.
The relevance of these patterns stems from the fact that some of the classes under
consideration exhibit similar visual characteristics. In cases where shots appear
similar, the presence or absence of certain elements (i.e., patterns) becomes crucial
in determining the class to which a shot belongs. For example, a half torso shot
and an extreme close-up shot share several patterns, such as eyes, noses, and hair
texture. However, other patterns are present in a half torso shot but not in an
extreme close-up shot. Therefore, by extracting and projecting the hypercolumns,
we aimed to assist the model in distinguishing between these classes as effectively
as possible.

2.4.2 Methodology
Our methodology consists of a two-stage classification based on ensemble learn-

ing. In the first stage image classifiers make predictions on new data and pass them
on. At the second stage we recombine the prediction using an ensemble learning
technique, stacking learning. Ensemble learning is a machine learning paradigm
where multiple models are trained to solve the same problem and then combined
to produce a better overall result. The main idea is that by combining the pre-
dictions from multiple models, the ensemble can often achieve better performance
and generalization than any single model alone. The predictions can be combined

24

2.4 – Enhanced Shot Size Classification

Figure 2.7: Example of image from Hypercolumn dataset

in different ways. Stacking learning involves training a "meta-model" to combine
the predictions of several base models. For our methodology to work then we need
to finetune image classifiers and train a meta learner, another classifier. After fine-
tuning the image models on our datasets we have to train the meta classifier that
combines their predictions. The overall pipeline can be seen in 2.8.

Figure 2.8: Overall methodology

Similar to the previous study, we have removed the fully connected layer and
retrained the last convolutional block of the model, by leaving it unfrozen. Also
in this case the three VGG-16 models were pre-trained on ImageNet. Like before

25

Shot Size Classification

this step is necessary because what is classified is how objects are displaced in an
image rather than the objects per se. Hence it is necessary to tune a bit also the
convolutional layers to achieve a better performance. The blacks of convolutional
layers instead do not need to be retrained, since they are the ones in charge of
recognizing more simple patterns, common to every type of image.

Ensemble learning

There are many techniques and algorithms that fall under this category. the
main approaches can be grouped as follows:

1. Bagging (Bootstrap Aggregating): Involves training multiple versions of a
model on different subsets of the training data (created using bootstrap sam-
pling) and then averaging their predictions (for regression) or taking a major-
ity vote (for classification). Random Forest is a popular example of a bagging
method.

2. Boosting: Sequentially trains models, each trying to correct the errors of
the previous one. The final prediction is a weighted sum of the predictions
from all models. AdaBoost and Gradient Boosting are well-known boosting
methods.

3. Voting: Combines the predictions of multiple models by taking a majority
vote for classification or averaging the predictions for regression. There are
different types of voting such as hard voting (majority vote) and soft voting
(average probabilities).

4. Stacking (or Stacked Generalization): This is a more complex method that
involves training a "meta-model" to combine the predictions of several base
models.

In [54], the authors demonstrated that combining predictions using stacking
ensembles yields better results than using Boosting or Bagging ensembles. The
integration of convolutional neural networks (CNNs) with ensemble learning tech-
niques has been explored in various studies [49] [92]. Specifically, in [49], these
methods were applied to classify Alzheimer’s disease image data. Meanwhile, in
[92], the focus was on classifying transportation modes from images using CNNs in
combination with ensemble learning. The convolutional models employed in these
studies differed in terms of size and the number of layers. In both cases, stacking en-
sembles achieved the highest performance, with an accuracy of 91%, outperforming
Boosting and Bagging ensembles. This indicates the superior capability of stack-
ing ensembles in effectively leveraging the strengths of various models to improve
classification accuracy. Hence we have decided to rely on this approach.

26

2.4 – Enhanced Shot Size Classification

2.4.3 Results
In this part we will show the performance of our methodology in different con-

texts and scenarios to validate our approach. Each section focus on different aspects
with respect to the others. Specifically:

• VGG-16s Fine-Tuning: here we show the performance of our models sep-
arately and combined.

• Case 1: a comparison between our methodology and state-of-the-art models
ResNet-50 and VGG-16 finetuned with augmented data;

• Case 2: here we present different implementations of stacking learning impact
our methodology;

• Results: updated: contains the performance results of a Vision Transformer
trained on our original dataset;

The reason why this last paragraph was not included originally in [82] is because
Vision Transformers were not available when this research was first published.

VGG-16s Fine-Tuning

The three models were trained on 70% of the available data, while the remaining
30% was used to create the test set. To keep consistency between train and test
set, and avoid performance alterations, the label distribution is the same in both
datasets. Each model underwent training for 20 epochs, with a batch size set to
5. The optimization process utilized the stochastic gradient descent algorithm, and
the loss function employed was categorical cross entropy.

The first model, trained on the normal images from the original dataset and
referred to as O-VGG-16, achieved a training accuracy of 97.27% and a validation
accuracy of 74.27%. For the model trained on the Hypercolumn dataset and referred
to as H-VGG-16, the performance reached is slightly inferior than before with a
training accuracy of 97.09% and a validation accuracy of 69.5%. Finally, the model
trained on the Semantic dataset and referred to as S-VGG-16 achieved a training
accuracy of 94.42% and a validation accuracy of 69.41%. As we can see the model
trained on the original images performs better. This is no surprise, since the original
images contain more information with respect to their correspective variations.

For more insight on the different models performance we show the confusion
matrices of the O-VGG-16, S-VGG-16 H-VGG-16 models in Table 2.5, Table 2.6
and Table 2.7 respectively.

After fine-tuning the three VGG-16 models we extract their prediction and re-
combine them using a meta-learner. In our case we used a Multilayer Perceptron.
Our fourth classifier was trained using as input the concatenated predictions of the

27

Shot Size Classification

LS MS FF AS HF HT CU ECU
Long Shot (LS) 301 61 7 2 6 13 7 10

Medium Shot (MS) 29 255 57 13 12 11 1 3
Full Figure (FF) 1 27 252 26 4 8 2 4

American Shot (AS) 0 5 26 192 52 7 0 0
Half Figure (HF) 0 3 3 54 256 73 2 2
Half Torso (HT) 0 6 4 1 28 435 27 2
Close Up (CU) 0 2 1 2 1 108 376 29

Extreme Close Up (ECU) 0 1 1 0 1 3 66 283

Table 2.5: Confusion Matrix of a VGG-16 trained on the Original Dataset. reading
it orizontally we can see how many of the samples were correctly classified and how
many where mistaken for other shots

LS MS FF AS HF HT CU ECU
Long Shot (LS) 301 61 7 2 6 13 7 10

Medium Shot (MS) 29 255 57 13 12 11 1 3
Full Figure (FF) 1 27 252 26 4 8 2 4

American Shot (AS) 0 5 26 192 52 7 0 0
Half Figure (HF) 0 3 3 54 256 73 2 2
Half Torso (HT) 0 6 4 1 28 435 27 2
Close Up (CU) 0 2 1 2 1 108 376 29

Extreme Close Up (ECU) 0 1 1 0 1 3 66 283

Table 2.6: Confusion Matrix of a VGG-16 trained on the Segmented Dataset.
Reading it orizontally we can see how many of the samples were correctly classified
and how many where mistaken for other shots

LS MS FF AS HF HT CU ECU
Long Shot (LS) 312 63 20 0 7 1 2 2

Medium Shot (MS) 48 251 56 11 11 0 2 2
Full Figure (FF) 8 43 238 12 16 1 2 4

American Shot (AS) 3 15 49 142 67 3 2 1
Half Figure (HF) 2 15 20 38 277 34 1 6
Half Torso (HT) 8 7 20 5 92 235 44 2
Close Up (CU) 8 9 9 1 5 68 375 44

Extreme Close Up (ECU) 5 0 1 1 3 5 61 279

Table 2.7: Confusion Matrix of a VGG-16 trained on the Hypercolumn Dataset.
Reading it orizontally we can see how many of the samples were correctly classified
and how many where mistaken for other shots

28

2.4 – Enhanced Shot Size Classification

three networks on their training data and validated on their concatenated predic-
tions on their validation sets.

The fourth classifier achieved a training accuracy of 95.66% and a validation
accuracy of 77.02%. For a detailed performance analysis, refer to Table 2.8, which
presents the confusion matrix for the fourth classifier. Additionally, Table 2.9
provides an evaluation of the fourth classifier’s performance using precision, recall,
and f1-score metrics.

LS MS FF AS HF HT CU ECU
Long Shot (LS) 320 67 3 1 4 6 4 2

Medium Shot (MS) 30 294 36 9 7 3 1 1
Full Figure (FF) 4 36 247 23 4 4 2 4

American Shot (AS) 0 7 18 194 57 5 1 0
Half Figure (HF) 0 6 3 44 291 44 2 3
Half Torso (HT) 2 6 6 0 51 402 36 0
Close Up (CU) 1 6 1 1 3 75 409 23

Extreme Close Up (ECU) 1 0 0 0 3 3 66 282

Table 2.8: Confusion Matrix of the MLP trained on the VGG-16’s predictions on
their training sets. Reading it orizontally we can see how many of the samples were
correctly classified and how many where mistaken for other shots

shot class precision recall f1-score support
Long Shot (LS) 89% 79% 84% 407

Medium Shot (MS) 70% 77% 73% 381
Full Figure (FF) 79% 76% 77% 324

American Shot (AS) 71% 69% 70% 282
Half Figure (HF) 69% 74% 72% 393
Half Torso (HT) 74% 80% 77% 503
Close Up (CU) 79% 79% 79% 519

Extreme Close Up (ECU) 90% 79% 84% 355
accuracy 77% 3164

macro avg 78% 77% 77% 3164
weighted avg 78% 77% 77% 3164

Table 2.9: precision, recall and f-1 score of the MLP classifier

Before digging deeper into the results section just by looking at the confusion
matrices of the different models we can already see that the stacking learning ap-
proach has some merits. In fact the confusion matrix of the fourth classifier is less
noisy than the other. On top of that the majority of mistakes are made between
visually similar classes, and are less severe. In other words if the model mistakes a

29

Shot Size Classification

close up for an extreme close up is less relevant than when it mistakes it for a long
shot.

Case 1:Us, VS VGG-16 and ResNet-50 with augmented data

In this first scenario we compare the performance of our methodology with
state-of-the-art classification models. These models have been trained with regular
augmented data. Back then, the ResNet-50 and the VGG-16 were the standard
models to address image classification tasks and both of them have been already
tested in shot size classification [66, 6]. ResNet-50 is a deep convolutional neural
network that is 50 layers deep. It is part of the ResNet (Residual Network) family
of architectures, introduced in [34] ResNet-50 is widely used for image classifica-
tion tasks and has been highly influential due to its innovative architecture, which
addresses the problem of vanishing gradients in very deep networks. Our method-
ology outperforms the VGG-16 model without relying on traditional data augmen-
tation techniques, highlighting its effectiveness. Moreover, the comparison with
ResNet-50 justifies our decision to use the VGG-16 architecture. The performance
differences, in terms of f1-score per class and overall accuracy, are summarized in
Table 2.10. The table includes various scenarios. Each scenario is identified with a
different number that indicates the specific data augmentation techniques used on
the dataset. Overall we have:

• Scenario 0: No data augmentation techniques used. The dataset size is its
original size.

• Scenario 1: Flip images on the y-axis. The images in the train set are mir-
rored. The dataset size is twice the original size.

• Scenario 2: Flip images on the y-axis +zoom range = 0.1. The images in the
train set are either mirrored or cropped by 10%. The dataset size is three
times bigger than the original size.

• Scenario 3: Flip images on the y-axis +zoom range = 0.3. The images in the
train set are either mirrored or cropped by 30%. The dataset size is three
times bigger than the original size.

All the data augmentation techniques have been applied on the Original Dataset.
As it can be seen between the ResNet-50 and the VGG-16 models the latter

clearly outperforms the former. If we test our approach against other VGG-16s
trained with regular data, but augmented we can still see how our approach is still
slightly better. In terms of data augmentation techniques we can see that in general
if we augment the data the performance of the model increases. However in Scenario
3 we can see how if we crop the image too much the model performance starts to
drop. The models in Scenario 0 and Scenario 3 are the same, the main difference is

30

2.4 – Enhanced Shot Size Classification

Table 2.10: Comparison with VGG-16 and ResNet-50.

Model f1 Score per Class Accuracy
LS MS FF AS HF HT CU ECU

VGG-16 0 82% 69% 75% 67% 68% 75% 75% 82% 74.26%
VGG-16 1 86% 69% 77% 69% 69% 71% 79% 83% 76.55%
VGG-16 2 85% 70% 77% 72% 72% 76% 76% 85% 76.74%
VGG-16 3 85% 72% 71% 62% 69% 74% 77% 80% 74.68%

ResNet-50 1 78% 62% 61% 52% 68% 74% 71% 83% 69.15%
Us 84% 73% 77% 70% 72% 77% 79% 84% 77.09%

31

Shot Size Classification

the data augmentation performed. In scenario 3 the train set is three times bigger
than in scenario 0 however the training accuracy on the test set is the same. This
proves that our intuition on not considering the cropping operation makes sense
in this context since it can impact the models performance, as we said it would.
For what concerns scenario 1 and 2 we can see that if the crop operation is set to
maximum 10% of the image, the model performance is not really impacted. The
overall accuracy in scenario 2 is 0,2 points higher than scenario 1, but in scenario
2 the train set has 50% more images with respect to scenario 1.

shot class precision recall f1-score support
Long Shot (LS) 89% 79% 84% 407

Medium Shot (MS) 70% 77% 73% 381
Full Figure (FF) 79% 76% 77% 324

American Shot (AS) 71% 69% 70% 282
Half Figure (HF) 69% 74% 72% 393
Half Torso (HT) 74% 80% 77% 503
Close Up (CU) 79% 79% 79% 519

Extreme Close Up (ECU) 90% 79% 84% 355
accuracy 77% 3164

macro avg 76% 76% 76% 3164
weighted avg 77% 77% 76% 3164

Table 2.11: precision, recall and f-1 score of the scenario 1

Case 2: Stacking learning variations

Here we show how different stacking learning implementation impact the per-
formance of our methodology. Various studies have demonstrated the advantages
of using stacking ensembles over other ensemble methods[92, 54]. In light of this,
instead of testing our approach against bagging or majority voting, we test the
performance of our approach in comparison with different implementations of the
stacking learning strategy. The results of these different stacking techniques are
summarized in Table 2.12.

The first different implementation involves using a Random Forest as the fourth
classifier, instead of a Multilayer Perceptron (MLP). The results from this alteration
show the performance of a Random Forest in this context is inferior to the MLP as
meta-learner.

The second implementation is slightly different. Instead of training three sep-
arate VGG-16 models along with a fourth classifier, we combined the four models
into a single network, which we named the Cerberus model. Similar to our original
methodology, the meta-learner in this network is a Multilayer Perceptron. However,
unlike the original approach that employs four distinct models, the Cerberus model

32

2.4 – Enhanced Shot Size Classification

consists of a unified network with three "heads," each corresponding to a different
dataset.

The comparison results indicate that our approach outperforms the variations
achieved with different stacking learning modifications. This highlights the effec-
tiveness and robustness of our methodology in leveraging stacking ensembles for
improved performance.

Table 2.12: Stacking learning variations.

LS MS FF AS HF HT CU ECU
Random Forest 65% 70% 76% 71% 72% 76% 79% 83% 72.56%
as meta-learner

Us :MLP 84% 73% 77% 70% 72% 77% 79% 84% 77.09%
as meta-learner

Cerberus 83% 71% 68% 66% 63% 75% 73% 83% 73.32%

Results: updated

When we were testing these methodologies, Vision Transformers were not devel-
oped yet. They are deep learning models that apply the principles of Transformers,
from the natural language processing (NLP) field, to the domain of computer vi-
sion. A Vision Transformers (ViT) divides an image into a sequence of fixed-size
patches and treats each patch as a token (similar to words in a sentence). These
tokens are then processed by a Transformer encoder. We tested one of these models
on our dataset. The results are shown in 2.13 and 2.14 .

shot class precision recall f1-score support
Long Shot (LS) 91% 95% 93% 394

Medium Shot (MS) 82% 74% 78% 381
Full Figure (FF) 78% 80% 79% 324

American Shot (AS) 72% 78% 75% 281
Half Figure (HF) 75% 74% 74% 394
Half Torso (HT) 79% 83% 81% 502
Close Up (CU) 85% 76% 80% 519

Extreme Close Up (ECU) 82% 88% 85% 314
accuracy 81% 3150

macro avg 81% 81% 81% 3150
weighted avg 81% 81% 81% 3150

Table 2.13: precision, recall and f-1 score of the vit model

33

Shot Size Classification

LS MS FF AS HF HT CU ECU
Long Shot (LS) 373 20 0 0 0 1 0 0

Medium Shot (MS) 30 281 52 7 7 3 1 0
Full Figure (FF) 0 27 259 30 5 1 0 0

American Shot (AS) 1 6 17 219 37 1 0 0
Half Figure (HF) 0 5 2 46 291 50 0 0
Half Torso (HT) 2 3 0 1 47 419 30 0
Close Up (CU) 1 0 0 0 1 52 394 71

Extreme Close Up (ECU) 3 0 0 0 0 1 37 214

Table 2.14: Confusion Matrix of a Vit trained on the Dataset. Reading it orizontally
we can see how many of the samples were correctly classified and how many where
mistaken for other shots

34

2.4 – Enhanced Shot Size Classification

The boost in performance, although noticeable, is not incredible, however if we
look at the confusion matrix we can see that the majority of the mistakes are made
between similar classes. If we ignore those mistakes the total accuracy rises up to
99%.

2.4.4 Discussion
These works show that it is possible to address shot size classification with satis-

fying performance. Especially with vision transformers the task can be considered
solved. While in some contexts knowing if we are dealing with a Close Up or a
medium Close Up can be relevant in our context is an acceptable approximation.
The two reasons why these errors can be ignored are the following. On one hand
since there are not too many in the context of editing pattern extraction they do
not add excessive noise to the extracted sequences. On the other hand, some of
these images are hard to classify even for people. For instance take a look at figure
2.9.

Figure 2.9: On the left medium close up, on the right close up, in the center the
shot size is ambiguous

Here the first image on the left is the original image and it is a medium close up,
or half torso. The other two images are the same image cropped and resized. While
the image on the right is a close up the image in the center is hard to classify as it
is in between the two classes. The ability to classify images into shot sizes, while
it can have already useful implementations, allow us to study the next topic of our
research; the editing patterns. This is because while some datasets already contain
the shot size attributes, like AVE and Cinescale, some others, like CMD, do not.
having a model able to label movie frames into shot sizes can be used to extract
editing patterns from videos. With editing patterns we refer to the sequences of
shots used to create a movie scene. These sequences of shots can be characterized
with more or less features, but the main feature that they all have, directly or
indirectly, is the shot size.

35

Shot Size Classification

2.5 Chapter Conclusions
This research branch achieved good results. The preliminary analysis led us

to adopt the fine-tuned VGG-16 approach. After expanding the dataset we ended
up with 10 545 images divided into 8 classes. This dataset helped us to define
a methodology with state of the art performance in classifying images into shot
sizes. However the main disadvantage of the ensemble approach is that it requires
4 models in order to make predictions. This issue was overcomed later thanks to the
rise of Vision Transformers. The fine-tuned ViT model achieved better performance
compared to the previous approach. Additionally with the sensible assumption that
error between similar classes can be ignored the overall accuracy rises up to 99%.

These achievements allow us to label with good accuracy unlabeled images into
shot sizes, a feature that we will exploit later. The next step in the main research
context is to analyze what type of correlation there is between the sequences of
shots and what is shown in the final video. Instead of labeling new shots dataset
we have exploited an already existing dataset that had been released while we were
conducting our research on shot size classification. Hence we have exploited these
new dataset to conduct our analysis on sequences of shots.

36

Chapter 3

Video Editing Pattern Analysis

3.1 Introduction
Videos and machine and deep learning approaches have been the subjects of

several studies in the past. These studies range from object detection and tracking
to action recognition, from video understanding and summarization to autonomous
driving applications. The editing patterns and structures, however, have been stud-
ied much less. One of the reasons why could be related to their intrinsic hidden
nature. During the video editing process, individual shots are joined together to
create a scene. How these shots are joined together and the shots’ features them-
selves are all elements that impact the viewer’s perception. Specifically, editing
helps define the narrative and mood of a film, along with other elements such as
the setting, the soundtrack, VFX, and so on. While, for instance, the soundtrack
can be heard, and the actor can be seen, the audience is able to notice the editing
only when it is poorly done (unless they are actively looking at it). According to
some movie critics, like Walter Murch, video editing is like telling a story. You
can have a great plot with interesting characters, but if the narrator focuses on the
wrong parts or tells it with the wrong rhythm, it has no impact. When a video is
poorly edited, the viewer is less engaged in the story or won’t get the story at all.
This is because editing, among other elements, determines the structure of a scene,
which consequently affects the mood and the narrative style of the movie.

There are different processes involved in video editing, however here we refer to
the action of joining the shots together, rather than editing the shot themselves.

In other words, we focus on the process of concatenating clips that have limited
meaning on their own to create a meaningful video. New algorithms are now able
to generate single video clips directly from textual prompts; however, in terms of
editing structures, so far, some applications have emerged with good results but
with limited and standard templates, like interviews. By gaining more knowledge on
video editing patterns, more powerful video editing assist tools could be developed.
For instance, text-to-video models could also use basic editing patterns. Instead of

37

Video Editing Pattern Analysis

creating a video made of a single clip, it would be possible to create a video with
multiple clips and coherent cuts.

Editing Pattern analysis consists of analyzing the sequences of shots that con-
stitute the structure of any video. The shots defining the sequences can be more or
less refined, taking into account a more refined shot size classification or multiple
features describing the shots.

We defined a first methodology while analyzing the Cinescale dataset. This
methodology groups sequences of shots, characterized by only the shot size, based
on their structural similarities. We further refined our methodology while analyz-
ing the Anatomy of Video Editing dataset. In this dataset, while the shot size
classes are only 5, the shots are also characterized by other features. Hence, it was
necessary to adapt the original methodology.

Figure 3.1: People interacting with objects

Figure 3.2: Shot reverse shot

In both contexts, we represent movie scenes as sequences of symbols that encode
one or more features. Given the unique nature of every scene, we focus our analysis
on scene segments rather than entire scenes. Our intuition is based on the obser-
vation that similar situations can occur in different scenes at various moments, yet
they will rely on similar shots. For example, a dialogue can take place in different

38

3.2 – Related Work

scenes and at different points within a scene, but it is likely to be depicted using
close-ups and half-torso shots. The mood of the moment influences the order and
frequency of these shots. If the context changes, different shots, and editing paces
are employed. This is not surprising, as the choice of shots is closely related to the
director’s intent.

To better illustrate this concept, consider the example in Figure 3.1. The top
segment is from the movie "Thoroughbreds" directed by Cory Finley, and the second
segment is from "The Birdcage" directed by Mike Nichols. In both videos, we can see
people interacting with objects. Despite the different reasons behind the directors’
choices to depict these interactions, the portrayal is strikingly similar. This is just
one method to show people interacting with objects, and there are many others.

A more familiar example of editing patterns is the "shot-reverse shot" technique,
shown in Figure 3.2. The top segment is from "The Great Lebowski" directed by
Joel and Ethan Coen, while the bottom segment is from "Pulp Fiction" directed
by Quentin Tarantino. Again, the same set of shots is used to describe a similar
context — two people talking to each other — but the reasons for their conversation
and the content of their dialogue differ. These examples should give an idea of what
we mean with the correlation between sequences of shots and what is shown in the
video.

The next section will show studies conducted in the same field. In Section 3.3,
we show the first draft of the methodology and its performance on the Cinescale
dataset, while in Section 3.4, we present the refined methodology used to identify
and group similar editing structures in the AVE dataset.

3.2 Related Work
In recent years, videos and films have been analyzed using different techniques

and for different purposes. Most of these studies are related to computer vision
and image classification, but other branches of research focus on other aspects, like
[14]. Here, the authors use natural language processing techniques on the IMDB
dataset[14] to perform movie sentiment analysis.

One common task in this branch of computer vision, for instance, is the classi-
fication of movie frames, like[7] [67] [84] [33], as seen in the previous chapter [82].
Others instead focus on different movie and video features. In [39], the authors use
machine learning algorithms to detect inappropriate language and visual content
and label the movie accordingly into one of the following categories: "Universal,"
"Universal Adult," or "Adult". In [95], the authors perform video retrieval from
large video collections. Their algorithm uses dynamic programming to measure the
similarity between video sequences in terms of temporal and visual features.

The first to introduce the concept of editing pattern were the authors of [50] in
a paper that dates back to 2002. This paper proposes methods to extract editing

39

Video Editing Pattern Analysis

rules from video streams using data mining, allowing for the creation of new videos
with similar quality to the original by applying these extracted rules. In other words
they identify some preliminary editing patterns. They also emphasized the central
role of editing and its pace, like Murch, in videos. The task that they address is the
next shot type prediction with three classes. A slightly younger study that focuses
on video editing but from a different perspective is [53]. It investigates the evolution
of cuts and transitions among shots in films over time. In addition, to prove that
the rate of cuts over 4 years, sampled at the regular rate (1945, 1965, 1985, 2005),
across three genres (action, comedy, drama) has increased, the authors present
another discovery. Their results show that certain structures repropose themselves
among groups of shots in sequences of the same length. This finding hints at the
fact that there is more structure behind the placement of cuts.

We mention again (see Chapter 2.2) two studies that focus on the role of shots
and sequences of shots to impact the viewer perception [8]. In [8], the authors ana-
lyze how the shot size, or shot scale in their case, distribution, and rotation of Close,
Medium, and Long Shots influence the viewers’ perceptions of film, particularly in
violent scenes.

In [69] the authors use CNNs for movie trailer genre classification, introducing
a new dataset of over 3,500 trailers with known genres and a novel classification
method called CNN-MoTion. Also in [94] the authors address movie genre classifi-
cation, however they rely on a different approach. They decompose movie trailers
into keyframes using shot boundary analysis and then extract features from them to
perform unsupervised shot categorization. Then, they use the features with a bag
of words extracted from the trailers to label them into four genres: action, comedy,
drama, or horror. In [78], instead, the authors focus on single shots and investigate
the relationship between the movie director and the shots that he chooses in the
film.

As the number of studies on video editing and machine and deep learning ap-
proaches kept increasing, more complicated tasks became feasible. For instance,
new tools to automate certain tasks in the video editing process have been pro-
posed. In [10], the authors introduce a suite of tools to assist editors in placing
cuts and creating transitions in interviews. In [61], the focus is not on classifying
frames or videos into recording types but on video segmentation, i.e., splitting a
video into individual clips.

Another interesting study dealing with automatic video editing is presented
in [91]. Here, they teach a model of how to edit a video of group meetings and
conference events in a multi-camera environment.

In [20], the authors compare the performance of movie style analysis based on
two different types of features. They show that high-level features (e.g., charac-
ter segmentation, pose estimation, camera motion type, and pose) are better for
this task compared to low-level features (e.g., color histograms and average shot
lengths). In [56], the authors exploit 10,000 already edited videos to teach a model

40

3.3 – Movielens

when to place a cut between two consecutive shots. The following year, they pub-
lished [57] in which the authors perform recognition of transition cuts on a cut
dataset they introduce. In [90], the authors focus instead on long video under-
standing, subdivided into several tasks. They analyze preprocessed videos taken
from the MovieClip dataset [13] and test themselves in the different tasks from
the director and year prediction to scene location classification (and many oth-
ers). They also release the Long Video Understanfìding dataset, built upon the
MovieClip dataset.

Also in [17] the authors use movie metadata to group together similar movies
and then use a contrastive approach to identify similar scenes in them. They tested
their approach on the LVU dataset, MovieNet [37] and MovieCL30K, a dataset
they introduced for movie metadata classification. Additionally, they introduce the
Mature Content Dataset for video moderation.

The amount and detail of new movie datasets released in recent years, in addi-
tion to those already mentioned, also open the door to new types of analysis. For
instance, there is the The Condensed Movie dataset [5], which contains the main
scenes from different movies with metadata. Unfortunately, the shot sizes are not
taken into account. We will further investigate this dataset in Chapter 4. Cinescale
[65] instead is a dataset with the shot size feature. It contains 120 movie frames
sampled at 1 second per frame and labeled into 8 shot size classes. The movies
come from six different directors. An even more refined dataset is the Anatomy of
Video Editing Dataset (AVE)[3]. In this dataset, the shots are characterized not
only by the shot size but also by other multiple features. Overall, it contains scenes
from 5 591 movies. We have chosen these last two datasets to perform our study:
Cinescale and AVE. While previous studies focus on different aspects and interest-
ing applications of video editing, only a few of them take video editing patterns
into account. Furthermore, while some suggested more complicated structures and
patterns, none had the data availability that arrived recently since those studies
were published prior to the release of large movie datasets.

3.3 Movielens
In this early study, we proposed a novel data-driven methodology called Movie-

lens. It is able to identify editing patterns and group editing patterns based on their
similarities in terms of structures. In this early work, we focused only on editing
sequences represented by shot size classes. Our goal was a preliminary analysis of
the type of correlation between sequences of shots and the corresponding video. To
this aim, we have used the Cinescale dataset [65]. However, the sequences obtained
were not labeled. Hence, we have developed a methodology based on a joint ap-
proach that relies on K-Means and the Levenshtein distance. As a result, we were
able to group similar sequences of shots based on their elements and structures.

41

Video Editing Pattern Analysis

Then, we trained and tested a classifier using the original sequences and the newly
obtained labels to validate the previous approach. Finally, we present a prelimi-
nary characterization of the 23 887 labeled sequences extracted from 120 different
movies.

3.3.1 Cinescale Dataset
To address this task, we used the Cinescale dataset[65], a dataset that contains

120 movies from 6 different directors. To be more precise, only its labels were used.
Originally, the dataset was used to classify shot size. For each movie, a frame
was sampled and labeled every second. The labels assigned to each frame follow a
similar yet different classification system compared to the one that we have used in
previous studies, shown in 3.3.

Figure 3.3: Eight shots used

The shot classes in this dataset are the following:

• Class 0) Foreground Shot (FS): a shot that contains elements of different
shot classes. For instance, camera movements fall under this category (128
335 frames)

• Class 1) Extreme Close Up (ECU): a shot that focuses on details, such as the
eyes of the subject, what the character is holding, and so on (3 367 frames)

• Class 2) Close Up (CU): a shot focused on the subject’s face; it shows the
actor from the shoulder up. It can also be used to focus the viewer’s attention
on some detail like objects or hands (83 682 frames)

• Class 3) Medium Close Up (MCU): the subject figure is shown from the upper
half of its torso (252 639 frames)

• Class 4) Medium Shot (MS): only the upper half of a human subject is shown
(78 053 frames)

42

3.3 – Movielens

• Class 5) Medium Long Shot (MLS): the human figure is shown from the knee
up (89 450 frames)

• Class 6) Long Shot (LS): the human figure occupies the totality of the frame
height or 2/3 (49 788 frames)

• Class 7) Extreme Long Shot (ELS): the human figure is absent or occupies
less than a third of the screen height (7 118 frames).

Since we are interested in analyzing segments of the video rather than the
whole scene, we have divided the movie scene into 30-second long segments. This
approach also allowed us to simplify the problem on one hand while keeping a good
granularity of the results. If we were to choose longer segments, we would have
more complicated patterns, and we would lose local information, which is what we
are focused on the most at the moment. On the other hand, if the time interval is
too short, the identified patterns are not too interesting.

In addition to the aforementioned shot size classes, Cinescale has two additional
classes: one for opening and closing titles and another for undefined frames. After
removing these shots from the original scenes, the resulting 30-second-long editing
segments are 23,887.

In the dataset, the shot sizes are represented as numbers. However, the class
must be treated as a categorical value rather than a number. This is because
although there is a sense of scale from close-up to long shot, representing it with
numbers doesn’t make much sense. For example, if a close-up is indicated with
label 2 and an extreme close-up with label 1, we would have that an extreme close-
up is half a close-up, which doesn’t make sense. Additionally, the class foreground
shot defies any scale categorization. Hence we treat them as symbols rather than
values.

3.3.2 Methodology
Movielens, our methodology, has two main analytic building blocks, shown in

3.4: the Label Estimation Phase and the Editing Patterns Analysis. The goal of
the first block is to label each short movie sequence. To achieve this, we begin
by analyzing each sequence using a distance metric. This analysis measures the
similarity of each sequence to a set of fixed reference sequences. The resulting
distances are then used as coordinates that represent each sequence as a point
in a multidimensional space. These points are then grouped using a clustering
algorithm. The resulting clusters identify the different labels.

The second block’s objective is to evaluate the Label Estimation Phase results
by analyzing the performance of a classifier trained on the sequences and the newly
obtained labels. After training the model, we test it on the remaining dataset
portion. We have also involved domain experts to evaluate the quality of the classes

43

Video Editing Pattern Analysis

Figure 3.4: The two Movielens blocks

identified. This analysis is performed manually on a subset of short movie sequences
from each class, along with the labels provided by the classifier. Specifically, the
first block labels each sequence of shots based on similarity, while the second block
validates the identified labels.

Label Estimation Phase

This analytical component conducts a similarity analysis and models its output
using a clustering algorithm. Specifically, we rely on the Levenshtein distance [31]
to measure the similarities and differences between sequences and employ the K-
Means algorithm [48] to indirectly model editing patterns. The Levenshtein usually
counts the number of substitutions, additions or subtractions required to convert
one sequence into another, however in this instance, since all sequences are of equal
length, it only computes the number of substitutions necessary. It is important to
keep in mind that changing a 2 to a 3 or a 3 to a 7 for the Levenshtein always
counts as one substitution. Due to the length and the different structures the
editing sequences can have, counting the number of substitutions directly among
the sequences is not very effective. Thus, first, we have created 8 artificial sequences,
one for each of the possible symbols contained in the sequences. These reference
sequences are 30 frames long, with each frame belonging to the same shot size.
Then, for each sequence, we measure the Levenshtein distance with respect to the
reference sequences, and we store those distances. Finally, we use these distances
as high 8-dimensional point coordinates, and we use a clustering algorithm. In this
way, the clusters in which the sequences are grouped identify the editing structure
labels.

Among the various clustering algorithms available, we chose to use the K-Means
algorithm. This decision was based on the algorithm’s ability to converge quickly

44

3.3 – Movielens

while delivering satisfactory results [1]. The only downside of this clustering al-
gorithm is that it needs to know the number of clusters a priori. To determine a
reliable value for this parameter, we implemented two methods: the elbow graph
[38] and Ward’s method [52]. The elbow graph method is a technique used to de-
termine the optimal number of clusters in a dataset for K-Means clustering, while
Ward’s method is a hierarchical clustering approach that aims to minimize the
total within-cluster variance. These strategies aim to identify the optimal num-
ber of clusters by minimizing the within-cluster variance, thereby ensuring a more
accurate clustering outcome.

At the end of this phase we have the sequences grouped in labels based on their
similar structure, however we do know yet if identified labels are actually useful
to represent editing sequences. Additionally, we do not know precisely what these
labels represent. To address these issues we have developed the second block of this
methodology.

Editing Pattern Analysys

This second phase is intended to validate and characterize the results of the
previous phase. To validate the identified labels and see if they are fit to represent
the editing sequences, we have split them into two sets, one to train a sequence
classifier and one to test its performance, using different metrics, in labeling new
sequences. After training and validating the classifier, we can move on to analyze
and characterize its classification results. In this last analysis, we, as domain ex-
perts, analyze and characterize the editing patterns that emerge from the different
groups. To verify the consistency of these sequences, we have selected and analyzed
manually the 5% of samples coming from each group identified by a separate label.
The results and editing patterns are characterized in the results section.

3.3.3 Experimental results
The following is a description of the experiments we conducted to evaluate the

quality of our methodology and its results. At first, we focus on the quality of the
results of the K-Means algorithm, and then we move to the classifier performance.
Finally, we will analyze our results in terms of identified sequences.

Thanks to Ward’s method and the Elbow graph, we were able to identify dif-
ferent configurations with various levels of granularity in the identified patterns. In
Figure 3.5, we show the obtained results with these two techniques.

After selecting a different number of clusters to study more scenarios, we have
to train a classifier. We trained and tested two models, a Multilayer Perceptron
(MLP) classifier by adapting the model for sequence classification available at the
GitHub repository [88], and a Long Short Term Memory (LSTM) classifier. The
MLP classifier was the first model used to evaluate the sequence labels. Hence, an

45

Video Editing Pattern Analysis

editing analysis was run on the results. Later on, we trained and also tested the
LSTM classifier.

In table 3.1, we show the performance of the MLP classifier with 4, 8, 16, and 32
classes in terms of accuracy, f1-score macro average, and f1-score weighted average,
while in 3.3, we show the results achieved with the LSTM classifier.

(a) Elbow graph (b) Ward’s dendrogram

Figure 3.5: Results of elbow graph and wards’method.

number of overall macro weighted
classes accuracy average average

4 93% 93% 93%
8 88% 88% 88%
16 81% 79% 81%
32 77% 72% 77%

Table 3.1: Performance of the MLP classifier with a different amount of classes
considered.

In general, with no surprises, as the number of classes increases, the overall
accuracy decreases. To conduct our analysis of the identified patterns, we have
chosen the 16 class scenario. The scenario with 4 classes is not really interesting
due to a low number of classes. With 8 classes still, it would not be a study case,
since in this case, we would only see how these sequences are distant from the arti-
ficial ones that we have used to compute the Levenshtein distance. In the 32 case
scenario the loss in terms of accuracy is sensible compared to the loss in accuracy
of the previous scenarios. Additionally, this case presents a very complicated sce-
nario to characterize. Hence, we have chosen the 16-class scenario, in which the
classifier achieves 81% and offers a more interpretable scenario. Figures 3.6a and
3.6b shows the average pattern per class, i.e., centroid identified in these last two
scenarios. By analyzing the patterns in Figure 3.6a we can see that centroids mod-
eling editing pattern groups are well-separated with respect to the ones in Figure

46

3.3 – Movielens

(a) Patterns with 16 classes (b) Patterns with 32 classes

Figure 3.6: Average of the values contained in the sequences to represent them.

47

Video Editing Pattern Analysis

3.6b. Thus, fine-grained partitions obtained with 32 classes are too detailed and
present overlapped centroids (i.e., some types of frames in the sequences are very
similar). Table 3.2 shows the precision, recall, and f-1 score of the average model
for the MLP classifier.

Labels Semantic Precision Recall f1-Score Support
Label

0 CER 66% 61% 63% 130
1 CER 73% 79% 76% 109
2 N 99% 97% 98% 177
3 CER 76% 72% 74% 101
4 CER 88% 86% 87% 140
5 ED 96% 64% 77% 77
6 CCI 85% 82% 83% 197
7 CCI 97% 95% 96% 369
8 N 67% 61% 64% 127
9 N 69% 83% 75% 237
10 CCI 99% 95% 97% 155
11 ED 79% 71% 75% 21
12 ED 87% 92% 89% 118
13 N 56% 77% 65% 119
14 N 67% 57% 62% 136
15 N 77% 75% 76% 175

accuracy 81% 2388
macro avg 80% 78% 79% 2388

weighted avg 82% 81% 81% 2388

Table 3.2: Precision, recall, and f1-score of the MLP classifier with 16 classes.

Updated performance with LSTM

The original methodology used a MLP classifier to evaluate the labels and se-
quences, however later on this model was substituted with an LSTM classifier. An
LSTM classifier is a type of neural network specifically designed to process and
classify sequential data. LSTMs are a special kind of Recurrent Neural Network
(RNN) capable of learning long-term dependencies, which makes them particularly
effective for tasks involving sequences, such as time series prediction, language mod-
eling, and speech recognition. This model, with no surprises, outperforms the MLP
classifier.

The analysis of the MLP results is done in the next paragraph. However, since
we also run these experiments, we show the performance of the LSTM classifier in
the 32-case scenario to show its incredible performance, shown in 3.4.

48

3.3 – Movielens

number of overall macro weighted
classes accuracy average average

4 98% 98% 98%
8 97% 97% 97%
16 96% 96% 96%
32 93% 93% 93%

Table 3.3: Performance of the MLP classifier with a different amount of classes
considered.

49

Video Editing Pattern Analysis

Labels Precision Recall f1-Score Support

0 95% 93% 94% 42
1 91% 83% 87% 60
2 100% 100% 100% 47
3 91% 91% 91% 47
4 95% 98% 96% 169
5 98% 100% 99% 107
6 100% 100% 100% 40
7 90% 97% 93% 65
8 88% 78% 73% 77
9 82% 81% 81% 151
10 100% 100% 100% 28
11 92% 97% 94% 59
12 88% 88% 88% 143
13 91% 97% 94% 65
14 100% 84% 91% 43
15 99% 91% 94% 75
16 99% 100% 99% 87
17 93% 98% 96% 56
18 93% 94% 94% 54
19 78% 94% 86% 66
20 100% 100% 100% 243
21 85% 100% 92% 41
22 78% 70% 80% 20
23 100% 100% 100% 4
24 85% 89% 87% 63
25 95% 94% 95% 87
26 91% 77% 84% 83
27 94% 85% 89% 53
28 94% 96% 95% 118
29 93% 93% 93% 61
30 96% 95% 95% 55
31 94% 96% 95% 79

accuracy 93% 2388
macro avg 93% 92% 93% 2388

weighted avg 93% 93% 93% 2388

Table 3.4: Precision, recall and f1-score of the LSTM classifier with 32 classes

50

3.3 – Movielens

In the next paragraphs, we will describe the editing patterns that characterize
the different groups. The identified editing labels can be grouped into three macro
categories: (1) Character-Environment Relationship (CER), (2) Environment De-
scriptions (ED), and (3) Character-Character Interaction (CCI)

Character-Environment Relationship

This first semantic group focuses on characters interacting with the surround-
ing environment in different ways. The classes in this group are 0, 1, 3, and 4,
as shown in Table 3.2. Class 0, on which the MLP achieved an f1-score of 63%,
the second lowest score of all classes, is characterized by the heavy presence of
medium close-ups and medium-long shots. This class exhibits mainly two types of
editing patterns or a mixture of both. The first type of sequence usually represents
dialogues where the emphasis is not on characters interacting with each other but
rather its split between the characters and the environment in which the scene is set.
Also, the second set of sequences focuses on both characters and the environment,
but the corresponding videos present a different aspect. In these segments, what is
shown is a character moving through the scene environment from the point of view
of the camera that follows them. A third smaller group of sequences that shows
mixed features of the previous groups is also present. In these sequences, we can
see characters talking, and then we get to another location through narrative expe-
dients, like flashbacks, that show a different context. Also class 1 (f1-score=76%)
represents segments in which the character interacts with the environment, how-
ever the results are less noisy. Also, the shots that characterize these sequences
are mainly close-ups mixed with wider shots. In this class, one pattern emerges,
although there are some outliers. The analyzed clips, for a large part, represented
characters reacting to changes in the scene environment. The wider shots are used
to present the environment and show what is happening. Instead of showing the
facial reactions of the characters, there are the close-ups. This set of shots can be
used to show two types of character reactions. The difference lies in what caused
the change, whether it is caused by the character or the environment itself. Class
3 (f1-score=74%) contains sequences with similar shots compared to Class 1 but
with a different distribution. While we are always in the context of character envi-
ronment relationships in these shots, there is also a focus on specific objects that
compose the scene, which changes the narrative focus and mood. The last class that
belongs to the macro category Character Environment is class 4 (f1-score=87%).
This class is characterized by a different pattern from what we have seen so far. In
these segments, which usually contain a unique shot, like a camera movement or
a fixed shot, the character and the environment are presented together. Usually,
these segments are used to introduce something. The characters are usually shown
in internal settings while doing something in line with the environment they are
presented within. An example can be seen in Figure 3.7.

51

Video Editing Pattern Analysis

Figure 3.7: Character and environment presented together

Environment Description

This group focuses only on the scene environment and pays little attention to
the characters. The classes that belong to this group are 5, 11, and 12. What
differentiates one class from another is the shot sizes used. These groups focus on
the environment description: what changes mainly is the shot scale used. Class 5
(f1-score=77%) is characterized by long shots and medium long shots focused on
showing the scene environment. Sometimes characters can appear on the screen but
the attention to them is minimal, they are presented like pieces of the environment.
Class 12 (f1-score=89%) instead has mainly segments characterized by medium-
long shots. These segments are mainly characterized by medium-long shots used
to represent sequence shots. A sequence shot is a filmmaking technique where
an entire scene or significant part of a scene is captured in a single continuous
shot without any cuts. These sequence shots either follow a subject that moves
around the environment at a fixed distance or are stationary. Finally, class 11 (f1-
score=75%) contains mainly segments made of long shots or extreme long shots. In
this class, attention is completely focused on the scene environment. An example
can be seen in Figure 3.8. It has been taken from the movie "Bande à Part" by
Jean-Luc Godard.

Figure 3.8: Example of a sequence taken from class 11 with long shots and extreme
long shots.

Character-Character Interaction

This main category focuses on character-to-character interactions in the form
of dialogues. Labels 6,7, 10, and 15 belong to this macro category. Class 6 (F1-
score = 83%) contains many foreground and narrow shots. While still involving
dialogues here, there is more emphasis not only on the characters’ facial emotional
reactions through the use of close-ups but also on their physical reactions, repre-
sented with what in Cinescale is labeled as a foreground shot. Class 7 (F1-score
= 96%) consists primarily of medium close-up sequences and contains the highest
number of sequences, all of which represent characters talking. An example of this

52

3.3 – Movielens

type of sequence is shown in Figure 3.9. Class 10 (F1-score = 97%) represents a
more specific pattern characterized by many close-ups. Typically, these sequences
involve one-on-one interactions between two or three characters. In contrast, Class
15 (F1-score = 76%) includes dialogues among multiple characters, where usually
the main character speaks while others listen or vice versa. These interactions are
one-to-many, and as a result, this class features wider shots compared to Class 10.

Figure 3.9: Charachter character interaction

Undefined Classes

Not every group of sequences shows such specific patterns. From classes 2-8-9-
13-14 (see Table 3.2) no meaningful patterns emerge. Specifically, For classes 8 (f1-
score=64%), classes 9 (f1-score=75%), 13 (f1-score=65%), and 14 (f1-score=62%),
no meaningful pattern emerge, and as a consequence, we have called this group
undefined classes. These classes share similar shots and moments. This class con-
tains sequences characterized mainly by foreground shots. Usually, these types of
shots are camera movements that switch between different shot sizes. However,
there is no indication regarding the shot sizes included in this shot. Nonetheless,
it is important to know if we are looking at a zoom, a pan, or something else.
Hence a further characterization of this specific class is very hard, since there are
no indication of the camera movements contained in the different shots. For this
reason, class 2 has been included in the undefined classes.

Misclassified Sequences

We also analyzed the most common mistakes made by the classifier. Specifically,
here we show the most common five misclassification errors. The first couple of
sequences that are usually mistaken are sequences belonging to class 5 that get
classified as belonging to label 13. The reason is related to the fact that class 13
exploits shots similar to those of class 5. We have identified the classes that get
mistaken more commonly for other classes. A similar discussion can be made for
sequences of classes 0, 6, 8, and 14 that get classified as sequences coming from
classes 9, 15, 13,9. It is important to notice that most of these sequences come
from classes that we have called undefined and from classes on which the classifier
has some difficulties and that share similar shots.

53

Video Editing Pattern Analysis

3.3.4 Discussion
Our first approach gave us some interesting results while highlighting some

criticisms of this first draft of the methodology. On the one hand, we have seen
that there is a correlation between the sequence of shots used to represent a certain
scene and what is going to be represented. However, while in some cases we were
able to better characterize the editing pattern characterizing the different classes,
in some cases, we were not able to extract meaningful information. This shows
that it is necessary to better articulate what is happening in the scene and that
the shot size alone, while giving already a good idea of what is going to be shown,
is not enough. Additionally, the way we represent the sequences loses track of
other important attributes, like the editing pace. To overcome these issues, we
have further refined our methodology while analyzing the AVE dataset. In this
new implementation, we characterize the sequences of shots with multiple features.

3.4 LEMMS
In this work, the focus is still on 30-second-long sequences, but instead of being

characterized by only the shot size, new features are also taken into account. The
dataset that we have used as a starting point is the Anatomy of Video Editing
dataset(AVE), which we transformed into what we call the Sequenced AVE. Con-
scious of the limitations of our first methodology, which used sequences of shots
characterized by only the shot size, in this new study, we consider more features.
The newly added features are the shot subject, the editing trend, and the editing
pace. Since we focus on movie segments characterized by multiple features, we have
called our semi-unsupervised methodology LEMMS, Label Estimation of Multifea-
ture Movie segment movements. Like before, our methodology relies on the use of
the Levenshtein distance, k-means algorithm [4] and the Levenshtein distance[31]
and an LSTM classifier. However, this approach is more stratified than before.
The model was trained on 50 classes and tested with a 10-fold stratified validation
strategy, achieving an overall accuracy of 92.8% in labeling multi feature movie
segments coming from 50 different classes.

3.4.1 Dataset: AVE to Sequenced AVE
The Anatomy of Video Editing dataset is a comprehensive collection of video

clips curated to study various aspects of video editing. Overall, it contains 5,591
scenes from different movies. In addition to the actual video, this dataset contains
additional metadata on each shot that composes those clips. There are several fea-
tures characterizing each shot, and we had to choose some while discarding others
to avoid an excessive increase in the complexity of the editing structures. In or-
der to choose which attributes to keep, we have made the following considerations.

54

3.4 – LEMMS

The shot features can be grouped into the following macro-categories: camera at-
tributes(shot size, shot angle, shot type, shot motion), set attributes (shot location,
shot subject, number of people), and additional attributes (sound source, start time,
end time). Then, from each group, we have chosen one feature. For the camera
attributes, we have chosen the shot size since it is more meaningful than the other
attributes (shot angle, shot type, and shot motion). From the set attributes, we
chose the shot subject since it is more meaningful than the number of people. Addi-
tionally, this attribute already includes the class location among its subjects, while
the attribute location specifies only if we are in an exterior or interior scene. Fi-
nally, from the additional attributes, we have discarded the sound source and kept
the start and time. In figure 3.10, we show the different preprocessing steps we use
to transform AVE into the Segmented AVE dataset.

Figure 3.10: Data preprocessing steps

Symbol-Size(abbr) number of
samples

0 - other(O) 1,977
1 - extreme close-up (ECU) 405

2 - close-up (CU) 26,692
3 - medium shot (MS) 142,314

4 - wide shot (WS) 22,852
5 - extreme wide shot (EWS) 1,936

Table 3.5: Shot Sizes

Spliting Sequences

The first step is to split the editing sequences in AVE made from the concate-
nation of shots representing the movie clips. Since we are analyzing 30-second-long
segments to capture local patterns, to avoid losing the ending part of most scenes,
we also resampled the last 30 seconds of every scene that has a duration different
from a multiple of 30 seconds. By doing so we ended up with 24 363 movie scene
segments.

55

Video Editing Pattern Analysis

Symbol-Subject(abbr) number of
samples

0 - other (ot) 3 000
1 - face (f) 5 671

2 - human (h) 97 696
3 - location (l) 69 959
4 - object (ob) 19 855
5 - animal (a) 8 995

Table 3.6: Shot Subjects

Symbol Creation

In this step, we characterize the scene segments in terms of shot sizes and sub-
jects. Specifically, we encode the textual labels of both attributes using categorical
values as shown in 3.5 and 3.6. Although the shot sizes present an uneven distri-
bution, we kept all of them since they already present a less fine-grained scenario
compared to Cinescale. Instead, in the subject attribute, we merged some minor
classes into the class other. The classes merged were cartoon, limb, other, text.

Additional Features

In this last pre-processing step, we further characterize the scene segment with
two additional features. The first one is the editing pace. We have defined three
editing paces: slow, medium, and fast. The editing pace is defined by the number
of shots present in the segment. This number can be inferred since we have the
start time and end time of every shot. The different editing paces are characterized
in Table 3.7. To represent this feature directly in the 30-second segment, we have
encoded it in the following way. We added an additional attribute that can be either
1 or 0 to each element representing a shot at a time. If this value is 0 it means
that the frame under analysis belongs to the same shot of the previous frame, 1 if
it belongs to a new shot.

Finally, the last additional feature is the editing trend. Since we are representing
the shots as categorical values, we lose some valuable information. As a matter of
fact, the shot size roughly indicates how close the subject is to the camera’s point
of view. This information is important because moving closer to or further from a
subject has a different impact on the viewers. Hence, the creation of the editing
trend attribute and its classes is shown in Table 3.8. To represent this feature, we
have also added an additional token to each element of the sequences. There are
three token values: 0,1,2. When the shot size is the same as the next frame we the
trend token is 0. If the token is 1 or 2 it means that the camera’s next frame is
closer or further respectively.

56

3.4 – LEMMS

Class nshot in number of
segment samples

Fast nshot > 10 8,101
Medium 5 < nshot < 11 9,354

Slow nshot < 6 6,908

Table 3.7: Editing paces: definition and cardinality.

Class trend token number of
samples

Stable 0 8,410
Mixed 0, 1, 2 12,857
Further 2, 0 1,334
Closer 1, 0 1,762

Table 3.8: Trend classes: composition and cardinality.

As a result of all these pre-processing steps, the final segments are 30 seconds
long. At each element representing a frame at time t we have the shot characterized
by multiple features as follows:

ShotSize, ShotSubject, tokenSameShot, tokenT rend

The value of each separate attribute characterizes the frame in terms of shot size,
shot subject, same shot token, and trend token.

3.4.2 LEMMS methodology
To characterize these new multi-feature segment representations of the 30-

second long movie clips, we developed the lemms methodology. It is based on
the methodology introduced in the previous section, but it has been updated to
include this more complex scenario. The end goal is always the same: group and la-
bel sequences that have similarities in terms of editing patterns. The methodology
overview is shown in Figure 3.11. In the coordinates extraction phase, we extract
sequence coordinates using Levenshtein distance. We extract two sets of coordi-
nates to better characterize the scenario. Then, we move to the multi-clustering
phase. Conceptually similar to what was done before, this refined clustering phase
allows us to identify more editing patterns with different cardinality. At the end
of this phase, we have sequences grouped into labels that represent them in terms
of shot sizes, shot subjects, editing pace, and editing trend. In the last phase, we
train and test a classifier to validate the proposed labels.

57

Video Editing Pattern Analysis

performance trend and pace no trend no pace
Silhouette 0.75% 0.99% 0.97%
Macro average 88% 76% 84%
weighted average 93 % 95% 94%

Table 3.9: LSTM performance in different scenarios.

Figure 3.11: LEMMS methodology

Coordinates Extraction

In this phase, we extract segment coordinates similar to what was done with
our early methodology. However, instead of creating 8 artificial sequences, we
generate only 6 artificial sequences since we have fewer shot size classes. After
generating six artificial sequences with 30 elements, each set to the same symbol,
one per sequence, we compute their Levenshtein Distance with respect to every
segment in our dataset. Then, we store those distances, and we use them later on
as multidimensional point coordinates. We repeat this process several times. The
first time, we extract the coordinates from the sequence segments characterized only
by the shot sizes, while the second time, the sequence segments are characterized
only by the shot subjects. We then join these two sets of coordinates in the following
way: [Ds0, Ds1, Ds2, Ds3, Ds4, Ds5, Dsb0, Dsb1, Dsb2, Dsb3, Dsb4,
Dsb6]. The first 6 elements contain the coordinates that represent the shot sizes

58

3.4 – LEMMS

used in the sequence, while the other 6 elements represent the subjects used. At
the end of this process, we have the normal coordinates. To extract the weighted
coordinates, we multiply the normal coordinates by a set of coefficients. We have
as many coefficients as the dimensions that characterize our sequence points. Each
coefficient is inversely proportional to the frequency of the specific class with respect
to the other classes of its type. In this way, the weighted coordinates give more
results to editing patterns that are consistent but less evident because they are
characterized by less frequent shots.

Multi-step clustering

In this phase, using the sets of coordinates obtained from the previous step,
we deploy multiple clustering steps to characterize the sequences in different ways.
The algorithm used at every clustering step is the KMeans++ [4]. To identify an
ideal number of clusters, we used the Silhouette index score [68], which measures
the cohesion and separation of the identified clusters.

The first clustering phase is performed on the weighted coordinates. In this way,
we separate the main set, which contains the most common patterns, from the rare
sets, which contain sequences with less common shots and subjects but still have
consistent patterns. In the second clustering step, we used the normal coordinates of
the sequences belonging to the main set. At the end of this process, we have grouped
the sequences in the main set into different clusters. Those in addition to the ones
defined in the rare sets define what we call the basic editing labels. These labels
characterize the sequences only in terms of subjects and shot sizes used. At this
point, we perform one last clustering step, taking into account also the previously
defined editing pace and trend labels. This time, the clustering algorithm is applied
to data samples characterized by the basic editing label, which represents the shot
sizes and subjects used in the sequence, the editing pace label, which characterizes
the amount of shots in the segments, and the editing trend label, that characterizes
the size relationship among the different shots. The resulting clusters identify the
editing labels. We will use these editing labels in conjunction with the editing
segments to train and test an LSTM classifier to validate our approach.

Validation

This last phase is straightforward. As done previously, we train and test a
classifier, an LSTM model in this case, on our data, characterized by the editing
segments and their newly defined editing labels. With respect to the Cinescales
study case, these labels characterize the segments in multiple ways. We rely on
accuracy pèrecision recall and f1-score to evaluate the performance of the classifier.
We show the result of our methodology in the next section, together with an analysis
of our first discoveries.

59

Video Editing Pattern Analysis

3.4.3 Exsperimental Validation
Here, we present our discoveries and results in a 50-class scenario.
In the first clustering step, in which we separate the main set from the rare

sets, the silhouette index showed that 4 clusters were a good number, with a value
of 0.89. If we further increased the number of clusters, the silhouette score would
rapidly decrease. with 5 we would get 0.86, while with 6 we would get a value of
0.76. Of these 4 segments, the main set is identified by the biggest cluster, while
the rare sets by the smaller ones.

In the second cluster phase, we focus on the main cluster, which has 24,010
points representing sequences. This time we use the normal coordinates. After
simulating a multiplicity of different scenarios (2-60) with the help of the silhouette
index, we identified 8 as a good number of clusters. This scenario is more complex
than the previous one, and the best value of the silhouette index is 0.63 with 8
clusters. At the end of this second clustering phase, we have identified the basic
editing patterns, characterized in Table 3.10.

Phase Cluster Number of main main
samples sizes subjects

1 1 33 ECU Ot-F
1 2 227 O Ot
1 3 93 ECU Ot-Ob
2 4 1498 MS - WS H
2 5 1659 WS - MS l
2 6 1166 MS - CU f-h
2 7 8441 MS h
2 8 1713 MS - WS h-ob
2 9 1781 CU l
2 10 922 MS-WS a
2 11 6830 MS l

Table 3.10: The different clusters identified after the first two clustering phases.

Finally, in the last step, we join the basic editing labels with the editing pace
and trend labels and apply the KMeans++ algorithm once more. We stopped at
50 classes. While we could have identified more classes above a certain threshold,
those classes start to have not enough samples to be properly learned.

With 50 clusters, the value achieved by the silhouette index is 0.91. We charac-
terize the results of this analysis in Table 3.12. In 3.11 we show from which basic
editing patterns the final editing labels come from. To validate our representation
now, we use an LSTM classifier. using a 10-fold stratified cross-validation approach.

60

3.4 – LEMMS

Cluster final classes (n sample)
1 44(11), 8(22)
2 30(14), 44(81), 8(132)
3 14(25), 16(28), 21(23), 30(13), 42(4)
4 10(72), 14(510), 16(99), 21(496), 30(141), 42(180)
5 1(541), 31(301), 34(265), 41(163),

10(189), 32(200)
6 20(382), 25(438), 47(138), 46(113),

13(19), 22(2), 32(65), 48(4)
7 15(1381), 19(372), 45(131),

49(131), 6(2356), 7(1421),
2(1421), 22(764), 13(220), 35(201), 48(96)

8 23(521), 3(714), 38(164), 43(133)
2(1), 22(1), 29(16), 35(79), 4(83), 48(1)

9 17(614), 24(160), 28(289), 39(236),
29(95), 37(197), 4(190)

10 11(301), 26(381), 36(25), 9(31),
5(49), 12(19), 37(102), 40(8)

11 0(1207), 27(457), 33(258), 18(651),
9(234), 36(321),
40(226), 5(2196), 12(1284)

Table 3.11: On the right are the clusters identified from the first two phases; on
the right are the final labels identified for those classes.

The model achieved an overall accuracy of 92.8% in labeling sequences that it has
never seen before in a 50 classes scenario.

layer(type) output shape number of parameters
Embedding (None, 30, 30) 300,000
LSTM (None, 100) 52,400
Dense (None, 50) 5,050

Table 3.12: Total trainable parameters 357,450

Table 3.12 shows the composition of the Basic Editing Sets and which final
classes are formed from them. The classes in italics are the classes that are created
from different Basic Editing Sets. Of the 50 classes considered in this scenario, 28
of them originate from one class while the remaining 22 are shared among different
basic editing labels.

61

Video Editing Pattern Analysis

Quantitative Analysis

Figure 3.12: Precision, recall and f1-score of the LSTM on 50 classes

Precision Recall f1-score
macro average 85.7% 85,8% 85.5%
weighted average 92.0% 92.8% 92.4%
Accuracy 92.8%

Table 3.13: Overall performance of the LSTM classifier on 50 classes.

In Table 3.13, we have characterized the performance of the LSTM model in
terms of Precision(P), Recall(R), and f1-score(f1). In 3.12 we show these metrics per
class. The macro-average computes the f1-score, which is calculated for each label
independently of the class proportions, whereas the weighted average considers the
class proportions. The scores reported are averages derived from the 10 different
folds used in stratified cross-validation.

The general performance of the classifier is very good, however if we take a
closer look we can see the on some classes it performs definitely better with respect
to others. For instance, the LSTM is not able to predict one single sample coming
from classes 8 and 44. This is because these classes do not have enough samples to
be learned by the LSTM model. Additionally, both of these classes are made from

62

3.4 – LEMMS

sequences that come from different basic editing labels. The issue with these types
of sequences is that even if they have different shots and elements since they are not
consistent enough, they get grouped with other sequences that have similar editing
pace and trend labels. To avoid this issue while keeping a decent amount of samples
inside each class would be to increase the amount of samples under analysis. Just
increasing the number of classes would not suffice. We run two simulations with 70
and 90 classes, respectively. In the 70 classes scenario, we can see some degradation
in the model performance but not too severe. If we increase the number of classes
under analysis, the averaged f1- score drops to 75%. On the other hand, reducing
the number of classes would only increase the noise inside each class.

Qualitative analisys

Figure 3.13: 30 seconds sequence from "Star Trek: Insurrection".

Figure 3.14: 30 seconds sequence from "Children of a Lesser God"

The identified classes delineate patterns that range from general to highly spe-
cific. When examining two segments originating from classes defined by distinct
basic editing patterns, editing paces, and trends, the differences are outstanding.
For example, Figure 3.13 illustrates a segment from "Star Trek: Insurrection", di-
rected by Jonathan Frakes. This segment is characterized by a rapid editing pace
and a combination of predominantly medium and wide shots, capturing scenes
where characters are running and shooting across the location.

If we take a look at the segment illustrated in Figure 3.14 we can see how not
only we have a slower editing pace but also different shots and concatenation of
them. This second segment is taken from "Children of a Lesser God," directed by
Randa Haines. In this scene, with respect to the previous one, there is much greater
emphasis on the characters rather than the overall context. This segment belongs
to class 46 a class that derives from a basic editing label characterized by close ups
and medium shots of people.

When comparing two segments from different classes within the same basic edit-
ing pattern cluster, the differences are less pronounced. The segments depicted in

63

Video Editing Pattern Analysis

Figure 3.15: Sequence 1

Figure 3.16: Sequence 2

Figure 3.15 3.16 are taken from class 43, which is exclusively derived from basic
editing set 8. Both scenes primarily feature medium shots of individuals interacting
with objects. The fact that both segments conclude in a similar manner is some-
what coincidental. This indicates that while segments represented by a single class
can exhibit varying structures, they generally conform to the boundaries implicitly
defined by the editing pace and trend labels. On the other hand, if segments come
from different classes, they are very different from each other.

3.4.4 Discussion
Another issue is that even if lemms can identify more defined labels, there

are not enough data examples for the LSTM classifier to learn and thus properly
validate them. Thus, if we want to identify more labels and their corresponding
segments, we need to increase the amount of data to be analyzed.

In some instances, sequences belonging to the same class may appear visually
similar in segment representation, yet differ significantly when the videos are com-
pared. This discrepancy can be illustrated with a specific segment in Figure 3.17.
This segment is composed entirely of medium shots, but the sizes of these shots vary.
The variation arises because the medium shots represented fall at the extremities
of the medium shot classification, causing some to resemble close-ups while others
resemble long shots.

64

3.5 – Chapter Conclusions

Figure 3.17: 30 second sequence from "Pacific Rim"

To address this issue, implementing a more detailed shot size classification sys-
tem would be beneficial. Additionally, incorporating more features from the AVE
dataset, such as the number of people and camera movement, would enhance the
data representation. This enriched representation would enable the characterization
of more complex editing patterns.

Another challenge is that, although lemms can identify more specific labels,
there are insufficient data examples for the LSTM classifier to effectively learn and
validate them. Consequently, it is necessary to increase the volume of data analyzed
to identify a greater number of labels and their corresponding segments.

Finally, while the trend attribute has proven useful in characterizing editing
sequences, a more sophisticated strategy should be developed to better characterize
mixed trends.

3.5 Chapter Conclusions
This concludes this chapter on editing pattern analysis. In both case studies, we

were able to identify meaningful patterns and to characterize them in such a way
that a model could learn to classify them with good accuracy. On the other hand,
these studies show that there is a correlation between the sequence of shots and the
final video. However, there is still room for improvement in the characterization
of these patterns. As we have seen, it is better to have a more fine-grained shot
classification. Also, the characterization of what is happening in the scenes needs to
be improved. On the other hand, now that we have seen that there is a correlation
between editing sequences and videos, we can exploit this correlation to teach the
model to generate new editing sequences. To this end we have devoted the second
half of chapter 4. In which we use a more refined classification and characterize
the editing sequences with textual data. In the Appendix instead, the results of

65

Video Editing Pattern Analysis

a preliminary study conducted at Laval University on editing sequence generation
using dataset AVE are presented. Many key concepts introduced later on were
assessed during this research.

66

Chapter 4

Toward Automatic Storyboard
Creation

4.1 Introduction
In recent years, the number of points of contact between the movie and AI

fields has increased intensively. With the advent of vision transformers and stable
diffusion models, the quality of generated images and videos has increased to a level
that was not thinkable just a few years ago. Nowadays, there are models able to
create images or videos using simple textual input. While the realism of generated
images and videos keeps growing every day, a key aspect has been left aside: the
video editing structure, i.e., the concatenation of shots used to represent the video.

In this last chapter, we focus on the challenge of recreating storyboards and
editing sequences. Due to the complexity of the challenge, we addressed it by
dividing it into two tasks. The first task we address is the creation of specific
shots given a textual prompt and the shot size. In this study, presented in [25],
we introduce Dreamshot, a methodology to fine-tune diffusion models that we use
to generate images from prompts with the shot size constraint. The second task
that we want to address is the prompt to edit the sequence. It can be summed
up as follows: given a textual prompt that describes a movie scene, we create an
algorithm that gives back as output a sequence that represents the shots to be
concatenated to represent that scene. The intuition that defined our work is that
depending on what is happening on the scene certain shots will be preferred with
respect to others, as shown by our previous studies. Hence, it should be possible to
find a correlation between the shots used and the scene textual descriptions, that
offer a more detailed representation of the scene with respect to what was done in
our previous studies.

67

Toward Automatic Storyboard Creation

4.2 Related Work
In addition to the studies that focused on video editing mentioned in the pre-

vious chapters, with the rise of Transformers and diffusion models new models and
challenges were addressed in the context of video editing. To give an idea, when
this Phd started the first version of DALLE [58] was still to be released. Back
then the state of the art methodologies relied on different Generative Adversarial
Networks (GAN) [28]. The first version of DALLE itself relied on a combined ap-
proach of GAN and Variational AutoEncoders (VAE) [41]. Shortly after the first
Diffusion models appeared followed by Latent diffusion models like Stable diffusion
[63]. Due to the superiority in terms of performance of diffusion models compared
to approaches based on GAN in general, we adopt this family of algorithms in our
studies.

Text to video models follow a similar trend, although they offer even more
challenges and offer unique solutions. For instance in [51] the authors present a
new methodology to perform video editing. Here with video editing they mean
the process of visually altering editing clips. This new approach employs a video
diffusion model to blend low-resolution spatio-temporal data from the original video
with high-resolution synthesized information that matches a text prompt. As a
result they can turn a video into another using only a text prompt or generate
a video from an input image and a text prompt. Other works [71] [40]instead
proposed text to video models that use as basis the knowledge learned from text to
image models. As new models were released also new transfer learning techniques
were developed to finetune these models for new tasks. In [64] the paper introduces
a new method for "personalizing" text-to-image diffusion models. By fine-tuning a
pretrained model with a few images of a subject, the model learns to associate a
unique identifier with that subject. This identifier can then be used to generate
new, photorealistic images of the subject in different scenes. Another example is
ControlNet [93], a technique that leverages the knowledge of diffusion models and
to produce images that can be heavily edited through prompts. None of these
works however take into account the shot size which could be a useful constraint to
generate more scenographic images. However more tool to create storyboards are
being developed,although they focus on the single shot recreation rather than the
whole sequence, like [73], [74], [75], [76].

Other studies and tools focus more on video editing as the process of concate-
nating images together. A first example is [45]. This work introduces a new task
called Story Visualization, which involves generating a sequence of images from a
multi-sentence paragraph, with one image per sentence. Unlike video generation,
this task emphasizes global consistency across dynamic scenes and characters rather
than continuity between frames. The proposed model, StoryGAN, is based on the
sequential conditional GAN framework and includes a deep Context Encoder to
track the story flow dynamically. They do not keep the shot size in consideration.

68

4.3 – Dreamshot

Curiously they never mention the term storyboard, although it is the output of
their methodology.

Another work that focuses on storyboards is [60]. Here the authors present
the Virtual Dynamic Storyboard (VDS) system, which is designed to create sto-
ryboards. VDS allows users to storyboard shots in virtual environments, enabling
them to test settings before actual filming. It operates on a "propose-simulate-
discriminate" mode: given a formatted story script and a camera script, VDS gen-
erates character animation and camera movement proposals based on predefined
rules. In this study the shot sizes used are three; Close up, Medium Shot and
Long Shot. In the context of shot generation also our proposed solution focuses on
three shots, however we generate photorealistic images with simple text prompts,
instead of relying on entire scripts. For what concerns the creation of sequences of
shots our proposed solution takes into account 10 different shot classes and is able
to generate editing patterns with limited textual information compared to other
studies seen so far.

4.3 Dreamshot
In this work we defined a simple methodology to fine-tune diffusion models to

the task of shot recreation. The idea is to add the shot size in the textual prompt
used to generate the image to get the corresponding image with the right shot size.
The shot sizes considered in this study are Close up, Medium shot and Long shot,
shown with some generated examples in figure 4.1.

Figure 4.1: Generated examples of shot sizes considered.

Current Diffusion models can create high quality, both photorealistic and not,
images through conditioning, which is usually in the form of a textual prompt.
In order to generate high quality images Diffusion models rely on the following
two steps: the forward diffusion and the reverse generation. During the training
phase the model progressively adds small amounts of Gaussian noise over several
steps to the images to the point that they are indistinguishable from random noise.
Then in the reverse generation, as the name suggests, we perform the opposite
operation. Using a trained Variational AutoEncoder to remove noise at each step

69

Toward Automatic Storyboard Creation

the model gradually denoises the image. After numerous steps, the noise is suffi-
ciently reduced, resulting in a new image that closely resembles the original training
data, ensuring stability and high quality. A key feature of Stable Diffusion models
is the integration of textual conditioning, which allows the generation of images
based on textual descriptions. This is done by encoding text inputs into latent
vectors using pre-trained language models. The main downside of these models
is that they require a lot of hardware resources to be trained or even tradition-
ally finetuned. There are however new finetuning techniques, like Dreambooth and
ControlNet that allow the customization of diffusion models with a sensible lower
computational load. These techniques can add new subjects or styles to the model
knowledge. We leverage this feature by teaching the shots as if they were graphic
style. For instance the close up can be thought of as the style of a specific painter
that focuses on close portraits.

Figure 4.2: Methodology overview

70

4.3 – Dreamshot

In figure 4.2 we show a brief overview of the different operations that take
place during data preparation, model training and generation phases. To finetune
a stable diffusion model toward image generation with the shot size constraint we
used a Dreambooth implementation that leverages Low Rank Adaptation [35].

4.3.1 Data preparation
This phase is crucial for the final output quality of the diffusion model, ne-

cessitating high-quality samples and associated captions that accurately describe
the images. To achieve this, we sourced our images from the FILMGRAB movie
repository, which offers high-quality frames from a diverse array of movies. This
repository is available for research purposes at [26]. To prepare the images for the
model, we resized and cropped them to a resolution compatible with the stable
diffusion model (512x512).

After cropping, we labeled 200 images for shot type, resulting in a total of 600
images. The final preprocessing step involved extracting the image captions. For
this task, we relied on the Vision-Language model Blip2 (Bootstrapping Language-
Image Pre-training) [44]. Vision-language models, such as Blip2 and CLIP (Con-
trastive Language-Image Pre-training) [55], integrate visual and textual data to
understand and generate information by associating images with their correspond-
ing textual descriptions. These models typically consist of two neural networks: a
vision encoder and a text encoder, which map inputs into a shared multimodal em-
bedding space using techniques like contrastive learning. Pre-trained on extensive
datasets of image-text pairs, vision-language models excel in zero-shot learning,
image retrieval, and enhancing AI systems’ contextual understanding.

At the end of this process, we have a curated dataset of 600 movie frames, all
standardized to the same resolution, annotated with shot sizes, and accompanied by
detailed textual descriptions. This enriched dataset serves as a robust foundation
for fine-tuning our diffusion model, ensuring high-quality output by leveraging both
visual and textual information.

4.3.2 Methodology
Now that we have an appropriate dataset for the task we can finetune a latent

diffusion model using the Dreambooth technique to recreate images with the shot
size constraint.

Model finetuning

The core concept of DreamBooth involves associating a unique identifier with
a small set of input images. This identifier, when used in prompts alongside its

71

Toward Automatic Storyboard Creation

associated class (e.g., "A [V] dog"), combines prior class knowledge with new in-
formation to reconstruct the subject. To enhance diversity and mitigate language
drift, a new autogenous class-specific prior preservation loss is introduced during
training. Additionally, the model is supervised using its own generated samples
to maintain and leverage both class-specific knowledge and instance-specific infor-
mation for generating new samples effectively. In our case the identifier instead of
being an object is a shot size.

Dreambooth alone effectively reduces computation cost. However it can be
further reduced using Dreambooth in conjunction with Low RanK Adaptation.

This finetuning technique is designed to efficiently fine-tune large models by
modifying only a small subset of their parameters. This method leverages the
concept of low-rank approximation, which reduces the number of parameters that
need to be adjusted during the adaptation process. LoRA is able to do so by
decomposing the parameter matrices of a neural network (W) into matrices with
smaller dimensions (A and B), in a way that AxB approximates W. This reduces
the computational resources because during the finetuning process only matrices A
and B are updated instead of the entire weight matrix. Additionally by fine-tuning
only a small set of parameters LoRA preserves much of the original pre-trained
model’s knowledge. Suppose that the original model is denoted by W and the
fine-tuned model is defined as:

W ′ = W + ∆W (4.1)

What LoRA does is train the residual ∆W instead of W . However instead of
training the whole matrix ∆W it decomposes it in two smaller matrices A and B
such that:

∆W = ABT (4.2)

Once the finetuning phase is finished we can store the weights learned and store
them. When we need to use the fine-tuned model we use the original one alongside
the previously stored weights. In this study we have used stable diffusion 1.5.

In our specific case, no unique identifier was specified during training; by not
binding the concept to a specific token, the model always generates in the trained
style (or shot type in our case) when the ∆W model is specified in the prompt.

Generation

Once that we have fine-tuned the model we can generate new images. Along with
the textual input describing the image our finetune model requires the configuration
of some parameters. The prompts that we can use can be either positive, hence
moving the subject forward the specified description, or negative, hence moving
it away. Using meaningful prompts is essential in order to obtain a meaningful

72

4.3 – Dreamshot

Figure 4.3: Prompt: a high-quality close_shot picture of a woman holding a cup
of coffee in front of a brick building

image. In addition to the textual prompt, other parameters that heavily impact
the generation of the final image are the following: sampler, number of steps, CGF
scale, seed, α. The sampler influences the amount of noise predicted and subtracted
at every step of the diffusion process, while the number of steps is self explanatory.
The higher the number of steps and higher the quality and generation time of
the image. CGF Scale is a free guidance classifier technique that separates the
generated samples from random unlabeled ones, reinforcing the adherence of the
image to the provided prompt. The seed influences the initial noise map. It follows
that using different seeds implies the generation of different output images.

The last parameter that we need to set is α. It is a parameter that we use to
regulate the use of the trained weights with LoRA. The value of α ranges from 0
to 1. When its value is 0 the model used is the original one, while when set to 1
we completely rely on the fine-tuned one. With a value in between we can use a
mixture of both. Sometimes to achieve better result reducing the influence of the
fine-tuned model a bit can produce better results. In 4.3 we show an example of
our generated images.

4.3.3 Results
parameter setting

The dataset used for testing is composed of 1800 shots sampled from the FILM-
GRAB, like it was done with the previous frames, equally divided among the shots.
In addition to the images we also have generated the image captions using Blip2.
Then we randomly select these captions and use them to generate two images, one
generated from the original model and one generated from the finet-uned one. We
repeat this procedure several times, for a total amount of 1500 pairs of generated

73

Toward Automatic Storyboard Creation

images, divided among three shot classes. In Table 4.1 we show the parameters
that we have used to generate our images.

Table 4.1: The pararameters used for generation during testing

sampler DPM++ SDE Karras
steps 16
seed random
cfg_scale 6
prompt a high-quality [shot_type] picture of [caption]
size 512 x 512

Quantitative results

To obtain quantitative results, following the example of Dreambooth, we have
used the CLIP-T and DINO metrics. CLIP-T, computes the average cosine simi-
larity between the embeddings extracted from the textual prompt given as input
and the embeddings extracted from the generated image produced as output. The
DINO score on the other hand computes the average cosine similarity between the
embeddings of the image generated from by model under analysis and the original
image.

In Table 4.2 we can see that on average our fine-tuned model performs better,
without surprises, than the baseline model. The increase in the CLIP-T score
indicates that the fine-tuned model is able to interpret the shot size constraint
contained in the prompt slightly more efficiently, which makes sense. The reason
why the increase is so small is related to the fact that the shot constraint, while
it has an impact on the generated image, does not alter significantly the semantic
content of the text. Since CLIP-T measures the similarity of textual embedding and
embedding of the generated images, what we indirectly measure is how little the
shot size constraint impacts the semantic concepts contained in the input prompts.
The more consistent increase in performance in terms of DINO metric also is to
be expected. Since this metric measures the closeness of the generated image with
its original counterpart, the fine-tuned model outperforms the baseline because
it knows how to represent a shot size. These two matrices together show how the
knowledge of the shot size has a small impact on the semantic concept of the image,
but on the other hand it has a more consistent impact on the generated images.

CLIP-T DINO
baseline 0.3221 0.4163
ours 0.3269 0.4989

Table 4.2: Results for the CLIP-T and DINO metrics on the 1500 pairs test.

74

4.3 – Dreamshot

We performed a second study with 600 new images with textual caption, but we
have removed the shot size constraint from the textual prompt. The setup is the
same that was implemented previously. The results are in Table4.3. the fine-tuned
model still outperform the baseline, showing that even without direct indication
the model preserves an orientation toward the specific shot it has been fine-tuned
on.

CLIP-T DINO
baseline 0.3214 0.4014
ours 0.3234 0.4803

Table 4.3: Results for the CLIP-T and DINO metrics on the ablation test.

Qualitative Survey

In addition, we conducted a survey involving human subjects. The subjects were
colleagues, friends and family, with different knowledge backgrounds and expertise.
Each participant was shown a total of 36 pairs of images, labeled A and B, generated
using the same settings and prompts, with one image from the baseline model
and the other from the fine-tuned model. The labeling of images as A or B was
randomized. For each pair of images, presented with the shot size and input prompt,
the participants were asked to answer the following three question:

• Which image do you prefer?

• Which image better corresponds to the associated shot type?

• Which image better matches the associated prompt?

Participants could choose A, B, or neither/same if they didn’t have substantial
differences. A total of 55 subjects responded to the survey, and the results are
summarized in Table 4.4.

These results indicate that our fine-tuned model generates images that are more
appealing and represent more accurately the shot size and the prompt in input.
Also in terms of image likability, the fine-tuned model outperformed the baseline
one that model scored a lower score, which suggests that the fine-tuned model
produces images of equal or superior quality. The survey results align with the
CLIP-T and DINO metrics, showing that higher likability and shot-type accuracy,
which are closely related to DINO scores, are significantly improved compared to
prompt alignment and CLIP-T scores relative to the baseline.

75

Toward Automatic Storyboard Creation

Table 4.4: Results collected from a survey conducted on 55 subjects. The score are
expressed as percentage over the total number of answers.

question baseline ours same /
neither

Which picture do you like 26.18 57.43 16.4
most?
Which picture is closer to the 20.46 56.84 22.7
associated shot type?
Which picture is closer to the 20.35 49.31 30.34
associated prompt?

Visual results: shot creation

Here we present some visual result that we have obtained using Dreamshot. In
4.4 we show how the same image is impacted by the shot size and the value of the
alpha coefficient. As the value of the coefficient increases the influence of the shot
size is more influential on the image output.

These examples show that the model’s ability to create images of the right shot
size depends also on the input image. However even when the resulting image is not
of the right shot size at least is toward the right size. The shot on which the model
has more issues is the long shot. Especially with the second and fourth images the
generated long shots are not really long shots, although the resulting shot size is
wider than the original. With close ups and medium shots we haven’t run into the
same problem. This could be related to the fact that moving from a wider shot
to a more narrow one is easier than the inverse since the model has to add new
details to fill the image. Increasing the data samples could be one way to resolve
this issue, as the model learns to generate more details related to the class long
shot. In Figure 4.5 we show the difference between our generated frames and the
baseline ones with an alpha value of 0.7. In the first case, our generated image is
very consistent with the generated prompt, while the one generated by the baseline
model gets the right details but the wrong shot size. In the second example both
models get the shot size wrong, however our image is aesthetically more consistent.
Finally in the third case both models got the shot size right but the details are
wrong. The baseline model ignores some detail, like the motorbike. Our generated
image instead gets all the details but represents them in the wrong way, like the
fence that comes down the electricity cable.

From storyboard to images

In 4.6 we started from a sketched storyboard (provided to entrants of the
BBC’s ’my place my space’ competition), and generated the equivalent shots using

76

4.3 – Dreamshot

Figure 4.4: Some examples of the generation of the same subject with the three
different trainings (close, medium, and long shot) with different levels of α

Dreamshot. By using simple, effective prompting we managed to recreate similar

77

Toward Automatic Storyboard Creation

Figure 4.5: Image generation with shot constaint: baseline vs ours.

scenes with an evident cinematic style. In some cases character consistency is still
an issue for diffusion models. However the generated storyboard is definitely more
interpretable than the hand sketched one.

4.3.4 Discussion
While this approach can be further improved, it already achieves good results.

We have shown that it is possible to finetune a model to encapsulate the concept
of shot size. This enables the model to perform different tasks, from generating

78

4.3 – Dreamshot

Figure 4.6: Example of a storyboard enhacement

single images with the shot constraint to converting a sketched storyboard into one
with photorealistic images.However, several improvements can be made. On the
one hand more shot size should be considered. This would allow it to add even

79

Toward Automatic Storyboard Creation

more control on the shot generation. Also the numerosity of the samples for the
classes could be increased to refine the amount of detail in the generated images.
Another open issue to address in future research is the character consistency among
different shots.

Even if we are satisfied with the model’s ability to generate cinematographic
images, these alone do not make a storyboard. For the storyboard it is also neces-
sary to order the shots in a meaningful sequence to represent the movie scene. To
do so we have developed a novel methodology that we present in the next section,
in which we investigate editing pattern generation.

4.4 TEdit: Text to Editing

Figure 4.7: Methodology

Since our previous studies and other works showed that there is a correlation
between the shots used and what is shown in the video we devoted our research
efforts to develop a model that suggests a possible editing solution. In other words,
given as input what will happen in the video, the model will give as output shot

80

4.4 – TEdit: Text to Editing

sizes concatenated in a meaningful disposition. Starting from the Condensed Movie
Dataset, a dataset that contains movie scenes descriptions, metadata and video
urls, we have developed TEdit, a text to editing methodology, shown in 4.7. The
intuition behind our methodology is that from a certain point of view they shots
compose movie scenes like words compose a sentence. Shots like words do not have
a lot of meaning alone, but they gain meaning when put together with other shots.
However textual data has been and it is still being studied in depth editing much
less. In the Condensed Movie Dataset there are movie scene descriptions and the
related videos URLs. Hence to study and infer knowledge on the editing patterns
extracted from the videos we used the corresponding scene description. TEdit
receives as input a description of the scene and gives out as output a possible
sequence of shots that can be used to represent the scene according to what is
happening. To do so, Tedit exploits three models. The first model is a RoBERTa
Language Model that is used to extract the sentence embedding contained in the
textual scene description. Then a Sequence to Sequence model, previously trained
for this purpose, is used to transform the textual embedding into its corresponding
editing embedding. Finally, using an autoencoder previously trained for this task,
the embedding is converted into a meaningful sequence of shots that can be used
to represent the scene.

4.4.1 Data
We started from the Condensed Movie Dataset [5]. It is a dataset that has

more than 34’000 videos. For each video there is also additional metadata.For
every video in the CMD dataset, there is the youtube link to the video, the scene
textual description, the cast, the movie genre from which the scene was taken, and
other minor features like release country and so on.

4.4.2 Methodology
While the textual embedding extraction is not a difficult task, thanks to Large

Language Models such as BERT [22], RoBerta [47] and others, the editing embed-
ding extraction required some extra steps. The overall training process is shown in
4.8, while the different phases are better characterized in the following paragraphs.

In the textual features extraction phase we extract textual sentence embeddings
using a pre-trained RoBERTa model. In the Editing Features Extraction we extract
an embedding representation of the editing sequences extracted from the YouTube
videos. Additionally in this step we also train the AutoEncoder that will be used
later on in the TEdit methodology.

81

Toward Automatic Storyboard Creation

Figure 4.8: Overall training process

Textual features extraction

To extract the sentence embedding we use a pre-trained Roberta model. Specifi-
cally we extract the embeddings after the Tokenizer layer. They have shape (768,1)
and capture the semantic meaning of sentences in a continuous vector space.

Editing Pattern Extraction and Encoding

In the Editing Pattern Extraction phase starting from the url videos and meta-
data we end up with editing sequences embeddings. Additionally at the end of the
process we have the trained Autoencoder. The steps to do so are shown in 4.10.

The overall process can be summarized in 4 steps. The first three steps are
necessary to prepare the data to feed to the Autoencoder during the final phase,
the actual Autoencoder training.

Step 1: fine-tuning a Vision Transformer

Since the CMD Dataset does not contain shot sizes we need to train a model
to perform Cinematographic Shot Classification. Due to the results obtained by
the Vision Transformer model we decide to fine-tune one on shot size classification.
The dataset used to fine-tune the vision transformer is an alteration of the dataset
presented in Chapter 2. Starting from that dataset we have included two additional
classes, the trash and object classes. In the class thrash ends up all the "useless"

82

4.4 – TEdit: Text to Editing

Figure 4.9: Scene description embedding extraction

Figure 4.10: Editing embedding extraction

shots, i.e. credits while in the class object all of those images in which the subject
is not the human figure but an object of some kind(gun, knife, watch...)

After including these new two classes we have fine-tuned the vision transformer

83

Toward Automatic Storyboard Creation

on the new dataset obtaining the performance shown in the results section.
Now that we have a fine-tuned Vision Transformer the next step is to extract

the video frames that later on will be fed to it.

Step 2: Frame Extraction

Starting from the YouTube urls we used the youtube-dl library to download
the videos. Then, using the video partitioning algorithm presented in [30] we par-
titioned them into individual video clips. The partitioning algorithm gives back
as output the duration and timing of each shot and from each of those ranges we
select a frame. Visually the simplified process is shown in 4.11.

Figure 4.11: Video to sequence of frames

Step 3: Frame Labelling

After splitting the video into clips we extracted a frame from every clip and
labeled it using the fine-tuned vision transformer. The ViT model classifies every
frame and then using the duration and timing of each shot we recompose the video
as an editing structure characterized by the shot sizes. The simplified process is
shown in 4.12

Figure 4.12: From sequence of frames to sequence of shot sizes.

84

4.4 – TEdit: Text to Editing

These Editing Sequences have different lengths, so we have mapped them all to
length 100. we excluded some videos in this way but just a minority. After padding
the sequences with elements from the class trash appended at the bottom of each
sequence, we one hot encoded them, obtaining sequences with shape 100,10.

After shaping the sequences into this one hot coded representation we flatten
them and use them to train the autoencoder.

Step 4: AutoEncoder training

This type of model is often used for data preprocessing. An autoencoder is an
unsupervised model that learns a compressed representation of the data. If the
model is trained correctly then it should be able to recompose the original data
starting from the embedded representation. In our case the autoencoder has to
learn the embedded representation of the editing sequences. An initial approach
consisted in keeping the multidimensionality of the data and passing from a repre-
sentation of size(100,10) to an embedded representation of size (100,2). While the
autoencoder is able to learn effectively this data representation it poses an issue for
the Seq2Seq model that we use afterwards, hence we have discarded the approach
in favor of a flat representation with size(1000,1). We have chosen this approach
for its simplicity and effectiveness. On one hand sequences with only zeros and
ones are easy to recompose into the original data format(100,10). On the other
hand the autoencoder is able to effectively learn this data representation with the
additional bonus that the embedding representation is with size(256,1). Once than
the Autoencoder is trained we can use it to extract the embedding representation
of the editing sequences, as shown in 4.13

Seq2Seq training

At this point we have the textual embeddings extracted from the scene descrip-
tions on one hand and the editing embeddings of the corresponding video extracted
from the AutoEncoder. The last step now is to map the textual embeddings to the
editing embeddings. To do so we have used a simple Seq2Seq architecture described
later. After training the model we now have all the necessary pieces to convert a
textual prompt into meaningful editing sequences. should be able to feed to its
movie scenes description and obtain a sequence of shots to represent it as output.

4.4.3 Results
Since different models are involved in this approach we will have a separate

section for each model starting with the autoencoder, which after 15 epochs reaches
a training and test accuracy of 100%. The loss used is the binary cross entropy. We
tried also with a smaller embedding size, (192,1) and (128,1) but the autoencoder

85

Toward Automatic Storyboard Creation

Figure 4.13: Sequence of shot embedding creation.

was not able to converge to a 100% accuracy in reconstructing the sequences. It
works also with greater sizes, like (512,1). However as we well see in later having
an embedding size in this context might not be ideal.

Seq2Seq

The final model that we have used is a simple Sequence to Sequence model that
maps the scene descriptions embeddings extracted from Roberta with size 768 to the
corresponding editing sequence embedding extracted from the Autoencoder. Maybe
to perform the task other architectures would have been more fit, like transformer,
however due the the data in our possession a simpler model is more fit. The model
reaches an overall average cosine similarity of 0.9280 on the training set, while on
the test set it reaches an overall cosine similarity of 0.8140, which is inferior but still
good. As we will show in generating new sequences or reconstruction of old ones
the model overfits on the most common shot used ignoring the others. Additionally,
while with some parameter tuning it is possible to improve its performance on the
training set after a while its accuracy on the test set doesn’t improve anymore.
The seq2seq was trained on 80% of the data and tested on the remaining 20%. We
have used the Adam Optimizer with a learning rate of 0.0001. The cosine similarity
score is a metric used to measure how much two vectors are similar to each other.

86

4.4 – TEdit: Text to Editing

Vision transformer

To give an idea of the model performance we have shown below its performance
after training it on 90% of the data and tested and the remaining 10%. It reached
the performances shown in 4.5.

Table 4.5: precision, recall and f1-score of the Vision Transformer.

Class precision recall f1-score support
Long Shot (LS) 88% 90% 89% 136

Medium Shot (MS) 87% 68% 76% 127
Full Figure (FF) 74% 83% 78% 108
Half Torso (HT) 70% 78% 74% 167
Half Figure (HF) 71% 73% 72% 132

Detail (D) 91% 98% 94% 60
American Shot (AS) 67% 83% 74% 94

Close Up (CU) 87% 62% 72% 173
Extreme Close Up (ECU) 83% 89% 86% 118

Trash (TR) 100% 100% 100% 10
accuracy 79% 100

macro avg 82% 83% 82% 100
weighted avg 80% 79% 79% 100

At a first is look seems a decent performance, but far from ideal. However if we
take a look at the confusion matrix 4.6we can see that the majority of the mistakes
are made among similar classes, hence the performance is actually good. If every
now and then a half torso get mistaken for a half figure is not too bad.

Table 4.6: Confusion matrix of the Vision Transformer.

Class LS MS FF HT HF D AS CU ECU TR
LS 123 11 0 0 0 2 0 0 0 0
MS 13 86 22 0 1 1 4 0 0 0
FF 1 2 90 1 0 1 13 0 0 0
HT 0 0 0 131 32 0 1 3 0 0
HF 1 0 1 12 97 0 21 0 0 0
D 1 0 0 0 0 59 0 0 0 0
AS 0 0 9 0 7 0 78 0 0 0
CU 0 0 0 43 0 2 0 127 21 0

ECU 0 0 0 0 0 0 0 13 105 0
TR 123 11 0 0 0 2 0 0 0 0

The dataset used to fine-tune the model is composed as follows:

87

Toward Automatic Storyboard Creation

• Long Shot: 1359 samples. The humane figure occupies one less than third in
height or is absent.

• Medium Shot : 1270 samples. The humane figure is framed entirely and
occupies from 2/3 to 1/3 of the screen in height.

• Full Figure: 1080 samples. The humane figure is framed entirely or almost
and occupies more than 2/3 in height.

• Half Torso: 1673 samples. The humane figure is framed from half the torso
up.

• Half Figure: 1315 samples. The upper half of the humane figure is framed.

• Objects(Details) :609 samples. Shot that focuses on object or on hands hold-
ing objects

• American Shot: 935 samples. The humane figure is framed from above the
knee to the hips.

• Close Up: 1731 samples. The humane figure is framed from above the shoul-
der up.

• Extreme Close Up: 1183 samples. The humane figure is framed from the chin
up.

• Trash(Other/titles): 102 sample frames not belonging to the original scene.
We need to recognize them in order to filter them out later

Qualitative results

Here we analyze the quality of the editing sequences obtained under different
points of view. In the first part we will see the difference between original vs recon-
structed sequences. In the second paragraph we will analyze generated sequences
from new scene descriptions. Finally in the last part we will show a practical
example on how this methodology can be used. Since the editing sequences, re-
constructed or not, are sequences of one hot categorical vector, we implement the
following sketches to represent the different classes, to give a more visual under-
standing of the sequences. The class sketches are shown in 4.14.

Reconstructed Sequences

Here we analyze how our methodology is able to reconstruct the original movie
scene sequences. Our methodology achieved a 92% in terms of average silhouette
score, which indicates that generally the sequences are close enough to the original

88

4.4 – TEdit: Text to Editing

Figure 4.14: Shot icon representation

ones. In figure 4.15 we show three examples of reconstructed sequences: a short, a
medium and a long one in terms of number of shots used.

As we can see the reconstructed sequences are a bit simpler than the original
ones. In terms of general structure they match or come close to the original length
except when the sequence is extremely long, like in the first case, in which the
reconstructed sequence, while still long, is noticeably shorter than the other one.
In terms of shot sizes used the reconstructed sequences manage to use the most
used frames in the sequences. however when there are less common shots they
usually fail to use them. This is probably due to the natural imbalance in the shot
sizes distribution that the model has seen, since certain shots are more common
than others. In figure 4.16 we show the first ten frames reconstructed using the
sketches shown in 4.14.

The loss in granularity, although annoying, is to be expected since the scene
textual descriptions, while good to get a general idea of what is happening, are not
good to capture the details, and the consequent shots used to represent them. As
a consequence the granularity of the results is also impacted by this factor.

New editing sequences generation

Now we move to the generated sequences. We have created some brief textual
description, then we have fed them to TEdit and have analyzed the results. In 4.17
we show the first ten shots that we receive as output after inputting the following
text prompt:" Sarah bids farewell to her sister".

The complete resulting sequence, after removing the padding, is :

2 − 2 − 3 − 2 − 3 − 3 − 3 − 2 − 2 − 2 − 3 − 3 − 2 − 2 − 2 − 2 − 3

While the generated pattern per se is not particularly complicated or creative

89

Toward Automatic Storyboard Creation

Figure 4.15: Examples of reconstructed sequences, on top the reconstructed on
bottom the original.

the proposed shots, close ups and medium close ups, pertinent to the situation, an
emotional moment. This is because ideally we would want the viewers to connect
with the characters, hence shots that focus on their facial expression are a fit choice.

The quality of the generated sequences varies. In some cases it reaches a good
level of detail, like in the next example. The input prompt is "the two armies battle
each other in a final duel". The sequence, after removing padding, is:

9−8−9−9−8−8−9−8−2−8−8−8−8−2−8−8−8−8−2−9−2−9−2−9−2

The sketched sequence is shown in 4.18 .
Also in this case while the patterns are not particularly original the shots se-

lected are consistent with what must be shown, since mostly is long shots and ob-
jects and some close ups to highlight key reactions. We can identify three segments
in terms of type of shots used which we will visualize separately. Each segment can

90

4.4 – TEdit: Text to Editing

Figure 4.16: Examples of reconstructed sequences. On top the reconstructed on
bottom the original.

Figure 4.17: Generated editing sequence with the prompt "Sarah bids farewell to
her sister"

be used to illustrate different moments of the battle. The first segment serves to
introduce the environment, which can be done using long shots and objects shots
to illustrate tools, weapons or people using them. The second one has mainly long
shots and few close ups and can be used to show the moments in which the armies

91

Toward Automatic Storyboard Creation

Figure 4.18: Generated editing sequence with the prompt "the two armies battle
each other in a final duel".

clash. Finally in the third one we have close ups and objects, which can be used to
represent a short duel between two characters.

Specific use case example

In this last paragraph we show a potential use case for TEdit. In addition to
the Generated sequence we are going to use a Stable Diffusion algorithm available
at [72] to recreate the proposed sequences. The input prompt is "The hero and the
antagonist fight each other in a final duel". The generated sequence is

7 − 8 − 9 − 1 − 8 − 8 − 1 − 1 − 8 − 1 − 1 − 8 − 1 − 8 − 1 − 8 − 4 − 1 − 1 − 8

In this sequence there are mainly long shots to show the two characters fighting
and close ups to show their expressions. The sequence could be refined and use
more medium range shots, however there is enough to start with. The sequence
visualized in terms of frames is shown in 4.19.

Then we generated some prompts and converted them into images using the
Stable Diffusion model. By substituting the images to the icons we get the sequence
shown in figure 4.20.

92

4.5 – Chapter Conclusions

Figure 4.19: Generated editing sequence with the prompt "The hero and the an-
tagonist fight each other in a final duel".

4.4.4 Discussion
Overall the results of TEdit are good, considering that it is a proof of work.

The sequences both regenerated and created from new prompts overall have a solid
structure, although they lose some detail in representing less common shots and
present patterns that are not too complex. However several improvements can be
made on the dataset and the methodology. From the methodology point of view,
models more fit to deal with these data structures can be tested and integrated.
From the data point we can integrate our data collection with videos coming from
another dataset and extrapolate the textual scene description with Vision-Language
models. One dataset that could used for the task is the newly released Panda 70
[18], a dataset with video and caption pairs. Even better, we could use movie scripts
instead of textual prompts to generate more refined editing sequences. If we use
more detailed textual descriptions we could be able to generate more sophisticated
editing patterns. One additional improvement that can be made is to add additional
shot sizes like the extreme long shot, aerial shot and others.

4.5 Chapter Conclusions
In this work we have addressed storyboards creation from textual data. Given

a text description our methodology is able to give back a meaningful, although a
bit coarse grained, editing sequence given a short textual description. The different
contributions are summed up as follow:

93

Toward Automatic Storyboard Creation

Figure 4.20: Generated storyboard draft.

• We have a fine-tuned Vision transformer able to correctly classify images into
shot classes.

• we have developed a methodology that can create new editing sequences

• we have shown how to improve the quality in recreating images with the shots
constraint to recreate more cinematographic sequences.

The results provided in the last section of the previous chapter show that it
is possible to generate meaningful sequences of shots. This work combined with
Dreamshot allows us on one hand to recreate editing sequences from textual data,
and on the other hand to have control on the generated images with the shot
constraint size.

A further advantage of the methodologies presented here is that they can be
integrated not only with text to image models, but also with more powerful text
to video models like SoraAI or others. This is because the difference between
storyboard and final video is the time dimension. Integrated with text to video
model users could have a roughly edited movie from a simple prompt.

94

Chapter 5

Conclusions

The objective of this thesis was to investigate editing structures and their ele-
ments, the as shots, and to apply deep and machine learning algorithms to automate
various video editing tasks. To tackle this complex research objective, we focused
on addressing the following three challenges:

• Challenge 1: Extract editing sequences from videos;

• Challenge 2: Study the correlation between the editing structures and the
corresponding videos;

• Challenge 3: Generate new editing patterns and storyboards;

.
For each challenge we have made one or more contributions.
Main contributions addressing Challenge 1 To extract editing sequences

from videos, it was essential to classify images into shot sizes, which are the fun-
damental components of these sequences. For this purpose, we created a shot size
dataset containing 10,545 images categorized into eight shot classes. Additionally,
we developed a methodology that achieved state-of-the-art performance in labeling
new shots. This approach, based on VGG-16 models and ensemble learning, was
later replaced by a more efficient Vision Transformer (ViT) model, which was un-
available at the start of this research. The overall accuracy of the ViT model is
80%. However, by disregarding errors between similar classes, which are inherently
ambiguous and challenging to label accurately, the accuracy rises to 99

Main contributions addressing Challenge 2 To explore the correlation
between editing sequences and the corresponding videos, we initially developed a
methodology that effectively grouped sequences with similar structures while an-
alyzing the Cinsecale dataset, where editing sequences are defined solely by shot
size. We later refined this methodology, achieving improved results with the AVE
dataset, where shots and sequences are characterized by multiple shots. Both

95

Conclusions

methodologies yielded good results but also underscored the complexity of the task,
indicating that future research will require new approaches and algorithms.

Main contributions addressing Challenge 3 For the final research objec-
tive, we divided it into two tasks due to its complexity. The first task involved
creating a methodology to generate single shots based on textual prompts and shot
constraints, which outperformed the baseline model. The second task developed a
methodology to generate meaningful, though somewhat coarse-grained, editing se-
quences from short text descriptions. These methodologies can also be integrated
with text-to-image and advanced text-to-video models, such as SoraAI, enabling
users to generate roughly edited movies from simple prompts.

In conclusion, this thesis has successfully addressed the complexity of automat-
ing video editing tasks by integrating deep and machine learning techniques. By
achieving significant progress in extracting editing sequences, analyzing their cor-
relations with corresponding videos, and generating new editing patterns and sto-
ryboards, we have laid a solid foundation for future research in this field.

Future research offers several options. Editing patterns can be further charac-
terized by more shot size classes and other features, like camera movements. Other
movie datasets can be integrated with our actual data collection, thanks to Vision
language models and our methodology to label images into shot sizes. Among the
other research directions that this field offers the most interest in is the integration
of our proposed methodology to text-to-video models rather than limiting it to
text-to-image models.

96

Appendix A

Short Sequence generation from
AVE

A.1 Introduction
Here we show some initial results on editing sequence generation. This research,

although it showed good preliminary results, was later abandoned in favor of TEdit.
The main reason is related to the fact that the AVE dataset characterizes in detail
the shots used to represent a scene, but there is not much information concerning
what is happening in the scene. When we decided to use the Condensed Movie
Dataset, we had to discard this methodology in favor of TEdit, however few key
concepts that were later integrated in TEdit come from this initial approach.

A.2 Dataset
The starting dataset was the AVE dataset. To be more precise it was a version of

sequenced AVE in which the segments were 10 seconds long instead of 30. Each shot
in every editing segment is characterized by the shot size and the shot subject. We
have chosen to reduce the length of the segments to reduce the problem complexity,
as this was a preliminary study. Additionally instead of symbols we have decided
to use a different data representation. Each shot now is a 5 dimensional vector,
where each dimension represents a different shot subject. To represent the shot size
we have used values from 0 to 1 to represent them. Additionally using LEMMS
methodology we have labeled the segments into 8 classes. The number of reduced
classes is related to the fact that with shorter sequences the variety of the sequences
themselves diminishes.

97

Short Sequence generation from AVE

Figure A.1: Overall distribution, blu dots represent the original distribution, red
dots the new one.

A.3 Methodology
To recreate the sequences we decided to use a DoppelGANger model [46]. This

model reached state of the art performance in recreating symbolic data, both syn-
thetic and real. The model was trained on the newly formatted scene segments and
their editing labels. Once that model has learned the data distribution is able to
replicate it all or just parts of it, given as input to the editing label.

A.4 Results
Technical details

The model was trained for 500 epochs with a batch size of 32. The other
parameters were the one pre-setted on the DoppelGANger model.

98

A.4 – Results

Figure A.2: 3D and 2D distribution of classes 0,1,2,3.

performance

To visualize how close the newly generated data distribution is to the real one
we have used the PCA technique. In A.1 we show the overall distribution, while
in A.2 and A.3 we show the results for the 8 different classes (grouped 4 by 4 for
visualization purposes).

As we can see, depending on the granularity of the results varies depending on
the amount of samples available in each class.

99

Short Sequence generation from AVE

Figure A.3: 3D and 2D distribution of classes 4,5,6,7.

A.5 Discussion
This approach, while not reaching outstanding performance, highlighted some

successful strategies and criticism of the overall approach. The first useful insight
comes from the data representation. Using a vector like representation instead of
sequences of symbols greatly impacted the model understanding of the data repre-
sentation. This also was kept to transform the sequences of shots into sequences of
one hot categorical vector that TEdit uses. The second useful insight comes from
the coarse granularity of the results. While one one hand it is true that the Dop-
pelGANger model can be trained for more epochs with different parameters and so
on there is only so much level of detail that can be reached with ten seconds long
sequences characterized by only the shot size and the subjects if there no indication

100

A.5 – Discussion

of what is happening. These considerations on the data that we were using led us to
use the Condensed Movie Dataset instead, which has the actual textual description
of movie scenes, that offer much richer details to work with. For what concerns the
DoppelGANger since it did not reach outstanding performance it was discarded in
favor of a different approach. Additionally the model was very computationally
expensive to train. This motivated us to rely instead on the interaction of simpler
models.

101

Bibliography

[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Islam. “The k-means Algorithm:
A Comprehensive Survey and Performance Evaluation”. In: Electronics 9
(Aug. 2020), p. 1295. doi: 10.3390/electronics9081295.

[2] Mykhaylo Andriluka et al. “2D Human Pose Estimation: New Benchmark
and State of the Art Analysis”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2014.

[3] Dawit Mureja Argaw et al. “The Anatomy of Video Editing: A Dataset and
Benchmark Suite for AI-Assisted Video Editing”. In: European Conference
on Computer Vision. 2022.

[4] David Arthur and Sergei Vassilvitskii. “K-Means++: The Advantages of Care-
ful Seeding”. In: Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SODA ’07. New Orleans, Louisiana: Society for
Industrial and Applied Mathematics, 2007, pp. 1027–1035. isbn: 9780898716245.

[5] Max Bain et al. Condensed Movies: Story Based Retrieval with Contextual
Embeddings. 2020. arXiv: 2005.04208 [cs.CV].

[6] Hui-Yong Bak and Seung-Bo Park. “Comparative Study of Movie Shot Clas-
sification Based on Semantic Segmentation”. In: Applied Sciences 10 (May
2020), p. 3390. doi: 10.3390/app10103390.

[7] Hui-Yong Bak and Seung-Bo Park. “Comparative Study of Movie Shot Clas-
sification Based on Semantic Segmentation”. In: Applied Sciences 10 (May
2020), p. 3390. doi: 10.3390/app10103390.

[8] Sergio Benini et al. “On the influence of shot scale on film mood and narrative
engagement in film viewers”. English. In: IEEE Transactions on Affective
Computing 13.2 (2022), pp. 592–603. issn: 1949-3045. doi: 10.1109/taffc.
2019.2939251.

[9] Matteo Berta, Bartolomeo Vacchetti, and Tania Cerquitelli. “GINN: Towards
Gender InclusioNeural Network”. In: 2023 IEEE International Conference on
Big Data (BigData). 2023, pp. 4119–4126. doi: 10.1109/BigData59044.
2023.10386328.

103

https://doi.org/10.3390/electronics9081295
https://arxiv.org/abs/2005.04208
https://doi.org/10.3390/app10103390
https://doi.org/10.3390/app10103390
https://doi.org/10.1109/taffc.2019.2939251
https://doi.org/10.1109/taffc.2019.2939251
https://doi.org/10.1109/BigData59044.2023.10386328
https://doi.org/10.1109/BigData59044.2023.10386328

BIBLIOGRAPHY

[10] Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. “Tools for placing
cuts and transitions in interview video”. In: ACM Transactions on Graphics
31 (July 2012), pp. 1–8. doi: 10.1145/2185520.2335418.

[11] Paolo Bethaz et al. “Predicting job execution time on a high-performance
computing cluster using a hierarchical data-driven methodology.” In: Pro-
ceedings of the Workshops of the EDBT/ICDT 2022 Joint Conference. Ed-
inburg, UK: Proceedings of the Workshops of the EDBT/ICDT 2022 Joint
Conference, 2022.

[12] S. Bhattacharya et al. “Classification of Cinematographic Shots Using Lie Al-
gebra and its Application to Complex Event Recognition”. In: IEEE Trans-
actions on Multimedia 16.3 (2014), pp. 686–696. doi: 10.1109/TMM.2014.
2300833.

[13] Digbalay Bose et al. “MovieCLIP: Visual Scene Recognition in Movies”. In:
2023 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV) (2022), pp. 2082–2091. url: https : / / api . semanticscholar .
org/CorpusID:253018714.

[14] Beatriz Bosques Palomo et al. “Sentiment Analysis of IMDB Movie Reviews
Using Deep Learning Techniques”. In: Jan. 2024, pp. 421–434. isbn: 978-981-
99-3235-1. doi: 10.1007/978-981-99-3236-8_33.

[15] Luca Canini, Sergio Benini, and Riccardo Leonardi. “Classifying cinemato-
graphic shot types”. In: Multimedia Tools and Applications 62 (2011), pp. 51–
73.

[16] Liang-Chieh Chen et al. “Rethinking Atrous Convolution for Semantic Image
Segmentation”. In: ArXiv abs/1706.05587 (2017).

[17] Shixing Chen et al. “Movies2Scenes: Using Movie Metadata to Learn Scene
Representation”. In: 2022.

[18] Tsai-Shien Chen et al. “Panda-70M: Captioning 70M Videos with Multiple
Cross-Modality Teachers”. In: ArXiv abs/2402.19479 (2024). url: https:
//api.semanticscholar.org/CorpusID:268091168.

[19] I. Cherif, V. Solachidis, and I. Pitas. “Shot type identification of movie con-
tent”. In: 2007 9th International Symposium on Signal Processing and Its
Applications. 2007, pp. 1–4.

[20] Robin Courant et al. “High-Level Features for Movie Style Understanding”.
In: ICCV 2021 - Workshop on AI for Creative Video Editing and Understand-
ing. online, France, Oct. 2021, pp. 1–5. url: https://hal.science/hal-
03381587.

[21] J. Deng et al. “ImageNet: A large-scale hierarchical image database”. In:
2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255.

104

https://doi.org/10.1145/2185520.2335418
https://doi.org/10.1109/TMM.2014.2300833
https://doi.org/10.1109/TMM.2014.2300833
https://api.semanticscholar.org/CorpusID:253018714
https://api.semanticscholar.org/CorpusID:253018714
https://doi.org/10.1007/978-981-99-3236-8_33
https://api.semanticscholar.org/CorpusID:268091168
https://api.semanticscholar.org/CorpusID:268091168
https://hal.science/hal-03381587
https://hal.science/hal-03381587

BIBLIOGRAPHY

[22] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: North American Chapter of the Association
for Computational Linguistics. 2019. url: https://api.semanticscholar.
org/CorpusID:52967399.

[23] Evelina Di Corso et al. “Simplifying Text Mining Activities: Scalable and Self-
Tuning Methodology for Topic Detection and Characterization”. In: Applied
Sciences 12.10 (2022). issn: 2076-3417. url: https://www.mdpi.com/2076-
3417/12/10/5125.

[24] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: CoRR abs/2010.11929 (2020). arXiv:
2010.11929. url: https://arxiv.org/abs/2010.11929.

[25] “DreamShot: Teaching Cinema Shots to Latent Diffusion Models”. In: CEUR
WORKSHOP PROCEEDINGS 3651 (2024). issn: 1613-0073.

[26] FILMGRAB. https://film-grab.com.
[27] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; in-

creasing shape bias improves accuracy and robustness”. In: CoRR abs/1811.12231
(2018). arXiv: 1811.12231. url: http://arxiv.org/abs/1811.12231.

[28] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: Neural Informa-
tion Processing Systems. 2014. url: https://api.semanticscholar.org/
CorpusID:261560300.

[29] Salvatore Greco et al. Unsupervised Concept Drift Detection from Deep Learn-
ing Representations in Real-time. 2024. arXiv: 2406.17813 [cs.LG]. url:
https://arxiv.org/abs/2406.17813.

[30] Igor S. Gruzman and Anna S. Kostenkova. “Algorithm of scene change detec-
tion in a video sequence based on the threedimensional histogram of color im-
ages”. In: 2014 12th International Conference on Actual Problems of Electron-
ics Instrument Engineering (APEIE). 2014, pp. 1–1. doi: 10.1109/APEIE.
2014.7040826.

[31] Rishin Haldar and Debajyoti Mukhopadhyay. “Levenshtein Distance Tech-
nique in Dictionary Lookup Methods: An Improved Approach”. In: Comput-
ing Research Repository - CORR (Jan. 2011).

[32] Bharath Hariharan et al. “Hypercolumns for Object Segmentation and Fine-
grained Localization”. In: (Nov. 2014).

[33] M. A. Hasan et al. “CAMHID: Camera Motion Histogram Descriptor and Its
Application to Cinematographic Shot Classification”. In: IEEE Transactions
on Circuits and Systems for Video Technology 24.10 (2014), pp. 1682–1695.
doi: 10.1109/TCSVT.2014.2345933.

105

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://www.mdpi.com/2076-3417/12/10/5125
https://www.mdpi.com/2076-3417/12/10/5125
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://film-grab.com
https://arxiv.org/abs/1811.12231
http://arxiv.org/abs/1811.12231
https://api.semanticscholar.org/CorpusID:261560300
https://api.semanticscholar.org/CorpusID:261560300
https://arxiv.org/abs/2406.17813
https://arxiv.org/abs/2406.17813
https://doi.org/10.1109/APEIE.2014.7040826
https://doi.org/10.1109/APEIE.2014.7040826
https://doi.org/10.1109/TCSVT.2014.2345933

BIBLIOGRAPHY

[34] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015), pp. 770–778. url: https://api.semanticscholar.org/CorpusID:
206594692.

[35] J. Edward Hu et al. “LoRA: Low-Rank Adaptation of Large Language Mod-
els”. In: ArXiv abs/2106.09685 (2021). url: https://api.semanticscholar.
org/CorpusID:235458009.

[36] Gary B. Huang et al. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments. Tech. rep. 07-49. University of
Massachusetts, Amherst, Oct. 2007.

[37] Qingqiu Huang et al. “MovieNet: A Holistic Dataset for Movie Understand-
ing”. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Cham:
Springer International Publishing, 2020, pp. 709–727. isbn: 978-3-030-58548-
8.

[38] Hestry Humaira and Rasyidah Rasyidah. “Determining The Appropiate Clus-
ter Number Using Elbow Method for K-Means Algorithm”. In: Jan. 2020. doi:
10.4108/eai.24-1-2018.2292388.

[39] Kunal Jani et al. “Machine learning in films: an approach towards automation
in film censoring”. In: Journal of Data, Information and Management 2 (Mar.
2020). doi: 10.1007/s42488-019-00016-9.

[40] Levon Khachatryan et al. “Text2Video-Zero: Text-to-Image Diffusion Models
are Zero-Shot Video Generators”. In: 2023 IEEE/CVF International Confer-
ence on Computer Vision (ICCV). 2023, pp. 15908–15918. doi: 10.1109/
ICCV51070.2023.01462.

[41] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”.
In: CoRR abs/1312.6114 (2013). url: https://api.semanticscholar.org/
CorpusID:216078090.

[42] Seong-Ho Lee, hye yeon yu hye yeon, and Yun-Gyung Cheong. “Analyzing
Movie Scripts as Unstructured Text”. In: Apr. 2017, pp. 249–254. doi: 10.
1109/BigDataService.2017.43.

[43] Bruno Lepri et al. “The Tyranny of Data? The Bright and Dark Sides of Data-
Driven Decision-Making for Social Good”. In: Transparent Data Mining for
Big and Small Data. Ed. by Tania Cerquitelli, Daniele Quercia, and Frank
Pasquale. Cham: Springer International Publishing, 2017, pp. 3–24. doi: 10.
1007/978-3-319-54024-5_1.

[44] Junnan Li et al. “BLIP-2: Bootstrapping Language-Image Pre-training with
Frozen Image Encoders and Large Language Models”. In: International Con-
ference on Machine Learning. 2023. url: https://api.semanticscholar.
org/CorpusID:256390509.

106

https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:206594692
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://doi.org/10.4108/eai.24-1-2018.2292388
https://doi.org/10.1007/s42488-019-00016-9
https://doi.org/10.1109/ICCV51070.2023.01462
https://doi.org/10.1109/ICCV51070.2023.01462
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://doi.org/10.1109/BigDataService.2017.43
https://doi.org/10.1109/BigDataService.2017.43
https://doi.org/10.1007/978-3-319-54024-5_1
https://doi.org/10.1007/978-3-319-54024-5_1
https://api.semanticscholar.org/CorpusID:256390509
https://api.semanticscholar.org/CorpusID:256390509

BIBLIOGRAPHY

[45] Yitong Li et al. “StoryGAN: A Sequential Conditional GAN for Story Visu-
alization”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2018), pp. 6322–6331. url: https://api.semanticscholar.
org/CorpusID:54457433.

[46] Zinan Lin et al. “Using GANs for Sharing Networked Time Series Data: Chal-
lenges, Initial Promise, and Open Questions”. In: Proceedings of the ACM
Internet Measurement Conference. IMC ’20. Virtual Event, USA: Associa-
tion for Computing Machinery, 2020, pp. 464–483. isbn: 9781450381383. doi:
10.1145/3419394.3423643. url: https://doi.org/10.1145/3419394.
3423643.

[47] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach”. In: ArXiv abs/1907.11692 (2019). url: https://api.semanticscholar.
org/CorpusID:198953378.

[48] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on
Information Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.
1056489.

[49] Robert Logan et al. “Deep Convolutional Neural Networks With Ensem-
ble Learning and Generative Adversarial Networks for Alzheimer’s Disease
Image Data Classification”. In: Frontiers in Aging Neuroscience 13 (2021).
issn: 1663-4365. doi: 10.3389/fnagi.2021.720226. url: https://www.
frontiersin.org/article/10.3389/fnagi.2021.720226.

[50] Yuya Matsuo, Miki Amano, and Kuniaki Uehara. “Mining video editing rules
in video streams”. In: Jan. 2002, pp. 255–258. doi: 10.1145/641007.641058.

[51] Eyal Molad et al. “Dreamix: Video Diffusion Models are General Video Edi-
tors”. In: ArXiv abs/2302.01329 (2023).

[52] Fionn Murtagh and Pierre Legendre. “Ward’s Hierarchical Agglomerative
Clustering Method: Which Algorithms Implement Ward’s Criterion?” In:
Journal of Classification 31 (2011), pp. 274–295. url: https://api.semanticscholar.
org/CorpusID:7134583.

[53] Christine Nothelfer, Jordan DeLong, and James E. Cutting. “Shot Structure
in Hollywood Film”. In: 2009.

[54] Rising Odegua. “An Empirical Study of Ensemble Techniques (Bagging, Boost-
ing and Stacking)”. In: Mar. 2019.

[55] Xuran Pan et al. “Contrastive Language-Image Pre-Training with Knowledge
Graphs”. In: ArXiv abs/2210.08901 (2022). url: https://api.semanticscholar.
org/CorpusID:252917745.

[56] Alejandro Pardo et al. “Learning to cut by watching movies”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 6858–6868.

107

https://api.semanticscholar.org/CorpusID:54457433
https://api.semanticscholar.org/CorpusID:54457433
https://doi.org/10.1145/3419394.3423643
https://doi.org/10.1145/3419394.3423643
https://doi.org/10.1145/3419394.3423643
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.3389/fnagi.2021.720226
https://www.frontiersin.org/article/10.3389/fnagi.2021.720226
https://www.frontiersin.org/article/10.3389/fnagi.2021.720226
https://doi.org/10.1145/641007.641058
https://api.semanticscholar.org/CorpusID:7134583
https://api.semanticscholar.org/CorpusID:7134583
https://api.semanticscholar.org/CorpusID:252917745
https://api.semanticscholar.org/CorpusID:252917745

BIBLIOGRAPHY

[57] Alejandro Pardo et al. “Moviecuts: A new dataset and benchmark for cut
type recognition”. In: European Conference on Computer Vision. Springer.
2022, pp. 668–685.

[58] Aditya Ramesh et al. “Zero-Shot Text-to-Image Generation”. In: ArXiv abs/2102.12092
(2021). url: https://api.semanticscholar.org/CorpusID:232035663.

[59] Anyi Rao et al. “A Unified Framework for Shot Type Classification Based on
Subject Centric Lens”. In: Computer Vision – ECCV 2020. Ed. by Andrea
Vedaldi et al. Cham: Springer International Publishing, 2020, pp. 17–34. isbn:
978-3-030-58621-8.

[60] Anyi Rao et al. “Dynamic Storyboard Generation in an Engine-based Vir-
tual Environment for Video Production”. In: ACM SIGGRAPH 2023 Posters.
SIGGRAPH ’23. Los Angeles, CA, USA: Association for Computing Ma-
chinery, 2023. isbn: 9798400701528. doi: 10.1145/3588028.3603647. url:
https://doi.org/10.1145/3588028.3603647.

[61] Jian Ren et al. “Best Frame Selection in a Short Video”. In: 2020 IEEE Win-
ter Conference on Applications of Computer Vision (WACV). 2020, pp. 3201–
3210. doi: 10.1109/WACV45572.2020.9093615.

[62] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 2016,
pp. 1135–1144.

[63] Robin Rombach et al. “High-Resolution Image Synthesis with Latent Dif-
fusion Models”. In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2021), pp. 10674–10685. url: https://api.
semanticscholar.org/CorpusID:245335280.

[64] Nataniel Ruiz et al. “DreamBooth: Fine Tuning Text-to-Image Diffusion Mod-
els for Subject-Driven Generation”. In: 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2022), pp. 22500–22510. url:
https://api.semanticscholar.org/CorpusID:251800180.

[65] Mattia Savardi et al. “CineScale: A dataset of cinematic shot scale in movies”.
In: Data in Brief 36 (2021).

[66] Mattia Savardi et al. “Shot Scale Analysis in Movies by Convolutional Neural
Networks”. In: 2018 25th IEEE International Conference on Image Processing
(ICIP). 2018, pp. 2620–2624. doi: 10.1109/ICIP.2018.8451474.

[67] Mattia Savardi et al. “Shot Scale Analysis in Movies by Convolutional Neural
Networks”. In: Oct. 2018, pp. 2620–2624. doi: 10.1109/ICIP.2018.8451474.

108

https://api.semanticscholar.org/CorpusID:232035663
https://doi.org/10.1145/3588028.3603647
https://doi.org/10.1145/3588028.3603647
https://doi.org/10.1109/WACV45572.2020.9093615
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:245335280
https://api.semanticscholar.org/CorpusID:251800180
https://doi.org/10.1109/ICIP.2018.8451474
https://doi.org/10.1109/ICIP.2018.8451474

BIBLIOGRAPHY

[68] Ketan Rajshekhar Shahapure and Charles Nicholas. “Cluster Quality Anal-
ysis Using Silhouette Score”. In: 2020 IEEE 7th International Conference
on Data Science and Advanced Analytics (DSAA). 2020, pp. 747–748. doi:
10.1109/DSAA49011.2020.00096.

[69] Gabriel Simões et al. “Movie genre classification with Convolutional Neural
Networks”. In: July 2016, pp. 259–266. doi: 10.1109/IJCNN.2016.7727207.

[70] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014). arXiv:
1409.1556. url: http://arxiv.org/abs/1409.1556.

[71] Uriel Singer et al. “Make-A-Video: Text-to-Video Generation without Text-
Video Data”. In: ArXiv abs/2209.14792 (2022).

[72] Stable Diffusion model avaliable at hugging face. https://huggingface.co/
spaces/stabilityai/stable-diffusion.

[73] Storyboarder. https://wonderunit.com/storyboarder/.
[74] Storyboarder. https://storyboarder.ai.
[75] Storyboardthat. https://www.storyboardthat.com/.
[76] Studiobinder. https://www.studiobinder.com/storyboard-creator/.
[77] M. Svanera et al. “Over-the-shoulder shot detection in art films”. In: 2015 13th

International Workshop on Content-Based Multimedia Indexing (CBMI). 2015,
pp. 1–6.

[78] Michele Svanera et al. “Who is the Film’s Director? Authorship Recognition
Based on Shot Features”. In: IEEE MultiMedia 26.4 (2019), pp. 43–54. doi:
10.1109/MMUL.2019.2940004.

[79] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning”. In: CoRR
abs/1602.07261 (2016). arXiv: 1602.07261. url: http://arxiv.org/abs/
1602.07261.

[80] Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. In: CoRR abs/1512.00567 (2015). arXiv: 1512.00567. url: http:
//arxiv.org/abs/1512.00567.

[81] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”. In: CoRR abs/1905.11946 (2019). arXiv:
1905.11946. url: http://arxiv.org/abs/1905.11946.

[82] Bartolomeo Vacchetti and Tania Cerquitelli. “Cinematographic Shot Classi-
fication with Deep Ensemble Learning”. In: Electronics 11.10 (2022), p. 1570.

[83] Bartolomeo Vacchetti and Tania Cerquitelli. “Movie Lens: Discovering and
Characterizing Editing Patterns in the Analysis of Short Movie Sequences”.
In: European Conference on Computer Vision. Springer. 2022, pp. 660–675.

109

https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/IJCNN.2016.7727207
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://huggingface.co/spaces/stabilityai/stable-diffusion
https://wonderunit.com/storyboarder/
https://storyboarder.ai
https://www.storyboardthat.com/
https://www.studiobinder.com/storyboard-creator/
https://doi.org/10.1109/MMUL.2019.2940004
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946

BIBLIOGRAPHY

[84] Bartolomeo Vacchetti, Tania Cerquitelli, and Riccardo Antonino. “Cinemato-
graphic Shot Classification through Deep Learning”. In: 2020 IEEE 44th An-
nual Computers, Software, and Applications Conference (COMPSAC). 2020,
pp. 345–350. doi: 10.1109/COMPSAC48688.2020.0-222.

[85] Bartolomeo Vacchetti, Dawit Mureja, and Tania Cerquitelli. “LEMMS: Label
Estimation of Multi-feature Movie Segments”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2023, pp. 3027–3035.

[86] Bartolomeo Vacchetti et al. “JEM: An AI-based engine workflow to predict
simulation’s execution time on HPC cluster”. In: 2024 International Confer-
ence on Control, Automation and Diagnosis (ICCAD). IEEE. 2024, pp. 1–
5.

[87] Francesco Ventura, Tania Cerquitelli, and Francesco Giacalone. “Black-Box
Model Explained Through an Assessment of Its Interpretable Features”. In:
New Trends in Databases and Information Systems - ADBIS 2018 Short Pa-
pers and Workshops, AI*QA, BIGPMED, CSACDB, M2U, BigDataMAPS,
ISTREND, DC, Budapest, Hungary, September, 2-5, 2018, Proceedings. 2018,
pp. 138–149.

[88] Austin Walters. Sentence Classification. url: https://github.com/lettergram/
sentence-classification.

[89] H. L. Wang and L. Cheong. “Taxonomy of Directing Semantics for Film
Shot Classification”. In: IEEE Transactions on Circuits and Systems for
Video Technology 19.10 (2009), pp. 1529–1542. doi: 10.1109/TCSVT.2009.
2022705.

[90] Chao-Yuan Wu and Philipp Krähenbühl. “Towards Long-Form Video Un-
derstanding”. In: CoRR abs/2106.11310 (2021). arXiv: 2106.11310. url:
https://arxiv.org/abs/2106.11310.

[91] Hui-Yin Wu et al. “Joint Attention for Automated Video Editing”. In: ACM
International Conference on Interactive Media Experiences. IMX ’20. Cor-
nella, Barcelona, Spain: Association for Computing Machinery, 2020, pp. 55–
64. isbn: 9781450379762. doi: 10.1145/3391614.3393656. url: https:
//doi.org/10.1145/3391614.3393656.

[92] Ali Yazdizadeh, Zachary Patterson, and Bilal Farooq. “Ensemble Convo-
lutional Neural Networks for Mode Inference in Smartphone Travel Sur-
vey”. In: IEEE Transactions on Intelligent Transportation Systems 21 (2020),
pp. 2232–2239.

[93] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. “Adding Conditional Con-
trol to Text-to-Image Diffusion Models”. In: 2023 IEEE/CVF International
Conference on Computer Vision (ICCV) (2023), pp. 3813–3824. url: https:
//api.semanticscholar.org/CorpusID:256827727.

110

https://doi.org/10.1109/COMPSAC48688.2020.0-222
https://github.com/lettergram/sentence-classification
https://github.com/lettergram/sentence-classification
https://doi.org/10.1109/TCSVT.2009.2022705
https://doi.org/10.1109/TCSVT.2009.2022705
https://arxiv.org/abs/2106.11310
https://arxiv.org/abs/2106.11310
https://doi.org/10.1145/3391614.3393656
https://doi.org/10.1145/3391614.3393656
https://doi.org/10.1145/3391614.3393656
https://api.semanticscholar.org/CorpusID:256827727
https://api.semanticscholar.org/CorpusID:256827727

BIBLIOGRAPHY

[94] Howard Zhou et al. “Movie Genre Classification via Scene Categorization”.
In: Oct. 2010, pp. 747–750. doi: 10.1145/1873951.1874068.

[95] Jian Zhou and Xiao-Ping Zhang. “Automatic Identification of Digital Video
Based on Shot-Level Sequence Matching”. In: Proceedings of the 13th Annual
ACM International Conference on Multimedia. MULTIMEDIA ’05. Hilton,
Singapore: Association for Computing Machinery, 2005, pp. 515–518. isbn:
1595930442. doi: 10.1145/1101149.1101265. url: https://doi.org/10.
1145/1101149.1101265.

111

https://doi.org/10.1145/1873951.1874068
https://doi.org/10.1145/1101149.1101265
https://doi.org/10.1145/1101149.1101265
https://doi.org/10.1145/1101149.1101265

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

112

	List of Tables
	List of Figures
	Introduction
	Context
	Main Achievements
	Creativity Injection into AI-powered multimedia Storyboards
	Other research contributions

	Shot Size Classification
	Introduction
	Related Works
	Shot Size Classification: preliminary results
	Dataset
	Methodology
	Results
	Discussion

	Enhanced Shot Size Classification
	Dataset
	Methodology
	Results
	Discussion

	Chapter Conclusions

	Video Editing Pattern Analysis
	Introduction
	Related Work
	Movielens
	Cinescale Dataset
	Methodology
	Experimental results
	Discussion

	LEMMS
	Dataset: AVE to Sequenced AVE
	LEMMS methodology
	Exsperimental Validation
	Discussion

	Chapter Conclusions

	Toward Automatic Storyboard Creation
	Introduction
	Related Work
	Dreamshot
	Data preparation
	Methodology
	Results
	Discussion

	TEdit: Text to Editing
	Data
	Methodology
	Results
	Discussion

	Chapter Conclusions

	Conclusions
	Short Sequence generation from AVE
	Introduction
	Dataset
	Methodology
	Results
	Discussion

	Bibliography

