
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using Formal Methods to Support the Development of STLs for GPUs / Deligiannis, Nikolaos; Faller, Tobias;
RODRIGUEZ CONDIA, JOSIE ESTEBAN; Cantoro, Riccardo; Becker, Bernd; SONZA REORDA, Matteo. - (2022), pp.
84-89. (Intervento presentato al convegno Asian Test Symposium (ATS) tenutosi a Taiwan nel 21-24 November 2022)
[10.1109/ATS56056.2022.00027].

Original

Using Formal Methods to Support the Development of STLs for GPUs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ATS56056.2022.00027

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971077 since: 2022-09-07T19:02:03Z

IEEE

Using Formal Methods to Support the Development
of STLs for GPUs

Nikolaos I. Deligiannis†, Tobias Faller∗, Josie E. Rodriguez Condia†, Riccardo Cantoro†,
Bernd Becker∗, Matteo Sonza Reorda†

† Politecnico di Torino, Department of Control and Computer Engineering (DAUIN) - Turin, Italy
∗ University of Freiburg, Department of Computer Science - Freiburg, Germany

Abstract—Graphics Processing Units (GPUs) boost the de-
velopment of high-performance safety-critical applications. The
reliability of such systems is of utmost importance since faults
affecting the hardware may occur at any time during the
systems’ operational life. Thus, methods to effectively test these
devices during their in-field operation are necessary. One popular
solution relies on Software Test Libraries (STLs), which recently
have been started being used for GPUs as well, since they are
effective in terms of fault detection capabilities, intrusiveness,
flexibility, and test duration. A drawback of the STL approach for
GPUs is the extensive effort used to develop effective test routines
for complex structures, e.g., controllers, due to the complicated
constraints stemming from the ISA, the available compilation
flows and parallelism constraints. We propose a novel technique
based on formal methods to support the generation of stimuli and
enhance the quality of pre-existing STLs for GPUs. To validate
the proposed method, we resort to an open-source GPU model
(FlexGripPlus). Experimental results show that the method can
effectively generate complementary code fragments to be added
to existing STLs and increase their fault coverage. In the case
of the GPU’s decoding unit, the stuck-at fault coverage was
increased by nearly 10%.

Index Terms—Formal Methods, Graphics Processing Units
(GPUs), Software Test Libraries, Test Quality

I. INTRODUCTION

Nowadays, Graphics Processing Units (GPUs) represent
widely used platforms to implement high-performance ap-
plications, using complex and dense algorithms even in the
safety-critical domain (i.e., self-driving cars and autonomous
machines) [1], [2]. Applications in this domain, such as sensor
fusion and Neural Networks (NNs), require major reliability
features, as mandated by the regulations and standards in the
field (e.g., ISO 26262). Modern GPU devices employ the latest
integration transistor technologies, which, from the reliability
viewpoint, are more prone to the rising of faults during the
operative period of the device (e.g., by aging or wear-out)
than mature technologies. Thus, effective periodical in-field
mechanisms and techniques are needed to detect and mitigate
faults in GPUs devoted to safety-critical applications.

One in-field functional test approach relies on the Software-
Based Self-Test (SBST) strategy, successfully employed in
processor-based systems [3]. The SBST strategy is a non-
intrusive and flexible method to develop test programs (TPs),
resorting to the Instruction Set Architecture to apply test
patterns, which excite and propagate faults inside a targeted
unit in a device. In practice, a Software Test Library (STL)

is a collection of TPs. These TPs are mainly designed to
target individual units and allow the singular identification
of faults in a device. Several works [4], [5] have proposed
strategies to develop TPs for GPUs, targeting the functional
units, the register files, and the internal controllers. One of
the strategies is based on automatic mechanisms by analyzing
and exploiting Automatic Test Pattern Generator (ATPG) al-
gorithms to provide reasonable test patterns, which are later
translated into equivalent instructions. Similarly, TPs com-
posed of pseudo-random instructions can be developed [6].
Both ATPG-based and pseudo-random strategies are mainly
effective on combinational units. Other strategies analyze the
structure of a target unit and use custom algorithms to develop
affordable test routines [7], [8]. Unfortunately, two main fac-
tors restrict the development of effective TPs for GPUs: i) the
deep knowledge required to understand the structural features
of any target unit, and ii) the parallelism constraints when
addressing a given unit. In all the aforementioned approaches,
huge manual efforts and long development times are required
when developing specific TPs on particular units of a GPU
(e.g., controllers). Moreover, the TP quality, in terms of fault
coverage and program size, could be negatively affected by
operational constraints and structural restrictions, leading to
insufficient fault coverage of functional ATPG-based TPs.
Thus, complementary methods are required to improve the
quality of the TPs.

In this work, we propose a novel technique based on
formal methods to generate effective test patterns and enhance
the quality of pre-existing STLs for GPUs. Our approach
takes into account the structural constraints of a GPU mod-
ule and the parallel programming constraints of the device
to generate test patterns that can be easily translated into
equivalent parallel instructions for the GPU. To the best of
our knowledge, this is the first work proposing techniques
to enhance the quality (in terms of fault coverage) of STLs
by employing formal methods for GPUs. Due to the highly
complex nature of GPU designs, several architectural and
structural constraints are required in the TP generation, such
as the correct specification of the targeted unit’s environment,
including control signals and protocols. In fact, compared to
the test program generation for CPU cores, additional paral-
lel constraints for correctly modeling warps, parallel thread
branching, convergences, and scheduling operations have to
be considered to generate effective test patterns for GPUs

and enhance the quality of TPs. This additional complexity
requires a powerful and dynamic approach that scales with
the constraints, which in our technique we achieve with an
elaborate constraint specification mechanism.

More specifically, given the gate-level description of a
functional unit of the GPU and a list of functional constraints,
our goal is to generate functional stimuli that enable the
control/sensitization of stuck-at faults. If this is not possible
for a certain fault, then this fault is untestable. Otherwise,
we generate a functional test pattern, which is further used
to check whether it is possible to propagate the fault up to
the unit observation/test points i.e., the unit’s primary outputs
which is experimentally likely. This goal is pursued without
resorting to any kind of Design-for-Testability infrastructure,
as it is common for in-field test. Moreover, given an STL
for a specific functional unit, we can check which faults are
functionally undetectable and thus, target them i.e., generate
patterns for them (if possible) to increase the STL’s overall
fault coverage. The proposed method enables the test or
functional safety engineer to generate valid instructions that
enable the detection even of the most difficult to detect faults,
or label them as untestable. Basically, we achieve this by first
reducing the pattern generation problem to a bounded model
checking (BMC) problem and then by effectively solving it
resorting to an appropriate solver [9]. In the experiments, we
used an open-source GPU model (FlexGripPlus) [10], and we
targeted one key control unit (the decoding unit) to evaluate
and validate the proposed method. According to the results, the
proposed technique can identify up to 10.09% new effective
test patterns and increase the fault coverage by up to 9.57%
with minimal computational effort (< 2 minutes). Although we
employ the FlexGripPlus GPU model, the proposed technique
can be adapted to other units and GPU architectures as well.

The remainder of the paper is organized as follows. Sec-
tion II provides a background of the GPU organization and
overviews the formal methods. Section III introduces the pro-
posed approach to analyze and enhance the quality of STLs in
GPUs by combining structural features and the expression of
the complex GPU constraints via formal methods. Section IV
reports the experiments performed to evaluate and validate the
proposed method on an open-source GPU core (FlexGripPlus).
Finally, Section V draws some conclusions and outlines some
possible future works.

II. BACKGROUND

This section summarizes the organization of a GPU and the
main concepts for the formal methods used in this work.

A. GPU organization

GPUs are special-purpose accelerators specially conceived
to exploit hardware parallelism and process extensive amounts
of data with high throughput. Modern general-purpose GPU
architectures are organized as arrays or clusters of execution
cores (also known as Shader cores, Streaming Multiprocessors
or SMs), which execute hybrid parallel assembly instructions
(i.e., Shader Assembly by Nvidia) and also address in parallel

several memory levels in a complete memory hierarchy (see
Figure 1).

In general, each SM is organized as a set of pipeline stages,
controlled by one or more schedulers and dispatchers units. In
each pipeline stage, the SM executes one parallel instruction,
internally divided into the procedures of fetching, decoding,
execution, reading from memory, and writing to memory.
Moreover, the SMs include several execution units (CUDA
cores or Streaming Processors or SPs) and other accelerators
(i.e., Special Function Units or SFUs). In detail, one parallel
program is divided as a set of blocks (Cooperative Thread
Arrays, short CTAs) and distributed among the available
SMs. The internal controllers submit one instruction from the
parallel program for processing, each for a group of threads
(Warps). The submitted instruction is initially decoded and
then processed in parallel by the available SPs, as one SP per
lane. In fact, the same instruction is processed in parallel by
several threads using different operands per thread. Then, a
new instruction (from the same or another thread group) is
submitted and processed.

Modern GPU designs allow the decoding and execution of
several instructions in parallel and divide the distribution of
the available SPs per SM among the instructions to process,
so more than one instruction per thread group can be executed
simultaneously [11]. More in detail, the decoding unit plays
an important role — as a control unit inside the SMs — in
identifying incoming instructions and assigning hardware units
and operand sources for the parallel processing among the
different parallel threads.

SM

…

…

Memory

partition
…

Decode

SP

Schedulers

T
as

k
 c

o
n

tr
o

ll
er

s

Fetch

Load/Store

Memory

partition

Memory

partition

SP SP SP SP SFU

Load/Store

Cluster

Figure 1. A general scheme of the internal organization of a GPU.

B. Formal Methods & Test Program Generation

It has been long known that an ATPG problem can be
reduced to a Boolean satisfiability instance and solved using
a SAT solver [12]. However, this approach was not widely
implemented in commercial EDA tools, as the so-called struc-
tural ATPG approaches generally provided better scalability.
More recently, significant improvements in the underlined
SAT solvers in conjunction with extended solving capabilities
specifically developed and tailored to ATPG led to an increased
interest in such techniques [13], [14].

Formal methods have been adopted in the past for generat-
ing TPs while targeting processor circuits. In [15], the authors
propose a generic methodology based on formal methods for

generating instruction sequences that test structural faults in a
processor circuit. While using the OpenRISC 1200 processor
as a use case, they elaborate on the formulation of constraints
for the expression of Boolean differences while relying on
an off-the-shelf Bounded Model Checker to determine the
testability of these faults. In [16], the authors elaborate on
a Bounded Model Checking (BMC) technique for generating
TPs for a group of RISC-V processors destined for IoT
applications. In [17], the authors propose a methodology for
the generation of TPs for testing sequential control units
in functional mode on superscalar processors. Lastly, in the
context of stimuli generation for Burn-In testing, in [18], while
targeting processor circuits, we propose a methodology able
to generate functional stimuli to stress units within the core
based on formal methods effectively.

Overall, formal methods have been widely adopted for
attacking the problem of TP generation for processor circuits.
On the other hand, functional test stimuli generation for GPU
circuits is an open problem and challenging task due to the vast
majority of operational constraints that must be considered, as
mentioned earlier, and up to our knowledge, there are no other
works in that area.

III. FORMAL METHODS PERSPECTIVE

The automatic generation of functional stimuli for a unit
belonging to a GPU is an arduous task. To overcome this
difficulty, we rely on formal methods as an underlying engine
since they empower the test engineer to write expressive
and detailed constraint formulations to support the functional
correctness of the stimuli generation. Furthermore, via the use
of k-induction and Craig interpolation [19], [20], to check
for unreachability, we are able to prove the absence of a
functional test pattern in case of untestable faults. Without
a systematic definition of functional constraints, it is possible
to generate test patterns for the targeted unit, but some of
those patterns would not be translatable to proper instructions
to compose a TP. Furthermore, the identification of untestable
faults would not be possible. However, care must be taken
because in a strict, over-constrained scenario there is the risk
of miss-classification of untestable faults. That is, to identify
a certain category of faults as untestable, while in fact they
are testable ones.

The generation of valid TPs requires the formulation of
complex, module-specific constraints that correctly model the
functional environment of the GPU’s module and the STL,
including control inputs and status signals of the unit, the set
of valid operations and operands, similar to the case of a CPU.
The complexity of the TP generation is further extended due
to the highly parallel architecture with complex scheduling
and highly optimized execution units. The proposed approach
enables us to specify all the constraints for the GPU’s module,
without requiring explicit enumeration of all valid states.

The constraint set is implemented via a so-called Validity
Checker Module (VCM) [21], which is a circuit written in
a Hardware Description Language (HDL), circumventing a
tedious, manual specification of low-level ATPG constraints

by using a high-level language. The VCM is synthesized into
a gate-level description using the synthesis tool of choice and
used by the BMC process later. Both gate-level circuits (the
target GPU module, and the VCM) are connected into a single
circuit and converted to a CNF by applying a symbolic sim-
ulation performing the Tseitin transformation of the circuit’s
logic formula. By imposing constraints on the VCM’s output
pins and encoding arbitrary circuits as VCM, the constraints
are propagated to the GPU module, excluding non-functional
states from the BMC problem.

GPU Sub-module

VCM
PPI1

PPIn

PI1

PIn

PPO1

PPOn

PO1

POn

operational
constraints

Figure 2. CNF generation steps of the VCM & GPU sub-module

Figure 2 depicts the VCM concept, where the VCM acts
as an entity that controls the BMC process and is attached to
the GPU module. It is attached to selected inputs, outputs, and
internal signals of the GPU module, through which the targeted
module’s state and behavior is observed. The VCM uses those
observations to compute if the GPU module’s behavior is valid
and signals this as a Boolean signal on one of it’s output ports.
By adding an assumption to the BMC solver forcing all of the
VCM outputs to always signal a valid behavior, only solutions
that model the VCM-defined behavior are generated. Overall,
via the VCM concept we avoid non-functional states and the
occurrence of an unwanted behavior on the targeted module
during the BMC process.

non-functional states

functional statesinitial state target states

Figure 3. Abstract bounded model checking scheme

Figure 3 shows an abstract view of the bounded model
checking problem, where the GPU’s module is initialized
with a fixed, valid, and well-defined initial state. The GPU
transitions from the initial state over possibly multiple func-
tional states that sensitize and propagate the fault, finally
reaching the target state, which propagates the fault effect
to at least one of the primary outputs of the module. If no
path exists that reaches the target, then the BMC solver can

prove, given enough time and computational power, that this
fault is untestable, assuming only functional behavior. This
proof is either accomplished by finding a fix-point in the set
of reachable states after unrolling for some time-frames and
proving via Craig interpolation that the target is not reachable,
or by showing via k-induction that no initial state exists that
reaches the target in k time-frames.

In Figure 3, the non-functional states shown separated by
the dotted boundary are excluded by the VCM. Those states
are GPU module-specific and are either excluded due to a
violation of functional constraints on the module’s inputs, an
invalid state that does not occur in a functional scenario, or a
combination thereof.

Input : A tuple (Gα, Gβ) where
Gα is the gate-level description of the GPU sub-module
Gβ is the gate-level description of the VCM

Output: A tuple of testability verdicts and patterns for every
stuck-at fault of Gα

1 faults ←− ∅; verdicts ←− ∅; patterns ←− ∅;
2 foreach port p of cell c in Ga do // FAULT LIST GENERATION
3 rsa0p ←− GenerateSensitizationReq(p, 1)
4 rsa1p ←− GenerateSensitizationReq(p, 0)

5 faults = faults ∪ {rsa0p , rsa1p }
6 end
7 foreach requirement set r in faults do // BMC
8 foreach stuck-at fault f in r do
9 CNF ←− GenerateCNF(Gα, Gβ , f)

10 v←− SolveBMC(CNF)
11 switch verdict v do
12 case reachable do
13 verdicts = verdicts ∪ {(f , controllable)}
14 patterns = patterns ∪
15 {(f , ExtractPattern(CNF , v))}
16 end
17 case unreachable do
18 verdicts = verdicts ∪ {(f , untestable)}
19 end
20 end
21 end
22 end
23 return (verdicts, patterns)

Figure 4. BMC-based functional stimuli generation routine

The BMC-based stimuli generation routine is given in
pseudo-code format in Figure 4. As input it requires the two
gate-level descriptions of the GPU module and the respective
VCM that enforces the complex set of functional constraints
for the target module. Initially, for every port of each gate-level
cell of the targeted unit, we generate a pair of sensitization
requirements under the stuck-at-fault model. To elaborate on
the testability of the stuck-at zero fault of a port p, the target
requirement for the BMC problem is to sensitize p to the logic
value of 1. On the other hand, to elaborate on the testability of
the stuck-at one fault of p the target requirement would be to
sensitize p to the logic value of 0. Lastly, for every testability
requirement generated, a BMC problem is created, having as a
target the aforementioned requirement. If the solver determines
that the target state is reachable, then the respective fault is a
controllable one and a test pattern can be extracted from the

solution of the CNF formula. On the other hand, if the solver
responds with an unreachable status, then this means that the
corresponding fault is an uncontrollable (and thus, untestable)
one. Note that the BMC solving step of the algorithm can be
fully parallelized since the corresponding BMC problems for
the testability verdicts of the stuck-at faults are unrelated.

The identified test patterns can be divided in two groups:
(i) single patterns, and (ii) pattern pairs. In the first case, the
patterns can directly sensitize the corresponding fault inside
the module and possibly propagate the fault towards any
primary output. In contrast, the pattern pairs correspond to
sequences of two test patterns to initialize, excite, and possibly
propagate a targeted stuck at fault.

For example, if for a cell port p, we wish to elaborate on the
controllability of the stuck-at fault 0, thus we have to enforce
the opposite logic value. If during the initialization phase, p
is assigned the logic value of 1, then we need to first move
p to the logic value of 0 (first pattern) and then to the logic
value of 1 (second pattern). Hence, two (a pair) of test patterns
are used to initialize and excite the possible faults on the
target site p. Then, the patterns (single or pairs) are translated
into instructions to compose TP routines. Finally, a set of
fault simulations verify the new test pattern’s effectiveness in
exciting and propagating faults from a targeted unit in the
GPU.

Case Study: The GPU Decoding Unit

Table I
OPERATIONAL CONSTRAINTS OF THE DECODING UNIT IN A GPU

Operational
feature

Operational constraint

instruction set All supported instructions from the SM 1.0 of the
G80 architecture

warp processing Dispatched and executed in increasing order (from
0 to 31)

warp lanes Dispatched according to scheduler; Increasing se-
quence (from 0 to 3)

cooperative thread
array (CTA) id

Dispatched according to scheduler; Round-robin
approach (from 0 to 15)

thread register size From 0 to 64
thread active state Active threads in a warp during execution of an

instruction; active (1) or inactive (0); at least one
active field must be active to execute an instruction

warp instruction
program counter

Within the limits of the GPU’s system memory

pipeline stall Status and control line in the SM; when active, the
unit stops its execution until this line is released

pipeline done Completion acknowledge status of a previous op-
eration from all pipeline’s stages in the SM; when
active, the unit is ready for the next operation

Table I reports the main identified parallel operational con-
straints for the decoding unit, which are used to generate the
VCM hardware module during the analysis. These constraints
are determined considering the primary inputs and outputs of
the unit and the interaction with the system (i.e., the parallel
configuration parameters, which are commonly used for ex-
ecuting instructions). The first group of constraints comprise

the supported instructions from the GPU’s ISA. This constraint
allows the generation of test patterns later translated into valid
instructions. The second group of constraints depends on the
feasible and valid configurations for instructions during the
execution (i.e., size of registers per thread and the number
and distribution of warps, CTAs, and SP-lanes).

Another group of constraints handle the control features
in the unit, including the stall and done conditions in the
operation of the unit, and the instruction program counter’s
limit, which is defined according to the system memory.
Finally, the thread’s status in a warp (active / inactive) is listed
as an additional constraint for the unit since the status affects
the execution of a possible instruction by the GPU.

IV. EXPERIMENTAL RESULTS

This section describes the experimental setup and reports
the experimental results obtained in evaluating and validating
the proposed technique.

A. Experimental setup

In the experiments, we employ the FlexGripPlus GPU
model [10] targeting the gate-level description of the decoding
unit inside one SM. Moreover, a custom workflow was de-
veloped to include the proposed formal method analysis and
the evaluation and validation steps for the TPs. The formal
analysis, the evaluation, and the verification fault-injection
campaigns are performed on a server of 12 Intel Xeon CPUs
running at 2.5 GHz and with 256 GB of RAM. The targeted
module (the decoding unit) is synthesized using the Nangate
45nm open-cell technology library [22], consisting of 987
combinational and 359 sequential cells that account for 11,610
permanent stuck-at faults.

FreiTest, originated from the path ATPG tool PHAETON
[23], is used as an underlying framework to flexibly model
the ATPG problem considered in this paper. In particular, we
adapted and restricted to deal with the stuck-at-fault model
and enabled built-in optimizations. On top of the framework,
we built an application that accounts for approximately 1,000
lines of C++ code for the implementation of the proposed
method (reported in Figure 4) and approximately 200 lines of
SystemVerilog code for specification of the VCM.

For the fault simulation experiments devoted to verifying
possible new test patterns, we employ two commercial tools
handling the GPU. First, a logic simulator (ModelSim) traces
the execution of an existing or new TP, resorting to a mixed-
level description of the GPU model (RT- + gate-level). In this
case, the targeted unit is the only one simulated at gate level.
Moreover, in this procedure, a trace report is produced from
the complete workload (TP) execution, covering the primary
inputs and outputs of a targeted unit. Then, the generated trace
report serves as input for a functional simulator (Z01X). This
tool performs individual fault injection campaigns only on the
targeted unit (injecting permanent stuck-at faults) to verify
the effectiveness of the instructions in each TP in terms of
activation and propagation of fault effects. A fault is identified
as detected when at least one of the GPU primary outputs

is modified by the effect of the propagation of a fault while
executing one of the TPs.

B. Experimental evaluation

We employ one STL previously developed to functionally
test the decoding unit of a GPU [24]. This STL is composed
of three main TPs (denoted as IMM, MEM, and CNTRL) us-
ing immediate operand, memory movement, and control-flow
instructions, respectively, to excite permanent faults inside the
decoding units and propagate their possible effects. The main
features of the TPs are reported in Table II. It is worth noting
that all TPs (IMM, MEM, and CNTRL) were designed by
employing a pseudo-random approach in combination with the
operational constraints of the unit.

Then, we employed the set of previously described con-
straints to analyze the decoding unit and generate new test
patterns, which are finally translated into instructions. Table
III reports the results of this process. A commercial sequential
ATPG tool was used for comparison purposes. In the analy-
sis, the implemented framework identified 1,172 undetected
permanent faults, which the original STLs do not cover.
Moreover, the analysis provided a total of 1,809 new test
patterns able to excite and propagate faults inside the decoding
unit of the GPU. In detail, 535 faults are detected by an
individual test pattern, while 637 faults are detected via a
sequence of two patterns. The total run-time of the analysis
framework was 198 seconds taking advantage of the heavy
parallelization of the method to reduce its execution time.

Table II
MAIN FEATURES OF THE ORIGINAL STLS FOR THE DECODING UNIT

Test Program Duration
(# of ccs)

Size
(# of instructions) FC (%)

IMM 2,229,225 32,736 71.13
MEM 3,186,236 32,581 76.59

CNTRL 710,100 366 71.18
IMM + MEM + CNTRL 6,125,561 65,653 80.15

Table III
COMPARISON WITH COMMERCIAL ATPG

Full-Sequential
ATPG

BMC-based
TPG

Generated test patterns 86 1,172
New instructions 86 1,809
% Fully ISA-coherent instructions 100 50.34
% Increase in the STL FC 0 9.57

After translating the test patterns into equivalent instruc-
tions from the GPU’s ISA, we evaluated 1,172 test routines,
including only the new instructions (one or two) and the
parallel configuration constraints determined during the formal
analysis of the unit (i.e., number of active warps, thread ID,
block number, etc.). The experimental results of the evaluation
show that out of the newly identified test patterns, about
25% can be directly translated into valid instructions in the
GPU’s ISA and be executed with minimal restrictions of
parallel configuration, so enhancing the test coverage directly

without significant effort in the design of the TPs. Thus,
these new instructions can be added to the existing TPs. In
contrast, a moderate percentage of new test patterns (around
25.34%) require specific parallel configurations after being
translated into instructions (i.e., specific memory locations or
the addressing of particular memory resources, such as the
shared memory), which means that these instructions cannot
be included in previously developed test routines, and ad-hoc
test programs must be developed.

On the other hand, a considerable percentage of the newly
identified patterns (49.66%) can only be translated into valid
instructions conditioned to the activation of unfeasible predi-
cate flags (e.g., an always ’false’ execution of a global memory
load). These instruction types are valid for the ISA, but are
commonly avoided during the compilation procedures, so they
cannot be generated by conventional GPU compilers. Hence,
since for GPUs it is not possible to generate inline assembly
code and embed it in any application code, these faults can
never force an application to produce a failure. According
to safety standards (e.g., ISO 26262) these faults can thus
be labeled as safe and removed from the computation of the
achieved Fault Coverage. At the end, 16 stuck-at faults in the
unit were proven to be uncontrollable, and were labeled as
untestable, during the BMC-based TPG process.

Finally, we compute the overall fault coverage as a combina-
tion of the TPs in the original STLs, and the new TP including
the newly generated instructions. The overall results provide
a FC of 89.72% (an increase of 9.57%, when excluding the
identified safe faults), which shows the effectiveness of the
proposed technique. These results support the idea that formal
methods can be used as a supporting and complementary
technique to enhance the development of software-based self-
test routines for GPUs devoted to the safety-critical domain.

Although the experiments were performed targeting the
decoding unit in a GPU, we claim that the same technique
can be adapted for other controllers, functional units, and other
modules in the GPU architecture.

V. CONCLUSIONS

This work introduces a novel technique to enhance the
quality of Software Test Libraries for GPUs. The proposed
technique exploits formal methods to analyze and identify
missing test patterns for a targeted unit and increase the fault
coverage of functional test routines for GPUs. The proposed
technique combines the functional features of a target unit
and the parallel programming restrictions to formulate the
constraints for the analysis.

According to the results, the proposed technique effectively
identified up to 10.09% (1,172) new effective test patterns for
the decoding unit in a GPU, which were later translated into
590 equivalent test routines for the Software Test Library.
Correspondingly, the fault coverage was enhanced by up to
9.57% (considering safe faults), showing the effectiveness of
the proposed method in enhancing the test quality of programs
for GPUs.

In future works, we plan to extend the proposed technique
to other units of the GPU architecture and other hardware
accelerator architectures.

REFERENCES

[1] S. Alcaide et al., “Safety-Related Challenges and Opportunities for
GPUs in the Automotive Domain,” IEEE Micro, vol. 38, 2018.

[2] M. Benito et al., “Comparison of GPU Computing Methodologies for
Safety-Critical Systems: An Avionics Case Study,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2021.

[3] N. Kranitis et al., “Software-based self-testing of embedded processors,”
IEEE Transactions on Computers, vol. 54, 2005.

[4] J. E. R. Condia and M. Sonza Reorda, “Testing permanent faults
in pipeline registers of GPGPUs: A multi-kernel approach,” in Inter-
national Symposium on On-Line Testing and Robust System Design
(IOLTS), 2019.

[5] S. Di Carlo et al., “A software-based self test of CUDA Fermi GPUs,”
in European Test Symposium (ETS), 2013.

[6] J.-D. Guerrero Balaguera et al., “On the Functional Test of Special
Function Units in GPUs,” in International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), 2021.

[7] B. Du et al., “About the functional test of the GPGPU scheduler,” in
International Symposium on On-Line Testing And Robust System Design
(IOLTS), 2018.

[8] S. Di Carlo et al., “An On-Line Testing Technique for the Scheduler
Memory of a GPGPU,” IEEE Access, vol. 8, 2020.

[9] S. Kupferschmid et al., “Incremental preprocessing methods for use in
BMC,” Formal Methods in System Design, vol. 39, 2011.

[10] J. E. R. Condia et al., “FlexGripPlus: An improved GPGPU model to
support reliability analysis,” Microelectronics Reliability, vol. 109, 2020.

[11] NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” 2017. White paper.
[12] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, 1992.

[13] R. Drechsler and others, “On Acceleration of SAT-based ATPG for
Industrial Designs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, 2008.

[14] K. Scheibler et al., “Accurate CEGAR-based ATPG in presence of
unknown values for large industrial designs,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2016.

[15] S. Gurumurthy et al., “Automatic Generation of Instruction Sequences
Targeting Hard-to-Detect Structural Faults in a Processor,” in Interna-
tional Test Conference (ITC), 2006.

[16] T. Faller et al., “Towards SAT-Based SBST Generation for RISC-V
Cores,” in Latin American Test Symposium (LATS), 2021.

[17] Y. Zhang et al., “Software-Based Self-Testing Using Bounded Model
Checking for Out-of-Order Superscalar Processors,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
2020.

[18] N. I. Deligiannis et al., “Effective SAT-based Solutions for Generating
Functional Sequences Maximizing the Sustained Switching Activity in
a Pipelined Processor,” in Asian Test Symposium (ATS), 2021.

[19] T. Wahl, “The k-Induction Principle.” https://www.ccs.neu.edu/home/
wahl/Publications/k-induction.pdf.

[20] K. McMillan, “Applications of Craig Interpolation to Model Checking,”
in International Conference on Application and Theory of Petri Nets
and Other Models of Concurrency (ICATPN), 2005.

[21] S. Gurumurthy et al., “Automatic Generation of Instructions to Robustly
Test Delay Defects in Processors,” in European Test Symposium (ETS),
2007.

[22] J. Knudsen, “Nangate 45nm open cell library,” 2008.
[23] M. Sauer et al., “PHAETON: A SAT-Based Framework for Timing-

Aware Path Sensitization,” IEEE Transactions on Computers, vol. 65,
2016.

[24] J.-D. Guerrero Balaguera et al., “A Compaction Method for STLs for
GPU in-field test,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2022.

