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Training non-intrusive load monitoring algorithms
without supervision from sub-meters
Marco Castangia, Awet Abraha Girmay, Christian Camarda and Edoardo Patti

Abstract—Non-intrusive load monitoring allows to estimate
the energy consumption of major household appliances by just
analyzing the aggregated power consumption collected at the
main meter of the house. Recent disaggregation algorithms based
on deep learning techniques showed superior performance with
respect to previous methods. However, they require large amount
of sub-meter data to be trained. In this work, we present a new
solution for training non-intrusive load monitoring algorithms
without any supervision from sub-meters. To achieve this goal,
we divided the disaggregation algorithm into two stages named
appliance detection and state-based disaggregation. In the first
stage, we aim at identifying the start and stop times of the indi-
vidual appliance operations within the whole-house power signal.
In the second stage, we reconstruct the power signature of the
target device by exploiting appliance-specific power states learned
in the house. We tested our methodology on fridges, washing
machines and dishwashers of a public dataset, showing double-
digit improvements with respect to previous methods trained with
sub-meter data. Most importantly, the proposed solution allows
to collect a large number of appliance power signatures with
minor costs, thus helping to achieve the generalization capabilities
required by a real-world disaggregation system.

Index Terms—non-intrusive load monitoring, nilm, smart me-
ter, energy disaggregation, deep learning, neural network

I. INTRODUCTION

The global climate crisis induced worldwide governments
to cooperate with the aim of finding more effective solu-

tions to drastically reduce their CO2 emissions [1]. Whereas
we can witness a positive trend in the adoption of renewable
energy sources, we can also see a constant growth in the global
energy demand as a consequence of the increasing energy
needs (e.g. electric vehicles, heating, and air conditioning) [2].
Therefore, more efforts are definitely needed for the reduction
and optimization of energy consumption.

Non-Intrusive Load Monitoring (NILM) is a software-based
solution for estimating the energy consumption of major
electrical devices from the analysis of whole-house power
consumption [3]. The advantage of NILM with respect to
intrusive approaches (e.g. smart plugs and smart appliances)
relies on the scalability of the monitoring apparatus and
the low costs for the maintenance and deployment of the
equipment [4]. The information extracted by NILM is useful
for both consumers and utilities. In particular, consumers
can use this information to make better decisions on their
appliances’ utilization, with the goal of reducing their overall
energy consumption. Indeed, several studies showed that a
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detailed energy breakdown enables higher energy savings of
up to 12% of the total house’s energy demand [5]. Utilities
are interested in obtaining appliance-level power consumption
for implementing better Demand Side Management (DSM)
techniques which take into account the specific end-users’
habits and needs [6].

Unfortunately, after more than thirty years from its first pro-
totype, non-intrusive load monitoring remains mostly confined
to the research labs [7]. The main cause that prevents the large
application of NILM in the real-world is the need of sub-meter
data for training appliance models. Indeed, appliance-level
data are very costly to be obtained and prevents the collection
of larger training sets that would finally enable the general-
ization of appliance models to unseen houses [8]. Therefore,
we believe that NILM requires a completely different training
paradigm to be adopted on a larger scale and finally bring the
promised benefits to both end-users and utilities.

In this paper, we present a new NILM solution that can learn
general appliance models without the need of sub-meter data
for their training. To do this, we divided the disaggregation
process into two steps: appliance detection and state-based
disaggregation. During the first phase, we detect the individual
appliance’s usages in the aggregated load by means of a deep
learning model previously trained to identify a large set of
annotated operations. In the second phase, given the start
and stop times of the operation, we reconstruct the power
signature of the device by exploiting a set of appliance-specific
power states learned in the house. The novelty of this work
consists of avoiding the use of sub-meters to significantly
reduce the costs for collecting new appliance operations. The
possibility of collecting larger training sets will definitely
increase the capability of deep learning models to generalize to
unseen houses. In addition, we presented a new disaggregation
algorithm for approximating the power signatures of the mon-
itored devices by means of their power states, which can be
easily extended or adapted to other types of electrical devices.
Finally, by monitoring the whole-house power consumption
we can simultaneously collect the power signatures of multiple
appliances, thus extending our method to other devices without
further costs for the monitoring equipment.

The rest of this paper is organized as follows. Section II
provides an overview of popular NILM algorithms in the
literature. Section III presents the datasets used for training
and testing our models. Section IV explains the different
processing steps composing our methodology. Section V
shows the disaggregation accuracy achieved by our approach
in comparison with literature solutions. Finally, Section VI
summarizes the contributions of this work, proposing future
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research directions.

II. RELATED WORKS

G. Hart in [9] proposed the first implementation of a NILM
system in which different appliances were classified based on
the power change observed during the transitions between
their operational states. However, NILM demonstrated the
need for more information to distinguish between the different
devices since they can easily present similar power states.
Thus, researchers started to investigate more sophisticated
models based on Additive Factorial Hidden Markov Models
(AFHMM) to model the appliance behaviours [10]. Most
importantly, AFHMMs represented for a long time a practical
solution for implementing an unsupervised NILM system, but
their actual implementation is not particularly accurate with
respect to modern approaches, since they heavily rely on
prior device information (e.g. power states). Other researchers
used matrix factorization and sparse coding to estimate the
contribution of the various devices to the aggregated power
signal [11], but very few studies tried to improve these
methods because of their prohibitive computational costs at
higher sampling resolutions. Another promising NILM solu-
tion makes use of graph signal processing (GSP) to group to-
gether power transitions belonging to the same device based on
historical observations [12]. In addition to the aforementioned
approaches, there are several solutions that used time-series
pattern recognition algorithms to identify the power signatures
of the various devices within the aggregated signal, including
dynamic time warping and motif mining [13].

As for now, deep learning models represent the most ac-
curate solution to NILM in terms of disaggregation accuracy.
Kelly et al. in [14] introduced the very first application of deep
neural networks for the task of load disaggregation, showing
superior performance with respect to previous methods based
on combinatorial optimization and Factorial Hidden Markov
Models (FHMM). The following works investigated different
architectures and approaches to improve the disaggregation
performance of deep neural networks. For example, Zhang et
al. in [15] proposed to predict a single power measurement
for each sliding window of aggregated power (sequence-to-
point learning) instead of predicting the full length of the
input sequence (sequence-to-sequence learning). Other studies
opted for an intermediate solution that maps the aggregated
load to shorter sequences (sequence-to-subsequence learning)
in order to find a trade-off between computational costs and
accuracy [16]. Then, major developments were made in the
architectural layers of deep learning models with the aim of
further increasing their accuracy [17], [18], [19]. In particular,
Piccialli and Sudoso in [20] presented a new neural archi-
tecture employing the attention mechanism in combination
with both convolutional and recurrent layers, showing superior
performance with respect to other neural networks. Overall,
researchers put significant efforts in the search for the optimal
neural architecture, but a lot of work remains to be done to
generalize the outstanding performance of these models to new
households.

Klemenjak et al. in [21] highlighted the importance of trans-
ferability of appliance models for achieving larger applications

of NILM in the real world. Previous works tried to solve this
problem by implementing various transfer learning techniques
to adapt the model parameters to unseen households [22], [23],
[24]. However, we strongly believe that transfer learning does
not solve the problem of model generalization because we still
need to collect a small set of sub-meter data to fine-tune the
model parameters in the new house. Therefore, better methods
are needed to transfer prior knowledge on appliance behaviors
to new houses without requiring the collection of additional
sub-meter data in the house.

The recent works in energy disaggregation confirmed the
superiority of deep learning techniques with respect to other
approaches. However, their application on a large scale sce-
nario remains difficult because of their low generalization
capabilities to unseen houses. As for now, the most effective
way to improve model generalization remains the collection
of additional training data. However, gathering large amounts
of ground truth annotations for NILM is nearly impossible
with the current settings, which require the deployment of a
conspicuous number of monitoring devices. In this work, we
devised a new solution to solve this problem and potentially
achieve the desired generalization of deep learning models.
The novelty of our approach consists of moving the task
of deep learning models from regression to classification. In
fact, deep learning models can be trained to just classify the
operational state of the device instead of predicting its instan-
taneous power consumption. The collection of annotations for
the classification task can be carried out without the use of
sub-meters. In fact, we just need to manually annotate the start
and stop times of the individual appliance operations within
the aggregated load of the house. Thanks to this method we
are also able to collect a greater number of labels with minor
costs because we only need to install a single smart meter to
collect the aggregated load of the house. Once the start and
stop times of the appliance operation have been determined,
we can reconstruct its power signature by means of its major
power states without adopting a regression approach. For this
purpose, we also introduced a new state-based disaggregation
algorithm to estimate the power states of the appliance and
reconstruct its power signature as a sequence of power levels.

III. DATASET

In this section, we introduce the datasets used to train
and test our methodology. In particular, we used a propri-
etary dataset for training our appliance models and a public
dataset for evaluating their disaggregation performance, also
in comparison to previous methods. The use of two different
datasets for training and test is useful for demonstrating the
generalization capabilities of our approach.

A. Proprietary training set

To train our appliance detection models we used a pro-
prietary training set consisting of the aggregated loads of
several households sampled with a resolution of one second.
In more detail, the training set was collected in Italy in
the period from November 2022 to May 2023 (7 months),
and contains the main loads of 100 residential buildings
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with different family compositions. The dataset also includes
several manual annotations specifying the start and stop times
of the individual appliance operations observed in the total
load of the households. The collection process of these manual
annotations is thoroughly described in Section IV.

In this work, we decided to limit the demonstration of our
methodology to the fridge, the washing machine and the dish-
washer. The reason is that the annotations for these appliances
were easier to be obtained with respect to other devices since
they are present in almost every household. In addition, the en-
ergy estimation of dishwashers and washing machines presents
interesting applications in the implementation of demand re-
sponse programs, since their activation can be dynamically
shifted depending on the particular grid requirements [25].
Nevertheless, the application of the methodology presented in
this paper is not limited to these devices and can be easily
used to detect other devices showing a characteristic power
signature. Table I contains relevant information regarding the
training set of the fridge, the dishwasher and the washing
machine. In particular, we reported the number of significantly
different power signatures that we collected for each device.
In addition, we included the total number of collected labels
(i.e. manual annotations) for each appliance and the average
number of labels obtained in each house. Notice that only a
subset of the 100 monitored households was finally inserted
in the training set. Indeed, when the same power signature is
observed in multiple houses, we only add one of them to the
training set.

TABLE I: Description of the training set.

Appliance Power signatures Labels Avg. labels per house
Fridge 14 2861 204.35

Dishwasher 40 395 9.85
Washing machine 45 346 7.69

B. Public test set

The UK Domestic Appliance-Level Electricity (UK-DALE)
dataset is a public repository containing the power consump-
tion of five households in the UK both at the aggregate and
appliance level [26]. The aggregated load is available with a
sampling frequency of 1 Hz, while the sub-meter loads are
available with a resolution of 6 seconds. We decided to test
our methodology on this dataset for three main reasons. The
first reason is that it provides the same sampling frequency of
our training set, i.e. one second, which is uncommon among
the other public datasets [27]. The second reason regards
the presence of two fridges, two washing machines and two
dishwashers with the respective sub-meter power consumption,
which are useful for evaluating the actual accuracy of our
algorithm. Finally, this dataset is widely recognized among
previous works as a benchmark for evaluating the performance
of disaggregation algorithms. In particular, we used the last
week of House 1 and House 2 of this dataset as our test set.
The other buildings were discarded because only House 1 and
House 2 contain the sub-meter power consumption of both
washing machines and dishwashers in two separate circuits.

IV. METHODOLOGY

The main steps of our methodology are reported in the
pipeline of Figure 1. We divided our processing stages into
a training phase and a test phase. In the training phase, we
start by collecting an initial training set of aggregated loads
ideally obtained from a heterogenous set of users that own
the appliances we are aiming to model. Then, we annotate the
start and stop times of the appliance operations every time they
appear in the aggregated load as long as we deem them useful
for improving model performance (Annotation of appliance
operations). Once we collected a sufficiently large training
set, we can prepare the input sequences (Preprocessing) and
train our appliance models to detect the operations of the
target devices (Training of appliance model). At test time,
the appliance models are deployed in new houses and their
performance is monitored. Either false negatives or frequent
false positives can trigger a retrain of the appliance models,
which can be improved with additional data from the test set.
In fact, aggregated loads from the test set can be added to
the training set and, once annotated, can be used to further
improve the appliance detection performance. As soon as we
recognize the operation of a target device in a new house and
the end-user confirms the correctness of our detection, we save
the major power states of the appliance power signature. In this
way, the next time we detect an activation of the device in the
new house, we can confidently provide the energy breakdown
for that appliance thanks to the precise knowledge of its
power states (State-based disaggregation). In the following,
we describe in more detail the different processing steps of
our pipeline.

A. Annotation of appliance operations

To create a robust appliance detection model we first need to
collect a relatively large set of operations for the target device.
An appliance can present very different power signatures
depending on the specific operational cycle selected by the
user and its manufacturer. For this reason, a good training
set should contain diverse power signatures of the same
device to allow generalizing to unseen houses. As a matter
of fact, the generalization capability of the appliance detection
model directly depends on the diversity of the collected power
signatures for the target device. Therefore, when collecting a
training set for a new device we must favor the diversity of
operational cycles over the number of usages collected for
the same device. For certain devices (e.g. fridges), it may
even be useful collecting annotations in different climatic
conditions, even though most of the electrical devices are not
directly affected by the weather since they work by predefined
programs. To collect the largest possible number of diverse
power signatures, we deployed multiple smart meters over a
large number of households for a shorter period of time. Notice
that collecting power signatures directly from the main load
of the house has the enormous advantage of simultaneously
capturing multiple devices from the same meter, which can be
used in the future to train additional appliance models.

Once we collected aggregated data from a sufficiently large
set of households, we can start the labeling process which
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Fig. 1: The pipeline of our NILM system.

consists of annotating the start and stop times of the individual
appliance operations within the whole-house aggregated load.
The annotation process can be conducted by exploiting prior
knowledge of the typical device behavior and by looking
for repeating patterns in the aggregated load. In addition to
that, we can set up a specialized application by means of
a mobile app for collecting annotations directly from the
user, who can push notifications every time he or she uses
the appliance. The degree of manual involvement is carefully
kept under control thanks to the use of dedicated software
tools that automate most of the data annotation tasks and
significantly reduce human efforts. In particular, we leverage
multiple graphing tools to limit the search space of aggregated
loads, thus focusing only on the specific power signatures we
want to collect. Finally, once we annotated a sufficient number
of diverse operation cycles, we can train a first detection model
for the desired device.

In practice, model training is a never ending process as
we likely need to periodically retrain our models whenever
we encounter an unknown operating cycle that has not been
included in the training set. Indeed, applications of new equip-
ment and change of ratings inevitably causes the appliances
to continuously evolve their power signatures. However, if we
do not see any detection for a device after a certain period
of time, we inspect the aggregated load of that house and
start collecting additional annotations to enrich the existing
training set of that device, thus continuously improving the
model performance at every incremental update (see Figure 1).
Notice that appliance models are shared among all the houses
in the test set. Therefore, any update in the appliance models
has an immediate effect in all the monitored houses. In the long
run, we expect that those updates will become increasingly less
frequent as we collect more operations and gradually cover all
the possible power signatures of the target device.

B. Preprocessing

The training set of the appliance detection model consists
of a set of sub-sequences X(i) of length T extracted from the
aggregated loads of the monitored houses. The sub-sequences
are generated by extracting consecutive windows of aggregated
load of length T from the whole day of power consumption.

In order to reduce the number of sub-sequences generated,
we decided to shift the input window by 15 minutes instead
of just moving to the next timestamp. For each sub-sequence
X(i) we have a ground truth sub-sequence y(i) of the same
length encoding the operational state of the device in that input
window. The ground truth sub-sequence y(i) is generated from
the data annotations of the training set. In more detail, the
operational state y

(i)
t is equal to 1 if the device is active at

timestamp t and 0 otherwise, where t is comprised in the
interval [0, T ].

TABLE II: Hyper-parameters for preprocessing.

Fridge Dishwasher Washing machine
Sequence length (T) 8192 8192 8192
Sampling frequency (S) 1 second 2 seconds 1 second
Scaling factor (ρ) 3000 W 3000 W 3000 W

The hyper-parameters used for the sub-sequence generation
are reported in Table II. Notice that we used a different
sampling frequency for the dishwasher with respect to the
fridge and washing machine. In fact, we found that the
dishwasher requires a larger input window to be recognized.
In practice, the length T of the input sequence remains the
same for all devices, but the actual length of the input window
depends on the sampling frequency S adopted for the device.
Therefore, in the case of the dishwasher we used an input
window of T×S = 16384 seconds (about 4.5 hours), while for
the fridge and the washing machine we used an input window
of T × S = 8192 seconds (about 2.2 hours).

In order to help our models, we decided to normalize each
input sequence X(i) by subtracting its own mean µ(i) and
dividing the result by a scaling factor ρ. Interestingly, we
found that subtracting the mean of the sequence instead of
the training set mean slightly improves the accuracy of our
models, because it eliminates the effects of vertical translations
due to overlaps with other sources of power absorption.

X
(i)
scaled =

X(i) − µ(i)

ρ
(1)

C. Training of appliance models

To identify the start and stop times of the appliance op-
erations, we implemented a sequence-to-sequence model that
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Fig. 2: The architecture of the appliance detection model.

maps the aggregated load X(i) to a sequence of output prob-
abilities ŷ(i). Each output probability ŷ

(i)
t indicates whether

the appliance is active or not at timestamp t. The start times
correspond to those timestamps where we have a state change
from inactive to active. Similarly, the stop times correspond to
the timestamps where we have a state change from active to
inactive. Since we are trying to solve a classification problem,
we trained our models to minimize the binary cross entropy
loss between the predicted output probabilities ŷ(i) and the
ground truth sequences y(i) encoding the actual operational
state of the device.

Figure 2 shows the architecture of the sequence-to-sequence
model that we used to predict the activation probabilities of
the target appliances. The encoder block (EncoderBlock in
Figure 2) applies a first convolution to drastically reduce the
length of the input sequences and facilitate the analysis of the
next layers. To do this, the encoder block applies a convolution
with the same stride and kernel size, which are both equal
to 8 data points. In practice, the encoder block creates new
embeddings from consecutive chunks of the input sequence,
where each chunk has a size equal to the kernel size. Then, the
encoder block applies batch normalization and the Rectified
Linear Unit (ReLU) activation function to the output of the first
convolution. After that, we used six convolutions interleaved
with max pooling layers to further compress the information
extracted by our network. Each convolutional block (Con-
vBlock in Figure 2) actually applies two convolutions with a
kernel size of 3, each one followed by batch normalization
and ReLU activation function. After the last convolution,
we insert as many convolutional layers interleaved with up-
sampling layers, in order to map the latent representations
back to the original length of the input sequence. Finally, the
decoder block (DecoderBlock in Figure 2) applies a transposed
convolution that generates the final output probabilities of our
model, one for each timestamp of the input sequence. Every
convolutional layer used in our network generates feature maps
with 64 dimensions. Table III reports the hyper-parameters that
we used for the training process. The model was implemented
in Python 3 with the help of the PyTorch framework [28].

TABLE III: Training hyper-parameters of the appliance detec-
tion model.

Hyper-parameter Value
Optimizer Adam

Loss binary cross entropy
Learning rate 0.001

Epochs 150
Batch size 256

Stopping criteria early stopping with patience equal to 10

D. State-based disaggregation

The state-based disaggregation constitutes the final stage
of our methodology and has the purpose of reconstructing
the power signature of the target device by means of its
principal power states. Prior to signal reconstruction, we need
to know the exact power levels characterizing the different
operational modes of the device. These power states can be
directly determined from the aggregated load during the very
first recognition of the appliance, given that we do not have
significant overlaps with other devices. In this work, the end-
user is expected to avoid such overlaps in the first recognition
of the device to facilitate the estimation of the appliance
power states. In more detail, given a window of clean non-
overlapping aggregated load containing the target device, the
estimation of the power states works as follows. First of all, we
subtract the minimum power value of the activation window to
remove the contribution of baseline consumption. After that,
we divide the power measurements into two clusters: power
values greater than 1500W are put into the high states cluster,
while other values are put into the low states cluster. The
high power state corresponds to the mean value of the high
states cluster, while the low power state is equal to the mean
value of the low states cluster. Table IV reports the power
states estimated for the fridges (FR), dishwashers (DW) and
washing machines (WM) of UK-DALE. In the case of the
washing machine, the low state roughly corresponds to the
power consumption of the spin cycles, while the high state
corresponds to the power consumption of the water heating
phase. For the dishwasher, we only used the high state to
describe the power demand of the water heating stages. Finally,
for the fridges we only used the low power state.

TABLE IV: Estimated power states of the target appliances in
UK-DALE.

House 1 House 2
FR DW WM FR DW WM

Low State 92 W - 125 W 87 W - 107 W
High State - 2342 W 1843 W - 2079 W 1891 W

Once the major operational states of the device have been
determined, we can reconstruct its power signature at the
next activation. The signal reconstruction requires a slightly
different procedure for each device. For the fridge, we simply
fill the entire activation window with its low power state.
For the dishwasher, we subtract the minimum value from the
activation window and assign the high power state to each
timestamp where the high state fits under the aggregated load
curve. In the case of the washing machine, the disaggregation
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procedure requires a couple of additional steps. We start by
subtracting the minimum value from the aggregated load. Then
we assign the low power state to the disaggregated load.
Finally, we sum the high power state to those values in the first
half of the cycle where the high state fits under the aggregated
load (we assumed that water heating occurs only in the first
half of the washing machine operation). In all cases, the final
result is a series of power states that resemble the original
power signature of the monitored device.

V. RESULTS

This section describes the disaggregation results obtained
with the proposed NILM solution. We first present the eval-
uation metrics that we used to validate the disaggregation
performance of our algorithm. Then, we show the actual
results obtained on the test set with the selected evaluation
metrics. Finally, we compare our results with those of previous
neural architectures trained with sub-meter data.

A. Evaluation metrics

Disaggregation algorithms are commonly evaluated in terms
of both classification and regression metrics [29]. On the
one hand, the assessment of classification performance aims
at quantifying the accuracy of the machine learning models
in detecting the individual appliance’s operations within the
whole-house aggregated load. On the other hand, regression
metrics are used to evaluate the average difference between
the estimated and the actual sub-metered power consumption.

The labels for the classification task were derived by follow-
ing the methodology used in [20]: if the power consumption
of the target device is greater than 15 W, we assign a positive
label, otherwise we assign a negative label. Below, we reported
the formulas for deriving the F1 score, which is the most
commonly adopted classification metric in previous works.
Notice that we used acronyms for indicating True Positives
(TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN).

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2×
precision× recall

precision+ recall
(4)

For regression, the mean absolute error (MAE) is the most
widely used metric to evaluate the disaggregation accuracy.
Given the predicted power ŷi and the measured power yi
of the target appliance at instant i, we can define MAE as
the mean of the absolute deviation between ŷi and yi for
the whole monitoring period of length M . Another common
regression metric employed in the literature is the signal
aggregate error (SAE), which measures the average error on
the total power predicted over disjoint windows of length
K, where M = K ×N . Following the guidelines of [18],
we computed SAE over consecutive windows of one hour
(K = 3600), where r(τ) is the sum of power consumption

measured over the window τ and r̂(τ) is the sum of the
predicted power consumption over the same window.

MAE =
1

M

M∑
i=1

|yi − ŷi| (5)

SAE =
1

N

N∑
τ=1

1

K
|r(τ)− r̂(τ)| (6)

B. Disaggregation results

Table V shows the disaggregation results obtained on
House 1 and House 2 of the UK-DALE dataset for the fridge
(FR), the dishwasher (DW) and the washing machine (WM).
Firstly, we can notice that we obtained quite different F1
scores for the fridge in House 1 (0.86) and House 2 (0.98).
In particular, we are overly predicting the fridge operations
of House 1 as indicated by the lower precision (0.80) with
respect to the recall (0.92). Indeed, as depicted in Figure 3,
the fridge of House 1 presents a slightly less regular pattern
which makes it more difficult to model its duty cycle. We
can also notice higher F1 scores for the washing machine in
comparison to the dishwasher, with an average F1 of 0.93
for the washing machine and 0.87 for the dishwasher. Inter-
estingly, the washing machine exhibits a very high precision
score in both House 1 (1.00) and House 2 (0.99), highlighting
that positive predictions for that device are correct most of the
time. On the contrary, the dishwashers show lower precision
scores with respect to their recall, which indicates that false
positives are more likely in this case. This difference is
probably due to the fact that the washing machine presents
more distinctive features (e.g. spin cycles) than the dishwasher,
which instead can be confused with combinations of other
heating devices. However, we significantly reduced the impact
of these phenomena by adopting smart data augmentation
techniques that simulate these situations in the training phase.

Independently of the detection accuracy, the reconstruction
errors are also influenced by the complexity of the individual
power signatures. For example, in House 1 we obtained lower
MAEs for the dishwasher (3.78 W) than the washing machine
(11.20 W), despite having worse classification performance in
the dishwasher case. In the same way, the dishwasher’s SAE
(3.23 W) is lower than the washing machine’s SAE (3.62 W).
The reason for these differences is that the washing machine
generally presents a more convoluted pattern with respect to
the dishwasher, which can be more easily approximated by
its characteristic high power state (see Figure 5). Indeed,
the spin cycles of the washing machine are quite hard to
recover and are better approximated by their mean value
(see Figure 4). Furthermore, other features such as short
spikes are not captured by our state-based disaggregation
algorithm (see Figure 3). More sophisticated appliance-specific
methods could be devised to improve the fidelity of signal
reconstruction. However, the benefits of such methods would
be almost negligible for the purpose of energy breakdown,
which remains the final goal of load monitoring.
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TABLE V: Disaggregation results for fridge, dishwasher and
washing machine of House 1 and House 2 of the UK-DALE
dataset.

House 1 House 2
FR DW WM FR DW WM

MAE 14.93 3.78 11.20 3.54 3.55 4.12
SAE 11.86 3.23 3.62 1.66 3.11 2.64

Precision 0.80 0.76 1.00 0.97 0.86 0.99
Recall 0.92 0.97 0.87 0.98 0.93 0.90

F1 0.86 0.85 0.93 0.98 0.90 0.94

Fig. 3: Disaggregation of the fridge in House 1 and House 2
of UK-DALE.

Fig. 4: Disaggregation of the washing machine in House 1
and House 2 of UK-DALE.

C. Comparison with state-of-the-art

Table VI shows a comparison between the proposed solution
and previous neural networks trained with sub-meter data.
Because of their consistency with our test settings and given
their relevance in the literature, we considered the following
five neural architectures for our comparison: Denoising Auto-
Encoder (DAE) [30], Sequence-to-point (Seq2Point) [15],
Subtask Gated Network (SGN) [18], Scale and Context-
Aware Network (SCANet) [19] and Load Disaggregation with

Fig. 5: Disaggregation of the dishwasher in House 1 and
House 2 of UK-DALE.

Attention (LDwA) [20]. Please, notice that the results of
these models were directly obtained from the experiments of
Piccialli et al. [20] and refer to the performance obtained in
House 2 of UK-DALE with the very same data we used for
our tests, making the comparison fair.

According to the results reported in Table VI, the proposed
solution outperforms all previous neural networks in terms of
both classification accuracy and regression performance. In
general, we found that increasing the accuracy of appliance
detection (i.e. higher F1 scores) also leads to lower errors in
the power estimation as a consequence of the reduced number
of mispredicted operations. In addition, we also found that our
two-steps solution produced a more significant improvement
with respect to the architectural advancements introduced by
previous methods. This fact suggests that the exceptional
ability to collect a large training set is of primary importance
for the overall progress of energy disaggregation, while the
specific neural architecture chosen plays only a minor role
in the reduction of errors. Furthermore, we cannot ignore
the gain introduced by our state-based disaggregation with
respect to the regression approaches trained on sub-meters. In
fact, the use of power states revealed particularly effective for
the reconstruction of power signatures and avoids the typical
random fluctuations that are inevitably present in the output of
neural networks. In summary, thanks to our methodology we
were able to collect a larger set of appliance power signatures
that demonstrated to be generalizable to other buildings and
drastically enhanced the accuracy of existing deep learning
models.

VI. CONCLUSION

In this paper, we presented a practical NILM algorithm that
can estimate the power consumption of common household
appliances without the use of sub-meters for model training.
To achieve this goal, we divided the disaggregation process
into two main steps, which we named appliance detection
and state-based disaggregation. During the first phase, we use
a pre-trained appliance model that leverages deep learning
techniques to recognize the different appliance operations.
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TABLE VI: Comparison between the proposed solution and
previous neural networks trained with sub-meters in terms of
mean absolute error (MAE), signal aggregate error (SAE) and
F1 score.

FR DW WM
MAE 17.72 22.18 13.64

DAE [30] SAE 8.74 18.24 10.67
F1 0.76 0.55 0.25

MAE 17.48 15.96 10.87
Seq2Point [15] SAE 8.01 10.65 8.69

F1 0.80 0.51 0.49
MAE 16.27 10.91 9.74

SGN [18] SAE 6.61 7.86 7.14
F1 0.84 0.60 0.61

MAE 15.16 8.71 8.48
SCANet [19] SAE 6.54 4.86 5.77

F1 0.86 0.63 0.63
MAE 13.24 6.57 7.26

LDwA [20] SAE 6.02 3.91 4.87
F1 0.87 0.69 0.72

MAE 3.54 3.55 4.12
Proposed SAE 1.66 3.11 2.64

F1 0.98 0.90 0.94

During the second stage, we reconstruct the appliance load
by maintaining a set of house-specific parameters, i.e. the
individual power states of the device. These parameters can
be automatically learned or can be easily estimated with the
help of the user, who can confirm the identification of the
target device in the first recognition. The proposed solution has
been compared with advanced deep learning models trained to
directly predict the power consumption from the sub-meter.
The comparison shows that our methodology can provide
superior disaggregation performance, thus demonstrating that
we can train reliable disaggregation algorithms without the use
of sub-meters.
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