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Abstract 

The fatigue behavior of Additive Manufacturing (AM) parts is influenced by manufacturing defects, whose dimensions are 
primarily determined by the parameters of the AM process, which, in turn, also affect the resulting microstructure, together with 
heat treatments. This study employs Machine Learning (ML) techniques to forecast the fatigue response of AM parts from the AM 
process variables and the heat treatment characteristics. Feed-forward neural networks (FFNN) and physics-informed neural 
network (PINN) models are formulated and verified employing published datasets on AM Ti6Al4V alloy. The results demonstrate 
that physics-based ML approaches are effective in forecasting the fatigue response of AM components. 
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1. Introduction 

The design of metal components to be produced with Additive manufacturing (AM) technology gives space to 
innovative structural solutions, reducing the waste of material and allowing for the tuning of the material properties 
with the use, for example, of lattice structures. However, AM parts produced with Selective Laser Melting (SLM) 
process are characterized by numerous and large defects originating from the manufacturing, like pores, lack of fusion, 
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trapped gas (Tridello et al., 2021). Under cyclic loadings, these microstructural irregularities act as nucleation sites 
where the fatigue crack starts propagating and eventually leads to a catastrophic failure of the component(Molaei & 
Fatemi, 2018; Murakami et al., 2019; Yadollahi & Shamsaei, 2017; Yamashita et al., 2018). The quality of AM parts 
has significantly improved in last years, with a substantial reduction of the defectiveness, but the formation of 
manufacturing induced defects is unavoidable due to the nature of the additive technology.  

The design of parts undergoing fatigue loads requires therefore a damage tolerant approach, meaning that the 
intrinsic material defectiveness must be accounted for, and appropriate models need to be developed to assess the 
influence of the defects on the fatigue response. The most common damage-tolerant methodologies in the field of 
fatigue design originate from the Murakami’s theory, which correlates the fatigue strength with the defect size and the 
material hardness through a semi-empirical relation(du Plessis & Beretta, 2020; Meneghetti et al., 2019; Romano et 
al., 2019). To assess the fatigue strength using these models, a characterization of the size and the shape of the critical 
defects inside the component is needed beforehand, e.g., with micro-CT scans of the manufactured parts or with 
destructive metallographic inspections. For AM parts, in which the defect properties are mainly influenced by the 
processing parameters, the characterization of the internal defectiveness should be carried out for any set of parameter 
configurations, but this would be not feasible due to cost and time constraints. The effect of the AM processing 
parameters on the internal defects is complex and has been experimentally investigated by numerous research, which 
revealed that the main parameters governing the defectiveness of the parts are the beam diameter, beam power, layer 
thickness, powder size, scanning speed, building angle, hatch distance, and power. Modelling the effect of these 
parameters, and their interactions, on the formation of porosities or microstructural imperfections would require a 
multiparameter model that should be calibrated through an extensive design of experiments, whose realization would 
result unfeasible.  

The problem of discovering a relationship between numerous and interacting parameters on the fatigue response 
opens the door to the adoption of Machine Learning (ML) algorithms that can leverage the availability of several 
experimental findings on the effect of the single parameters on the response of Ti6Al4V parts produced with AM in 
the literature. In the last years, ML models have been developed to surrogate numerical models for the prediction of 
the fatigue response of SS216L and Ti6Al4V produced with SLM (J. Li et al., 2022; Zhan & Li, 2021a, 2021b), to 
model the effect of shot-peening and thermal treatments for AlSi10Mg (Maleki et al., 2022), and to give a probabilistic 
prediction of the fatigue response of Ti6Al4V from the manufacturing parameters(Chen & Liu, 2021). 

In this paper, ML algorithms have been designed to combine the predictive capability of the neural networks (NN) 
with the empirical knowledge described by Murakami’s theory, to assess the fatigue response of the Ti6Al4V parts: a 
database containing information found in the literature on the manufacturing process parameters, the stress amplitude, 
and the number of cycles at failure has been used to train a physics-informed neural network (PINN) whose architecture 
mimics the Murakami’s formulation. 

In Section 2, a description of the data collected in the literature is given and the main findings reported in the relative 
works are summarised. In section 3 a basic NN and a PINN model developed by (Ciampaglia et al., 2023) are 
introduced, whose results are discussed in Section 3. 

 
 

Nomenclature 

ML Machine learning  
NN  Neural network 
PINN Physics-informed neural network 
AM Additive manufacturing 
SLM Selective Laser Melting 
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trapped gas (Tridello et al., 2021). Under cyclic loadings, these microstructural irregularities act as nucleation sites 
where the fatigue crack starts propagating and eventually leads to a catastrophic failure of the component(Molaei & 
Fatemi, 2018; Murakami et al., 2019; Yadollahi & Shamsaei, 2017; Yamashita et al., 2018). The quality of AM parts 
has significantly improved in last years, with a substantial reduction of the defectiveness, but the formation of 
manufacturing induced defects is unavoidable due to the nature of the additive technology.  

The design of parts undergoing fatigue loads requires therefore a damage tolerant approach, meaning that the 
intrinsic material defectiveness must be accounted for, and appropriate models need to be developed to assess the 
influence of the defects on the fatigue response. The most common damage-tolerant methodologies in the field of 
fatigue design originate from the Murakami’s theory, which correlates the fatigue strength with the defect size and the 
material hardness through a semi-empirical relation(du Plessis & Beretta, 2020; Meneghetti et al., 2019; Romano et 
al., 2019). To assess the fatigue strength using these models, a characterization of the size and the shape of the critical 
defects inside the component is needed beforehand, e.g., with micro-CT scans of the manufactured parts or with 
destructive metallographic inspections. For AM parts, in which the defect properties are mainly influenced by the 
processing parameters, the characterization of the internal defectiveness should be carried out for any set of parameter 
configurations, but this would be not feasible due to cost and time constraints. The effect of the AM processing 
parameters on the internal defects is complex and has been experimentally investigated by numerous research, which 
revealed that the main parameters governing the defectiveness of the parts are the beam diameter, beam power, layer 
thickness, powder size, scanning speed, building angle, hatch distance, and power. Modelling the effect of these 
parameters, and their interactions, on the formation of porosities or microstructural imperfections would require a 
multiparameter model that should be calibrated through an extensive design of experiments, whose realization would 
result unfeasible.  

The problem of discovering a relationship between numerous and interacting parameters on the fatigue response 
opens the door to the adoption of Machine Learning (ML) algorithms that can leverage the availability of several 
experimental findings on the effect of the single parameters on the response of Ti6Al4V parts produced with AM in 
the literature. In the last years, ML models have been developed to surrogate numerical models for the prediction of 
the fatigue response of SS216L and Ti6Al4V produced with SLM (J. Li et al., 2022; Zhan & Li, 2021a, 2021b), to 
model the effect of shot-peening and thermal treatments for AlSi10Mg (Maleki et al., 2022), and to give a probabilistic 
prediction of the fatigue response of Ti6Al4V from the manufacturing parameters(Chen & Liu, 2021). 

In this paper, ML algorithms have been designed to combine the predictive capability of the neural networks (NN) 
with the empirical knowledge described by Murakami’s theory, to assess the fatigue response of the Ti6Al4V parts: a 
database containing information found in the literature on the manufacturing process parameters, the stress amplitude, 
and the number of cycles at failure has been used to train a physics-informed neural network (PINN) whose architecture 
mimics the Murakami’s formulation. 

In Section 2, a description of the data collected in the literature is given and the main findings reported in the relative 
works are summarised. In section 3 a basic NN and a PINN model developed by (Ciampaglia et al., 2023) are 
introduced, whose results are discussed in Section 3. 
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2. Materials 

The methodology described in this paper is used to predict the fatigue response of the Ti6Al4V alloy produced with 
SLM process. To assess the relationship between the manufacturing parameters and the fatigue strength S at Nf cycles, 
a database containing data available in the literature has been built.  
The dataset used to train the ML models is composed of 768 data points (Table 1), each defined as a set of process 
parameters, heat treatment parameters, stress amplitude and the number of cycles at failure. The stress amplitude at 
stress ratio 𝑅𝑅 = −1 is considered in the following analysis. If the experimental literature data have been obtained 
through tests at different stress ratios, the “Smith-Watson-Topper” (SWT) correction has been applied to assess the 

equivalent stress amplitude sa,eq at R=-1 (i.e., 𝑠𝑠𝑎𝑎,𝑒𝑒𝑒𝑒 = 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚 ∙ √
1−𝑅𝑅
2 , being smax the maximum applied stress in a load 

cycle). 
 

Table 1. The main process parameters of the literature data collected in the database:  

Ref. Orientation 
[°] 

Power 
[W] 

Hatch 
[mm] 

Speed 
[mm/s] 

Layer 
thickness 
[μm] 

(Du et al., 
2021) 

90 120 0.07 1200 30 
90 120 0.1 1000 45 
90 120 0.13 800 60 
90 160 0.13 1000 30 
90 160 0.07 800 45 
90 160 0.1 1200 60 
90 200 0.1 800 30 
90 200 0.13 1200 45 
90 200 0.07 1000 60 
90 160 0.07 1000 30 

(Günther et al., 
2017) 90 175 0.12 710 30 

(Hu et al., 
2020) 90 280 0.14 1200 30 

(P. Li et al., 
2016) 

0 200 0.18 200 50 
90 375 0.12 1029 60 
0 375 0.12 1029 60 
90 375 0.12 1029 60 
0 175 0.125 710 30 
90 250 0.06 1600 30 
90 200 0.25 1250 40 

(Sanaei & 
Fatemi, 2020) 

90 400 0.16 1000 50 
90 285 0.14 1200 30 
45 285 0.14 1200 30 

(Zhao et al., 
2016) 90 200 0.1 1000 50 

4 Author name / Structural Integrity Procedia  00 (2019) 000–000 

(Fousová et al., 
2018) 90 200 0.08 1250 30 

(Jiang et al., 
2021) 0 190 0.065 1000 30 

(Sun et al., 
2021) 90 360 0.1 1200 60 

(Günther et al., 
2018) 90 175 0.12 710 30 

(Eric et al., 
2013) 45 170 0.1 1250 30 

(Gong et al., 
2015) 

90 120 0.1 960 30 
90 120 0.1 540 30 
90 120 0.1 400 30 
90 120 0.1 1260 30 
90 120 0.1 1500 30 

(Alegre et al., 
2022) 90 400 0.12 150 60 

(Macallister & 
Becker, 2022) 90 170 0.1 1200 30 

(Mertova et al., 
2018)  

90 200 0.08 1250 30 

(Moran et al., 
2022) 

45 160 0.14 1200 30 
45 245 0.082 1250 60 
45 280 0.14 1200 30 
45 245 0.082 1250 60 

(Soltani-
Tehrani et al., 

2022) 
90 280 0.14 1200 30 

(Yan et al., 
2019) 90 280 0.05 1200 30 

(Kumar & 
Ramamurty, 

2020) 

90 280 0.14 1200 30 

90 340 0.12 1250 60 
 
The manufacturing parameters collected in the analyzed database are the orientation, the input power, the hatch 
distance, the speed, and the layer thickness. Two thermal treatments are moreover generally adopted in the literature:  
 

• Annealing:  conducted at a temperature between 600°C and 800° with a duration that spans from half to two 
hours, this treatment can relieve the residual stress induced by the repeated welding and refine the 
microstructure. 

• Hot Isostatic Pressing (HIP): thermo-mechanical treatment where a pressure of 1000 bar is applied at 
temperatures above 900°C for two hours or more. The HIP process allows to reduce the porosity of the parts, 
yielding an enhancement of the fatigue performance. 

 
The main surface treatments applied to the Ti6Al4V are sandblasting (SB), shot peening (SP), laser shot peening 
(LSP), surface mechanical attrition treatment (SMAT), electric discharge machining (EDM) and surface polishing. A 
column for each treatment has been added to the database, with a boolean value indicating if the data has been 
subjected to a specific treatment or not. 
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3. Method 

The fatigue response of materials is commonly described by a relation between the applied load, referred as the stress 
amplitude S, and the number of cycles at failure, referred to as Nf. The proposed model expands the standard relations 
by introducing the correlation between the manufacturing parameters and the fatigue response, which is implicitly 
controlled by the internal defectiveness. To define this relation, two ML models are designed: a NN with standard 
architecture, and a PINN with an architecture inspired to the Murakami theory. 

3.1. Neural Network (NN) 

Probably, the most common supervised ML method, NN are trainable numerical models with a layered architecture, 
where the information is propagated from the input to the output layer through a network of neurons. Every neuron is 
fully connected to the previous layers and performs the elementary operation on the inputs 𝑥𝑥𝑖𝑖: 

 
𝑦𝑦 = 𝒜𝒜(∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏) , (1) 

 
where 𝑥𝑥𝑖𝑖 is the input of the 𝑖𝑖-th connection, 𝑏𝑏 is the bias of the neuron, and 𝒜𝒜(∙) is the activation function. The 

weight and bias of the network are the trainable parameters, while the number of neurons of each layer, the number 
of layers and the activation functions are the hyperparameters that need to be a-priori defined. The most common 
activation functions are the Rectified Linear Unit (ReLU), the hyperbolic tangent, and the sigmoid function; these 
functions allow for the activation of the neuron, replicating the firing mechanism of the brain’s neurons, and introduce 
a non-linearity in the model that would otherwise be equivalent to a linear regression. 

Being a supervised method, the NN is trained on a set of data whose input and output are both known. The training 
process starts with a random initialization of the parameters, thereafter the information is propagated from the input 
to the output, where a loss function computes the error. The error is then backpropagated to the neurons, where a 
gradient descent algorithm is used to update the values of the parameters based on the distributed error. The forward 
prediction and back propagation are iteratively repeated on a subset of the data (i.e., a batch) until a convergence 
criterion is reached. The predictive capability of this Neural Network architecture is compared with the predictive 
capability of the Physics-informed Neural Network (PINN) described in the following Section. 

 

3.2. Physics-informed Neural Network (PINN) 

The PINN developed in this paper is inspired by the Murakami’s fomulation, which models the relationship 
between the fatigue strength 𝑆𝑆, the square root of the area of the defect, √𝑎𝑎𝑐𝑐, projected in a direction perpendicular to 
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where 𝐶𝐶1 is a coefficient accounting for the influence of the defect location (i.e., surface defects are more critical 

than internal defects since characterized by a larger stress intensity factor). Eq. 2 correlates the defect size, which 
negatively affects the fatigue strength, and the hardness, dependent on the material microstructural properties. 
Although this relationship has been developed for traditionally built materials, in particular high-strength steels with 
spherical inclusions, (Masuo et al., 2018) demonstrated its applicability to AM parts provided that an equivalent defect 
size in place of the actual one is considered. Eq. 2 has been moreover rearranged in the literature to model the 
dependency between the fatigue life and the defect size (Mayer et al., 2014; Murakami, 2019; Paolino et al., 2016). A 
general expression modelling the relationship between the fatigue life and the defect size, according to the Basquin’s 
law and the Murakami’s formulation, is reported in Eq. 3: 
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where the 𝐶𝐶2 and 𝑘𝑘 are empirical parameters to be experimentally fitted. 
As for the other metallic materials produced through AM process, the defectiveness of Ti6Al4V parts is mainly 
governed by the manufacturing process, whereas the material microstructure is controlled both by the AM process 
parameters and by the subsequent thermal treatments (Tridello & Paolino, 2020). Accordingly, the process parameters 
and the heat treatment properties should be considered as input when modelling the fatigue response of AM parts, 
according to Eq. 3, and, in particular, of the investigated Ti6Al4V alloy. 
The proposed PINN mimics the chain of causality describing the process-structure-property relation that governs the 
fatigue response of AM parts, by adopting an architecture introduced in (Ciampaglia et al., 2023) made of two 
branches that estimate the effect of the process parameters on the defectiveness and the microstructure, respectively. 
The two main PINN sub-network are described below: 
 

• MicroNet: vector of variables 𝜙𝜙 (build orientation, hatch distance, speed, energy density, power input, layer 
thickness, beam diameter and plate temperature, duration and temperature of the thermal treatment, surface 
treatment) feeds the neural network ℕ1 that predicts the microstructural strength parameter. 

• DefectNet: vector of variables 𝜃𝜃 (build orientation, hatch distance, speed, energy, power, layer thickness, 
beam diameter and plate temperature) feeds the neural network ℕ2 predicting the effect of these parameters 
on the defect size. 

 
According to Eq. 3, the fatigue strength, defined as the stress value at which the failure occurs after 𝑁𝑁𝑓𝑓 cycles, is 

proportional to the microstructural strength and inversely proportional to the defect area. Based on this empirical 
knowledge, the ratio of the DefectNet output over the MicroNet output is computed inside a custom layer of the PINN 
and propagated to a trainable layer, as shown in Figure 1. 

 

 

Figure 1. Schematic representation of the modular PINN. 

The final layers learn a correlation between the latent variables computed with the sub-nets, the number of cycles and 
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3. Method 
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the fatigue strength: 

𝑆𝑆 = ℕ1(𝜙𝜙; 𝑤𝑤𝜃𝜃, 𝑏𝑏 𝜃𝜃)
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The PINN is trained to minimize the loss function described with Eq. 5: 

ℒ = 1
𝑁𝑁 |𝑆𝑆 − ℕ1(𝜙𝜙; 𝑤𝑤𝜃𝜃, 𝑏𝑏 𝜃𝜃)
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where the operator |∙|𝐹𝐹2 is the Frobenius norm. The trainable parameters 𝑤𝑤𝑐𝑐𝑖𝑖 are deputed to model the shape of the 
fatigue curve depending on the process parameters.  

The designed PINN intrinsically complies with the S-N monotonicity constraint, being the derivative of the output 
layer with respect to the number of cycles always negative. 

 
 

4. Results and discussion 

4.1. NN results 

The structure of the NNs developed without embedding any physical knowledge (Section 2.1) is summarised in 
Error! Reference source not found.. 
 

Table 2. Summary of FFNN optimized structures with activation function and number of neurons of each layer 

Layer Neurons Activation function Output shape 

Input 6 ReLU (6, 1) 

Dense 1 50 ReLU (50, 1) 

Dense 2 50 ReLU (50, 1) 

Dense 3 40 ReLU (40, 1) 

Output 40 ReLU (1, 1) 

 
The input layer is connected to the model inputs, namely building orientation, energy, beam diameter, hatch distance, 
layer thickness, number of cycles, and plate temperature. The NN is trained with 80% of the available data, while the 
remaining 20% is used as validation to check that the network is not overfitting the training observations. The loss 
function has been defined as the Mean Square Error (MSE) of the fatigue strength, which has been minimized with 
the adaptive optimizer algorithm Adam with a learning rate of 0.07 and an exponential decay rate of 0.9. The training 
has been iterated until a decrease lower than the 2% is observed for 20 consecutive iterations. 
The value of the loss function for the training and validation data during the training process is shown in Figure2a, 
whereas Figure 2b shows an accuracy plot which compares the fatigue strength predicted with the NN (SNN) with the 
experimental values (Sexp). In Figure 2b, an error band of ±150 MPa and a Normal distribution with standard deviation 
of 50MPa are also shown. 

a) b) 
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Figure 2. a) Training and validation loss during the training of the NN; b) accuracy plot comparing the stress predicted with the NN (SNN) with 
the experimental one (Sexp). 

The NN correlates the process parameters to the fatigue performance with a 70 % average error and a 270% maximum 
error. According to Figure 2b, the majority of the data are within the error band, but many data are also far from the 
bisector and outside this range, due to the stochastic nature of the fatigue behaviour, especially when driven by defects.  
 

4.2. PINN results 

The PINN model is composed of two main branches: the DefectNet and the MicroNet, which predict the effect of the 
process variables on the material defectiveness and the resultant microstructure, respectively. Both sub-networks have 
2 hidden layers, with 10 and 5 neurons, respectively; the output network that computes the fatigue strength from the 
number of cycles and the latent variables in output from the two branches, has again 2 hidden layers with 10 and 5 
neurons, respectively, as detailed in Table 3. The Scaled Exponential Linear Unit function has been used as the 
activation functions of the hidden layers. 

Table 3. Physic-informed neural network architecture 

NN branch Layer Neurons Activation function 
DefectNet Input 1 10 SELU 

Dense 1 5 SELU 
 Dense 2 1 Linear 

MicroNet Input 2 10 SELU 
Dense 3 5 SELU 

 Dense 4 1 Linear 
Output Dense 5 10 ReLU 

 Dense 6 5 Linear 
 Dense 7 1 Linear 
 Custom - - 

 
 
The value of the loss function at each epoch of the training process is reported in Figure 3a, whereas Figure 3b 
compares the fatigue strength predicted with the NN (SNN) with the experimental values, Sexp (an error band of ±150 
MPa and a Normal distribution with standard deviation of 50 MPa are also shown). 
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Figure 3. a) Training and validation loss during the training of the NN; b) accuracy plot comparing the prediction of the NN (SNN) with the 
experimental values (Sexp). 

 
According to Figure 3a, the ultimate loss value is below 10, even if the training process is more unstable as it usually 
occurs for PINN characterized by a complex architecture (or by a loss function), which affects the backpropagation 
procedure. Figure 3b, the data are concentrated close to the bisector and within the ±150 MPa error band, apart from 
a limited amount of data. 
 

4.3. NN and PINN: comparison and discussion 

The results obtained with the NN and PINN are compared in Figure 4 (datasets in (Du et al., 2021)), where the S-
N curve predicted by considering two manufacturing configurations, both included in the training dataset, are reported 
together with the experimental data. 

 
a) 

 

b) 

 

Figure 4. S-N curves predicted with the NN and PINN applied to data from (Du et al., 2021), both contained in the training dataset. 
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According to Figures 4a and b, the S-N curves predicted with the PINN well fit the experimental data, differently 

from those predicted with the NN. It is noteworthy that the S-N curves predicted with the PINN are characterized by 
a bilinear trend typical for metals. On the other hand, the NN hardly replicate the characteristic shape and decreasing 
trend typical of the S-N curves, because the training process converged preferentially toward a model which predicts 
a flat curve with a value corresponding to the average of the observed data. This is imputable to the data-hungry 
characteristic of the traditional ML models that demands a huge amount of data points to effectively learn the relation 
between the inputs and the outputs of the NN. On the other hand, incorporating the physical knowledge yielded by 
the Murakami formulation in the PINN leads to a faster convergence of the training process toward a physics-
compliant behaviour. Figure 5Error! Reference source not found. (Figure 5a for the dataset in (Gong et al., 2015) 
and Figure 5b for the dataset in (Jiang et al., 2021)) depicts fatigue curves that are predicted with the NN and PINN 
from manufacturing configurations not present in the training dataset. 
 

a) 

 

b) 

 

Figure 5. S-N curves predicted with the NN and PINN applied to datasets not considered in the training dataset from: a) (Gong et al., 2015); b) 
(Jiang et al., 2021). 

 
It can be observed in Figure 6 that the accuracy of the ML methods may decrease when tested outside the training 
space, overestimating the fatigue strength in the high-cycle fatigue range. However, the decrease in the predictive 
capability of the PINN is less severe in the validation data from (Jiang et al., 2021), where the predicted behaviour is 
in good agreement with the experimental data. 
To give a complete overview of the model accuracy, the absolute relative errors (ARE) of both the NN and PINN have 
been reported in the histogram in Figure 6. 
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Figure 6. Absolute Relative Error of the NN and PINN prediction compared with the experimental data. 

 
Results reported in Figure 6 show that the PINN has a narrower distribution of the ARE with an average value lower 
that the one of the NN. 

5. Conclusions 

In the present work two Machine Learning (ML) algorithms, a Neural Network (NN) algorithm and a Physics-
Informed Neural Network (PINN) algorithm, have been developed to predict the stress-life relationship of Ti6Al4V 
alloys produced through a Selective Laser Melting (SLM) process. The following conclusions can be drawn: 

• ML algorithms are capable of modelling the influence of SLM processing parameters, and post-process 
parameters on the fatigue response of the Ti6Al4V alloy; 

• the phenomenological knowledge of the damage-tolerant response of the investigated SLM part can be 
combined with the NN architecture. 

• the combination of the physics-based model with the NN yields more accurate predictions. 
• the S-N curve assessed with the PINN model shows physics-compliant trends. 

 
Further investigations will be carried out to model the stochastic nature of the fatigue phenomena with ML algorithms 
and to explore different ML algorithms and phenomenological hybrid approaches for the assessment of the fatigue 
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