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Defining the working points of optical amplifiers is a key factor when managing optical networks, particu-
larly for the quality of transmission (QoT) of deployed connections. However, given the lack of knowledge
of physical layer parameters, in many cases operators use these infrastructures sub-optimally. In this work,
a methodology is presented that optimizes the QoT of an optical line system (OLS) by setting the working
points of the erbium-doped fiber amplifiers (EDFAs), by analysis of simulations that use synthetic data
derived from experimental characterization of commercial devices. The procedure is divided into three
phases: a physical layer characterization, a design process, and an iterative supervised learning approach.
Within the first phase, a novel amplifier physical layer characterization is used, exploiting a simple EDFA
model that allows an efficient estimation of the OLS behaviour, knowing only the setting operative ranges
of the devices. The results show that the satisfactory outcome produced during the design phase is further
improved by the iterative supervised learning approach. The latter approach is implemented for single
OLSs between couples of adjacent re-configurable optical add & drop multiplexers (ROADMs), each
equipped with a certain set of transceivers (TRXs), enabling the QoT estimation of the specific OLS. © 2023

Optica Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Optical system optimization is a fundamental procedure in ef-
ficient and cost-effective utilization of network infrastructures,
and it has been the focus of numerous research activities in the
optical network framework [1–3]. This is mainly due to the
increasing interest of operators to sustain the growing traffic
demand experienced in the latest years [4, 5]. The level of ro-
bustness of an optical network is in some way correlated both
to its scalability in managing more connection requests and the
capability of the system to prevent or counteract failures. Com-
ponent aging, fiber cuts or the modification of a patch panel at
the beginning of a fiber span are the most common examples of
events affecting the system performance. From this perspective,
the optimization of the infrastructure depends upon the knowl-
edge of the physical layer in terms of network element features,
such as optical amplifiers and fibers that compose the various
optical line systems (OLSs) of a network.

Recently, various machine learning (ML) algorithms have

shown outstanding results in optical communication and have
been used for various applications in this field, in particular for
quality of transmission (QoT) estimation improvements [6–8].
Several implementations have been used for QoT predictions
and simulations of OLSs. In particular, the proposed solutions
have been based on both stand-alone ML frameworks or ML-
aided QoT estimator relying on analytical models [9, 10]. All
of these solutions require resources and time to acquire large
datasets. Furthermore, physical layer parameters used for feed-
ing analytical models are rarely available, presenting a not neg-
ligible uncertainty [11]. The authors already tackled this issue
providing methodologies that aim to automatically characterize
the system, but this is limited to the optical fiber parameters [12–
14].

In this work, a methodology is presented that optimizes the
QoT of an OLS by setting the working points of the EDFAs. The
procedure is divided into three phases: a physical layer charac-
terization, a design process, and an iterative supervised learning
approach. In the first phase, a novel amplifier physical layer

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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characterization exploiting a simple EDFA model that allows
an efficient estimation of the OLS behaviour is used. The gen-
eralized signal-to-noise ratio (GSNR), which includes both the
amplified spontaneous emission (ASE) and nonlinear interfer-
ence (NLI) impairments, has been considered as a fundamen-
tal metric for the system QoT [15]. The aim of the developed
methodology is to optimize the OLS QoT by automatically char-
acterizing both the optical fibers and the EDFA of an OLS, relying
only on the setting operative ranges of the EDFAs, such as the
maximum/minimum values of the input parameters and the
maximum output power. Furthermore, a ML agent is employed
to improve the overall QoT estimation, enabling a more effective
optimization of the OLS under investigation through the miti-
gation of deviations from the model. This proof of concept is
given via simulation using synthetic data retrieved from an ex-
perimental campaign aimed at characterizing and modelling an
EDFA, and an experimentally validated QoT estimation frame-
work [16]. In particular, the reference OLS utilized to test the
proposed methodology is created using an accurate ML model
of a commercial EDFA based on an experimental dataset.

The proposed iterative supervised learning approach is able
to achieve a remarkable improvement with a significantly lim-
ited number of the training data samples (i.e. just a few cases
of actual QoT performance using four selected channels). The
optical network architecture considered in this scenario consists
of single OLSs between couples of adjacent re-configurable op-
tical add & drop multiplexers (ROADMs), each equipped with
a certain set of transceivers (TRXs), enabling QoT estimation
for each specific OLS for a given amplifier configuration setting.
In the transmission scenario under investigation, the proposed
solution provides a 0.3 dB improvement on the mean GSNR
value and a reduction from 0.11 to 0.03 dB in the GSNR standard
deviation over all the propagated channels with respect to the
amplifiers’ configuration optimized after the physical layer char-
acterization, achieving a significant leveling of the QoT over the
entire band.

The article is divided as follows: Sec. 2 presents the network
architecture and the OLS under investigation. Sec. 3 reports the
experimental procedure to characterize a commercial EDFA and
then to built the corresponding ML model based on the decou-
pling between operative settings and gain/noise fluctuations.
This EDFA ML model is implied in the simulation to built the
reference OLS. Sec. 4 introduces the developed methodology de-
scribing the three phases in succession. In Sec. 5 the simulation

framework is explained and the obtained results are analyzed
and discussed. Sec. 6 reports the conclusion of the work.

2. OPTICAL NETWORK ARCHITECTURE

The OLS has been considered as a sub-system of an open and
partially disaggregated optical network, shown in Fig. 1. In
this framework, the optical network controller (ONC) is as-
sumed to have direct access to the TRXs and ROADMs for
route-wavelength assignment and lightpath deployment pur-
poses. Whereas, the management of the OLSs, identified by the
ROADM-to-ROADM physical connections including boosters
and pre-amplifiers, is delegated to the optical line controllers
(OLCs), which have direct access to the telemetry from the avail-
able monitoring devices. Moreover, each OLC autonomously
evaluates and sets the optimized working points of the specific
OLS amplifiers, providing to the ONC the QoT metrics required
for the lightpath computations.

The developed framework is based on a further assumption:
each OLS is equipped with a certain set of TRXs, enabling QoT
estimation in different portions of the propagating spectrum
by means of the bit-error-rate (BER) measurement for a given
amplifier configuration setting. This assumption reflects the
reality in the case of optical networks with linear topology or in
which there is the need to route connections between adjacent
nodes.

As a consequence, the reference transmission scenario has
been set as a fully-loaded spectrum composed of 70 channels at
32 GBd and 50 GHz fixed spacing centred in the C-band, with an
equalized uniform power at the input of the booster (0.1 dBm
total power). The optimization target has been defined as the
maximum average GSNR over all the channels, achievable with
a limited GSNR variation of each channel in order to obtain a
minimal QoT complexity.

Regarding the telemetry required for the proposed imple-
mentation, each amplification site is equipped with an optical
time domain reflectometer (OTDR) and a couple of optical chan-
nel monitors (OCMs) at the input and the output of the device
in order to reproduce the same conditions presented in [13].
Moreover, the presented iterative approach is based on the QoT
feedback retrieved from four fixed channels under test (CUTs),
equally spaced within the overall spectrum, which are assumed
to be propagated exclusively on the specific OLS under investi-
gation.

ROADM-1

API

Optical Line System
TRX-1

API

TRX-2

API

OPTICAL LINE CONTROLLER

ROADM-2

OPTICAL NODE 1 OPTICAL NODE 2

OPTICAL NETWORK CONTROLLER

BST PRE
ILA ILA ILA

Fig. 1. ROADM-to-ROADM optical line system within an open and partially disaggregated optical network architecture.
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3. EDFA MACHINE LEARNING MODEL

First, an EDFA realistic model both in terms of gain and ASE
noise has been made by means of a ML technique in order to
define the reference OLS of the simulation framework. In partic-
ular, a dataset has been collected performing a full spectral load
characterization of a commercial EDFA with maximum output
power of 20 dBm and maximum gain of 20 dB. A large and
valuable research has been done on the EDFA modelling using
ML techniques [17–19]. In this work, the ML model is adapted
to be complementary with respect to the EDFA simple model
proposed in the physical layer characterization.

The experimental setup is depicted in Fig. 2. A commercial
wave shaper filter (1000S from Finisar) is programmed to shape
the output of an ASE noise source generating a C-band wave-
length division multiplexing (WDM) comb centered at 193.5 THz
and composed by 38 channels, 100-GHz spaced, with 32 GHz
of bandwidth each. The WDM comb is introduced at the EDFA
under test input with 9 different overall power values, ranging
from −10 up to +6 dBm. Working in constant gain mode, the
EDFA under test is set in different conditions (i.e. the optical
gain and the total tilt settings); the gain parameter, G, ranges
from 14 to 20 dB (1 dB step), whereas the total tilt parameter,
T, (gain difference between the extreme channels) ranges from
−5 to +5 dB (1 dB step). For each combination of input power,
EDFA gain and tilt values, the WDM comb spectrum is captured
both at the EDFA’s input and output by means of an optical
spectrum analyzer (OSA) and integrated photodiodes. The OSA
resolution bandwidth was set to 10 GHz in order to appreciate
both the signal peaks and the noise level. All the measurements
performed with the EDFA in saturation condition are removed
from the dataset as they introduce an ambiguity in the relation
between target parameters and the actual EDFA output. More-
over, knowing the specifications of the in-field amplifiers, the
saturation condition is generally avoided in real-case scenarios
with the design phase.

The gain profiles, G( f ), are evaluated from the difference
between the input and the output power peak profiles. Thanks
to the internal feedback mechanism of the amplifier, the G setting
parameter corresponds exactly to the difference between the
total input and output power values measured by the integrated
photodiodes. The gain ripple profile, ∆G( f ), predicted by the
ML model is defined in logarithmic units as:

∆G( f ) = G( f )−
[

G +
T
B
( f − f0)

]
(1)

ASE

WSS

OSAOSA

EDFA

PDIN PDOUT

G, T

Fig. 2. Experimental setup sketch for the characterization a
commercial EDFA and measurement examples.

where B and f0 are the band on which the tilt is applied and
the central frequency of the gain profile, respectively, expressed
in Hz. These two parameters are fitted in advance minimizing
the root-mean-squared error (RMSE) between all the measured
gain profiles and the profiles obtained using this linear expres-
sion, G̃( f ), properly considering the corresponding G and T
parameters:

RMSE (Xp, Xm) =

√√√√√ N
∑

i=0

(
Xp

i − Xm
i

)2

N
, (2)

where Xp and Xm are the arbitrary predicted and the measured
profiles, respectively, and N is the total number of frequency
samples.

For each amplifier configuration, the evaluated ASE power
spectral density (PSD) profile, PSDASE( f ), is reported at the
amplifier input subtracting the corresponding evaluated gain
profile in logarithmic units. Then, the residual noise of the
input source is removed from the profile by taking the difference
between the two quantities in linear units [20]. The ASE power
spectral density ripple, ∆PSDASE( f ), is evaluated in logarithmic
units as:

∆PSDASE( f ) = PSDASE( f )− PSDASE , (3)

where PSDASE is the profile average, which is stored in a table
according to the corresponding amplifier configuration and used
in order to perform the overall prediction within amplifier EDFA
model.

On the basis of the described dataset, the ML technique ex-
ploits two different artificial neural networks (ANNs), to predict
the ripples of both the gain and ASE PSD profiles, respectively.
To determine the appropriate configurations of the ANN model
in order to minimize the complexity, extensive simulations have
been performed by changing the ANN parameters, such as num-
ber of layers, neurons, epochs, batch size and types of activation
function. Each ANN is implemented using the open source
library TensorFlow© [21], and consist of one input layer, one
hidden layer with 256 neurons, and one output layer. Moreover:
a ReLU-based activation function is used for all the neurons
to avoid the vanishing gradient problem and the adaptive mo-
ment estimation (Adam) optimizer and the RMSE metric are
used to optimize and evaluate the model, which is trained on
5000 epochs with a batch size of 64. The input feature space for
both gain and ASE PSD ripple estimation includes the amplifier
setting parameters, G and T, and the input and output total pow-
ers. For a given pattern of features, the predicted label values
of the two ripple profiles are related to 38 C-band frequencies
fixed in the experimental setup. Then, the two predicted ripples
profiles are linearly interpolated over the propagated spectrum
frequencies. Moreover, the ASE PSD average is linearly interpo-
lated according to the amplifier settings.

For both the ripples, the dataset consists in 510 samples and
the model is validated splitting it in a proportion 90-10% for
training and testing, respectively. The goodness of the prediction
is estimated in terms of RMSE, maximum absolute error (MAE)
and error considering the test dataset over the entire spectrum
of each sample (Fig. 3). The MAE is expressed by the following
definition:

MAE(Xp, Xm) = max
(
|Xp

i − Xm
i |

)
∀ 1 ≤ i ≤ N . (4)

Observing the statistics related to the gain ripple prediction,
the average value for both the RMSE and the MAE is below
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Fig. 3. EDFA ML model testing results: RMSE and MAE distributions, and error distribution between the measured profile and the
predicted profile for the gain (a-column) and the ASE PSD (b-column).

0.2 dB. The maximum error values are 1.4 dB and −0.9 dB, both
recorded in rarely used amplifier configurations in which the tilt
orientation enhances the inter-channel Raman scattering. Simi-
larly, considering the ASE PSD ripple predictions, the average
value for both the RMSE and the MAE is below 0.1 dB. For both
the gain and ASE PSD ripple profiles, the error distributions
are concentrated into a dense zone of values around zero mean.
Some examples of the ripples produced by the ML EDFA model
are shown in Fig. 4.

4. METHODOLOGY

From the point of view of cognitive optical networks [22], the
proposed methodology aims to optimize the working points of
an OLS maximizing and leveling the QoT for all the modulated
channels composing the WDM comb, in order to guarantee the

same performance for whatever traffic connection allocated be-
tween a couple of nodes of the optical infrastructure passing
through the specific OLS. This procedure involves the use of
a set of TRXs, transmitting as many channels equally spaced
in frequency, properly characterized in back-to-back (B2B) con-
figuration in order to retrieve the SNR estimation on the basis
of the measured BER [23]. In the following, the GSNR derived
from the in-field measured BER is referred to this conversion
using the B2B TRX characterization of all these CUTs. Further-
more, the adopted terminology is based on the use of three key
words. The word model refers to the physical layer model built
while performing the proposed methodology, which emulates
the behavior of a given system. Then, the word reference means
the system against which the model is compared. It can be a
real system when referring to an experiment or a virtual object

191 192 193 194 195 196
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0.0

0.5

1.0
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 [d
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191 192 193 194 195 196
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0.25

0.50
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D A

SE
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Fig. 4. Examples of ∆G( f ) and ∆PSDASE( f ) profiles produced by the ML EDFA model, fixing the total input power at -4.0 dBm and
randomizing the values of gain and tilt with the corresponding operative ranges.
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in a simulation. Finally, the word prediction concerns the result
obtained by the ML agent’s elaboration in the third step of the
methodology.

The algorithmic process that brings the OLS to be operative is
articulated into three phases, which will be described in detail in
the following. The block diagrams of each of them are depicted
in Fig. 5. In the first step, generally called physical layer charac-
terization, the in-field telemetry apparatus is exploited to probe
the status of the system in a specific working condition and the
measurements are processed in order to retrieve the equivalent
physical layer model parameters of the device under test. In this
work, only the novel EDFA physical layer characterization is
presented, assuming that the fiber characterization, which is in-
dependent from the installed EDFA characteristics, is performed
as preliminary step [12]. This procedure brings to the full virtu-
alization of each fiber span of an OLS, providing the estimation
of the fiber length, LS, the loss coefficient function, α( f ), the
Raman efficiency curve, CR(∆ f ), and the lumped losses, l(z).

Due to the problem complexity, the optimization algorithm
adopted within all the steps of the procedure is the covariance
matrix adaptation evolution strategy (CMA-ES) [24], a stochastic
optimization algorithm based on an evolutionary strategy.

Regarding the adopted physical layer model for QoT estima-
tion, in the built software framework, GNPy open source Python
library [25] is used to emulate the optical propagation using two
main classes: the optical fiber and the propagating WDM comb.

A. EDFA Physical Layer Characterization

A simple physical layer EDFA model is considered, describing
the gain profile, G( f ), in logarithmic as:

G( f ) = G +
T
B
( f − f0) , (5)

Physical Layer 
Model

Physical Layer 
Parameters

Emulated 
Output

Reference 
Output

-

Characterization 
Process

Physical Layer 
Model

Emulated 
Output

Targets

-Physical Layer 
Parameters

Working Point 
Conditions Design Process

(a)

(b)

Working Point 
Conditions

Reference 
Output

Physical Layer 
Parameters

Design Process
+

ML Agent

(c)

Reference 
System

Working Point 
Conditions

Physical Layer 
Model

Predicted 
Excess

-

-
< "

STOP
+

Emulated 
Output

Fig. 5. Methodology conceptual block schemes: (a) physical
layer characterization, (b) working point optimization rely-
ing on the retrieved physical layer model, (c) working point
refinement using an iterative supervised learning approach.

where all the parameters are graphically represented in Fig. 6,
and the introduced ASE noise profile, PASE( f ), in linear units as:

PASE( f ) = h f Bn [G( f )− 1] NF , (6)

where h is the Planck constant, Bn is the noise bandwidth and NF
is the noise figure, constant and fixed for all the gain values. The
amplifier settings coincide with the parameters G and T, while B,
f0 and NF represent the physical layer parameters of the EDFA
to be probed. In particular, B and f0 parameters define the slope
of the tilt and where it is applied within the amplification band.
The NF parameter is used to extract the average level of ASE
noise introduced by the EDFA in a specific working condition.

All the EDFAs within the OLS are set in a known working
condition. Exploiting the telemetry, it is assumed that the system
is set in transparency mode, choosing the gain value to restore
the required output power and the tilt values to balance the
flatness of the channel power profile. With this configuration,
the input spectrum is propagated through the reference OLS,
collecting at the output GSNR for the complete set of available
TRXs, GSNR( f )r.

The characterization process aims to jointly retrieve the three
EDFA model physical layer parameters for all the EDFAs within
the OLS model observing the emulated, GSNR( f )e, and the
reference, GSNR( f )r, GSNR profiles under the defined working
conditions, as stated by the following objective function:

min
∀ B, f0, NF

RMSE (GSNR( f )e, GSNR( f )r) , (7)

where f are referred to the frequencies of the CUTs. The opti-
mization problem presents a dimension of 3 × NEDFA, where
NEDFA is the number of EDFAs in the OLS.

The main advantage of this novel EDFA characterization pro-
cess is that it allows to fully abstract the OLS only knowing the
setting operative ranges, without performing any in-laboratory
experimental characterization for these lumped components.

B. Working Point Design Phase
At this point, the OLS full abstraction has been achieved, obtain-
ing an equivalent representation of all the fibers and EDFAs. On
the basis of the previous characterization, the abstracted OLS
can be exploited in order to optimize the EDFAs’ working point
fixing the retrieved physical layer parameters and modifying
the amplifiers settings within the optimization process (Fig. 5-b).

!
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Fig. 6. Qualitative representation of the EDFA simple model
gain profile.



Research Article Journal of Optical Communications and Networking 6

Trusting the performed characterization accuracy, the design
process manipulates the OLS model in order to evaluate which
is the amplifier setting configuration that produces the highest
and most homogeneous QoT at the output [13]. Assuming two
setting parameters for a single EDFA (G and T), the problem
dimension amount to 2×NEDFA. The objective function adopted
to achieve this purpose is:

max
∀ G, T

GSNR − σGSNR , (8)

where GSNR and σGSNR are the mean and the standard devi-
ation of the emulated output GSNR profile, respectively. This
problem formulation addresses the choice of the amplifier work-
ing point observing the overall QoT estimated at the line out-
put, aiming to achieve the maximum average value for all the
channels composing the spectrum with the minimum profile
dispersion.

C. Iterative Supervised Learning Refinement
The result achieved following the procedure until this point
could be sufficient to make the OLS ready to start with standard
transmission operations. Ignoring the uncertainties related to
the knowledge of the physical model of the fibers, the TRXs and
the ROADMs penalties, the relevant aspect of the adopted EDFA
model is that it does not consider any ripple in the gain and
ASE noise profile and any dependency of the noise figure with
respect to the set gain. In order to properly mitigate the EDFA
gain and noise ripple inaccuracies, the methodology ends with a
refinement phase of the EDFAs’ working point using an iterative
supervised learning approach (Fig. 5-c, Alg. 1).

Algorithm 1. Amplifier working point refinement using the
iterative supervised learning approach (pseudo-code)

1: procedure
2: Retrieving GSNR( f )r

3: Evaluating MAE(GSNR( f )p, GSNR( f )r)
4: if MAE(GSNR( f )p, GSNR( f )r) > ε then
5: Dataset initialization
6: while MAE(GSNR( f )p, GSNR( f )r) > ε do
7: ML agent training
8: Design process including the ML agent
9: Retrieving GSNR( f )r

10: Evaluating MAE(GSNR( f )p, GSNR( f )r)
11: Evaluating a new sample: GSNR( f )e −GSNR( f )r

12: Dataset update

A ML agent that maps the difference between the emulated
and the reference output GSNR profiles, ∆GSNR, according
to the corresponding complete EDFA configuration is created
by means of a neural network. An initial dataset is collected
both emulating the system behaviour through the OLS model
and obtaining the reference GSNR profile using configurations
similar to the optimal working point defined in the previous step.
The design framework is integrated with a single additional
ANN and inserted within a larger loop in which the problem
dimension and the objective function remain unvaried but the
evaluated GSNR profile is expressed as:

GSNR( f )p = GSNR( f )e + ∆GSNR( f ) , (9)

where GSNR( f )p is the overall predicted GSNR profile,
GSNR( f )e is the GSNR profile emulated by the model and

Table 1. Results of the EDFA Physical Layer Characterization

B [THz] f0 [THz] NF [dB]

BST 5.49 193.52 4.2

ILA-1 3.50 193.45 4.2

ILA-2 3.50 193.82 4.2

ILA-3 3.68 193.30 4.2

ILA-4 5.49 193.86 4.2

ILA-5 5.49 192.08 4.2

PRE 4.72 192.17 4.3

∆GSNR( f ) is the GSNR excess predicted by the ANN for each
CUTs. At each iteration, the ANN of the ML agent is trained
using the current dataset, the OLS is set according to the actual
optimal configuration and the dataset is updated by adding
the residue between the emulated and the reference GSNR pro-
files. The refinement loop ends when the difference between
the predicted and the reference GSNR profiles is below a given
tolerance, ε:

MAE(GSNR( f )p, GSNR( f )r) < ε . (10)

5. SIMULATION FRAMEWORK & RESULTS

In order to test the proposed methodology, a reference OLS is
created using the EDFA ML model produced from the previously
described experimental characterization on a commercial EDFA
(Sec. 3) and a set of 6 standard single mode fibers characterized
following the physical layer characterization described in [12],
composing 6 EDFA-fiber span with nominal length of 65 km
and an additional EDFA at the end as pre-amplifier. Each fiber
span presents a loss coefficient function varying the frequency
around 0.19 dB/km, a Raman efficiency scale factor that ranges
from 0.38 to 0.44 1/W/km, input and output connector losses
ranging from 0.1 to 2.5 dB and the total span loss is varied from
14 to 22 dB. The dispersion, D, is assumed to be 16.7 ps/nm/km
for all the fibers. The reference OLS represents in simulation
what the behavior of a real system would be and it shares with
the OLS model built following the proposed methodology the
same fiber physical layer abstractions but differs for the adopted
EDFA model. In fact, as described in Sec. 4, the OLS model
relies on the use of the EDFA simple model. In this simulation
analysis, the mitigation on the QoT produced by the iterative
supervised learning approach is limited to effects of the EDFAs’
gain ripple and ASE noise.

Regarding the EDFA physical layer characterization, the
bounds for the band, the central frequency and the noise figure
are 3.5−5.5 THz, 192−194 THz and 4.2−6 dB, respectively. The
OLS is set in transparency mode at a total power level of 19 dBm.
The characterization process result is reported in Tab 1. On the
basis of the produced models, the working point of the EDFAs
has been optimized in the design phase posing as bounds for the
gain and tilt parameters the ranges 12−20 dB and -5−+5 dB, re-
spectively. The refinement process starts with the initial dataset
creation consisting of 5 samples. The latter are obtained through
the evaluation of amplifier configurations similar to the optimal
one, randomizing each parameter in a range ±0.5 dB. The initial
size of the dataset has been voluntarily fixed at a small value
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Fig. 7. Simulation results using the refinement with the iterative supervised learning (SL) approach: (a) MAE evolution comparison
between the GSNR profiles obtained with the physical layer model only and the combination of the model with the ANN predic-
tion, (b) GSNR aggregated metrics evolution, mean and standard deviation, (c) GSNR profiles at a specified iteration produced with
the reference OLS.

Table 2. Results of the Design and Refinement Optimizations

Design Refinement

G [dB] T [dB] G [dB] T [dB]

BST 16.2 -0.1 17.4 -3.7

ILA-1 14.6 -0.4 13.3 -2.6

ILA-2 14.2 -2.9 16.0 -0.6

ILA-3 16.2 -1.8 15.0 -0.2

ILA-4 15.5 1.8 16.3 -0.2

ILA-5 17.4 2.8 16.0 0.8

PRE 12.1 -2.3 17.6 0.9

in order to stress the convergence of the process. The proposed
iterative supervised learning approach is based on the use of a
dedicated ANN having the amplifiers gain and tilt parameters
as features and the residual GSNR between the reference and
the emulated GSNR, ∆GSNR( f ), as labels. The ANN comprises
a single hidden layer with 256 number of neurons (ReLU activa-
tion function). An optimization strategy based on Adam is used
to update the weights with a batch size of 64.

Fixing ε = 0.1 dB, the refinement process ends after 10 itera-
tions, having the consecutive last 3 iterations below the tolerance.
The results, including the comparison with the design outcome,
are graphically reported in Fig. 7. The final amplifier working
point configuration of both processes are reported in Tab. 2. Af-
ter the 4-th iteration the ML agent enables the outperforming
of the accuracy prediction obtained with the only OLS model
(Fig. 7-a). It is remarkable how the latter provides an estimation
accuracy below 0.5 dB, proving the goodness of the EDFA charac-
terization. The aggregated metrics of GSNR mean and standard
deviation reported in Fig. 7-b show the clear improvement trend,
refining the mean of 0.3 dB and bringing the standard deviation
from 0.11 dB to 0.03 dB. The performance difference between
the configurations obtained through the design process and the
refinement is represented in Fig. 7-c in terms of GSNR profile,
showing how the reference OLS improves the QoT of all the
CUTs.

6. CONCLUSION

In this work, a methodology based on an iterative supervised
learning approach for the optimization of the amplifiers’ work-
ing point of an OLS in a context of cognitive optical networks
is presented, proving the effectiveness of each step by means
of a simulation campaign. It relies on a novel EDFA physical
layer characterization that exploits a simple amplifier model,
efficiently reproducing the device behaviour using only device
setting parameters. The simulation results obtained through the
iterative supervised learning approach in the described highly
controlled environment are referred to a mitigation of the QoT
limited to the effect of the EDFAs’ gain ripple and ASE noise.
It is expected that the application of this methodology to a real
case will have a much greater impact on performance improve-
ment due to deviations from the model of other components that
directly affect the QoT, such as fiber spans, ROADMs and TRXs.
In addition, the proposed methodology allows to efficiently cope
with the optimization of an optical line system even after a fiber
cut, thanks to the adaptability of the procedure.

As further investigations, the authors will stress this ap-
proach exasperating the physical layer scenario and analysing
the behaviour of the system in presence of strong/soft failures.
The final goal is to apply it in a real experimental setup.
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