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Scalable Shared Encoding Architecture for
Learning-Based Error Detection in Robotic Wiring
Harness Assembly

Kevin Galassi®, Alessio Caporali?, Gianluca Laudante®, Gianluca Palli®

Abstract—This paper focuses on an automatic solution for the
detection of manufacturing errors in the context of automatic
wiring harness assembly. In the proposed setup, a robot grasp
the wires and places them in specific assembly clips according to
the wiring harness design. However, due to the deformability of
cables, the process outcome is not completely predictable since
sometimes the cables remains entangled in other parts of the
assembly or do not fit properly into the clips. The proposed error
detector verifies the correct insertion of each cables within the
clip, considering that the number of cables and their dimension
change along the different assembly stage.

The proposed solution covers possible state-of-the-art network
learning model that use point clouds as input source, while
the network architecture is designed to offer precision and
scalability in the context of a flexible and dynamic automation.
The developed solution achieved a 96% precision on a dataset
composed by various scenario. Therefore, despite being conceived
for a robotic wiring harness manufacturing system, the proposed
solution can be potentially applied as an online quality control
system in manual wiring harness manufacturing.

Index Terms—Deformable Linear Objects, Wiring Harness,
Fault Detection, Industrial Manufacturing

I. INTRODUCTION

Wiring harnesses are fundamental components in automo-
tive and aerospace industries, buildings and industrial plants.
However, their production is still almost completely manual,
rising the production cost and inefficiency. This manufacturing
operation is particularly challenging due to the complexity
of the product, number of variants and, more important,
deformabiltity of the cables.

The automation of wiring harness manufacturing is gaining
increasing significance [1]. Recently, robotic solutions for the
wiring harness manufacturing have been developed within the
REMODEL project. It is worth noticing that this automation
process remains a challenge due mainly to the manipulation of
Deformable Linear Objects (DLOs), i.e. wires and cables, [2],
operation that requires a high level of sensitivity and dexterity
that actual robotic hands often lack [3]. From a perception
standpoint, DLOs offer limited features that a vision system
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Fig. 1: Workecell for robotic wiring harness assembly.

can leverage for detection, requiring expensive hardware [4]
or specialized learning-based algorithms [5], [6].

Wiring harnesses are formed by interconnecting multiple
DLOs, resulting in the creation of several branches. The
assembly between the different DLO components is then
obtained via tape or zip ties. In the context of robotic wiring
harness assembly, assessing the quality of the final assembled
product, as well as of the intermediate stages of the process,
remains an open research problem.

The domain of computer vision has experienced a substan-
tial evolution with the rise of deep learning, enabling machines
to understand complex visual information. In recent years,
there has been a significant emphasis on employing deep
neural networks for the analysis of three-dimensional (3D)
data, especially pointclouds [7].

This paper focuses on quality control in wiring harness
assembly processes. The proposed approach aims to provide
quality feedback in the context of automated wiring harness
assembly, as depicted in Fig. 1. More specifically, the objective
is to identify errors that occur when one or more wires
are incorrectly inserted into a routing clip, resulting in an
external path rather than an internal one. The method presented
here utilizes a learning-based approach on point cloud data
to detect errors during the routing process performed by a
robotic system. The proposed implementation features a shared
encoder architecture that enables training with a reduced set
of samples.

In the remainder of the paper, the related works are dis-
cussed in Sec. II. The problem statement is presented in
Sec. III while the proposed method is illustrated in Sec. IV.
The method is validated in Sec. V. Finally, the conclusions
are drawn in Sec. VI.



II. RELATED WORKS
A. Wiring harness Manufacturing

Wiring harness manufacturing is a complex and crucial
process in today’s industry [8]. It comprises multiple steps,
including the manufacturing of individual wires with the
crimping of connectors if needed, followed by the arrangement
of multiple cables and sub-harnesses together. The harness is
then assembled by tape or zip ties, and the final stage involves
testing the assembly quality and the electrical properties of the
harness. Considering the entire manufacturing process, from
wire cutting to on-board testing in the vehicle, the assembly of
connectors represents the most crucial part where significant
time savings can be achieved [9]. The automation of this
process using robotic arms is of interest to the automotive
and aerospace markets as it enables accelerated production
and reduces the cost of the final product.

B. Deformable Linear Objects Perception

Vision-based perception emerges as the predominant choice
for DLOs among various sensing modalities, primarily due to
the accessibility of diverse sensors and cameras seamlessly
integrating into robotic systems [10].

The exploration of semantic and instance segmentation for
DLOs, utilizing data-driven methods and synthetic datasets, is
undertaken in [6], [11]. The process of shape estimation for
DLOs involves extracting the DLO’s state from vision-based
data to obtain its actual configuration, often represented as a
sequence of key-points. Recent approaches with 2D data and
real-time capabilities are outlined in [5], [12], [13].

However, achieving a 3D characterization of the shape is
typically imperative for tasks involving grasping and manipu-
lation. The direct 3D shape estimation of DLOs has received
comparatively less exploration than its 2D counterpart. Practi-
tioners typically address the 2D shape estimation problem first
and subsequently utilize depth data to transform the estimated
shape into Cartesian space, as discussed in [13].

C. Vision-based Deformable Multi-Linear Objects Perception

The body of research concerning the vision-based percep-
tion of Deformable Multi-Linear Objects (DMLOs) is notably
sparse, despite the paramount importance of DMLOs in the
industrial sector, with less attention compared to DLOs [8].

In [14] is proposed a data-driven architecture tailored for
optical inspection tasks related to DMLOs, specifically focus-
ing on segmenting crucial components. However, the study
is constrained by a relatively limited training dataset. In a
subsequent investigation [15], synthetic data generated from
CAD and simulation models are introduced, facilitating a com-
parative analysis between synthetic and real data, underlying
the advantages of integrating synthetic data into the study.

The categorization of DMLO branches is considered in [16].
The work exploits manual data collection and annotation to
create a moderately sized dataset, exploring the data augmen-
tation techniques as a means to mitigate challenges arising
from the scarcity of available data.

Fig. 2: Wiring harness assembly process example. Transform-
ing 3 separate pieces into the final product through taping.

Several studies adopt a graph-based representation of
DMLO configuration centered around branch-points [17],
[18], [19]. [18] concentrates on correspondence estimation
between a known DMLO topology and an actual scene. A
directed graph-based representation is constructed from refer-
ence information (e.g. CAD), while the scene’s topology is
derived as an undirected graph through image skeletonization
of the actual DMLO. The study delves into the matching prob-
lem, accommodating the possibility of partial correspondence.

In [19] a method for localizing and tracking DMLOs is
proposed, relying on a combination of rigid and non-rigid
registration phases. However, their approaches assume a non-
overlapping configuration for DMLOs, limiting their applica-
bility. Finally, [17] addresses the detection of branch points or
overlapping points using a data-driven approach. The work
introduces a semi-manual annotation procedure to generate
necessary training data. However, the semi-manual annotation
method lacks a comprehensive user study (involving only one
subject), and the evaluation is confined to a single DMLO type,
complicating the overall assessment of the proposed method.

III. PROBLEM STATEMENT

In this research, the problem of error detection in a complex
robotic wiring harness manufacturing scenario is considered.
Specifically, multiple components of a wiring harness need to
be assembled — usually with tape or zip ties — into a single
finished product, as demonstrated in Fig. 2. The detection
of misplaced wires is of paramount importance to assess the
quality of the final product.

The assembly process is implemented using a robotic plat-
form, depicted in Fig. 1, which is composed of two robotic
arms. The first arm is equipped with a specialized gripper
to perform routing tasks within the DLO following approach
[20]. The second arm is equipped with a spot-taping gun used
for the taping process, effectively assembling two separate
components.

The mounting board is composed of multiple clips and
connector holders, specifically designed to withstand the force
exchange during the manipulation and to keep in place the
components [21].

The operation involves a standard routing task [20], where
one end of a wiring harness is first inserted into a connector



(a) Sample cables mounted on the clip to create the dataset
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(c) Clips localization and bounding box extraction.
Fig. 3: Data collection setup.

holder, keeping that end fixed. Subsequently, a branch of the
wiring harness—such as a set of cables—is routed into a
sequence of clips to achieve the desired configuration. This
operation is repeated for all the components to obtain the
desired final configuration (see Fig. 2).

Despite the complexity associated with the manipulation
aspects, the assessment of the success of not in the routing
operation is also complex and fundamentally required. Indeed,
fault or error detection is of paramount importance in robotic
manufacturing and assembly processes. Hence, implementing
a method to verify the correct insertion of all cables into the
clip at each step becomes crucial.

For the perception system, a 3D camera is utilized, statically
mounted on the robotic workcell, as shown in Fig. 1. The
camera faces the mounting board, providing an almost top-
down view to minimize reflections. The model camera is a
Photoneo PhoxiScanner M.

IV. METHOD

The method analyzes the point cloud of the mounting board,
which consists of a set of clips and wires. It outputs a fault
signal if a misplaced wire is detected in the scene. A learning-
based approach is employed, and the details of data collection
and labeling processes are provided in Sec. [V-A. The model
architecture is illustrated in Sec. IV-B.

A. Data Collection and Labeling

The process of acquiring the training dataset is achieved by
a three steps approach: 1) localizing the individual clips; 2)
acquiring the set of samples; 3) labeling the samples.

1) Clips Localization: By leveraging on CAD files, the
system can align the point cloud scene with the mounting
board setup, facilitating the identification of individual clips.
This alignment process is carried out without the insertion of

wiring harness branches to simplify the scene and reduce the
likelihood of mislocalization, see Fig. 3b.

Specifically, the process strarts by processing the point
cloud, removing the plane so that only the points belonging
to the clips and connector holders remain. This segmentation
process is simplified by transforming the point cloud into a
world reference frame fixed to the table.

An orthogonal projection is then applied to the point set,
yielding a mask of the mounting board with a (virtual) top-
down-like view. The mask undergoes dilation to highlight
the individual blobs, which are identified through connected
component analysis. The centroid of each blob is used to
denote its position. Additionally, principal component analysis
is employed to obtain the two axes of each blob.

The centroids of the blobs are registered against the CAD
data to associate each blob with a specific known clip, as
illustrated in Fig. 3c.

2) Data Collection: The data are collected manually where,
for each sample, an operator moves the cables into a different
configuration. The 5 localized clips of Sec. IV-Al and the 3
sub-harnesses of Fig. 2 result in 8 possible configurations of
cable placement inside the clips. For each configuration, 45
positive and 45 negative samples are collected. The operation
of gathering the data for one configuration requires approxi-
mately 20 minutes.

3) Point Cloud Data Labeling: Given the localized clips,
a 3D bounding box is computed around each clip, see the
left side of Fig. 3c. Notice that, compared to the clip shown
in the figure, the data samples also contain cables inside the
scene. Each bounding box represents a data sample in the
learning pipeline. In this way, both the amount of data and
the complexity of the learning process are reduced.

The farthest point sampling algorithm [22] is applied to
reduce the number of points to 6000 for each data sample,
aligning data dimensions across the entire dataset during pre-
processing. This is done instead of using run-time padding
techniques, which increase complexity during training and
may introduce noise.

Several data augmentation techniques are also applied to
help alleviate the reduced scale of the dataset. First, the cutting
region of the bounding box is changed during training by
applying random Gaussian noise to the center of the box
and scaling the box dimensions to increase variability. The
extracted points are augmented by adding random noise to the
position and rotation of the point cloud. Finally, the point cloud
is normalized between 0 and 1 to help stabilize the learning
process.

B. Model Architecture

The network model is based on PointNet [22], representing
a state-of-the-art approach in terms of data-driven methods
applied to point cloud data.

The model is structured as an encoder-decoder system, as
shown in Fig. 4. The encoder consists of layers from [23],
which take the pointcloud as input, reducing its dimension
while increasing features size. A multi-layer perception (MLP)



Multi Clip Dataset

Encoder Layers

_— Decoder Layers
Simgle Clip Dataset

(a) Clip-Specific/General Model

Multi Clip Dataset

il

—

—_—

Decoder Selection

1
1
_7 Encoder Layers

{%

Simgle Clip Dataset

Decoder Layers

(b) Shared-Encoder Model

Fig. 4: Tllustration of the evaluated model architectures based on the training style of Tab. I. Using the model in Fig.4a the
network is trained based on the dataset composed by a single clips or a larger dataset containing multiple samples. In Fig.
4b a common shared encoder is used to learn the features, while the detection is left to a clip-specifi decoder to improve the

precision and the scalability.

TABLE I: Training style qualitative evaluation in terms of
expected accuracy, training time, scalability and dimension.

e ) Training  Scalability/ Number
Training Style ‘ Accuracy Time Adaptability ~ Parameters
Clip-Specific Model +++ +++ + +
General Model + ++ ++ .
Shared-Encoder Model ++ + ++ ++
Shared-Encoder Model + Fine-Tuning +++ ++ +++ +++

is used for feature embedding and it is shared among all
points. During this process, the number of points is reduced by
performing a sampling of the network. Features are sampled
using Single-Scale Grouping (SSG) introduced in PointNet.

The second part of the network is the decoder, and since it is
a classification task, it is composed of multiple linear layers
with BatchNorm [24] and dropout [25] to enhance learning
robustness. The final output dimension is 2, corresponding to
the probability of predicting positive or negative results.

Alternative encoder structures are investigated to study the
system’s accuracy and robustness. The studied encoders are:
1) Relation-Shape Convolutional Neural Network (RS-CNN)
[26]; 2) Point Transformer Layers [27].

RS-CNN employs Multi-Scale Grouping (MSG) to sample
features between the following layers. The key difference
compared to SSG lies in the fact that the feature vector is a
combination of multiple MLPs, each designed to encode a sub-
set of the feature vector. In this work, MSG is preferred over
Multi-Resolution Grouping (MRG), an alternative sampling
technique, since the pointclouds dimensions in our training
set is mostly constant.

The PointTransformer can replace each PointNet layer on
the encoder side. With this modification, the attention mech-
anism is applied directly to the pointcloud itself, and the
resulting features are subsequently assessed through cross-
attention using the same points from the pointcloud as queries.
The objective is to evaluate features both locally and globally
to achieve a more comprehensive understanding of the scene.

C. Training Style

The model architectures illustrated in Sec. IV-B are com-
monly employed to learn and classify/segment datasets with
multiple distinct objects (such as airplanes and chairs), leading
to significantly different exhibited features. Conversely, in our

scenario, all scenes feature the same clip model and objects
(DLOs), differing only in the number and dimensions of the
wires composing the considered clip/wiring harness pair.

It is reasonable to assume that a common feature extraction
encoder can be employed to generate a sequence of features
for classification. The responsibility of error detection can then
be assigned to a detector specifically trained for each clip.
Therefore, the possible model architectures and training styles
can be categorized as follows:

1) Clip-Specific Network: This network is trained on a
specific clip to maximize the efficiency of the detector
(single clip dataset of Fig. 4a);

2) General Model Network: The entire dataset (multiple
clips) is used to train a single model (multi-clip dataset
of Fig. 4a);

3) Shared Encoder: A network consisting of a shared
encoder and clip-specific decoders for classification (see
Fig. 4b).

A qualitative evaluation of the differences between these
training approaches can be found in Tab. I. The table provides
a qualitative analysis of network accuracy, training time,
scalability/adaptability, and number of parameters.

Ideally, adopting the shared encoder approach represents the
most efficient and scalable strategy. In this configuration, the
encoder side is trained to capture the general features of both
the clips and the cables, while each decoder is dedicated to
performing the clip-specific detection task.

V. RESULTS

To validate the approach, a mockup of a real platform
presented in Fig.2 is used for robotic wiring harness assembly.
The mentioned model architectures (Sec. IV-B), are trained
according to the styles detailed in Sec. IV-C. The collected
dataset (Sec. IV-A) of 720 samples is split into train and
validation sets according to a 70/30 ratio. Common hyper-
parameters employed are batch size of 6, 200 epochs, and
learning of 0.001. As loss function, binary cross entropy is
employed. The best model is selected as the one associated
with the minimum validation loss.

Test samples are gathered to assess the proposed method,
employing the same procedure outlined in Sec. IV-A. For each
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Fig. 5: Example of dataset test samples for clip B. Colors meaning: blue (clip), red (wrong wires), green (correct wires).

clip configuration, 28 samples are acquired, with specific at-
tention given to the complexity of each sample. While positive
cases demonstrate minimal variation, instances of failure are
further classified into three groups equally distributed based
on increasing difficulty. In total, 4 types of test samples are
considered, as shown in Fig. 5. In details:

o P: Positive case with all wires inside the clip;

o N1: Simpler cases where most of the cables are outside
the clip, easily noticeable;

e N2: Scenarios where most of the cables are correctly
inserted;

o N3: The most challenging scenarios involving only 1 or
2 thin cables outside a clip.

Considering the 8 possible configurations, in total 224
samples are employed within the test set. The dataset not
include the robot in the scene, since can be easily removed
from the pointcloud by projecting a convex hull corresponding
to the robot position to remove the non-relevant information.

A. BackBone Comparison

To assess the differences among the three detailed back-
bones (see Sec. IV-B), we conduct model training using a
general classification approach (one model for all examples,
General Model of Fig. 4a). The decoder side remains shared
across all models, comprising a three-layer MLP with an input
feature size of 1024 and an output of 2.

The accuracy results presented in Fig. 6 reveal a higher
overall accuracy when utilizing PointNet++ as the backbone.
Slightly inferior results are observed with the RS-CNN layers,
while PointFormer performs less favorably, probably due to
the higher number of parameters involved leading to fitting
problems. Indeed, a significant difference lies in the number
of parameters for each model. Specifically, the PointNet++
model weighs approximately 545K parameters, the Point-
Former model have 2.895K params while the RS-CNN model
has 1.737K params.

Accuracy

= Overall
Success
—— Fail

0.2 = Overall 0.2 = Overall 0.2
Success Success

0.0 —— Fail —— Fail
0.00 0.02 0.04 0.06 0.08 0.10

Threshold Level

(a) PointNet++

00 02 04 06 08 10
Threshold Level

(c) RS-CNN

00 02 04 06 08 1.0
Threshold Level

(b) PointTransformer

Fig. 6: Backbone accuracy comparison.

TABLE II: Experiment of Single Clip vs General Model

Test Clip | Model Type | Mean Succ N1 N2 N3
Single [A] 100.00  100.00  100.00  100.00  100.00
A Single [B] 83.33 66.67 83.33 83.33 100.00
General 91.67 100.00  100.00  83.33 83.33
Single [A] 83.33 100.00  100.00  66.67 66.67
B Single [B] 91.67 100.00  100.00  83.33 83.33
General 87.50 83.33 83.33 100.00  83.33

B. Training Style Comparison

1) Single Clip vs General Model: The first comparison
pertains to the model illustrated in Fig. 4a. The results are
provided in Tab. II, where the training of a clip-specific model
versus a general model is compared. The model architecture
employed is based on PointNet++. Initially, it is trained for
specific clips, namely clip A and clip B, resulting in models
Single (A) and Single (B).

Subsequently, a general model incorporating data from both
clip A and clip B is trained and denoted as General. While the
Single (A/B) models are trained to predict specific scenarios,
the General model benefits from more extensive data during
training, as its dataset comprises the combination of both clips
in the assembly platform.

The result, in Tab. II, shows the accuracy of the prediction of
each model w.r.t. to each test samples subclass. During cross-
testing, comparing the performance of a model trained on one
clip against the other, it becomes evident that the General
model can address this scenario with higher accuracy.

2) General Model vs Shared Encoder: The second eval-
uation concerns the model illustrated in Fig. 4b. Given the
variability in the number and dimensions of cables to be
inserted during wiring, it is pertinent to explore the potential
of employing a shared encoder and specific decoders for each
clip. Like in the previous case, the reported results present the
accuracy of each model in the prediction of each subclass of
the test samples.

To ensure a more equitable comparison, we train the model
using the same dataset and a comparable number of 200
epochs. Tab. III presents the results of the following ex-
periments: 1) we assess the difference between the General
Model and the Shared-encoder Model trained from scratch; 2)
we explore the feasibility of utilizing the pre-trained encoder
obtained from the General Model’s training.

The use of the pre-trained encoder is examined after 100
and 200 epochs of training, employing the same methodology
as before, and is further fine-tuned for an additional 100 or



TABLE III: Experiment of General Model versus Shared-
encoder Model. Px denoted the number of pre-training epochs.
FTx denotes the number of fine-tuning epochs.

Model Training ‘ Mean  Succ. NI N2 N3
General Model PO | 9333 8333 10000 97.22 94.44
PO + FT200 63.33 9524  50.00 47.22 55.56
Shared-Encoder P100 + FT100 | 96.67 92.86 100.00  100.00  94.44
Model P100 + FT200 | 94.67 9524 94.44 94.44 94.44
ode P200 + FT100 | 9533 92.86 97.22 97.22 94.44
P200 + FT200 | 96.00 92.86 100.00 97.22 94.44
1.0
2038
e
] 0.6
Soa
g
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Vs General Model (area = 0.96)
0.0 —— Shared Encoder (area = 0.99)
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Fig. 7: Receiver Operating Characteristic (ROC) Curve and
Precision-Recall (PR) Curve comparing General Model and
Shared-Encoder Model.

200 epochs. The ROC and PR curves are shown in Fig. 7
for both the General Model and the Shared-Encoder Model
(variant P200 + FT200).

VI. CONCLUSION

In this paper, a scalable shared encoding architecture for
error detection is proposed, aiming to provide a solution
to fill the gap in industrial solutions for automotive wiring
production. The method employs a learning-based approach
to detect faults, particularly misplaced wires around routing
clips. During the study, multiple architecture are evaluated,
to improve the scalability of the method without affecting
the accuracy of the model or the applicability in industrial
scenario. The final solution uses a combination of shared
encoder across the dataset combined with a specific decoder
to improve the effectiveness and reduce the training time in
case of addition of a new scenario, reaching a mean accuracy
of 96%. The solution has been proven to work with a single
camera across all the clips in the scene, making it applicable
to real-world applications. The data collection process needed
by the application is minimally costly in terms of time and
does not require specialized workers, moreover, by using the
pre-trained encoder new scenario can be easily added by fine-
tuning the decoding part of the network resulting in faster
setup time. In future works, an error recovery policy will be
investigated alongside the possibility of using synthetic data
for training purposes.
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