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1 Introduction

Correlation functions and expectation values of operators are important objects in quantum

field theory, both from the theoretical and phenomenological point of view. Integrable

quantum field theories have numerous applications to condensed matter systems; given

that experiments are necessarily conducted at nonzero temperature the construction of

finite temperature expectation values and correlation functions in integrable quantum field

theories is an interesting problem. Almost fifteen years ago, LeClair and Mussardo [1] put

forward a conjecture for both the one-point and the two-point functions of integrable models

with diagonal scattering, expressed as a spectral series using exact form factors and the

thermodynamic Bethe ansatz. In [2], another approach to finite temperature expectation

values in the sinh-Gordon model was proposed by Lukyanov, and more recently Negro and

Smirnov provided a resummation of the spectral series of the one-point functions, again in

the sinh-Gordon model [3].

For generic one-point functions, the LeClair-Mussardo proposal was eventually proven

to be valid in [4], using the finite volume form factor formalism introduced in [5, 6]. Con-

cerning two-point functions, their proposal is more controversial [7] and probably not valid
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in its original form. However, the finite volume form factor formalism provides an alter-

native and systematic method to construct the two-point function. This approach solves

the problem faced by earlier studies which could not resolve the issues related to a proper

regularization of kinematical singularities of the form factors [8, 9]. An early implementa-

tion of the finite volume approach for the two-point functions was used to describe finite

temperature line shapes and dynamical correlations [10, 11]. The full formalism itself was

developed in [12, 13]. We note that an alternative approach to thermal correlations was

developed by Doyon [14, 15], however, at present it seems to be confined to the Ising model.

The finite volume form factor methods were recently shown to yield results agreeing

with other approaches in non-equilibrium steady state systems [16], and are also relevant

in the context of quantum quenches [17–19].

Presently, the available results on form factor expansions of thermal correlators in in-

tegrable field theory are limited to the case of diagonal scattering. Conversely, much less

is known about non-diagonal integrable field theories: this is partly due to the fact that

the LeClair-Mussardo expansion, in its original formulation, requires the solution of the

thermodynamic Bethe ansatz equations, which are considerably more difficult [20] when

the theory is not diagonal. The finite volume formalism independently provides a way

to extend the results to non-diagonal scattering, and recently finite volume form factors

for non-diagonal scattering were constructed [21, 22]. Albeit at present diagonal matrix

elements of multi-soliton states are still not completely known, the available results permit

the evaluation of the spectral series below the three-particle threshold. In this paper, we

take the first step and consider finite-temperature expectation values in the sine-Gordon

model, i.e. the one-point functions, which is performed in section 2. In section 3 we con-

struct the connected diagonal matrix elements of the exponential operators, which allows

the evaluation of the series for these observables. Exponential operators are particularly

useful because they appear in many physical systems in one dimension, in connection with

the characterization of lattice models at low temperatures, by passing to a continuous de-

scription through an effective bosonic action (see, e.g., [23–25]). In addition, exponential

operators generate all the normal-ordered powers of the sine-Gordon field, provided it is

possible to compute their expectation values with generic parameter in the exponent.

In section 4 we compare the spectral series for the case of the trace of the energy

momentum tensor to results that follow from the NLIE approach [26–29] and find very

good agreement. Unfortunately, for reasons discussed towards the end of section 4, we

cannot perform an analogous numerical verification of our method for other operators at

present. Nevertheless, our present results provide a nontrivial verification of the method

and an analytic check of the form of the diagonal matrix elements conjectured in [22] (where

this conjecture was tested numerically against TCSA).

2 One-point functions at finite temperature

The classical action of the sine-Gordon (SG) field theory is:

S =

∫ ∞

−∞
dt

∫ ∞

−∞
dx

[

1

2
∂νφ∂

νφ+ λ cosβφ

]

(2.1)
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where λ and β are real parameters, of which β is dimensionless and λ determines the mass

scale of the model. Classically λ has dimension of mass squared, but in the quantum theory

it acquires an anomalous dimension

λ ∝ [mass]2−β2/4π

The fundamental excitations of the model are known to be the soliton, with mass m and

unit topological charge, and the antisoliton, with equal mass and opposite charge; the exact

relation between λ and m has been derived by Zamolodchikov in [30].

In addition to solitons, the spectrum may also contain breathers which are bound

states of a soliton and antisoliton; after quantization their spectrum becomes discrete and

only a finite number of such states exists. Introducing the parameter ξ = β2

8π−β2 , it is

possible to distinguish two regimes: a repulsive one ξ > 1, in which only the soliton and

the antisoliton are present in the spectrum, and an attractive one ξ < 1, in which ⌊1/ξ⌋
different bound states (breathers), whose mass is

mb = 2m sin
πξb

2
, 1 ≤ b <

⌊

1

ξ

⌋

, (2.2)

are allowed.

The scattering matrix between the elementary excitations of the system has been

computed in [31]; the non-zero elements of the S-matrix in the solitonic sector are

Ssa
sa(θ) = Sas

as(θ) = S0(θ)
sinh θ

ξ

sinh iπ−θ
ξ

Ssa
as(θ) = Sas

sa(θ) = S0(θ)
sinh iπ

ξ

sinh iπ−θ
ξ

Sss
ss(θ) = Saa

aa(θ) = S0(θ) (2.3)

where

S0(θ) = − exp







−i

∞
∫

0

dt
sinh π(1−ξ)t

2 sin θt

t sinh πξt
2 cosh πt

2







(2.4)

The S-matrix elements involving breathers are diagonal and can also be found in [31].

Continued to Euclidean time τ = −it, the action

SE =

∫ R

0
dτ

∫ ∞

−∞
dx

[

1

2
∂τφ∂τφ+

1

2
∂xφ∂xφ− λ cosβφ

]

(2.5)

with periodic boundary conditions in τ describes the model at finite temperature T = 1/R.

Note that by swapping the role of Euclidean time and coordinate, the finite tempera-

ture/infinite volume action can also be considered to be a zero temperature/finite volume

action, and so the one-point functions constructed below also have this dual physical

interpretation.
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The exponential fields eikβφ is the most interesting class of operators to be studied, both

because they serve as a generating function for all the normal-ordered powers of the SG

field and in connection with one-dimensional lattice systems, where they commonly emerge

as a counterpart of lattice operator via bosonization of the effective low-temperature field

theory. For the case k = ±1 the expectation value of the exponential operator is identical

to that of the perturbing operator cosβφ, which is in turn related to the trace of the

stress-energy Θ tensor through [32]

〈Θ〉 = 4πλ(1−∆)
〈

e±iβφ
〉

(2.6)

where∆ = β2/(8π) is the scaling dimension of the exponential field at the conformal point.

The finite temperature one-point function of the exponential operators is defined by

Gibbs average:

〈

eikβφ
〉

=
Tr e−RHeikβφ

Tr e−RH
=

∑

n e
−REn〈n|eikβφ|n〉
∑

n e
−RH

(2.7)

where

H =

∫ ∞

−∞
dx

[

1

2
∂tφ∂tφ+

1

2
∂xφ∂xφ− λ cos (βφ)

]

(2.8)

is the Hamiltonian, and the summation runs over a complete set of energy eigenstates |n〉
with energies En.

In infinite volume, the form factors

FO
a1...an(θ1, . . . , θN ) = 〈0|O|θ1, . . . , θN 〉a1...an (2.9)

of local operators can be computed exactly using the form factor bootstrap [33–35], from

which any multi-particle matrix element can be reconstructed using crossing symmetry.

Here

|θ1, . . . , θN 〉a1...an
denotes a multi-particle state composed of particles with species a1, . . . , aN and rapidi-

ties θ1, . . . , θN . The analytic structure of the form factors is fixed by a set of equations,

which are built upon the factorized scattering of the model as input. Local operators of

a given model can be defined as towers of solutions of the form factor bootstrap equa-

tions [36]. For many integrable models, including sine-Gordon theory, the exact solutions

are known [36–38], therefore the spectral sum (2.7) can be evaluated in principle.

However, due to the singularity structure which arises from the form factor axioms, the

diagonal matrix elements of the fields are not well-defined, hence the spectral sum needs

to be regularized. The regularization of form factors by using a finite volume setting is a

useful technique for dealing with low-temperature expansions of one-point and two-point

functions [6, 12, 13]. To evaluate the one-point function one can apply the method outlined

in [6]; however, a careful extension of the approach is necessary due to the presence of non-

diagonal scattering, which can be performed using the recent results in [21, 22] on finite

volume form factors for non-diagonal scattering.
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We recall that in finite volume the rapidities are quantized and the space of multi-

particle states can be labeled by momentum quantum numbers I1, . . . , IN . We introduce

the following notation for them:

|{I1, I2, . . . , IN}〉(r)L (2.10)

where the index r enumerates the eigenvectors of the n-particle transfer matrix, which can

be written as

T (θ| {θ1, . . . , θN})j1...jNi1...iN
= Sc1j1

ai1
(θ − θ1)Sc2j2

c1i2
(θ − θ2) . . .SajN

cN−1iN
(θ − θN ) (2.11)

where θ1, . . . , θN are particle rapidities. Due to factorized scattering, the transfer matrix

can be diagonalized simultaneously for all values of θ:

T (θ| {θ1, . . . , θN})j1...jNi1...iN
Ψ

(r)
j1...jn

({θk}) = t(r) (θ, {θk})Ψ(r)
i1...in

({θk}) (2.12)

We can assume that the wave function amplitudes Ψ(r) are normalized and form a com-

plete basis:

∑

i1...iN

Ψ
(r)
i1...iN

({θk})Ψ(s)
i1...iN

({θk})∗ = δrs (2.13)

∑

r

Ψ
(r)
i1...iN

({θk})Ψ(r)
j1...jN

({θk})∗ = δi1j1 . . . δiN jN

these eigenfunctions describe the possible polarizations of the N particle state with rapidi-

ties θ1, . . . , θN in the state indexed by the species quantum numbers i1 . . . iN . The transfer

matrix can be diagonalized using the algebraic Bethe ansatz (cf. appendix A of [39]),

which enables one to compute the exact form of eigenvalues t(r) and eigenvectors Ψ(r). The

rapidities of the particles in the state (2.10) can be determined by solving the quantiza-

tion conditions

Q
(r)
j (θ1, . . . , θN ) = mjL sinh θj + δ

(r)
j (θ1, . . . , θN ) = 2πIj , j = 1, . . . , N

δ
(r)
j (θ1, . . . , θN ) = −i log

[

t(r) (θj , {θk})
]

(2.14)

When considering N rapidities which solve these equations with given quantum num-

bers I1, . . . IN and a specific polarization state r, they will be written with a tilde as

θ̃
(N)
1 , . . . , θ̃

(N)
N .

For states containing up to two particles, the only subspace in which the transfer

matrix has to be diagonalized is the two-dimensional subspace of states containing one

soliton and one antisoliton. The basis of the eigenstates is given by [21]

Ψss = |AsAs〉 , Ψaa = |AaAa〉
Ψ+ =

1√
2
(|AsAa〉+ |AaAs〉) , Ψ− =

1√
2
(|AsAa〉 − |AaAs〉) (2.15)
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Assuming that the finite volume energy eigenstates are chosen orthonormal, the partition

function up to (and including) two-particle contribution expands as

Z = 1+
∑

j=s,a

∑

θ̃

e−mR cosh θ̃+
∑

b

∑

θ̃

e−mbR cosh θ̃+
1

2

∑

jj=ss,aa,+,−

′
∑

θ̃
(2)
1 ,θ̃

(2)
2

e−mR cosh θ̃
(2)
1 −mR cosh θ̃

(2)
2

+
1

2

∑

b1b2

′
∑

θ̃
(2)
1 θ̃

(2)
2

e−mb1
R cosh θ̃

(2)
1 −mb2

R cosh θ̃
(2)
2 +

∑

j,b

′
∑

θ̃
(2)
1 θ̃

(2)
2

e−mR cosh θ̃
(2)
1 −mbR cosh θ̃

(2)
2 +. . . (2.16)

in which tildes denote rapidities which are quantized according to the Bethe-Yang equations

in finite volume L, the index j = s, a is used to denote the elementary solitonic excitations,

and the index b enumerates the breathers. The prime in the summations is a reminder

that states with equal rapidities for the same kind of particle are not allowed solutions1

of (2.14) and are thus excluded. Furthermore, the indexes +,− denote the symmetric

(antisymmetric) combination of the neutral soliton-antisoliton states:

|θ1, θ2〉± =
1√
2
(|θ1, θ2〉sa ± |θ1, θ2〉as) (2.17)

The finite temperature expectation value can then be written as

〈O〉R =

∑

n

e−REn〈n|O|n〉

Z
(2.18)

Following the derivation detailed in [6], this can be expanded as

〈O〉R
Z

= 〈O〉+
∑

j=s,a

∑

θ̃

e−mR cosh θ̃(j〈θ̃|O|θ̃〉j − 〈O〉) +
∑

b,θ̃

e−mbR cosh θ̃(b〈θ̃|O|θ̃〉b − 〈O〉)

+
1

2

∑

jj=ss,aa,+,−

∑

θ̃
(2)
1 θ̃

(2)
2

e−mR cosh θ̃
(2)
1 −mR cosh θ̃

(2)
2 ( jj〈θ̃(2)1 θ̃

(2)
2 |O|θ̃(2)2 θ̃

(2)
1 〉jj − 〈O〉)

+
1

2

∑

b1b2

∑

θ̃
(2)
1 θ̃

(2)
2

e−mb1
R cosh θ̃

(2)
1 −mb2

R cosh θ̃
(2)
2 ( b1b2〈θ̃

(2)
1 θ̃

(2)
2 |O|θ̃(2)2 θ̃

(2)
1 〉b2b1 − 〈O〉)

−1

2

∑

jj=ss,aa

∑

θ̃1=θ̃2=θ̃

e−2mR cosh θ̃( jj〈θ̃θ̃|O|θ̃θ̃〉jj − 〈O〉) (2.19)

−1

2

∑

b

∑

θ̃1=θ̃2=θ̃

e−2mbR cosh θ̃( bb〈θ̃θ̃|O|θ̃θ̃〉bb − 〈O〉)

−1

2

∑

j,k=s,a

∑

θ̃
(1)
1 θ̃

(1)
2

e−mR cosh θ̃
(1)
1 −mR cosh θ̃

(1)
2 (j〈θ̃(1)1 |O|θ̃(1)1 〉j +k 〈θ̃(1)2 |O|θ̃(1)2 〉k − 2〈O〉)

−
∑

j,b

′
∑

θ̃
(2)
1 ,θ̃

(2)
2

e−mR cosh θ̃
(2)
1 −mbR cosh θ̃

(2)
2 ( j〈θ̃(2)1 |O|θ̃(2)1 〉j + b〈θ̃(2)2 |O|θ̃(2)2 〉b − 2〈O〉)

1This is due to the general property (which holds for all 2-dimensional massive models except free

bosons) that for identical particles the scattering phase is −1 when the rapidities coincide, which leads to

a vanishing wave function amplitude.

– 6 –
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again up to (and including) two-particle contributions. We emphasize that in the above

expression we have explicitly subtracted the terms in which two elementary excitations

with the same topological charge or two breathers have the same rapidity.

Next we use the relation between the finite and infinite volume form factors (valid up

to exponential terms) conjectured in [21, 22]. The densities of states in rapidity space,

corresponding to (2.14) are

ρ(r)(θ1, θ2) = det





∂Q
(r)
1

∂θ1

∂Q
(r)
1

∂θ2
∂Q

(r)
2

∂θ1

∂Q
(r)
2

∂θ2



 r = ss, aa,+,− (2.20)

and the finite-volume matrix elements are given by [21, 22]

ρ(jj)(θ̃1, θ̃2) (jj〈{I1I2} |O| {I1I2}〉jj − 〈O〉) = FO(s)
jj (θ̃1, θ̃2) + ρj(θ̃1)FO

j + ρj(θ̃2)FO
j

(j = s, a)

ρ(±)(θ̃1, θ̃2) (±〈{I1I2} |O| {I1I2}〉± − 〈O〉) = FO(s)
± (θ̃1, θ̃2) + ρs(θ̃1)FO

a + ρa(θ̃2)FO
s (2.21)

up to terms that vanish exponentially for large L. In the above formulas, the symmetric

evaluation is defined as

FO(s)
± (θ1, θ2) = lim

ǫ→0
FO
± (θ2 + iπ + ǫ, θ1 + iπ + ǫ, θ1, θ2) (2.22)

FO(s)
jj (θ1, θ2) = lim

ǫ→0
FO
j̄j̄jj(θ2 + iπ + ǫ, θ1 + iπ + ǫ, θ1, θ2) (2.23)

where the (±,±)-polarized form factors FO
± are defined by

FO
r (θ′2+iπ, θ′1+iπ, θ1, θ2) =

1

2

[

FO
sasa+rFO

saas+rFO
assa+FO

asas

]

(θ′2+iπ, θ′1+iπ, θ1, θ2) (2.24)

In addition

ρs(θ) = ρa(θ) = mL cosh θ

Fk
s = FO

sa(θ + iπ, θ) (2.25)

Fk
a = FO

as(θ + iπ, θ) (2.26)

(in fact Fk
s = Fk

a due to charge conjugation invariance). Following [6], we can also express

these results with the connected part of the diagonal matrix elements which is defined as

follows. Consider the form factor

FO
b̄āab (θ2 + iπ + ǫ2, θ1 + iπ + ǫ1, θ1, θ2) (2.27)

in which kinematical (simple) poles appear as the regulators ǫ1,2 → 0 independently; the

connected form factor Fk(c)
ab (θ1, θ2) is defined as the part which is nonsingular in both

ǫ1,2. Using the same arguments as in [6], it can be easily checked that the symmetric and

connected diagonal matrix elements are related by

FO(s)
jj (θ1, θ2) = FO(c)

jj (θ1, θ2) + 4πG0(θ21)FO
j

(FO
as + FO

sa)
(s)(θ1, θ2) = (FO

as + FO
sa)

(c)(θ1, θ2)− 2π(G1 + Ḡ1)(θ21)(FO
s + FO

a ) (2.28)

– 7 –
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where the function G0 is the logarithmic derivative of the soliton-soliton scattering

phase (2.4):

G0 (θ) =
1

2πi
∂θ logS0 (θ) (2.29)

and G1 (θ) = G0 (θ + iπ), while Ḡ1 (θ) is its complex conjugate.

On the other hand, for the states in which the scattering among the particles is di-

agonal, such as the breather-breather and the soliton-breather, the finite volume matrix

elements are known from [6]:

ρ(b1b2)(θ̃1, θ̃2) (b1b2〈{I1I2} |O| {I1I2}〉b1b2 − 〈O〉) = FO(s)
b1b2

(θ̃1, θ̃2) + ρb1(θ̃1)FO
b2 + ρb2(θ̃2)FO

b1

ρ(jb)(θ̃1, θ̃2) (jb〈{I1I2} |O| {I1I2}〉jb − 〈O〉) = FO(s)
jb (θ̃1, θ̃2) + ρj(θ̃1)FO

b + ρb(θ̃2)FO
j

(2.30)

which can be expressed in terms of the connected form factors as

FO(s)
b1b2

(θ1, θ2) = FO(c)
b1b2

(θ1, θ2) + 2πGb1b2(θ21)
(

FO
b1 + FO

b2

)

FO(s)
jb (θ1, θ2) = FO(c)

jb (θ1, θ2) + 2πGjb(θ21)
(

FO
j + FO

b

)

(2.31)

with j = s, a for soliton/antisoliton, and b standing for the breather kind, where

FO
b = FO

bb (θ + iπ, θ) (2.32)

and the function Gjb(θ), is defined analogously to (2.29), but starting from the soliton-

breather scattering phase

2πGjb (θ) = − 4 cos bπξ
2 cosh θ

cos (nπξ) + cosh (2θ)

−
b−1
∑

l=1

(

tan
π(1− (2l − n)ξ)− 2iθ

4
+ tan

π(1− (2l − n)ξ) + 2iθ

4

)

(2.33)

while in turn, the scattering phase between breathers b1 and b2 defines the function:

2πGb1b2(θ) =
4 cosh θ sin

(

b1+b2
2 πξ

)

cos(b1 + b2)πξ − cosh (2θ)
+

4 cosh θ sin
(

b1−b2
2 πξ

)

cos(b1 − b2)πξ − cosh (2θ)

−
n−1
∑

l=1

{

sin (2l+b2−b1)πξ
2

sinh 2θ−i(2l+b2−b1)πξ
4 sinh 2θ+i(2l+b2−b1)πξ

4

− sin (2l−b1−b2)πξ
2

cosh 2θ−i(2l−b1−b2)πξ
4 cosh 2θ+i(2l−b1−b2)πξ

4

}

(2.34)

for b1 ≥ b2.
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Substituting into (2.20), and keeping terms up to two particles:

〈O〉R = 〈O〉+
∑

j=s,a

∫

dθ

2π
e−mR cosh θFO

j −
∑

j=s,a

∫

dθ

2π
e−2mR cosh θFO

j

+
∑

b

∫

dθ

2π
e−mbR cosh θFO

b −
∑

b

∫

dθ

2π
e−2mbR cosh θFO

b

+
1

2

∑

j=s,a

∫

dθ1
2π

dθ2
2π

e−mR cosh θ1−mR cosh θ2(FO(c)
jj (θ21) + 2 · 2πG0(θ21)FO

j )

+
1

2

∫

dθ1
2π

dθ2
2π

e−mR cosh θ1−mR cosh θ2

[

FO(c)
+ (θ21) + FO(c)

− (θ21) (2.35)

−2π
(

G1(θ21) + Ḡ1(θ21)
)

]

(

FO
s + FO

a

)

+
1

2

∑

b1b2

∫

dθ1
2π

dθ2
2π

e−mb1
R cosh θ1−mb2

R cosh θ2
(

FO(c)
b1b1

(θ21) + 2πGb1b2(θ21)(FO
b1 + FO

b2)
)

+
∑

j,b

∫

dθ1
2π

dθ2
2π

e−mR cosh θ1−mbR cosh θ2
(

FO(c)
jb (θ21) + 2πGjb(θ21)(FO

j + FO
b )
)

+ . . .

which gives the low-temperature expansion of the expectation value of the local field O in

the sine-Gordon theory, up to and including two-particle contributions.

3 Connected diagonal matrix elements of the exponential fields

3.1 Form factors of exponential fields

Multi-soliton form factors of exponential operators in the sine-Gordon model

F k
a1,...,an(θ1, . . . , θn) = 〈0|eikβφ|θ1, . . . , θn〉a1,...,an (3.1)

were obtained by Lukyanov in [37] exploiting the bosonized form of the Zamolodchikov-

Faddeev operators [40]:

Zs(θ) =

√

iC2
4C1

eikθeiφ(θ)

Za(θ) =

√

iC2
4C1

e−ikθ
∑

σ=±

σe
σ 4π2i

β2

∫

Γσ

dγ

2π
e(1−2k−8πβ−2)γW (σ(γ − θ)) : e−iφ̄(γ)eiφ(θ) : (3.2)

in which : : denotes the appropriate normal ordering while φ, φ̄ are generalized free fields

defined in [40] and the contours Γ± are specified below. These operators satisfy the algebra

of asymptotic soliton/antisoliton creation operators

Za(θ1)Zb(θ2) = Scd
ba(θ21)Zc(θ2)Zd(θ1) (3.3)

with the scattering matrix (2.3).
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The contractions 〈〈 〉〉 of the vertex operators are defined as follows:

〈〈eiφ(θ1)eiφ(θ2)〉〉 = G(θ2 − θ1) (3.4)

〈〈eiφ(θ1)e−iφ̄(θ2)〉〉 = W (θ2 − θ1) =
1

G
(

θ2 − θ1 − iπ2
)

G
(

θ2 − θ1 + iπ2
) (3.5)

〈〈e−iφ̄(θ1)e−iφ̄(θ2)〉〉 = Ḡ(θ2 − θ1) =
1

W
(

θ2 − θ1 − iπ2
)

W
(

θ2 − θ1 + iπ2
) (3.6)

where

G(θ) = iC1 sinh
θ

2
exp

{∫

dt

t

sinh2(1− iθ/π) sinh(ξ − 1)t

sinh 2t sinh ξt cosh t

}

(3.7)

W (θ) =
−2

cosh θ
exp

{

−2

∫

dt

t

sinh2(1− iθ/π) sinh(ξ − 1)t

sinh 2t sinh ξt

}

=
Ŵ (θ)

cosh θ
(3.8)

Ḡ(θ) = −ξC2
4

sinh θ sinh
θ + iπ

ξ
(3.9)

for |ξ−1|−ξ
2 −2 < ℑm θ

π < ξ−|ξ−1|
2 ; analytic continuations valid for a wider range of rapidities

can be found in [21, 41].

Using the above definitions, Lukyanov constructed the multi-soliton form factors in

the form

F̃ k
a1,...,an(θ1, . . . , θn) = Gk〈〈Za1(θ1) . . . Zan(θn)〉〉 (3.10)

where

Gk = 〈eikβφ〉

is the vacuum expectation value of the field and the integration contours are specified as

follows. Calling “principal” poles the singularities of the function W (γ) located at γ =

−iπ/2, the contours run above the “principal” singularities of the W functions arising from

contraction of a given operator e−iφ̄ with all fields on its right and below the principal poles

originating from the contraction with the ones on its left. Accordingly, in the definition (3.2)

Γ+(Γ−) denote the contours which pass above (below) the pole at γ = θ + iπ/2 (γ =

θ − iπ/2).

The tilde in (3.10) refers to the fact that our conventions for the form factors differ

from those of Lukyanov’s by the relation

F k
a1...a2n(θ1, . . . , θ2n) = (−1)nF̃ k

−a1···−a2n(θ1, . . . , θ2n)

= (−1)nF̃−k
a1...a2n(θ1, . . . , θ2n) (3.11)

as noted in [21]. This is due to a difference in the conventions of the form factor equation,

which corresponds to a redefinition of relative phases of the multi-particle states [21]. As

a result of (3.11), our diagonal matrix elements can be obtained in the following way:

Fk
a1...an (θ1, . . . , θn) = (−1)nFk

−a1...−an (θ1, . . . , θn) (3.12)

where F
k denotes diagonal matrix elements in Lukyanov’s conventions [37].
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Note that all the form factors need to be normalized by the vacuum expectation value

of the exponential field, for which a formula has been derived in [42]. It is useful to

write that formula in a way which can be used for any value of k. Given two integers

M,N ≥ max
(

0,
⌈

4k∆−2−2(1−∆)
2(1−∆)

⌉)

and defining ∆ = ∆(β) = β2/8π, one has:

Gk =





√
πΓ
(

1
2(1−∆)

)

2Γ
(

∆
2(1−∆)

)





2k2∆

×
M
∏

m=0

N
∏

n=0

(

Γ(1 + (1−∆)m+ n∆− 2k∆)Γ(1 + (1−∆)m+ n∆+ 2k∆)

Γ(1 + (1−∆)m+ n∆)2

)(−)m

× exp

{

(−)M+1
N
∑

n=0

∫ ∞

0

dt

t

e−(2n+1)∆t−2(1−∆)(M+1)t sinh2(2k∆t)

sinh t cosh(1−∆)t

+(−)M+1

∫ ∞

0

dt

t

(

e−2(N+1)∆t−2(M+1)(1−∆)t sinh2(2k∆t)

2 sinh t sinh∆t cosh(1−∆)t
− 2k2∆e−2t

)

+
M
∑

m=0

(−)m
∫ ∞

0

dt

t

(

e−2(N+1)∆t−2m(1−∆)t sinh2(2k∆t)

sinh t sinh∆t
− 4k2∆e−2t

)}

(3.13)

which can be obtained by exploiting the integral representation of the logarithm of the

Euler’s gamma function.

3.2 The diagonal matrix elements

As a warm-up and a demonstration of how the analytic continuation is performed, it is

useful to write down the two-particle form factor in the repulsive regime:

Fk
s = Fk

a =
iC2Gke

(iπ−ǫ)k

4C1
∑

σ=±

σe
iσ
2
(1+ 1

ξ
)π

∫

Γσ

dγ

2π

〈〈

eiφ(θ+iπ+ǫ) : e−iφ̄(γ)eiφ(θ) :
〉〉

W (σ(θ − γ))eA(γ−θ)

= Gk
iC2
4

e(iπ−ǫ)k
∑

σ=±

σe
iσ
2
(1+ 1

ξ
)π

{

− Ŵ (−iπ2 )Ŵ (−iπ2 − σǫ)

ǫ

+

∫

R

dγ

2π
eAγW (−σγ)W (γ − iπ − ǫ)

}

(3.14)

in which the contour Γ+(−) passes above (below) the pole at γ = iπ2 (γ = −iπ2 ) and

has been deformed to the real axis in the second line. We also introduced the notation

A = −2k − ξ−1.

Consider now the integral part, which is divergent for k ≥ 1/2. It can be written as

the analytic continuation of a Fourier transform to imaginary values z = −iA:

Iσ(z) =

∫

R

dγ

2π
eizγW (−σγ)W (γ − iπ) = − 1

C2

∫

R

dx
1

cosh π(z−x)
2

e−σ
π(1−ξ)x

2

cosh πξx
2

(3.15)
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where the definition (3.6) has been used. Now the integral is convergent, but we still need

to continue the integral to the value z = i (2k + 1/ξ) by adding the poles that are crossed

in the contour deformation. The result is then

Iσ (i(2k + 1/ξ)) = − 1
C2

{

4

⌊(2k+1/ξ−1)/2⌋
∑

m=0

(−1)m
e−σi

π(1−ξ)(2k+1/ξ−1−2m)
2

cos πξ(2k+1/ξ−1−2m)
2

+

∫

R

dx
1

cosh π(i(2k+1/ξ)−x)
2

e−σ
π(1−ξ)x

2

cosh πξx
2

}

(3.16)

and is now convergent for all real values of k. Note that this part is O(ǫ0). The connected

part of the matrix element (3.14) is the total O(ǫ0) contribution, which can be collected as

Fk
s/a=Gk

iC2
4

eiπk
∑

σ=±

e
iσ
2

(

1+ 1
ξ

)

π
((

1+

⌊

ξ

2

⌋)

Ŵ
(

−i
π

2

)

Ŵ ′
(

−i
π

2

)

+ σIσ (i(2k + 1/ξ))

)

(3.17)

This will be compared with the exact formula below in section 4.2. Note that the func-

tion Ŵ defined in (3.8) is regular in the point −iπ/2 and its derivative can be computed

straightforwardly from the definition.

Let us now write explicitly the regularized diagonal four particle form factor:

F k
aass(θ2 + iπ + ǫ2, θ1 + iπ + ǫ1, θ1, θ2) =

Gk

(

iC2
4C1

)2

e−k(2πi+ǫ1+ǫ2)
∑

σ1σ2=±

σ1σ2e
i
σ1+σ2

2
(1+ 1

ξ
)π
∫

Γ
(1)
σ1

dγ1
2π

W (σ1(θ1 − γ1))

×
∫

Γ
(2)
σ2

dγ2
2π

W (σ2(θ2 − γ2)) e
A(γ1−θ1+γ2−θ2)

×
〈〈

eiφ(θ1+iπ+ǫ1)eiφ(θ2+iπ+ǫ2) : e−iφ̄(γ2)eiφ(θ2) :: e−iφ̄(γ1)eiφ(θ1) :
〉〉

(3.18)

where we again denote A = −2k− ξ−1. The contraction in the last line contains one factor

which is independent of the integrated variables and reads:

Aaass =
〈〈

eiφ(θ1+iπ+ǫ1)eiφ(θ2+iπ+ǫ2)eiφ(θ2)eiφ(θ1)
〉〉

G (θ12)G (θ12 − iπ − ǫ2)G (−iπ − ǫ1)

G (−iπ − ǫ2)G (θ21 + ǫ21)G (θ21 − iπ − ǫ1) (3.19)

with the usual notation ǫ21 = ǫ2 − ǫ1; on the other hand, the integral parts are as follows
∫

Γ
(1)
σ1

dγ1
2π

eAγ1W

(

γ1+
θ

2
−iπ−ǫ1

)

W

(

−σ1

(

θ

2
+γ1

))

W

(

γ1−
θ

2
−iπ−ǫ2

)

W

(

γ1−
θ

2

)

(3.20)

∫

Γ
(2)
σ2

dγ2
2π

eAγ2W

(

γ2+
θ

2
−iπ−ǫ1

)

W

(

−θ

2
− γ2

)

W

(

γ2−
θ

2
−iπ−ǫ2

)

W

(

−σ2

(

γ2−
θ

2

))

Ḡ(γ21)

with the contours depicted in figure 1.
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Figure 1. Left: contour Γ
(1)
−

, right: contour Γ
(2)
+ , below: contour Γ

(1)
+ ≡ Γ

(2)
−

.

Moreover, we have

F k
asas(θ2 + iπ + ǫ2, θ1 + iπ, θ1 + ǫ1, θ2) =

Gk

(

iC2
4C1

)2

ek(ǫ2−ǫ1)
∑

σ1σ2=±

σ1σ2e
i
σ1+σ2

2
(1+ 1

ξ
)π
∫

Γ
(1)
σ1

dγ1
2π

W (σ1(θ1 − γ1)) (3.21)

×
∫

Γ
(2)
σ2

dγ2
2π

W (σ2(θ2 − γ2 + iπ))eA(γ1−θ1+γ2−θ2−iπ)

×
〈〈

eiφ(θ1+iπ+ǫ1) : e−iφ̄(γ2)eiφ(θ2+iπ) : eiφ(θ2+ǫ2) : e−iφ̄(γ1)eiφ(θ1) :
〉〉

(3.22)

Again, the contraction in the last line contains one factor which is independent of the

integrated variables and reads:

Aasas =
〈〈

eiφ(θ1+iπ+ǫ1)eiφ(θ2+iπ)eiφ(θ2+ǫ2)eiφ(θ1) :
〉〉

G (θ12 − ǫ2)G (θ12 − iπ)G (−iπ − ǫ1) (3.23)

G (−iπ − ǫ2)G (θ21 − iπ − ǫ1)G (θ21 − ǫ1)

on the other hand, the integral parts are as follows
∫

Γ
(1)
σ1

dγ1
2π

eAγ1W

(

γ1+
θ

2
−iπ−ǫ1

)

W

(

−σ1

(

θ

2
+γ1

))

W

(

γ1−
θ

2
−iπ−ǫ2

)

W

(

γ1−
θ

2

)

(3.24)

∫

−
(2)
σ2

dγ2
2π

eAγ2W

(

γ2+
θ

2
−iπ−ǫ1

)

W

(

−θ

2
− γ2

)

W

(

γ2−
θ

2
−iπ−ǫ2

)

W

(

−σ2

(

γ2−
θ

2

))

Ḡ(γ21)
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Figure 2. Left: contour Γ
(2)
+ , right: contour Γ

(2)
−

.

Figure 3. Left: contour Γ
(1)
+ , right: contour Γ

(1)
−

with the contours depicted in figures 3 and 2. The above formulas for the regularized

diagonal form factor contain a divergent integral whenever k ≥ 1/2. It is therefore necessary

to find a suitable and meaningful definition for these quantities. We refer the interested

reader to appendix B, where explicit formulas are provided.

4 The trace of the stress-energy tensor

4.1 The NLIE prediction

As shown by Zamolodchikov [32], one can compute the expectation value of the trace of

the stress energy tensor for any volume from the exact ground state energy. In order to

compute the latter, for the sine-Gordon theory, we can make use of the nonlinear integral

equation (NLIE) [26–28]:

Z (θ) = mR sinh θ − i

∫ ∞

−∞
dxG0(θ − x− iη) log

(

1 + eiZ(x+iη)
)

+i

∫ ∞

−∞
dxG0(θ − x+ iη) log

(

1 + e−iZ(x−iη)
)

(4.1)

where η < π min(1, ξ)

G0(θ) =

∫ ∞

−∞

dk

2π
eikθ

sinh
(

π(ξ−1)
2 k

)

sinh πξ
2 k cosh π

2k
(4.2)
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and the ground state energy of the theory in finite volume R can be calculated using

E(R) = −m ℑm
∫ ∞

−∞

dθ

2π
sinh(θ + iη) log

(

1 + eiZ(θ+iη)
)

(4.3)

It satisfies

E(R) → 0 as R → ∞ (4.4)

In the repulsive regime, one can continue analytically to η = π. Introducing the func-

tions [43]

ǫ(θ) = −iZ(θ + iπ)

ǭ(θ) = iZ(θ − iπ) (4.5)

the ground state energy can be written as:

E(R) = −m

∫

dθ

2π
cosh θ log(1 + e−ε(θ))−m

∫

dθ

2π
cosh θ log(1 + e−ε̄(θ)) (4.6)

The functions ǫ, ǭ are analogous to the pseudoenergies of the thermodynamic Bethe ansatz

approach and the two terms can be thought of as resulting from the soliton-antisoliton

doublet. However, in contrast to TBA pseudoenergies, they are complex valued functions.

From (4.1) it can be deduced that they satisfy the equations

ε(θ) =mR cosh θ −
∫

dxG0(θ − x) log(1 + e−ε(x)) +

∫

dxG1(θ − x) log(1 + e−ε̄(x))

ε̄(θ) =mR cosh θ −
∫

dxG0(θ − x) log(1 + e−ε̄(x)) +

∫

dxḠ1(θ − x) log(1 + e−ε(x)) (4.7)

where

G1(θ) = G0(θ − iπ) (4.8)

Note that the function G1 has a pole at θ = 0; on the other hand, in the calculation of

all physical quantities, this is of no consequence. The two quantities ε and ε̄ are related

by complex conjugation, as well as their derivatives below. In fact, one can derive with

respect to the volume and obtain

1

m

∂ε

∂R
(θ) = cosh θ +

∫

dxG0(θ − x)f(θ)
1

m

∂ε

∂R
(x)−

∫

dxG1(θ − x)f̄(θ)
1

m

∂ε̄

∂R
(x) (4.9)

where the complex quantities f(θ) = 1
1+eε(θ)

and f̄(θ) = 1
1+eε̄(θ)

have been used. On the

other hand, the derivative of the first of (4.7) with respect to the rapidity, denoted by a

prime, is obtained as follows

1

mR
ε′(θ) = sinh θ +

∫

dxG0(θ − x)f(θ)
1

mR
ε′(x) +

∫

dxG1(θ − x)f̄(θ)
1

mR
ε̄′(x) (4.10)
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It is then a simple matter to differentiate (4.6) and obtain

〈Θ〉R
〈Θ〉∞

− 1 =
1

m2R

d

dR
RE(R)

=

∫

dθ

2π

{

cosh θ
1

m

(

∂ε

∂R
(θ) +

∂ε̄

∂R
(θ)

)

+ sinh θ
1

mR

(

ε′(θ) + ε̄′(θ)
)

}

=
1

2π

{∫

dθ(f + f̄)(θ) + 2

∫

dθ1

∫

dθ2

[

f(θ1)f(θ2)G0(θ12)

−f(θ1)f̄(θ2)G1(θ12)
]

cosh θ12 + 2

∫

dθ1

∫

dθ2

∫

dθ3

[

f(θ1)f(θ2)f(θ3)G0(θ12)

−f(θ1)f(θ2)f̄(θ3)G0(θ12)G1(θ23)− f(θ1)f̄(θ2)f̄(θ3)G1(θ12)G0(θ23)

+f(θ1)f̄(θ2)f(θ3)G1(θ12)Ḡ1(θ23)
]

cosh θ13 + . . .

}

(4.11)

The subtraction of −1 is related to the asymptotic property (4.4), which means that the

ground state energy computed from the NLIE has the bulk term subtracted. For the vac-

uum expectation value derived from it, this entails that we obtain the finite size corrections

to the infinite volume value (2.6), (3.13). For later convenience, we also normalized the

expectation value by its infinite volume limit.

4.2 Connected form factors for the trace of the stress-energy tensor

Diagonal matrix elements of the trace of the stress-energy tensor can be computed as

outlined in [1], which is reviewed in appendix B. In particular, the diagonal one-particle

form factor is given by

FΘ
s = FΘ

a = 2 cot
πξ

2
G1 (4.12)

Comparing this to the result (3.17) gives a first check of the regularization method, which

is shown in figure 4.

Moreover, the connected diagonal two-particle form factors are also explicitly known

(see appendix A):

FΘ(c)
ss (θ1, θ2) = −8πG1 cot

πξ

2
G0(θ12) cosh θ12 (4.13)

FΘ(c)
aa (θ1, θ2) = −8πG1 cot

πξ

2
G0(θ12) cosh θ12

(FΘ
sa + FΘ

as)
(c)(θ1, θ2) = 4πG1 cot

πξ

2
(G1 + Ḡ1 − 2G0)(θ12) cosh θ12

We checked (for values 1/2 < ξ < 2, where we need to take into account only principal poles)

that the connected form factors as obtained in the form (B.20), (B.23) from Lukyanov’s

expressions (as given in appendix B) agree with these (see figure 5). In addition to that,

the two can be compared with the results from the regularization procedure of [41], again

resulting in agreement among the results, thus providing a threefold check.
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Figure 4. One-particle diagonal matrix element FΘ
s = FΘ

a of the trace of the stress-energy tensor:

comparison between the regularization procedure outlined in section 3.2 (dots) against the analytic

formula obtained from Lukyanov’s form factor (solid line). The normalization through the operator

vacuum expectation value is not included in this plot.
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Figure 5. Left: connected diagonal matrix element FΘ
ss = FΘ

aa. Right: connected diagonal matrix

element FΘ
sa +FΘ

as for ξ = 1.6129. The solid line corresponds to the formulas (4.13), while the dots

are evaluated using appendix B.

For future reference, we also write here the soliton-breather and the two-breather

connected diagonal matrix element of the trace of the stress-energy tensor:

FΘ(c)
b∓ (θ1, θ2) = −16πG1 sin

πξb

2
cot

πξ

2
Gsb(θ12) cosh θ12 (4.14)

FΘ(c)
b1b2

(θ1, θ2) = −32πG1 sin
πξb1
2

sin
πξb2
2

cot
πξ

2
Gb1b2(θ12) cosh θ12 (4.15)

4.3 Comparing the NLIE to the series

Let us start with an analytical comparison in the repulsive regime ξ > 1. It is easy to

see that expanding the exact result (4.11)to second order in e−mR of produces exactly the

terms of series (2.35) up to this order.
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Figure 6. Left: form factor expansion to first (blue circles) and second (purple squares) order in

e−mR of the trace of the stress-energy tensor at ξ = 1.6129, as a function of the inverse temperature

R, compared to the exact value (red solid line). Right: exponential decay of the deviation of the

expansion from the exact value, the exponent being ∼ 3.4mR.

First we need to expand the expression (4.7) and the relative (complex) filling factor,

which leads to:

ε(θ) ≃ mR cosh θ −
∫

dx (G0(θ − x)−G1(θ − x)) e−mR coshx +O(e−2mR)

f (θ) ≃ e−mR cosh θ +

∫

dx (G0(θ − x)−G1(θ − x)) e−mR(cosh θ+coshx) − e−2mR cosh θ

+O(e−3mR) (4.16)

while the one for ε̄ and f̄ are obtained by the substitution G1 → Ḡ1. The expansion of the

NLIE result gives:

〈Θ〉R
〈Θ〉∞

− 1 =
1

2π

(

∑

j=s,a

∫

dθe−mRcoshθ −
∑

j=s,a

∫

dθe−2mRcoshθ

+

∫

dθ1

∫

dθ2e
−mRcoshθ1−mRcoshθ2

(

2G0(θ21)−
(

G1(θ21) + Ḡ1(θ21)
))

+

∫

dθ1

∫

dθ2e
−mRcoshθ1−mRcoshθ2

(

2G0(θ21)−G1(θ21)− Ḡ1(θ21)
)

cosh θ21

+O(e−3mR)
)

(4.17)

Using expressions (4.12), (4.13) for the connected form factors of the trace of the energy-

momentum tensor, one can easily recognize that this is indeed identical to the solitonic

terms in (2.35), once the normalization of the two-particle form factor according to (4.12)

is taken into account. Note that this also validates, using this operator as an example,

the conjecture stated in [22], for which only heuristic argument and numerical support

was obtained in the original paper. Convergence of the series is illustrated in figure 6, in

which we compare the expansion for the trace of the stress-energy tensor to the NLIE data

obtained by a recursive solution of (4.1).

The analytic continuation of the counting function which underlies formula (4.11) to

imaginary values of its argument has to take into account that the first determination
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Figure 7. Left: form factor expansion up to one soliton (blue circles), up to one breather (purple

squares) and up to two solitons (yellow rhombuses) of the trace of the stress-energy tensor at

ξ = 0.531915, as a function of the inverse temperature R, compared to the exact value (red solid

line). Right: inclusion of the contributions up to two solitons (blue circles), one soliton and one

breather (purple squares) and up to two breathers (yellow rhombuses). Below: exponential decay

of the deviation of the expansion from the exact value, compared to e−3mR decay.

strip of the G1 function has a width of π min(1, ξ). This implies that the so-called second

determination must be used in the attractive regime; moreover the series must also be par-

tially summed to obtain the expected exponential decay with exponent determined from

the breather mass. To avoid these complications, we resort to numerical calculations, and

in figure 7 it is shown that that the exact expectation value of Θ is well reproduced by the

conjectured expansion. We can also provide the finite temperature corrections to the vac-

uum expectation value of all the operator
〈

eikβφ
〉

R
for integer k. Their soliton-antisoliton

form factors are finite in the diagonal limit and can be straightforwardly derived from [37]

Fk
s = Fk

a = (−1)k+1Gk

k
∑

m=1

(4m− 2)
m+k−1
∏

l=m−k,k 6=0

cot
πξk

2
(4.18)

for k = 1, 2 . . . , while our computation provides the two-particle connected diagonal matrix

elements in (B.20), (B.23).

However, at present we can not make a useful comparison to an independent calcu-

lation. The NLIE only provides access to the cases k = ±1, i.e. the trace of the stress

energy tensor. For higher k, one could resort to numerical determination using truncated
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conformal space approach (TCSA), originally invented by Yurov and Zamolodchikov [44]

and extended to perturbations of the free boson theory in [45]. However, the evaluation of

matrix elements is plagued by ultraviolet differences. Using the results in [46], it can be

easily seen that the matrix elements of eikβφ are only finite in TCSA for ξ < 1/(2|k| − 1).

Even for k = ±2 this is deep in the attractive regime, with numerous light breather states.

For these couplings, before getting to the interesting novel part of our expansion which in-

volves non-diagonal scattering (i.e. the two-soliton states), a lot of corrections coming from

states with diagonal scattering must be summed over. Besides this being a very tedious

task, the part we would really wish to put to the test would be so tiny as to escape any

useful comparison.

An alternative possibility is to renormalize TCSA to obtain the expectation values

at a less attractive, or even repulsive coupling. Such renormalization has already been

performed for energy levels [47, 48]. By extending the methods of [46] it should be possible

to extend the procedure to expectation values. However, a preliminary investigation that

we performed indicates that this is a very nontrivial task, and is clearly out of the scope

of the present work. We hope to return to this issue in the future.

5 Conclusions

In this work we have studied the low-temperature expansion for one-point functions in

sine-Gordon model, which can be considered as a paradigmatic example of integrable field

theory with non-diagonal scattering. Following the ideas of Pozsgay and Takács [6], we

proposed a series expansion which enables to compute the vacuum expectation value of

exponential operators. The formula is expressed in terms of connected components of the

diagonal matrix elements of the operator and can be considered as a generalization of the

LeClair-Mussardo expansion [1] to non-diagonal scattering. However, in contrast with the

latter and with the established formalism in diagonal theories, we could not write our

result in terms of single particle energies and momenta dressed by the thermodynamic

Bethe ansatz. In this respect, there remains a marked difference between diagonal and

non-diagonal scattering theories. Our results were verified for the case of the trace of the

stress-energy tensor by comparing against the NLIE approach.

We have also developed a way to evaluate the connected diagonal matrix elements

analytically, starting from the integral expressions of the form factors obtained by

Lukyanov [37]. For a special value of the exponent, the form factors were compared to

those of the trace of the stress-energy tensor which can be obtained by different routes,

providing a nontrivial validation of the procedure.

Finally, we have provided analytic support to the relation between finite and infinite-

volume form factors conjectured in [22] which had previously been supported only by

intuitive reasoning and numerical evidence.

An interesting open problem is to extend our results to states containing more than

two solitons/antisolitons, which would then enable the explicit evaluation of the higher

terms in the proposed series expansion.
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A The diagonal matrix elements of the trace of the stress-energy tensor

Here we summarize the calculation, introduced in [1, 49], of the diagonal matrix elements

of the operator Θ = Tµ
µ . First we recall that for a given local operator O, the form factor

dependence under space and time translations can be written as

FO(x,t)(θ1, . . . , θn) = e−ix(
∑

j mj sinh θj)+it(
∑

j mk cosh θj)FO(0,0)(θ1, . . . , θn) (A.1)

in which the energy and momentum of the j-th particle, having mass mj , have been

parametrized as ej = mj cosh θj and pj = mj sinh θj , respectively.

Conservation of the stress tensor implies that:

Tµν = (∂µ∂ν − gµν�)A (A.2)

for some scalar field A. Knowing the form factors of this field, as well as the property (A.1),

allows to compute those of Θ by the use of:

FΘ (θ1, . . . , θn) = lim
ǫ1...ǫn→0

F (∂2
1−∂2

0)A(θ1 + iπ + ǫ1, . . . θn + iπ + ǫn, θn, . . . , θ1)

= − lim
ǫ1...ǫn→0

∑

j,k

ǫjǫkmjmk cosh (θj − θk) (A.3)

FA(θ1 + iπ + ǫ1, . . . , θn + iπ + ǫn, θn, . . . , θ1)

where the overall normalization N is left undetermined.

Following the procedure explained in [49], one can determine the two-particle form

factor from the expectation value of the Hamiltonian (the T00 component of the stress

energy tensor)

〈

θ + ǫ

∣

∣

∣

∣

∫

dx1
2π

T00 (x1)

∣

∣

∣

∣

θ

〉

= −m
(sinh θ − sinh (θ + ǫ))2

cosh θ
δ (ǫ)FA (A.4)

by comparing it with the single particle energy

〈

θ + ǫ

∣

∣

∣

∣

∫

dx1
2π

T00 (x1)

∣

∣

∣

∣

θ

〉

= 2πδ (ǫ)m cosh θ (A.5)

The above formula (A.1) implies that the behavior of the two particle form factor is

FA
as(θ + iπ + ǫ, θ) = FA

sa(θ + iπ + ǫ, θ) ≃ −2π

ǫ2
(A.6)

in the diagonal limit ǫ → 0. In order to match Lukyanov’s normalization [37] of the expo-

nential operator, an overall normalization has to be left undetermined. This normalization

can be determined by comparison with the exact formula (4.12). Analogous reasoning and

the expression (2.2) allows one to compute the breather diagonal matrix elements.

Once the proper normalization factor is fixed, higher form factors are uniquely de-

termined and can be computed recursively the by repeated use of the kinematical pole
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equation, which encodes the singular part of the function when θm → θn + iπ:

iFj1...jn (θ1, . . . θm, . . . , θn) ≃ Cjnkn

1

θm − θn − iπ
Fk1...k̂m...kn−1

(

θ1, . . . θ̂m . . . , θn−1

)

(A.7)
[

δk1j1 . . . δk1j1 S
kmkn−1

c1jn−1
(θm,n−1) . . . S

cn−m−2km+1

jmjm+1
(θm,m+1)

−e2πiωOΨSk1km
j1c1

(θ1,m) . . . S
km−1cm−2

jm−1jm
(θm−1,m) δ

km+1

jm+1
. . . δ

kn−1

jn−1

]

where θa,b = θa − θb and C is the charge conjugation matrix, which in the case of sine-

Gordon is the Pauli matrix σx in the soliton-antisoliton sector, while it is the identity in

the breather sector. The mutual locality factor ωOΨ encodes the braiding properties of

the operator O with the field Ψ that interpolates particles [40]. One needs to select all

the contributions which diverge as O
(

1
ǫjǫk

)

, which will give a finite contribution when

inserted into (A.3).

In particular, this procedure applied to (A.6) yields the results (4.13)

FΘ(c)
ss (θ1, θ2) = FΘ

aa(θ1, θ2) = −8πG1 cot
πξ

2
G0(θ12) cosh θ12 (A.8)

(FΘ(c)
sa + FΘ

as)(θ1, θ2) = 4πG1 cot
πξ

2
(G1 + Ḡ1 − 2G0)(θ12) cosh θ12

in the solitonic sector using the S-matrix (2.3). On the other hand, using (A.6), the breather

mass (2.2) and the (diagonal) breather-breather and soliton-breather S-matrices [31], one

obtains (4.14), (4.15):

FΘ(c)
b∓ (θ1, θ2) = −16πG1 sin

πξb

2
cot

πξ

2
Gsb(θ12) cosh θ12 (A.9)

FΘ(c)
b1b2

(θ1, θ2) = −32πG1 sin
πξb1
2

sin
πξb2
2

cot
πξ

2
Gb1b2(θ12) cosh θ12 (A.10)

B The connected diagonal soliton form factors of the exponential field

We focus here on the four-particle diagonal matrix element. We need to collect the parts

which stay finite when ǫ1,2 → 0. According to the considerations in section 3.1, all the

form factors in the soliton sector share the same structure: there is an overall factor, which

depends only on the rapidities but not on the particle species, and a double integral.

The double integral is generally time-consuming to evaluate numerically. It has the

following form: two functions g and h, both of which depend only on one of the two

integration variables, multiplying Ḡ, which instead depends on the difference of the two.

Therefore, the double integral can be written as a sum of products of two simple integrals
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by a simple trick [41]:

Iaa =

∫

dγ1

∫

dγ2g (γ1)h (γ2) Ḡ (γ1 − γ2) (B.1)

= −C2ξ
16

∑

α1,α2=±

α1α2e
iα2π/ξ

∫

Γ(1)

dγ1e
(α1+α2/ξ)γ1g (γ1)

∫

Γ(2)

dγ2h (γ2) e
−(α1+α2/ξ)γ2

Ias =

∫

dγ1

∫

dγ2g (γ1)h (γ2) Ḡ (γ1 − γ2 − iπ)

= −C2ξ
16

∑

α1,α2=±

α1α2

∫

Γ(1)

dγ1e
(α1+α2/ξ)γ1g (γ1)

∫

Γ(2)

dγ2e
−(α1+α2/ξ)γ2h (γ2) (B.2)

using the definition (3.7).

Note that the integrals are evaluated along the contours Γ(1,2), which will be deformed

to either the real axis or the lines ℑmγ1 = π (as for the one in figure 2). In the course

of this deformation some poles are encountered; in the regime 1/2 < ξ < 2, one only

needs to treat principal poles of the W functions (3.5). For each integral, there is a

contribution of order 1
ǫ1
, which we write as 1

ǫ1
P

(j)
1 (θ, ǫ1, ǫ2), and another one of order 1

ǫ2
,

written as 1
ǫ2
P

(j)
2 (θ, ǫ1, ǫ2). The index j = 1, 2 represents the integral from which the given

contribution originates. We postpone for the moment the analysis of the functions P , by

just remarking that they depend on the difference of rapidities θ = θ2 − θ1 only.

From this, one has one family of form factors, in the form:

Faass (θ1 + iπ + ǫ1, θ2 + iπ + ǫ2, θ2, θ1) =

GkAaass (θ, ǫ1, ǫ2)
∑

σ1σ2

σ1e
iσ1π(1+1/ξ)/2σ2e

iσ2π(1+1/ξ)/2
∑

α1α2

α1α2

eiα2π/ξ

(

P
(1)
1,σ1α1α2

(θ, ǫ1, ǫ2)

ǫ1
+

P
(1)
2,σ1α1α2

(θ, ǫ1, ǫ2)

ǫ2
+ I(1)σ1α1α2

(θ, ǫ1, ǫ2)

)

(P
(2)
1,σ1α1α2

(θ, ǫ1, ǫ2)

ǫ1
+

P
(2)
2,σ1α1α2

(θ, ǫ1, ǫ2)

ǫ2
+ I

(2)
σ2−α1−α2

(θ, ǫ1, ǫ2)
)

(B.3)

Each of the two integrals can now be written as a real integral and is finite whenever

ǫ1,2 → 0. On the other hand, they can have O(ǫ1,2) contributions. We separate each term

in the sum and the various orders in ǫ1,2 by writing

I(j)σα1α2
(θ, ǫ1, ǫ2) = I(j)σα1α2

(θ) + ǫ1J
(j,1)
σα1α2

(θ) + ǫ2J
(j,2)
σα1α2

(θ)

where α1,2 = ± label the terms in the sum (B.1), while σ = ± labels the contour index in

the sum (3.2). The prefactor A can be subjected to the same analysis. Its finite part and

O(ǫ1,2) contributions can be isolated as

Aaass(θ1 + iπ+ ǫ1, θ2 + iπ+ ǫ2, θ2, θ1) = Aaass + ǫ1Aaass,1 + ǫ2Aaass,2 + ǫ1ǫ2Aaass,12 (B.4)
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The same reasoning can be applied to the form factors in which particles of opposite

charge are adjacent. In this case we have:

Fasas (ϑ1 + iπ + ǫ1, ϑ2 + iπ, ϑ2 + ǫ2, ϑ1) =

−GkAasas (θ, ǫ1, ǫ2)
∑

σ1σ2

σ1e
iσ1π(1+1/ξ)/2σ2e

iσ2π(1+1/ξ)/2
∑

α1α2

α1α2

(

P
(1)
1;σ1α1α2

(θ, ǫ1, ǫ2)

ǫ1
+

P
(1)
2;σ1α1α2

(θ, ǫ1, ǫ2)

ǫ2
+ I(1)σ1α1α2

(θ, ǫ1, ǫ2)

)

(

P
(2)
1;σ2α1α2

(θ, ǫ1, ǫ2)

ǫ1
+

P
(2)
2;σ2α1α2

(θ, ǫ1, ǫ2)

ǫ2
+ I

(2)
σ2−α1−α2

(θ, ǫ1, ǫ2)

)

(B.5)

where we introduced the parametrization

I(j)σ1α1α2
(θ, ǫ1, ǫ2) = I(j)σα1α2

(θ) + ǫ1K
(j,1)
σ1α1α2

(θ) + ǫ2K
(j,2)
σ1α1α2

(θ)

and

Aasas(θ1 + iπ+ ǫ1, θ2 + iπ, θ2 + ǫ2, θ1) = Aasas + ǫ1Aasas,1 + ǫ2Aasas,2 + ǫ1ǫ2Aasas,12 (B.6)

Note that in this expression, due to the presence of an integration in the (3.2), it is more

convenient to expand around the Lukyanov’s antisoliton rapidity.

The only singularities are coming from the residues picked up from the principal poles of

theW functions, during the process of deforming the contours, while the remaining integrals

are regular. Note that because of the presence of two antisolitons, each of the contours

generates a singularity. However, the contraction of the vertexes
〈〈

e−iφ̄(ϑ1)e−iφ̄(ϑ2)
〉〉

is

zero for coinciding rapidities, hence the poles at ǫ1 → 0 and ǫ2 → 0 are simple.

B.1 The integral parts

To regularize the integral representation, we borrow a method from the original paper [40]

and note that the integrals associated to antisolitons can be interpreted as the analytic

continuation of Fourier transforms to imaginary arguments. Since the diagonal part of

the form factor written in terms of integrals over hyperbolic functions only, one is able to

compute the Fourier transforms

f̂(z) =

∫

dγ

2π
eizγf(γ) (B.7)

explicitly, and then the resulting convolution can be evaluated numerically.

Let us define the functions:

C(γ, θ)−1 = cosh(γ + θ/2) cosh(γ − θ/2)

Sαβ(γ, θ)
−1 = sinh

γ + θ/2 + iαπ/2

ξ
sinh

γ − θ/2 + iβπ/2

ξ
(B.8)

which we can use to write

1

Ḡ(γ + θ
2 − iπ + iαπ

2 )Ḡ(γ − θ
2 − iπ + iβ π

2 )
=

(

4

ξC2

)2

C(γ, θ)Sαβ(γ, θ) (B.9)
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Their Fourier transforms are

Ĉ(z, θ) =
sin θz

2

sinh πz
2 sinh θ

(B.10)

Ŝ++(z, θ) =
−ξ sin zθ

2 e
−

π(ξ−1)z
2

−πzξ
⌊

1
2ξ

⌋

sinh πzξ
2 sinh θ

ξ

Ŝ+−(z, θ) =
iξ sinh

(

(ξ−1)π−iθ
2 + πξ

⌊

1
2ξ

⌋)

z

sinh πzξ
2 sinh θ+iπ

ξ

(B.11)

with the obvious symmetries

Ŝα,β(−z, θ) = Ŝ−β,−α(z, θ) Ŝα,β(z,−θ) = Ŝβ,α(z, θ) (B.12)

On the other hand, the Fourier transform of the logarithmic derivative of the W function

is easily obtained as

L̂(z, θ) =

∫

dγ

2π
eizγ∂γ logW (γ − iπ) =

1

2i

(

1

sinh πz
2

− sinh π(ξ−1)z
2

sinhπz sinh ξπz
2

)

eizθ/2 (B.13)

and also, using the definitions (3.6)

L̂±(z, θ) =

∫

dγ

2π
eizγ∂γ logW

(

γ − θ

2
− i(1∓ 1)π

)

=−L̂(z)− 1

2i

(

1

sinh πz
2

+
e∓

π(ξ−1)z
2

sinh ξπz
2

)

ei
zθ
2

(B.14)

Using this procedure, one obtains the integral part of the diagonal Fsa form factors in the

following form:

I(1)σα1α2
(θ) = I(2)σα1α2

(−θ) = σ

(

4

ξC2

)2 ∫

R

dxĈ

(

i

(

2a+ α1 +
1 + α2

ξ

)

− x

)

Ŝ−σ,+(x, θ)

J (1,1)
σα1α2

(θ) = J (2,2)
σα1α2

(−θ) = −σ

(

4

ξC2

)2 ∫

R

dxĈ

(

i

(

2a+ α1 +
1 + α2

ξ

)

− x

)

×
∫

R

dyŜ−σ,+(x− y, θ)L̂(y,−θ)

J (1,2)
σα1α2

(θ) = J (2,1)
σα1α2

(−θ) = −σ

(

4

ξC2

)2 ∫

R

dxĈ

(

i

(

2a+ α1 +
1 + α2

ξ

)

− x

)

×
∫

R

dyŜ−σ,+(x− y, θ)L̂+(y, θ) (B.15)

For the Fss , we have instead:

I(1)σα1α2
(θ) = I

(2)
−σα1α2

(−θ)∗ = σ

∫

R

dxĈ

(

i(2a+ α1 +
1 + α2

ξ
)− x

)

Ŝ−σ,+(x, θ)

K(1,1)
σα1α2

(θ) = K(1,2)
σα1α2

(−θ) = −σ

∫

R

dxĈ

(

i(2a+ α1 +
1 + α2

ξ
)− x

)

×
∫

R

dyŜ−σ,+(x− y, θ)L̂(y, θ)

K(2,2)
σα1α2

(θ) = K(2,1)
σα1α2

(−θ) = K
(1,1)
−σα1α2

(−θ)∗ (B.16)
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B.2 Poles

Here we provide the formulas for the poles contribution. We write the contributions from

the poles associated to the deformation of the contour on which the variable γj is integrated

(j = 1, 2) as 1
ǫk
P

(j)
k (θ, ǫ1, ǫ2) =

1
ǫk
P

(j)
k + P

(j)
k;k +

ǫ3−k

ǫk
P

(j)
k;3−k with the index k = 1, 2 labeling

the singularity and θ = ϑ2 − ϑ1. For practical reasons, it will be more convenient to

include the all O
(

ǫ0
)

contributions in the integral part, which is easily done by shifting

I
(j)
σα1α2 → I

(j)
σα1α2 + P

(j)
1,1;σα1α2

+ P
(j)
2,2;σα1α2

.

For the Fss = Faa matrix element we find:

P
(1)
1;σ,α1,α1

(θ, ǫ1, ǫ2) = iσŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(−θ+iσπ)/2

Ḡ
(

θ − iσ π
2 − i3π2

) (B.17)

(

1 + ǫ2∂θ logW
(

θ − iσ
π

2
− 2πi

)

− σǫ1∂θ log Ŵ
(

−i
π

2

))

P
(1)
2;σ,α1,α1

(θ, ǫ1, ǫ2) = iŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(θ−iπ)/2

Ḡ(θ − iσ π
2 − i3π2 )

(

1− ǫ1∂θ logW

(

θ − i
3π

2

))

P
(2)
2;σ,α1,α1

(θ, ǫ1, ǫ2) = iσŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(θ+iσπ)/2

Ḡ
(

θ + iσ π
2 − i3π2

)

(

1− ǫ1∂θ logW
(

θ + iσ
π

2

)

−σǫ2∂θ log Ŵ
(

−i
π

2

))

P
(2)
1;σ,α1,α1

(θ, ǫ1, ǫ2) = iŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(−θ−iπ)/2

Ḡ
(

θ + iσ π
2 − i3π2

)

(

1 + ǫ2∂θ logW

(

θ − i
3π

2

))

again, having also included contour and expansion of the Ḡ function indexes. The notation

∂θ log Ŵ (−iπ/2) indicates the logarithmic derivative of the function Ŵ with respect to the

rapidity argument, evaluated at θ = −iπ/2.

For the Fas form factor we obtain, instead

P
(1)
1;σ,α1,α1

(θ, ǫ1, ǫ2) = iσŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(−θ+iσπ)/2

Ḡ
(

θ − iσ π
2 − i3π2

)

(

1 + ǫ2∂θ logW
(

θ − iσ
π

2
− πi

)

−σǫ1∂θ log Ŵ
(

−i
π

2

))

P
(1)
2;σ,α1,α1

(θ, ǫ1, ǫ2) = iŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(θ−iπ+ǫ2)/2

Ḡ
(

θ − iσ π
2 − i3π2 + ǫ2

)

×
(

1− ǫ1∂θ logW

(

θ − i
3π

2
+ ǫ2

))

P
(2)
2;σ,α1,α1

(θ, ǫ1, ǫ2) = iσŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(θ+iσπ)/2

Ḡ
(

θ + iσ π
2 − i3π2

)

(

1− ǫ1∂θ logW
(

θ + iσ
π

2
− iπ

)

−σǫ2∂θ log Ŵ
(

−i
π

2

))

P
(2)
1;σ,α1,α1

(θ, ǫ1, ǫ2) = iŴ
(

−i
π

2

)2 e(A+α1+α2/ξ)(−θ−iπ+ǫ1)/2

Ḡ
(

θ + iσ π
2 − iπ2 − ǫ1

)

×
(

1 + ǫ2∂θ logW

(

θ − i
3π

2
− ǫ1

))

(B.18)

from which the various orders can be easily extracted.
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B.3 Collecting the finite contributions

Finally, we write the factor Aasas from the contraction (3.23) as in (B.6):

Aasas = Ḡ(θ21 − iπ)

×
{

1− ǫ1∂θ21 logW

(

θ21 − i
3π

2

)

− ǫ2∂θ21 logW
(

θ21 − i
π

2

)

(B.19)

−ǫ1ǫ2

(

∂θ21 logW
(

θ21 − i
π

2

)

∂θ21 logW

(

θ21 − i
3π

2

)

+ ∂2
θ21 logG(θ21 − iπ)

)

}

Substituting into (B.5) and selecting the order O(ǫ01,2) results in

Fk,(c)
as (θ) = −Gk

∑

σ1σ2

σ1e
iσ1π(1+1/ξ)/2σ2e

iσ2π(1+1/ξ)/2
∑

α1α2

α1α2

[

A
(

P
(1)
1;σ1α1α2

J (2,1)
σ1α1α2

+P
(1)
2;σ1α1α2

J (2,2)
σ1α1α2

+ J (1,1)
σ1α1α2

P
(2)
1;σ2α1α2

+ J (1,2)
σ1α1α2

P
(2)
2;σ2α1α2

+ I(1)σ1α1α2
I(2)σα1α2

+P
(1)
1,2;σ1α1α2

P
(2)
2,1;σ2α1α2

+ P
(1)
2,1;σ1α1α2

P
(2)
1,2;σ2α1α2

)

+A1

(

P
(1)
1;σ1α1α2

I(2)σα1α2

+I(1)σ1α1α2
P

(2)
1;σ2α1α2

)

+A2

(

P
(1)
2;σ1α1α2

I(2)σα1α2
+ I(1)σ1α1α2

P
(2)
2;σ2α1α2

)

+A12

(

P
(1)
1;σ1α1α2

P
(2)
2;σ2α1α2

+ P
(1)
2;σ1α1α2

P
(2)
1;σ2α1α2

) ]

(B.20)

with

A = Aasas = Ḡ(θ − iπ)

A1 = Aasas,1 = A∗
2 = Aasas,2 = −∂θ logW

(

θ − i
3π

2

)

A12 = Aasas,12 = −
∣

∣

∣

∣

∂θ logW

(

θ − i
3π

2

)∣

∣

∣

∣

2

− ∂2
θ logG(θ − iπ) (B.21)

and the functions P
(j)
k from section B.2.

Using this result we have checked explicitly that Fsa can be obtained by complex

conjugation, as it is possible to put each term in (B.20) in correspondence with the terms

in Fas.

For the case of Faa, writing the contractionAaass given in (3.19) in the form (B.4) gives:

Aaass = Ḡ(θ21 − iπ)

×
{

1 + ǫ1∂θ21 logW

(

θ21 − i
3π

2

)

− ǫ2∂θ21 logW

(

θ21 − i
3π

2

)

−ǫ1ǫ2

(

∂θ21 logW

(

θ21 − i
3π

2

)2

+ ∂2
θ21 logG(θ21)

)}

(B.22)
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Multiplying this contribution with the integral part as in (B.3) and selecting the order

ǫ01,2, one obtains:

Fk(c)
ss (θ) = Gk

∑

σ1σ2

σ1e
iσ1π(1+1/ξ)/2σ2e

iσ2π(1+1/ξ)/2
∑

α1α2

α1α2e
iα2π/ξ

[

A
(

P
(1)
1;σ1α1α2

K(2,1)
σ1α1α2

+P
(1)
2;σ2α1α2

K(2,2)
σ1α1α2

+K(1,1)
σ1α1α2

P
(1)
1;σ1α1α2

+K(1,2)
σ1α1α2

P
(2)
2;σ2α1α2

+ I(1)σ1α1α2
I(2)σα1α2

+P
(1)
1,2;σ1α1α2

P
(2)
2,1;σ2α1α2

+ P
(1)
2,1;σ1α1α2

P
(2)
1,2;σ2α1α2

)

+A1

(

P
(1)
1;σ1α1α2

I(2)σα1α2

+I(1)σ1α1α2
P

(2)
1;σ2α1α2

)

+A2

(

P
(1)
2;σ1α1α2

I(2)σα1α2
+ I(1)σ1α1α2

P
(2)
2;σ2α1α2

)

(B.23)

+A12

(

P
(1)
1;σ1α1α2

P
(2)
2;σ2α1α2

+ P
(1)
2;σ1α1α2

P
(2)
1;σ2α1α2

) ]

where all the functions above depend on the rapidity difference θ = θ1 − θ2, the pole

functions are computed from section B.2 and

A = Aaass = Ḡ(θ − iπ)

A1 = Aaass,1 = −A2 = −Aaass,2 = ∂θ logW

(

θ − i
3π

2

)

A12 = Aaass,12 = ∂θ logW

(

θ − i
3π

2

)2

+ ∂2
θ logG(θ) (B.24)

The form factor Fss can be formally obtained by the substitution θ → −θ, the latter

being actually a symmetry of the expression above, so Fss = Faa as expected from charge

conjugation symmetry.
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