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Abstract: In the present paper, advanced numerical methodologies have been adopted to investigate
the influence of impact angle on the crashworthiness behavior of a composite fuselage section. The
analyzed fuselage section, made of unidirectional fiber-reinforced material, woven fabric material,
and aluminum material, is representative of a regional aircraft fuselage. Two different angles of
impact with rigid ground have been investigated and reported: Perpendicularly to the ground and
with a pitch angle of 3 degrees with respect to the ground. The adopted numerical models have been
preliminarily validated with experimental data from a drop test on a full-scale fuselage section, in
terms of deformations and failure location and progression. The correlation between the numerical
model and the experimental test has enabled evaluation of the effect of the impact angle on the
deformation and damage in the sub-cargo floor area.

Keywords: crashworthiness; finite element analysis (FEA); composites; progressive failure analysis (PFA)

1. Introduction

The increasing use of civil aircraft transport requires more and more attention to aircraft
design to ensure occupant safety and structural integrity by means of controlled kinetic energy
absorption, ensuring a level of deceleration within a given threshold [1–4] under an impact event. This
design approach, also known as the crashworthiness design, is deeply influenced by the geometrical
conditions, impact parameters, and material interactions [5,6] related to the impact phenomena’s great
complexity [7–10]. In order to design a structure capable of absorbing the impact load transmitted
between the ground and the fuselage, guaranteeing a satisfactory level of occupant safety in accordance
with the Federal Aviation Administration (FAA) standards [1], several robust numerical models
have been developed in order to reduce the costly experimental tests, which are often affected by
uncertainty due to boundary conditions, such as the material characteristics, impact velocity, and actual
dimensions [11]. Energy absorption in conventional metal structures occurs as plastic deformations
lead to collapse. The use of numerical models allows, with good approximation, to predict the degree
of dissipated energy and to achieve an optimal fuselage sub-components design. As an example,
good approximation between experimental tests and finite element numerical analyses for a subfloor
helicopter structure has been reported in Reference [12]. Other authors demonstrate the integrity
of a fuel tank during a crash condition [13]. In recent decades, composite materials are replacing

Aerospace 2019, 6, 72; doi:10.3390/aerospace6060072 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0001-7426-6803
https://orcid.org/0000-0001-7766-8250
https://orcid.org/0000-0002-5110-7380
http://www.mdpi.com/2226-4310/6/6/72?type=check_update&version=1
http://dx.doi.org/10.3390/aerospace6060072
http://www.mdpi.com/journal/aerospace


Aerospace 2019, 6, 72 2 of 14

conventional metal materials, due to their characteristics of high specific stiffness and strength. Fiber
composite materials with epoxy matrix do not have a plastic deformation phase [14], leading to more
complex kinetic energy absorption mechanisms during the impact events involving the interaction
between the different composite phases. Complex structures, such as fuselages, transmit the load
from the impact point to the whole structure, resulting in a more extended and difficult to predict
absorption of the kinetic energy [15–20]. Several works on civil transport aircraft crashworthiness have
highlighted the influence of the stiffness of the floor of the cabin and of the cargo subfloor components
on the energy absorption behavior [21–24]. Indeed, the cargo subfloor area first experiences the impact
with the ground, absorbing most of the kinetic energy. In particular, the impact energy is absorbed by
the frame and the hinges [24–33]. The fuselage frame can dissipate almost half of the impact energy
during the impact. Therefore, fiber-reinforced composite structures such as sandwich panels can be
adopted to increase energy absorption [34,35]. The bars between the cargo area and the cabin, although
first designed as a cabin primary structures, could be used as a kinetic energy absorber without
changing the aircraft structural characteristic. As already remarked, the study of the energy absorption
in the form of damage energy or plastic deformation energy assumes a prominent role during the
crashworthy design. However, investigations on the whole airplane structure crashworthiness are
still very limited nowadays. To understand the energy dissipation mechanism occurring during a
crash event, reliable numerical tools and methods are needed to be used, due to the airplane structure
complexity. Indeed, accurate numerical modeling requires the appropriate selection of the element
type [36]. As a matter of fact, three-dimensional elements are mandatory to study the complex stress
distribution, including shear stress, arising from the impact event [37,38].

In this work, a drop test of a composite fuselage section is investigated, focusing on the impact
angle with the rigid ground. During the experimental test, an impact angle has been generated by the
pitch rotation of the fuselage during the descending phase due to unbalanced masses on the floor beams.
This effect can be considered representative of an impact on a non-plane surface. In particular, the focus
of this work is to investigate the effect of such an impact angle on the structural deformations and the
failure of the sub-cargo floor. In order to better analyze the impact phenomenon under investigation,
numerical simulations have been performed by using the commercial Finite Element Method (FEM)
software ABAQUS explicit, and the pitch angle has been taken into account by imposing a rotation
angle to the rigid plate simulating the ground. The fiber-reinforced composite fuselage components
have been modeled by means of three-dimensional continuum shell elements. Despite these elements
having a shell formulation, they are characterized by a three-dimensional shape. Hence, it is possible
to take into account the effects of transverse shear deformation and the thickness change, providing a
more refined through-the-thickness response.

In Section 2, a brief theoretical background on the damage models adopted in the frame of
numerical simulations is given. In Section 3, the geometrical and numerical modeling activities on the
fuselage subcomponents are introduced, while the obtained numerical results for the two investigated
impact angles (90◦ and 87◦) and comparisons with experimental data are reported in Section 4. Finally,
in Section 5, the influence of impact angle on the failure onset and propagation within the sub-cargo
fuselage area is discussed.

2. Theoretical Background

In this section, the intra-laminar progressive damage models adopted for the numerical simulations
are described in detail. Hashin’s failure criteria have been adopted to predict fiber breakage and matrix
cracking onset. Moreover, conventional ductile criteria joined with a bilinear material model have
been adopted to simulate the damage progression [39].

Hashin’s failure onset criteria, adopted in this work, enable prediction of the fiber and matrix
failure onsets in compression or tension for each mode. The criteria reported in Equations (1)–(4)
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introduce four different limit parameters: Fft fiber tensile, Ffc fiber compressive, Fmt matrix tensile, and
Fmc matrix compressive.

F f t =

(
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)2

+

(
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SL

)2

= 1 (1)

F f c =

(
σ11

XC

)2
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[( YC
2ST
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− 1

]
·
σ22

YC
+

(
σ12

SL

)2

= 1 (4)

where σ̂11, σ̂22, σ̂12 are the components of the effective stress tensor along fiber direction, matrix
direction, and shear; XT, XC, YT, YC, SL, and ST are, respectively, the fiber tensile, fiber compressive,
matrix tensile, matrix compressive, shear strength in longitudinal and transversal direction. The
evolution of the damage for separate failure modes is explained in Figure 1.
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Figure 1. Constitutive relation (damage evolution).

The point A in Figure 1 identifies the point in which Hashin’s criteria are satisfied. Kd is the
undamaged material stiffness. The segment AC is the damage evolution phase up to point C, where
the element is completely damaged. The partially damaged phase (point B) is evaluated with a gradual
stiffness material degradation. The material stiffness degradation coefficient di is calculated for each
mode in according with Equation (5):

di =
δt

i,eq

(
δi,eq − δ

0
i,eq

)
δi,eq

(
δt

i,eq − δ
0
i,eq

) ; δ0
i,eq ≤ δi,eq ≤ δ

t
i,eq; i ∈ ( fc, ft, mc, mt) (5)

The maximum equivalent displacement reached in point C is calculated in accordance with
Equation (6):

δt
i,eq =

2Gi,c

σ0
i,eq

(6)

where σ0
i,eq and δ0

i,eq are, respectively, the equivalent stress and displacement at the Hashin limit
condition. Gi,c is the material fracture toughness of the i-th failure mode, which is equal to the area
of the triangle OAC, shown in Figure 1. Finally, the area of the triangle OBC corresponds to the
recoverable energy, while the area of the triangle OAB is related to the area dissipated due to the
damages. In Table 1, the equations to evaluate the equivalent stress and displacement are reported.
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Table 1. Equivalent stress and displacement definitions.

Failure Equivalent Stress Equivalent Displacement

Fiber tension Lc(〈σ11〉〈ε11〉+σ12·ε12)
δ f t,eq

Lc

√
〈ε11〉

2 + ε2
12

Fiber compression Lc〈−σ11〉〈−ε11〉

δ f c,eq
Lc〈−ε11〉

Matrix tension Lc(〈σ22〉〈ε22〉+σ12·ε12)
δmt,eq

Lc

√
〈ε22〉2 + ε2

12

Matrix compression Lc(〈−σ22〉〈−ε22〉+σ12·ε12)
δmc,eq

Lc

√
〈−ε22〉2 + ε2

12

where LC and < > are, respectively, the element characteristic length and the Macauley bracket operator [39].

3. Geometrical Model and Numerical FEM Model Description

In this section, a brief description of the investigated fuselage section and general specifications
of the adopted materials are provided, focusing on the sub-cargo area. Figure 2 shows the fuselage
section with all subcomponents. The components with the same geometry and material have been
grouped and reported with a different color. The considered fuselage section has a radius of 1811 mm
and a length of 4926 mm.
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Figure 2. Whole fuselage section.

The area of the fuselage most subjected to the kinetic energy absorption during the ground impact
phenomenon is the sub-cargo floor area. Figure 3 shows the components of this section to better
appreciate the design of this area.
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Three different materials (unidirectional fiber-reinforced composite, woven fabric, and aluminum
material) have been used to manufacture the sub-cargo area. The materials employed to manufacture
the subcomponents are clearly identified in Figure 4.
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Figure 4. Sub-cargo components and materials.

The mechanical properties of the adopted material systems are reported in Table 2 (unidirectional
Composite Fiber Reinforced Plastic—CFRP), Table 3 (woven fabric), and Table 4 (aluminum).

Table 2. Unidirectional fiber composite material mechanical properties.

Unidirectional CFRP

Young’s Modulus, E11 [MPa] 137,500
Young’s Modulus, E22 [MPa] 8200
Shear Modulus, G12 [MPa] 3950
Shear Modulus, G13 [MPa] 3950
Shear Modulus, G23 [MPa] 3950

Poisson’s ratio, ν12 = ν13 = ν23 [-] 0.35
Fiber Tensile Strength, F1t [MPa] 1890

Fiber Compressive Strength, F1c [MPa] 1008
Matrix Tensile Strength, F2t [MPa] 86.5

Matrix Compressive Strength, F2c [MPa] 112
In-Plane Shear Strength, S12 [MPa] 95

Out-Plane Shear Strength, S23 [MPa] 100
Density, ρ [ton/mm3] 1.9 × 10−9

Ply thickness, tp [mm] 0.129
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Table 3. Woven fabric material mechanical properties.

Woven Fabric

Young’s Modulus, E11 [MPa] 55,000
Young’s Modulus, E22 [MPa] 55,000
Shear Modulus, G12 [MPa] 3363
Shear Modulus, G13 [MPa] 3363
Shear Modulus, G23 [MPa] 3363

Poisson’s ratio, ν12 = ν13 = ν23 [-] 0.30
Fiber Tensile Strength, F1t [MPa] 650

Fiber Compressive Strength, F1c [MPa] 650
Matrix Tensile Strength, F2t [MPa] 650

Matrix Compressive Strength, F2c [MPa] 650
In-Plane Shear Strength, S12 [MPa] 150

Out-Plane Shear Strength, S23 [MPa] 150
Density, ρ [ton/mm3] 1.97 × 10−9

Ply thickness, tp [mm] 0.25 mm

Table 4. Aluminum Al2024 mechanical properties.

Al2024

Young’s Modulus, E [MPa] 70,000
Poisson’s ratio, ν [-] 0.33

Yield stress, σy [MPa] 369
Ultimate Tensile stress, σf [MPa] 469

Density, ρ [ton/mm3] 2.7 × 10−9

The whole fuselage section had a weight of 533.77 kg. Before the drop test, some additional
masses were added, as shown in Figure 5: 185 kg were added due to the dummies and the seats; 186 kg
due to both the data acquisition system and the balancing mass; and 22.80 kg due to the harnesses.
In particular, the harness masses were composed of four steel beams with a square section area clamped
on the four central windows with rigid support to avoid the window hole deformation.
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Despite the masses fixed on the cabin floor were balanced respect to the pitch and roll axes, the
fuselage section impacted the ground with a pitch angle of 3 degrees. Although a mass acting on a small
area may cause local force intensification, this effect was assumed as almost negligible as a consequence
of the masses locations and the cabin floor stiffness. Indeed, an approximate 940 kg weight for the
section fuselage was achieved, by introducing ad hoc density values to obtain a total mass similar
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to the test distributed over the whole geometry to avoid imbalance. Two analyses were performed,
considering firstly, a perpendicular impact between the ground and the fuselage section and further
simulation with an approximate pitch angle of 3◦. The whole model was composed of 1,976,157 nodes
and 995,858 elements; the struts that connect the cabin floor to the cargo area were realized with beam
section elements. The section beam had an internal radius of 18 mm and an external radius of 20 mm.
The metal subcomponents were modeled with an eight-node three-dimensional element and a reduced
integration scheme. The composite subcomponents were modeled with reduced integration scheme
continuum shell elements according to the Abaqus/Explicit element library. The rigid plane was
4600 × 5500 mm2 dimensions in-plane and 1 mm out-of-plane. Furthermore, the plane was considered
rigid to better simulate the ground effect and fixed in the space. On each node of the fuselage section,
an initial velocity of 9900 mm/s was applied. This velocity was evaluated by considering a drop height
of 5000 mm. The model was simplified by deleting physical connections, such as rivets and bolts and
replacing their effect with a multipoint constrain tie available in Abaqus.

4. Results

The experimental test was performed at the Crash Laboratory owned by the Italian Aerospace
Research Centre (CIRA) named “Laboratory for Impact testing of Structures in Aerospace field (LISA)”.
The test article impacted the ground with a pitch angle of about 3◦, as highlighted by Figure 6, where
some frames of the drop test are shown. In particular, in Figure 6b the fuselage section pitch angle can
be appreciated just before the impact with the ground. Therefore, in this section, numerical analyses
are presented to assess the influence of the pitch angle on the damage behavior of the fuselage section.
As a preliminary study, qualitative comparison in terms of failure onset and propagation between the
experimental drop test and the numerical analyses has been reported. In this preliminary study, the
numerical model has been validated by means of comparisons with the deformations arising from the
experimental drop test.
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Figure 7 shows the impact initiation between the fuselage section and the ground. Figure 7a shows
the experiment test picture of the fuselage section touching the ground, while Figure 7b illustrates
the numerical simulation considering a 3 degree sloped rigid plane. As highlighted in Figure 7, the
unbalance of section fuselage led to impact initiation on a very small area.
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Figure 8 compares the experimental test picture taken when the rear section of the fuselage
section part touches the ground (Figure 8a) with the numerical simulation state in the same condition
(Figure 8b). This image shows excellent agreement between the numerical model and the experimental
test in terms of general subfloor deformation.
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As already remarked, an additional numerical analysis simulating the impact between the fuselage
section and the ground with no pitch angle was carried out. Deformations achieved during impact at
the same time step needed the rear section of the real fuselage barrel to touch the ground during the
experimental test (shown in Figure 9). According to Figure 9b, rather uniform damage on all the lower
frames and reinforcements could be observed in the perpendicular impact between the rigid ground
and the fuselage section.
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Figure 9. Fuselage section impact parallel to the ground: (a) Frontal view; (b) rotated view (units
in mm).

Figure 10a summarizes the damage energy graphs for both configurations computed by the
Abaqus code. The damage energies were evaluated as the sum of the dissipated damage energy (see
Figure 1) of each element, for each failure mode. As can be observed from Figure 10a, the 10 kJ damage
energy threshold (traced line in Figure 10a), was reached at different time steps by the two analyzed
configurations. Indeed, the configuration with no impact angle reached the 10 kJ damage energy at
about 9 ms, while the configuration with a 3◦ impact angle reached the 10 kJ damage energy at about
14 ms. These trends were expected, since the damaged area in the case of the perpendicular impact
was much more extended, leading to a fast dissipation of energy as the fracture energy.
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Figure 10. (a) Damage energy graph; (b) force vs. time graph.

The graph in Figure 10b shows the trend of the force vs. time for the two analyzed configurations.
The force was obtained as a reaction force on the rigid plane in the z-direction. For the zero-impact
angle configuration, a maximum force value of about 200 kN was reached, while for the configuration
with an impact angle of 3◦, a maximum force value of about 150 kN was achieved. This behavior
was representative of the deformations occurring to the two configurations. Indeed, the configuration
undergoing the perpendicular impact experienced a more gradual deformation, being that the impact
energy was distributed all along the whole fuselage length. Hence, the residual stiffness at the
beginning of the impact event was still relevant, leading to a force peak, which could be appreciated in
the force vs. time graph (Figure 10b). On the other hand, the fuselage impacting the ground with an
angle of 3◦ experienced a sudden deformation on one edge, which caused a sudden degradation of the
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stiffness, leading to the absence of force peaks in the first stage of the impact event and, hence, as it
could be observed in the force vs. time graph (Figure 10b).

Figure 11 shows the section of the deformed fuselage section evaluated, respectively, at 14 ms
for the configuration with a 3◦ impact angle (Figure 11a) and 9 ms for the configuration with normal
ground impact (Figure 11b). In these conditions, as it can be appreciated from Figure 10a, the same
amount of fracture energy was dissipated (10 kJ energy). As already remarked, from the comparison
between Figure 11a,b, it can be observed that the damaged area was much more extended in the
configuration with the normal impact, if compared to the configuration with the impact at 3◦.
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From Figure 12, where a section of the impact fuselage section has been reported for the
configuration with a 3◦ angle impact, four different nodes have been identified as control points for the
accelerations. The same locations were taken as control point also in the fuselage model undergoing
the perpendicular impact, in order to compare the effects of the impact angle on the acceleration
distribution along the fuselage length.
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In Figure 13, the acceleration along z-direction vs. time has been plotted at the control points
locations (defined in Figure 12) for analysis of the two impact configurations. Indeed, Figure 13a
reports the accelerations predicted for the 3◦ impact angle configuration, while Figure 13a reports the
accelerations predicted for the perpendicular impact configuration. In the first stage of the impact
event, the acceleration of the first control point (identified with a yellow point in Figure 12) in the
case of the 3◦ impact angle (Figure 13a), was different from zero, while the other control points, not
touching the ground, showed zero acceleration. This trend confirmed, for this configuration, that the
impact force acted on a very small impact area at the beginning of the impact event. On the other hand,
in the frame of the normal impact event, all the control points showed non-zero acceleration from the
beginning. This trend confirmed, for this configuration, that as expected, the impact force acted all
along the fuselage length from the beginning of the impact event.
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Finally, a qualitative comparison between the two models is presented in Figure 14, where the
lower region of the fuselage section in both the numerically simulated impact configurations (a 3◦ and
perpendicular impact) are reported. In particular, Figure 14a shows the fuselage section with a 3◦

impact angle, while Figure 14b shows the fuselage section perpendicularly impacted on the ground.
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Figure 14. Sub cargo area: (a) Sloped impact; (b) normal impact (units in mm).

In the case of a non-perpendicular impact with the rigid ground, considering the same amount of
damage energy (see Figure 10a), the main amount of kinetic energy was absorbed only by the most
external front frames and reinforcements. This caused more relevant deformations in this area, if
compared to the perpendicular impact, where the damage in the sub-cargo area seemed to be almost
uniformly distributed along the fuselage section length but concentrated in the central area of the
subfloor with smaller deformations. The absorbed kinetic energy, dissipated by the structure in the
form of fracture energy, seemed to produce more dangerous damage, which extended beyond the
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subfloor area and potentially affected in a more significant way the passenger area when a pitch angle
was present.

5. Conclusions

In this paper, a numerical/experimental study on a composite fuselage section of a commercial
aircraft was introduced. An advanced numerical model was presented, able to predict—in the initial
phases—the behavior of the sub-cargo floor area when subjected to impact with the ground. In order to
take into account the complex stress distribution, including shear stress, arising from the impact event,
three-dimensional elements were used to discretize the finite element model. The numerical analyses
were preliminarily correlated to experimental data from a drop test on a full-scale composite fuselage
section in terms of deformation and failure onset and propagation. Then, numerical comparisons
between a 3◦ pitch angle impact and a no pitch angle impact were presented, to understand the
influence of the impact angle on the failure onset and evolution and on the safety of the passengers. The
impact simulations with different impact angles demonstrated the criticality of crash events occurring
with a pitch angle. As expected, the presence of the impact angle causes a kinetic energy absorption
concentrated in a very small area of the structure, significantly increasing the deformations and
leading to more severe and potentially more significant damage transmitted to the passenger area. The
investigation of the effects of the impact angle on the passengers will be the focus of follow-on research.
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