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Abstract

Innovative meta-materials offer great flexibility for manipulating sound waves and assure unprecedented func-
tionality in the context of acoustic applications. Indeed, they can exhibit extraordinary properties, such as
broadband low-frequency absorption, excellent sound insulation, or enhanced sound transmission. More
specifically, Helmholtz resonators are exploited in several applications aiming to reduce noise transmission.
However, the design of acoustic meta-materials with exciting functionality still represents a challenge, there-
fore there is a huge interest about the conceptualization and design of innovative acoustic solutions making
use of meta-material resonance effects. The main target of the present research work is to obtain an accu-
rate prediction of the tuning frequency of a Helmholtz-resonating device, numerically modeled through a Finite
Element approach. In this context, an investigation on a correction factor for the classical formulation used
to estimate the Helmholtz resonance frequency starting from its geometrical characteristics, accounting for
different-shaped resonators with varying neck/cavity ratios is performed. More specifically, a set of analyses
are performed, and results in terms of correction factor are provided in both graphical and polynomial form,
and compared with Finite Element ones, showing higher accuracy.
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1. Introduction
It is well-known that there is an increasing growing interest on the environmental noise reduction.
Aiming at this goal, different approaches could be investigated and adopted: for example, porous
media, whose foam cavities dissipate the energy by viscous and thermal losses, show very good
performance at high frequencies [1], while tunable acoustic devices, such as Helmholtz resonators
(HRs), perform better at low frequencies.
The concept of Helmholtz resonance and the associated classical theory have been applied in the
design and analysis of various systems including tuned intake manifolds of vehicles [2–4], noise
attenuation in pipelines [5], attenuation of aircraft propulsor noise [6], combustion instabilities for gas-
turbine engines [7]. With reference to this class of devices, Alster [8] obtained the classical formula
for calculation of resonant frequencies of HRs, under the assumptions that all mass significant for
oscillation of a resonator is concentrated in the neck of the resonator and that the spring constant
is given by the volume of the resonator [9]. Tang et al. [10] derived the theory of a generalized
HR, based on the jet-flow model that is manifested in the non-linearity of the neck flow upon the
passage of a high intensity wave. Fahy et al. [11] coupled a single HR to an enclosure and tuned
it to the natural frequency of one of its low order acoustic modes, also analyzing the effect on the
free, and forced, vibrations of the fluid in the enclosure. Chanaud [12] developed an equation for
the resonance frequency of a HR from the wave equation for the case of a cavity volume that has
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the shape of a rectangular parallelepiped and orifices of different geometries. de Bedout et al. [13]
presented a tunable Helmholtz resonator and a feedback-based control law that achieves optimal
resonator tuning for time-varying tonal noise control applications. Lei et al. [14] proposed a strategy
to characterize power and ground-plane structures using a full cavity-mode frequency-domain res-
onator model. Griffin et al. [15] demonstrated that mechanically coupled resonators can be used for
designing a particular transmission loss response, generating attenuation in a wider bandwidth, and
adapting the transmission loss characteristics of a structure to attenuate disturbances at a desired
frequency. Tang [16] experimentally and theoretically investigated the acoustical properties of HRs
with necks having cross-section dimensions decreasing away from the entry of the resonator cavities.
Park [17] introduced micro-perforated panel absorbers backed by HRs with the aim to improve sound
absorption in the low-frequency range, where classical micro-perforated panel absorbers do not pro-
vide sufficient performance. HRs are analyzed by several researcher for their interesting behavior;
apparently, this one does not change with the HR shape. Nevertheless, resonance frequency pre-
diction formulas are not so much faithful for shapes that are different respect to the typical analyzed
in literature (like cylinder neck - cylinder cavity); furthermore, a classic geometry like cylinder neck -
cylinder cavity can have resonance frequency shift for different radius ratios. The scope of this paper
is to obtain an accurate prediction of the tuning frequency of a HR device, for several combination of
neck-cavity geometries.
The present work is structured as follows: in Section 2., the methodologies and objectives are pre-
sented, together with some details about geometrical properties (Section 2.1) and Finite Element
(FE) implementation (Section 2.2 ) of the analyzed configurations. Successively, in Section 3., some
analyses for different neck/cavity ratios and geometries are performed, and some results in terms of
correction factor (Section 3.1 ), resonance frequency (Section 3.2 ) and absolute errors (Section 3.3
) are provided and discussed. In conclusion, in Section 4., the main achievements of the present
research are summarized and some possible future expansions are identified.

2. Definition of the problem
In this section, Helmholtz resonators are numerically modeled and studied, accounting for different
shapes with varying neck/cavity ratios.
A Helmholtz resonator (HR) is a tunable device with rigid walls and filled of fluid, whose geometry
is usually represented by a neck followed by a cavity. With reference to acoustic applications, HRs
exhibit a single resonance frequency; thus, they are commonly defined as 1-Degree-of-Freedom
(DoF) systems. Indeed, HRs may be conceptually assimilated to a mass-spring system, in which the
fluid in the neck represents the mass m = ρ0Snecklneck, while the volume acts as a spring with stiffness
K = ρ0c2

0S2
neck/Vcavity , where: ρ0 is the density of the fluid, c0 is the speed of sound in the fluid, Sneck is

the area of the section of the neck, Vcavity is the volume of the cavity, and lneck is the main length of the
neck.
A first attempt of obtaining an approximate mathematical estimation of a HR tuning frequency fHR,
starting from its fundamental geometrical characteristics, was proposed by Rayleigh [18] as:

fHR =
c0

2π

√
Sneck

Vcavity(lneck +
4

3π
dneck)

(1)

where (4/3π)dneck is the end-correction factor proposed by Rayleigh for accounting neck-cavity junc-
tion effects due to an abrupt change between the circular cross sections. This change leads to an
additional impedance, defined as discontinuity inductance.
The physical phenomenon is well explained by Karal [19], who relates the discontinuity inductance
to the ratio between the tube radii. This additional impedance can be conceptually interpreted as
an increase in the length of the tube; moreover, if the ratio of the tube radii is unitary, the circular
section is unchanged and thus the length does not need any corrections; on the other hand, for a
ratio equal to zero (an open tube fitted with an infinite flange), the correction factor corresponds to the
Rayleigh’s one. Thus, it is logical that Rayleigh’s correction works well for low value of tube radii ratio,
while it needs other considerations when the ratio is increasing. Successively, Ingard [20] modified
Rayleigh’s formula by increasing its complexity in order to provide an alternative estimation of HR
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frequency, which has explicit dependence on the ratio ξ between the representative lengths in the
section plane of the neck and the cavity, respectively labeled as dneck and dcavity. Ingard developed
this approach for three geometrical configurations (cylindrical neck and cylindrical cavity, cylindrical
neck and parallelepiped cavity, parallelepiped neck and parallelepiped cavity).
Analogously to Ingard’s approach, also Rayleigh’s formula can be written by outlining its dependence
from ξ , in the form of:

fHR =
c0

2π

√
Sneck

Vcavitylneck(1+ 4
3π

dcavity
lneck

ξ )
(2)

Finite Elements results demonstrate how Rayleigh’s and Ingard’s estimations perform well in a limited
range of ξ , while sensibly differing from FE results for values of ξ outside of it. Thus, a new empirical
prediction of HR frequency is developed herein, with the aim of obtaining a more accurate evaluation
compared with those already available in the relevant literature. This is done starting from Eq. (2),
and investigating the correction factor c f , which plays the role defined as follows:

fHR =
c0

2π

√
Sneck

Vcavitylneck(1+ c f ξ )
(3)

2.1 Geometrical properties
Six different geometrical configurations are considered herein. A summary of the studied configura-
tions is reported in Table 1, the same being also shown in Figure 1. Moreover, a precise explanation
of the characteristic lengths of necks and cavities for the studied configurations are reported in Table
2. It should be clarified that the equivalent edge of the parallelepiped section is obtained by com-
puting the square root of the product between the two edge lengths of the parallelepiped section
itself.

Table 1 – Geometrical description of the studied configurations.

Configuration Neck shape Cavity shape
1 Cylinder Cylinder
2 Parallelepiped Cylinder
3 Cylinder Parallelepiped
4 Parallelepiped Parallelepiped
5 Cylinder Sphere
6 Parallelepiped Sphere

Table 2 – Characteristic lengths of necks and cavities for six different geometrical configurations,
where ξ = dneck/dcavity.

Configuration dneck dcavity

1 Diameter of the cylinder Diameter of the cylinder

2
Equivalent edge of the

Diameter of the cylinder
parallelepiped section

3 Diameter of the cylinder
Equivalent edge of the
parallelepiped section

4
Equivalent edge of the Equivalent edge of the
parallelepiped section parallelepiped section

1 Diameter of the cylinder Diameter of the sphere

6
Equivalent edge of the

Diameter of the sphere
parallelepiped section
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Figure 1 – Representation of the studied configurations, numbered as indicated in Table 1.

2.2 Finite Element implementation
For what concerns the FE implementation, the module “Pressure Acoustics and Frequency Domain”
of COMSOL MultiPhysics is used both as modeling tool and numerical solver. For all configura-
tions presented in this work, the mesh consists of tetrahedral elements generated through physics-
controlled algorithms that are pre-implemented in the software. Nevertheless, the authors verified
that the maximum element size of each HR meshed is always lower then 1/4 of the minimum wave-
length λ . In Table 3, the average number of FE mesh elements for each of the studied configurations
are reported.

Table 3 – Average number of FE mesh elements.

Configuration Domain Boundary Edge
1 5652 1130 149
2 3021 682 114
3 5846 985 127
4 6731 1044 133
5 2828 656 116
6 3007 702 125

The analyzed HRs are filled by air, whose properties are: density ρ0 = 1.225 [kg/m3], speed of sound
c0 = 343 [m/s]. The analyses are carried out considering an excitation consisting of a unit pressure
boundary condition applied to the free end of the neck, while the HR walls are modeled through Sound
Hard Boundary Wall (SHBW) conditions, which means that the normal component of the acceleration
(and thus the velocity) is zero. A detailed description of classical FE formulation and equations can
be easily found in the context of the relevant literature [21].
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3. Analyses and results for different neck/cavity ratios and geometries
In this section, the six configurations previously defined are studied, and some results are presented
as functions of the ratio ξ . The dimensions of HRs are chosen in order to be sufficiently big to
avoid manufacturing issues, while also being sufficiently small to preserve their interest in terms of
acoustic applicability in the fields of transport engineering (e.g.: aerospace, automotive, etc.). More
specifically, the neck dimensions are of the order of 2÷10mm, while the cavity dimension is varying
from 2 to 100mm.

3.1 Graphical estimation of the correction factor for an improved predictive formula
First, a FE parametric test campaign, as a function of the ratio ξ , is carried out with the aim to
estimate the resonance frequency of HRs that represent Configurations 1-6. Starting from this set of
data, Eq. 3 is inverted to obtain the value of the correction factor c f as:

c f =
( c2

0
4π2

Sneck

f 2
HRVcavitylneck

−1
)

ξ
−1 (4)

Such values of the correction factor are shown in Fig. 2. It may be interesting to notice that, for all the
analyzed configurations, in the range 0.05 < ξ < 0.3 the values of c f sharply change, while varying
in a much smoother manner in the range 0.3 < ξ < 0.95, where they are always bounded between
c f = 0.5 and c f = 2.5. These results may be intended as a carpet plot, in which the potential user may
enter with a designed value of ξ , choose the appropriate curve according to the considered geometry,
and obtain a value of c f that can be used in Eq. 3 in order to predict the resonance frequency of a
specific HR device. It should be noted that the analyzed configurations do not represent the only
solutions for Helmholtz Resonator geometry, but they are the most used for the acoustic applications;
then, neck or cavity geometries that are different from these configurations have to be developed with
a new numerical campaign. Nevertheless, the approach for new numerical tests can be unchanged.

Figure 2 – FE estimation of the correction factor for the six studied HR configurations, as functions
of ξ .

5



EVALUATION OF IMPROVED CORRECTION FACTORS FOR THE PREDICTION OF HELMHOLTZ RESONANCES

3.2 Calculation of Helmholtz resonance frequency through Rayleigh’s formula, Finite Ele-
ment computation and polynomial approximation

With the objective of developing an alternative approach to the graphical estimation of the correction
factor c f , and consequently of the HR frequency fHR, described in Section 3.1, a 3rd-order polynomial
approximation of the correction factors is proposed herein. Since Rayleigh’s formula reported in
Eq. (2) performs for ratios 0.05 < ξ < 0.3 with a level of accuracy that is definitely acceptable, and
considering that, as already underlined, in the range 0.05 < ξ < 0.3 the values of c f vary meaningfully,
while changing less in the range 0.3 < ξ < 0.95, then it may be convenient to directly rely on Eq. (2)
up to ξ = 0.3, and to contextually develop a polynomial approximation for higher values of ξ .

(a) Configuration 1 (b) Configuration 2

(c) Configuration 3 (d) Configuration 4

(e) Configuration 5 (f) Configuration 6

Figure 3 – Comparison of Helmholtz resonance frequency estimations for each analyzed
configuration.
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As it may be noticed from Figure 3, which show the HR frequencies of the six studied configurations,
for 0.05< ξ < 0.3 Rayleigh’s formula is always able to catch the FE behavior with a negligible accuracy
error, while for ξ > 0.3 the proposed 3rd-order polynomial approximations almost perfectly follow FE
values. Clearly, if one wanted to derive a polynomial expression with reasonable validity in the whole
ξ range, a higher-order polynomial would have been needed. The above-mentioned polynomial
expressions are derived using MATLAB’s built-in “polyfit” function and are meant to be used in Eq.
(3) with the aim of mathematically calculating the resonance frequency of a HR. The expressions that
refer to Configurations from 1 to 6 are reported in Eqs. (5)-(10), respectively.

c f 1 =−3.72ξ
3 +9.31ξ

2 −5.89ξ +2.21 (5)

c f 2 =−5.16ξ
3 +12.9ξ

2 −8.20ξ +2.89 (6)

c f 3 =−3.42ξ
3 +8.83ξ

2 −7.34ξ +2.43 (7)

c f 4 =−4.61ξ
3 +11.8ξ

2 −9.91ξ +3.28 (8)

c f 5 =−1.27ξ
3 +5.60ξ

2 −4.69ξ +1.78 (9)

c f 6 =−1.08ξ
3 +6.33ξ

2 −5.31ξ +2.00 (10)

3.3 Evaluation of the relative errors of Rayleigh’s formula and of the proposed approach with
reference to Finite Element results

Finally, in this section, the relative errors of Rayleigh’s formula and of calculated polynomial expres-
sions are provided, considering FE results as the reference ones. In detail, in Figure 4 it may be seen
that, for ξ < 0.3, the relative error of Rayleigh’s formula respect to FE data is always lower than 3%,
while increasing up to 50% for higher values of ξ in the case of some of the studied configurations.

Figure 4 – Evaluation of the relative errors of Rayleigh’s formula, with reference to Finite Element
results, for the six studied HR configurations, as functions of ξ .
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Moreover, for Configurations 3 and 4, errors are quite similar and, in general, lower than 5% in
the whole ξ range; according to the desired accuracy, this may allow the usage of Eq. 2 when
having a HR with a parallelepiped cavity, regardless of the value of ξ . For what concerns the relative
difference between the HR frequency predictions obtained making use of Eqs. (5)-(10), and the
HR frequencies got with the numerical campaigns, it is lower than 0.5% in the entire ξ range, thus
eventually representing a valid alternative approach compared to the graphical one introduced and
discussed in Section 3.1.

4. Conclusions
The present work aims at obtaining an accurate prediction of the tuning frequency of Helmholtz-
resonating devices. To this scope, it is performed an investigation on a correction factor for the clas-
sical formulation used to estimate the Helmholtz resonance frequency starting from its geometrical
characteristics, in the case of different-shaped resonators with varying neck/cavity ratios. In detail, a
set of analyses are carried out, and results in terms of correction factor are provided in both graphical
and polynomial form, also demonstrating their good accuracy respect to Finite Element ones. The
methodologies and objectives of this work have been presented, together with some details about
geometrical properties and FE implementation of the analyzed configurations; then, some analyses
for different neck/cavity ratios and geometries have been performed, and the related results in terms
of correction factor, resonance frequency and absolute errors are provided and discussed.
A possible extension of the work presented herein may be constituted by an experimental validation
of FE results. Furthermore, the scalability of results found in this context should be verified too, to
assure their applicability on structures with very different sizes respect to those considered herein. In
addition, the effect on Helmholtz resonance frequency and amplitude due to the presence of a wall
material may be investigated too.
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